EP0429367A1 - Method for making articles having a cavity by compression - Google Patents
Method for making articles having a cavity by compression Download PDFInfo
- Publication number
- EP0429367A1 EP0429367A1 EP90403305A EP90403305A EP0429367A1 EP 0429367 A1 EP0429367 A1 EP 0429367A1 EP 90403305 A EP90403305 A EP 90403305A EP 90403305 A EP90403305 A EP 90403305A EP 0429367 A1 EP0429367 A1 EP 0429367A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity
- sheath
- core
- pressing
- making articles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/001—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/1208—Containers or coating used therefor
- B22F3/1258—Container manufacturing
- B22F3/1291—Solid insert eliminated after consolidation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S425/00—Plastic article or earthenware shaping or treating: apparatus
- Y10S425/044—Rubber mold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S425/00—Plastic article or earthenware shaping or treating: apparatus
- Y10S425/124—Rubber matrix
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49453—Pulley making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
- Y10T29/49989—Followed by cutting or removing material
Definitions
- the invention relates to a method of manufacturing parts having a cavity by pressing.
- a common process for manufacturing parts of non-moldable material consists in pressing a closed and deformable sheath filled with powder of this material by hydrostatic pressure.
- the pressure causes, in conjunction with an accompanying heating, a sintering of the powder by tamping or densification.
- the sheath is then split and rejected, and the part can be dimensioned by finishing machining. Isostatic pressing without heating also exists.
- Another solution consists in placing in the sheath, before filling it, a non-deformable core which delimits the cavity.
- the cores used in foundries have a similar role, but the problems posed by pressing are different because significant mechanical stresses develop in the sheath, the core as well as in the part as soon as the powder takes consistency.
- the method is characterized in that the core is initially of volume greater than the volume of the cavity and undergoes a partial extrusion out of the cavity during pressing.
- the core also undergoes plastic deformations and must be constructed from a more ductile material than that of the part.
- the core and the sheath may be in one piece or separate; moreover, the sheath or the core may or may not be covered with a non-stick layer which facilitates demolding.
- the process can be perfectly applied to parts where the core or the sheath are an integral part of the finished product.
- the parts can be in particular ceramic.
- We can cite oxides (Al2O3, CeO2, ZrO2), borides (TiB2), nitrides (TiN, TaN), carbides (TaC, NbC), silicides (Si3N4, SiC), mixtures of such ceramics granular compounds, composites with ceramic matrix and fiber reinforcement.
- the invention can also be applied in particular to composites with a metallic matrix and with ceramic or metallic reinforcement as well as to metals and alloys which are not very ductile such as tungsten, cast iron, the alloy of nickel and aluminum in particular.
- the cores can be made, for example, of titanium, niobium or tantalum when high temperatures are to be reached. It is also possible to use pure silica glass or silicon enriched with boron oxide. One such body is sold under the VYCOR brand by Corning Corp. Other materials such as low melting metals and glasses can be used when pressing is carried out at lower temperatures.
- the cavity can take various forms. It may be a cylindrical cavity, or a conical undercut when demolding is necessary. One can however envisage cavities almost without communication with the outside, even if it is then necessary to remove the material from the core, which is then eliminated by a chemical attack.
- the material of the part to be densified is frequently powder but can also be a cold pre-compacted or pre-sintered body.
- FIG. 1A and 1B there is shown respectively the shape of a titanium sheath and its content before and after pressing.
- the sheath 1 has the shape of a cylinder 104 mm high and 39.6 mm in diameter. It contains a titanium core 2 composed of a cylindrical base 3 of 39.6 mm in diameter and 9 mm in height placed on the bottom of the sheath 1 and surmounted by a truncated cone 4 of 35 mm in height and gradually tapering towards the top of the sheath 1 from 22 to 20 mm in diameter.
- the interior of the sheath 1 is also occupied, opposite the bottom, by a graphite shim 5 of 39.6 mm in diameter and 20 mm in height.
- the rest of the sheath is filled with tantalum carbide powder TaC intended to form the cavity part.
- the internal face of the sheath 1 and the surface of the core 2 are covered with non-stick product 9 in sheet form.
- FIG. 2 After a cycle, represented in FIG. 2 where the temperature and pressure curves T and P have been indicated as a function of time in hours with a common scale in bars and in degrees Celsius, the shape shown has been obtained
- Figure 1B the sheath has deformed and in particular contracted radially around the part to be obtained (it is now referenced 1 ′) and the core (2 ′) has also changed shape: there remains a 4 ′ cone of smaller volume as the primitive cone 4, the material thereof having undergone an overall downward displacement which appears in the form of a bulge 6 in the form substantially of a hemisphere 13 mm in height below the base 3
- the cone 4 ′ is approximately 25 mm high and has a diameter varying between 18 and 16.7 mm.
- a crucible can be obtained by cutting slightly above the base 3 along line 7, by demolding the cone 4 ′, by demolding the sheath 1, after having split it and while removing the shim 5, and by machining around the part in its part contiguous to the shim 5, which has an annular bulge, as indicated by lines 8.
- wedges such as wedge 5 are often encountered in this technical field, but they are not always useful and their absence is therefore perfectly compatible with a correct embodiment of the invention.
- a deformable core guarantees that the pressure is identical at all points inside the sheath, which allows a more uniform densification of the part and is not true when a non-deformable core is used, near which the pressure is more important than near the sheath. Then, the bulge of the core downwards limits the pinching of the sheath at the junction of the bottom and the cylindrical wall, and therefore the risk of seeing it broken above the base 3.
- FIGS. 3A to 3D Another exemplary embodiment is shown in FIGS. 3A to 3D.
- the sheath 10 is here substantially thicker, and in one piece with a cylindrical core 11. Its outer shape is still cylindrical.
- the assembly is made of titanium and the interior is filled with precompacted tantalum carbide.
- a thick sheath we can have a thin sheath with an inner layer of titanium pre-sintered.
- the bead 12 obtained is shown by hermetically crushing the filler neck of the sheath 10.
- FIG. 3A represents the initial state of the system.
- FIG. 3B represents the final state after hot isostatic pressing, and we observe, as in the previous example, a bulge 13 at the bottom of the sheath 10, and which comes from the partial extrusion of the core 11 for form a 11 ′ smaller cylindrical core.
- the sheath, now referenced 10 ′, is contracted radially around the tantalum carbide while substantially retaining a cylindrical shape at this location.
- FIG. 3C shows that a composite cylinder 14 can be obtained by dressing the two end faces of the assembly, which in particular makes the cord 12 and the bulge 13 disappear so as to leave only a thick titanium envelope substantially uniform around the tantalum carbide.
- FIG. 3D shows that a composite crucible 15 can be obtained by continuing the dressing of the bottom of the composite cylinder 14 until reaching the tantalum carbide, then by removing the core 11 ′ by appropriate mechanical or chemical machining. Tantalum carbide is surrounded by a layer of titanium on its outer faces only.
- the method can also be applied to ductile materials for which the methods of the prior art can be envisaged in principle.
- Such an application of the process according to the invention is particularly useful when the stresses to which the ductile materials would be subject by previous processes are close to the breaking limit.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
L'invention se rapporte à un procédé de fabrication de pièces présentant une cavité par pressage.The invention relates to a method of manufacturing parts having a cavity by pressing.
Un procédé courant (appelé pressage isostatique à chaud) de fabrication de pièces en matériau non moulable consiste à presser une gaine fermée et déformable remplie de poudre de ce matériau par une pression hydrostatique. La pression provoque, en liaison avec un chauffage qui l'accompagne, un frittage de la poudre par tassage ou densification. La gaine est ensuite fendue et rejetée, et la pièce peut être mise aux cotes par un usinage de finition. Le pressage isostatique sans chauffage existe également.A common process (called hot isostatic pressing) for manufacturing parts of non-moldable material consists in pressing a closed and deformable sheath filled with powder of this material by hydrostatic pressure. The pressure causes, in conjunction with an accompanying heating, a sintering of the powder by tamping or densification. The sheath is then split and rejected, and the part can be dimensioned by finishing machining. Isostatic pressing without heating also exists.
Dans le cas de pièces présentant une cavité et dont un exemple typique est le creuset, on choisit quelquefois de presser une pièce pleine, c'est-à-dire dont la gaine suit le contour extérieur mais pas le contour de la cavité, qui est formée par usinage après le pressage. Cette solution est en principe assez peu satisfaisante car les matériaux utilisés s'usinent souvent fort mal à cause de leur fragilité et de leur dureté. Il est difficile d'obtenir un état de surface satisfaisant, aussi bien par outil coupant que par outil abrasif et la consommation d'outils de coupe est très élevée. Il arrive même fréquemment que les contraintes mécaniques d'usinage brisent les pièces.In the case of parts presenting a cavity and of which a typical example is the crucible, one sometimes chooses to press a solid part, that is to say whose sheath follows the external contour but not the contour of the cavity, which is formed by machining after pressing. This solution is in principle quite unsatisfactory because the materials used often work very poorly because of their brittleness and their hardness. It is difficult to obtain a satisfactory surface condition, both by cutting tool and by abrasive tool and the consumption of cutting tools is very high. It even frequently happens that mechanical machining constraints break the parts.
Une autre solution consiste à disposer dans la gaine, avant de la remplir, un noyau indéformable qui délimite la cavité. Les noyaux utilisés en fonderie ont un rôle analogue, mais les problèmes posés par le pressage sont différents car d'importantes contraintes mécaniques se développent dans la gaine, le noyau ainsi que dans la pièce dès que la poudre prend consistance.Another solution consists in placing in the sheath, before filling it, a non-deformable core which delimits the cavity. The cores used in foundries have a similar role, but the problems posed by pressing are different because significant mechanical stresses develop in the sheath, the core as well as in the part as soon as the powder takes consistency.
Certaines de ces contraintes sont dues aux différences des dilatations thermiques entre la pièce et la gaine d'une part, le noyau d'autre part ; il est possible, au moins dans certains cas, d'éviter cette difficulté en choisissant des matériaux présentant des coefficients de dilatation voisins. La gaine et le noyau sont alors favorablement recouverts d'un revêtement anti-adhérent qui facilite le démoulage. Il est également possible de réduire les contraintes dans la pièce par un choix judicieux des cycles de température et de pression. On évite alors les fissures et les ruptures avant le dégainage.Some of these constraints are due to the differences in thermal expansion between the part and the sheath on the one hand, the core on the other hand; it is possible, at least in certain cases, to avoid this difficulty by choosing materials having similar expansion coefficients. The sheath and the core are then favorably covered with a non-stick coating which facilitates demolding. It is also possible to reduce the stresses in the room by a judicious choice of temperature and pressure cycles. This avoids cracks and breaks before the drawing.
Il existe toutefois un phénomène qu'il est impossible de compenser : il s'agit de la contraction du noyau au cours de la densification et de sa dilatation à la remise à la pression atmosphérique et notamment après le dégainage. Les contraintes produites tendent à dilater la pièce, surtout quand on a retiré la gaine qui permettait d'appliquer une sollicitation contraire de compression. Si le matériau de la pièce est suffisamment ductile, la pièce se déforme mais sa rupture par éclatement est inévitable dans le cas d'un matériau fragile.There is however a phenomenon which it is impossible to compensate for: it is the contraction of the nucleus during densification and its expansion upon return to atmospheric pressure and in particular after stripping. The stresses produced tend to expand the part, especially when the sheath has been removed, which made it possible to apply an opposite compression stress. If the material of the part is sufficiently ductile, the part deforms but its rupture by bursting is inevitable in the case of a brittle material.
On a cherché, en réalisant l'invention, à surmonter ce problème et par là même à rendre possible le pressage de poudre de matériaux fragiles dans des gaines pour obtenir directement des pièces présentant une cavité.In carrying out the invention, attempts have been made to overcome this problem and thereby make it possible to press powder of fragile materials in sheaths to directly obtain parts having a cavity.
Le procédé est caractérisé en ce que le noyau est au départ de volume supérieur au volume de la cavité et subit une extrusion partielle hors de la cavité pendant le pressage. En d'autres termes, le noyau subit lui aussi des déformations plastiques et doit être construit dans un matériau plus ductile que celui de la pièce.The method is characterized in that the core is initially of volume greater than the volume of the cavity and undergoes a partial extrusion out of the cavity during pressing. In other words, the core also undergoes plastic deformations and must be constructed from a more ductile material than that of the part.
Selon le cas, le noyau et la gaine peuvent être d'un seul tenant ou séparés ; par ailleurs, la gaine ou le noyau peuvent ou non être recouverts d'une couche anti-adhérente qui facilite le démoulage. En effet, le procédé peut parfaitement s'appliquer à des pièces où le noyau ou la gaine font partie intégrante du produit fini.Depending on the case, the core and the sheath may be in one piece or separate; moreover, the sheath or the core may or may not be covered with a non-stick layer which facilitates demolding. Indeed, the process can be perfectly applied to parts where the core or the sheath are an integral part of the finished product.
Les pièces peuvent être notamment en céramique. On peut citer les oxydes (Al₂O₃, CeO₂, ZrO₂), les borures (TiB₂), les nitrures (TiN, TaN), les carbures (TaC, NbC), les siliciures (Si₃N₄, SiC), les mélanges de telles céramiques pour faire des composés granulaires, les composites à matrice en céramique et à renfort en fibres. L'invention peut également s'appliquer notamment à des composites à matrice métallique et à renfort en céramique ou métallique ainsi qu'à des métaux et alliages peu ductiles tels que le tungstène, la fonte, l'alliage de nickel et d'aluminium en particulier.The parts can be in particular ceramic. We can cite oxides (Al₂O₃, CeO₂, ZrO₂), borides (TiB₂), nitrides (TiN, TaN), carbides (TaC, NbC), silicides (Si₃N₄, SiC), mixtures of such ceramics granular compounds, composites with ceramic matrix and fiber reinforcement. The invention can also be applied in particular to composites with a metallic matrix and with ceramic or metallic reinforcement as well as to metals and alloys which are not very ductile such as tungsten, cast iron, the alloy of nickel and aluminum in particular.
Les noyaux peuvent être constitués par exemple en titane, en niobium ou en tantale lorsque de hautes températures doivent être atteintes. On peut utiliser également du verre de silice pur ou du silicium enrichi en oxyde de bore. Un tel corps est vendu sous la marque VYCOR par Corning Corp. D'autres matériaux tels que les métaux à bas point de fusion et des verres peuvent être utilisés lorsque le pressage s'effectue à des températures plus basses.The cores can be made, for example, of titanium, niobium or tantalum when high temperatures are to be reached. It is also possible to use pure silica glass or silicon enriched with boron oxide. One such body is sold under the VYCOR brand by Corning Corp. Other materials such as low melting metals and glasses can be used when pressing is carried out at lower temperatures.
La cavité peut prendre des formes diverses. Il peut s'agir d'une cavité cylindrique, ou conique en dépouille lorsque le démoulage est nécessaire. On peut toutefois envisager des cavités presque sans communication avec l'extérieur, même s'il faut ensuite enlever la matière du noyau, qui est alors éliminée par une attaque chimique.The cavity can take various forms. It may be a cylindrical cavity, or a conical undercut when demolding is necessary. One can however envisage cavities almost without communication with the outside, even if it is then necessary to remove the material from the core, which is then eliminated by a chemical attack.
Le matériau de la pièce à densifier est fréquemment de la poudre mais peut également être un corps précompacté à froid ou préfritté.The material of the part to be densified is frequently powder but can also be a cold pre-compacted or pre-sintered body.
Les figures suivantes illustrent, de manière non limitative, quelques exemples de mise en oeuvre de l'invention :
- - les figures 1A et 1B illustrent un premier exemple ;
- - la figure 2 est un diagramme montrant le cycle de température et de pression utilisé pour ce premier exemple ; et
- - les figures 3A à 3D illustrent un second exemple.
- - Figures 1A and 1B illustrate a first example;
- - Figure 2 is a diagram showing the temperature and pressure cycle used for this first example; and
- - Figures 3A to 3D illustrate a second example.
Sur les figures 1A et 1B, on a représenté respectivement la forme d'une gaine en titane et de son contenu avant et après le pressage. A l'état initial de la figure 1A, la gaine 1 a une forme de cylindre de 104 mm de hauteur et de 39,6 mm de diamètre. Elle contient un noyau 2 en titane composé d'une base cylindrique 3 de 39,6 mm de diamètre et de 9 mm de hauteur posée sur le fond de la gaine 1 et surmontée d'un tronc de cône 4 de 35 mm de hauteur et s'amincissant progressivement vers le sommet de la gaine 1 pour passer de 22 à 20 mm de diamètre. L'intérieur de la gaine 1 est également occupé, à l'opposé du fond, par une cale de graphite 5 de 39,6 mm de diamètre et de 20 mm de hauteur. Le reste de la gaine est rempli de poudre de carbure de tantale TaC destinée à former la pièce à cavité. La face interne de la gaine 1 et la surface du noyau 2 sont recouvertes de produit anti-adhérent 9 en feuille.In Figures 1A and 1B, there is shown respectively the shape of a titanium sheath and its content before and after pressing. In the initial state of FIG. 1A, the
Après un cycle, représenté sur la figure 2 où l'on a indiqué, en fonction du temps en heures, les courbes T et P de température et de pression avec une échelle commune en bars et en degrés Celsius, on a obtenu la forme représentée figure 1B : la gaine s'est déformée et notamment contractée radialement autour de la pièce à obtenir (elle est désormais référencée 1′) et le noyau (2′) a également changé de forme : il subsiste un cône 4′ de plus petit volume que le cône 4 primitif, la matière de celui-ci ayant subi un déplacement d'ensemble vers le bas qui apparaît sous la forme d'un renflement 6 en forme sensiblement de demi-sphère de 13 mm de hauteur en dessous de la base 3. Le cône 4′ a environ 25 mm de hauteur et un diamètre variant entre 18 et 16,7 mm.After a cycle, represented in FIG. 2 where the temperature and pressure curves T and P have been indicated as a function of time in hours with a common scale in bars and in degrees Celsius, the shape shown has been obtained Figure 1B: the sheath has deformed and in particular contracted radially around the part to be obtained (it is now referenced 1 ′) and the core (2 ′) has also changed shape: there remains a 4 ′ cone of smaller volume as the
Un creuset peut être obtenu par un tronçonnage légèrement au-dessus de la base 3 suivant la ligne 7, par un démoulage du cône 4′, par un démoulage de la gaine 1, après l'avoir fendue et tout en retirant la cale 5, et par un usinage au tour de la pièce dans sa partie contiguë à la cale 5, qui présente un renflement annulaire, comme indiqué par les lignes 8.A crucible can be obtained by cutting slightly above the
Des cales telles que la cale 5 sont souvent rencontrées dans ce domaine technique, mais elles ne sont pas toujours utiles et leur absence est donc parfaitement compatible avec une réalisation correcte de l'invention.Wedges such as
On remarquera que l'invention autorise l'apparition de deux phénomènes favorables : tout d'abord, un noyau déformable garantit que la pression est identique dans tous les points à l'intérieur de la gaine, ce qui permet une densification plus uniforme de la pièce et n'est pas vrai quand on emploie un noyau indéformable, près duquel la pression est plus importante que près de la gaine. Ensuite, le renflement du noyau vers le bas limite le pincement de la gaine à la jonction du fond et de la paroi cylindrique, et donc le risque de la voir rompue en dessus de la base 3.It will be noted that the invention allows the appearance of two favorable phenomena: first, a deformable core guarantees that the pressure is identical at all points inside the sheath, which allows a more uniform densification of the part and is not true when a non-deformable core is used, near which the pressure is more important than near the sheath. Then, the bulge of the core downwards limits the pinching of the sheath at the junction of the bottom and the cylindrical wall, and therefore the risk of seeing it broken above the
Un autre exemple de réalisation est représenté sur les figures 3A à 3D. La gaine 10 est ici sensiblement plus épaisse, et d'un seul tenant avec un noyau cylindrique 11. Sa forme extérieure est encore cylindrique. L'ensemble est en titane et l'intérieur est rempli de carbure de tantale précompacté. A la place d'une gaine épaisse, on pourra avoir une gaine mince avec une couche intérieure de préfritté de titane.Another exemplary embodiment is shown in FIGS. 3A to 3D. The
On a représenté par souci d'exactitude le cordon 12 obtenu en écrasant de manière hermétique le col de remplissage de la gaine 10.For the sake of accuracy, the
L'état initial du système est représenté sur la figure 3A. La figure 3B représente quant à elle l'état final après pressage isostatique à chaud, et on observe, comme dans l'exemple précédent, un renflement 13 au fond de la gaine 10, et qui provient de l'extrusion partielle du noyau 11 pour former un noyau cylindrique 11′ plus petit. La gaine, désormais référencée 10′, est contractée radialement autour du carbure de tantale tout en conservant sensiblement une forme cylindrique à cet endroit.The initial state of the system is shown in Figure 3A. FIG. 3B represents the final state after hot isostatic pressing, and we observe, as in the previous example, a
La figure 3C montre qu'un cylindre composite 14 peut être obtenu par un dressage des deux faces extrêmes de l'ensemble, qui fait disparaître en particulier le cordon 12 et le renflement 13 pour ne laisser subsister qu'une enveloppe de titane d'épaisseur sensiblement uniforme autour du carbure de tantale. Enfin, la figure 3D montre qu'un creuset composite 15 peut être obtenu en poursuivant le dressage du fond du cylindre composite 14 jusqu'à parvenir au carbure de tantale, puis en faisant disparaître le noyau 11′ par un usinage approprié, mécanique ou chimique. Le carbure de tantale est entouré d'une couche de titane sur ses faces extérieures seulement.FIG. 3C shows that a
On signalera enfin que le procédé peut également s'appliquer à des matériaux ductiles pour lesquels les procédés de l'art antérieur sont envisageables en principe. Une telle application du procédé selon l'invention est notamment utile lorsque les contraintes auxquelles seraient sujets les matériaux ductiles par des procédés antérieurs sont proches de la limite de rupture.Finally, it should be noted that the method can also be applied to ductile materials for which the methods of the prior art can be envisaged in principle. Such an application of the process according to the invention is particularly useful when the stresses to which the ductile materials would be subject by previous processes are close to the breaking limit.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8915479A FR2654973B1 (en) | 1989-11-24 | 1989-11-24 | METHOD FOR MANUFACTURING PARTS HAVING A CAVITY BY PRESSING. |
FR8915479 | 1989-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0429367A1 true EP0429367A1 (en) | 1991-05-29 |
EP0429367B1 EP0429367B1 (en) | 1994-04-06 |
Family
ID=9387753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90403305A Expired - Lifetime EP0429367B1 (en) | 1989-11-24 | 1990-11-22 | Method for making articles having a cavity by compression |
Country Status (5)
Country | Link |
---|---|
US (1) | US5092023A (en) |
EP (1) | EP0429367B1 (en) |
JP (1) | JPH03174945A (en) |
DE (1) | DE69007939T2 (en) |
FR (1) | FR2654973B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104842579A (en) * | 2015-05-12 | 2015-08-19 | 天津太平洋超高压设备有限公司 | Isostatic-pressing die pressing hydraulic machine for powder slab blank |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201015267D0 (en) * | 2010-09-14 | 2010-10-27 | Rolls Royce Plc | An object forming assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0002918A1 (en) * | 1977-12-23 | 1979-07-11 | Ford Motor Company Limited | Method of treating a ceramic body prior to hot pressing and ceramic body thus treated; method of manufacturing a ceramic assembly, and ceramic assembly thereby produced |
BE887615A (en) * | 1981-02-20 | 1981-06-15 | Nat Forge Europ | DEVICE FOR INCLUDING EXPANSION FORCES IN ISOSTATIC PRESSING |
DE3343210C1 (en) * | 1983-11-30 | 1985-01-10 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Method and device for the production of compacted shaped bodies |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1637707A (en) * | 1924-03-25 | 1927-08-02 | Charlotte T Porter | Method of manufacturing crucibles and the like |
JPH0244640B2 (en) * | 1985-11-08 | 1990-10-04 | Tokai Carbon Kk | RABAAPURESUSEIKEIHO |
-
1989
- 1989-11-24 FR FR8915479A patent/FR2654973B1/en not_active Expired - Lifetime
-
1990
- 1990-11-21 US US07/616,324 patent/US5092023A/en not_active Expired - Fee Related
- 1990-11-22 DE DE69007939T patent/DE69007939T2/en not_active Expired - Fee Related
- 1990-11-22 EP EP90403305A patent/EP0429367B1/en not_active Expired - Lifetime
- 1990-11-26 JP JP2322232A patent/JPH03174945A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0002918A1 (en) * | 1977-12-23 | 1979-07-11 | Ford Motor Company Limited | Method of treating a ceramic body prior to hot pressing and ceramic body thus treated; method of manufacturing a ceramic assembly, and ceramic assembly thereby produced |
BE887615A (en) * | 1981-02-20 | 1981-06-15 | Nat Forge Europ | DEVICE FOR INCLUDING EXPANSION FORCES IN ISOSTATIC PRESSING |
DE3343210C1 (en) * | 1983-11-30 | 1985-01-10 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Method and device for the production of compacted shaped bodies |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN, vol. 11, no. 327 (M-635)[2774], 24 octobre 1987; & JP-A-62 110 899 (TOKAI CARBON CO.) 21-05-1987 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104842579A (en) * | 2015-05-12 | 2015-08-19 | 天津太平洋超高压设备有限公司 | Isostatic-pressing die pressing hydraulic machine for powder slab blank |
Also Published As
Publication number | Publication date |
---|---|
FR2654973B1 (en) | 1992-02-07 |
JPH03174945A (en) | 1991-07-30 |
DE69007939T2 (en) | 1994-10-20 |
DE69007939D1 (en) | 1994-05-11 |
US5092023A (en) | 1992-03-03 |
FR2654973A1 (en) | 1991-05-31 |
EP0429367B1 (en) | 1994-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0296074B1 (en) | Method and apparatus for sand casting composite parts with a fibre insert in a light alloy matrix | |
EP3860785B1 (en) | Method for manufacturing a part of complex shape by pressure sintering starting from a preform | |
EP2683673B1 (en) | Method for producing a composite including a ceramic matrix | |
EP3728162B1 (en) | Process for the manufacture of a ceramic matrix composite part | |
FR2712218A1 (en) | Metal or ceramic part with dense outer shell and porous core, as well as its manufacturing process. | |
JP2634213B2 (en) | Method for producing powder molded article by isostatic press | |
CA2052899C (en) | Process for fabricating abrasion-resistant component surfaces | |
US6315945B1 (en) | Method to form dense complex shaped articles | |
EP0651166B1 (en) | Process for preparing connectable sintered parts | |
EP0429367B1 (en) | Method for making articles having a cavity by compression | |
EP0472478A1 (en) | Method of making bi-material composite bodies by casting | |
CA1039026A (en) | low pressure fast casting plant | |
FR2645938A1 (en) | TRANSFER TUBE | |
SE440496B (en) | SET TO CONSOLIDATE POWDER IN A CONTAINER THROUGH EXTENSION OF PRESSURE ON THE OUTER OF THE CONTAINER AND APPARATUS FOR IMPLEMENTATION OF THE SET | |
EP0101948B1 (en) | Method of manufacturing a surface composite reinforced member | |
GB2283042A (en) | Method for fabricating long-fibre-reinforced components, e.g. turbine blades | |
US20070035066A1 (en) | Casting process | |
JP2001524390A (en) | Stopper rod | |
EP0437456B1 (en) | Vessel for molten metals, material for such vessel and method for fabricating the material | |
EP0881061B1 (en) | Device and process for making ceramic tubes | |
FR2718279A1 (en) | Body shape. | |
EP0648563B1 (en) | Method to cast a piece of cast iron or another metal with high melting point | |
FR2666038A1 (en) | Mould for manufacturing hollow metal components | |
FR3143393A1 (en) | METHOD FOR MANUFACTURING HOLLOW METAL PARTS BY MOLDING, WITHOUT CORE | |
BE823111A (en) | EXTRA-HARD PRODUCTS MANUFACTURING PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19911104 |
|
17Q | First examination report despatched |
Effective date: 19930617 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE GB IT LI SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940406 |
|
REF | Corresponds to: |
Ref document number: 69007939 Country of ref document: DE Date of ref document: 19940511 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19941025 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941102 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941111 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19941130 Ref country code: CH Effective date: 19941130 Ref country code: LI Effective date: 19941130 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90403305.7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Effective date: 19941130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19951122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19951123 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19951122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960801 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90403305.7 |