EP0428180B1 - Kontrollsystem zum Leiten von Bohrwerkzeugen und Messsystem, diese zu lokalisieren - Google Patents

Kontrollsystem zum Leiten von Bohrwerkzeugen und Messsystem, diese zu lokalisieren Download PDF

Info

Publication number
EP0428180B1
EP0428180B1 EP90122530A EP90122530A EP0428180B1 EP 0428180 B1 EP0428180 B1 EP 0428180B1 EP 90122530 A EP90122530 A EP 90122530A EP 90122530 A EP90122530 A EP 90122530A EP 0428180 B1 EP0428180 B1 EP 0428180B1
Authority
EP
European Patent Office
Prior art keywords
tool
axis
sensing
coil
sensing assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90122530A
Other languages
English (en)
French (fr)
Other versions
EP0428180A1 (de
Inventor
Gerard T. Pittard
William C. Maurer
Gregory C. Givler
William J. Mcdonald
John H. Cohen
Joseph O. Enk
Jack E. Bridges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTI Energy
Original Assignee
Gas Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/720,582 external-priority patent/US4632191A/en
Priority claimed from US06/722,807 external-priority patent/US4646277A/en
Priority claimed from US06/723,792 external-priority patent/US4621698A/en
Application filed by Gas Research Institute filed Critical Gas Research Institute
Publication of EP0428180A1 publication Critical patent/EP0428180A1/de
Application granted granted Critical
Publication of EP0428180B1 publication Critical patent/EP0428180B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/26Drilling without earth removal, e.g. with self-propelled burrowing devices
    • E21B7/267Drilling devices with senders, e.g. radio-transmitters for position of drilling tool
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • E21B4/14Fluid operated hammers
    • E21B4/145Fluid operated hammers of the self propelled-type, e.g. with a reverse mode to retract the device from the hole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • E21B47/0228Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor

Definitions

  • This invention relates generally to control systems for guiding boring tools, and also to sensing systems for locating boring tools.
  • Conventional pneumatic and hydraulic percussion moles are designed to pierce and compact compressible soils for the installation of underground utilities without the necessity of digging large launching and retrieval pits, open cutting of pavement or reclamation of large areas of land.
  • An internal striker or hammer reciprocates under the action of compressed air or hydraulic fluid to deliver high energy blows to the inner face of the body. These blows propel the tool through the soil to form an earthen casing within the soil that remains open to allow laying of cable or conduit. From early 1970 to 1972, Bell Laboratories, in Chester, New Jersey, conducted research trying to develop a method of steering and tracking moles.
  • a 10.2 cm Schramm Pneumagopher was fitted with two steering fins and three mutually orthogonal coils which were used in conjunction with a surface antenna to track the position of the tool.
  • One of these fins was fixed and inclined from the tool's longitudinal axis while the other fin was rotatable.
  • Two boring modes could be obtained with this system by changing the position of the rotatable fin relative to the fixed fin. These were (1) a roll mode in which the mole was caused to rotate about its longitudinal center line as it advanced into the soil and (2) a steering mode in which the mole was directed to bore in a curved path.
  • the roll mode was used for both straight boring and as a means for selectively positioning the angular orientation of the fins for subsequent changes in the bore path.
  • Rotation of the mole was induced by bringing the rotatable fin into an anti-parallel alignment with the fixed fin. This positioning results in the generation of a force couple which initiates and maintains rotation.
  • the steering mode was actuated by locating the rotatable fin parallel to the fixed fin. As the mole penetrates the soil, the outer surfaces of the oncoming fins are brought into contact with the soil and a "slipping wedge” mechanism created. This motion caused the mole to veer in the same direction as the fins point when viewed from the back of the tool.
  • Coyne et al, U.S. Patent 3,525,405 discloses a steering system which uses a beveled planar anvil that can be continuously rotated or rigidly locked into a given steering orientation through a clutch assembly.
  • Chepurnoi et al, U.S. Patent 3,952,813 discloses an off-axis or eccentric hammer steering system in which the striking position of the hammer is controlled by a transmission and motor assembly.
  • Gagen et al, U.S. Patent 3,794,128 discloses a steering system employing one fixed and one rotatable tail fin.
  • Typical well surveying equipment utilizes magnetometers, inclinometers and inertial guidance systems which are complex and expensive.
  • the wells drilled are generally substantially vertical.
  • Bell Telephone Laboratories Incorporated has designed a system for boring horizontal holes wherein the direction of drilling is controlled by deploying a three wire antenna system on the surface of the earth and detecting the position and attitude of the drilling tool in respect thereto by pickup coils on the tool. The signals detected are then used to develop control signals for controlling the steering of the tool. See, for example, MacPherson United States Patent No. 3,656,161 and Coyne United States Patent Nos 3 712 391 and 3 529 682.
  • Steering control is also known in controlling vehicles, aircraft and missiles.
  • a radio beacon is used for guidance, the aircraft simply following a beacon to a runway.
  • Another object of this invention is to provide a steering system which will enable a horizontal boring tool to travel over great distances and reliably hit a small target.
  • a further object of this invention is to provide art improved control system for monitoring and controlling the direction of a percussion boring tool.
  • a guided horizontal boring tool constructed in accordance with the present invention will benefit utilities and rate payers by significantly reducing installation and maintenance costs of underground utilities by reducing the use of expensive, open-cut trenching methods.
  • a sensing system for guiding a boring tool (1216) in a bore hole (1210), wherein the tool has a longitudinal tool axis (1222) and includes motive means (1217) for advancing the tool axially through the earth and steering means (1226) for directing the motion of the tool relative to said axis in response to control signals
  • said control system comprising a sensing system comprising; axial electromagnetic source means (1244) for generating an axial alternating magnetic field directed along an axial source axis; a sensing assembly (1246) remote from said source means (1244) and including first (1254) and second (1256) pickup coils for sensing said alternating magnetic field, each of said first and second pickup coils being responsive to the change of magnetic flux linked thereby by generating respective first and second electrical signals systematically related thereto, having a respective coil axis (z,y) and being rigidly mounted in respect to the other with their respective axes at a substantial angle with respect to each other, and defining a sensing assembly axi
  • the control system for a percussion boring tool includes a coil disposed on the tool and energised at relatively low frequency to provide a varying magnetic field extending axially from the tool and providing lines of magnetic flux substantially symmetrically disposed about the tool axis.
  • First and second pickup coils are disposed at a distance from the tool. These coils have respective axes at a substantial angle with respect to each other and are mounted to sense the changing flux linked thereby and produce respective first and second electrical signals.
  • the coil arrangement provides respective null signals when the respective axes of the pickup coils lie substantially perpendicular to the tool axis and the coils are balanced about the tool axis. The signals therefore indicate the attitude of the tool relative to the coils.
  • a third pickup coil may be used to sense the range of the tool when the third coil has an axis extending generally toward the tool, with its output used to normalize the detection signals.
  • the axes of the three coils are preferably at angles of 90° from each other.
  • the signals from the respective pickup coils may be used to determine the attitude of the tool relative to the pickup coils, and the information used to control the steering mechanism of he tool. This may be done automatically. Because this is a null-based system, the control signal may simply operate the steering mechanism to turn the tool to reduce the deviation from null. This causes the system to be a homing device, like a beacon, and directs the tool along a path to the coils.
  • the system may then direct the tool out of the path, around an obstacle, and back on course.
  • an important aspect of the present invention is to provide a null detection system to determine the attitude of a horizontal boring tool relative to detection coils and for controlling the steering of the tool. Another aspect is to provide a control system for such a tool wherein the tool may be steered to home in on the detection coils.
  • This embodiment of the present invention relates to the control of the guidance of a percussion boring tool, especially using a magnetic sensing system or sensing tool location and attitude.
  • FIG. 1 is illustrated a horizontal boring operation in which a borehole 1210 is being bored through the earth 1212 under a roadway 1214 by a horizontal boring tool 1216.
  • the particular tool illustrated and for which the preferred embodiment of the present invention was specifically designed is a pneumatic percussion tool, operated like a jackhammer by a motive mechanism 1217 using compressed air supplied by a compressor 1218 by way of an air tank 1219 over a supply hose 1220.
  • the tool 1216 is elongated and has a tool axis 1222 extending in the direction of its length.
  • the lead end of the tool 1216 has a piercing point (or edge) 1224 eccentric of he axis 1222.
  • the operation of the percussion tool drives the point 1224 through the earth, advancing the tool forward, but slightly off axis.
  • the tool 1216 includes a plurality of steering vanes 1226 which may be actuated by pneumatic or hydraulic control energy provided over pneumatic or hydraulic control lines 1228 from a controller 1230 to control the direction and rate rotation of he tool 1216 about its axis. Control signals may also control the operation of the motive mechanism 1217.
  • the controller 1230 is supplied with air from the compressor 1218 over a bore 1232.
  • the steering vanes 1226 my be turned to cause the tool to rotate at a relatively constant rate. The tool then spirals a bit but advances in a substantially straight line in the direction of the axis 1222 because the piercing point 1224 circles the axis and causes the tool to deviate the same amount in each direction, averaging zero. If the vanes 1226 are returned to directions parallel to the axis 1222, the rotation may be stopped with the tool in a desired position, from which it advances asymmetrically in a desired direction.
  • the present invention permits an operator to identify the rotational orientation of the tool 1216 about its axis 1222, and, hence, to direct the advance of the tool.
  • the objective is to bore a hole 1210 relatively horizontally between an input pit 1234 and a target pit 1236 beneath such obstacles as the roadway 1214.
  • the hole 1210 must avoid piercing other utility lines 1238 or sewers 1240 or other buried obstacles. These may be identified and located from historical surveyor's drawings or may be located by some other means as by a metal detector or other proximity device.
  • the present invention is directed to a control system for sensing the attitude of the tool 1216 and for controlling the steering vanes 1226 to direct the tool along the plotted course.
  • the control system includes an electromagnetic source 1244 affixed to the tool 1216 for generating appropriate alternating magnetic flux, a sensing assembly 1246 disposed in one of the pits 1234, 1236, preferably the target pit 1236, and circuitry in the controller 1230 which is powered from a motor-generator set 1248.
  • the electromagnetic source 1244 comprises an axial coil 1250 and a transverse coil 1251 rigidly mounted on the tool 1216.
  • the coils 1250 and 1251 are alternatively energized from the motor-generator power source 1248 through a controlled power supply section 1252 of the controller 1230 over lines 1253.
  • the power source 1248 operates at a relatively low frequency, for example, 1220 Hz.
  • the axial coil 1250 generates an axial alternating magnetic field which produces lines of magnetic flux generally symmetrically about the axis 1222 of the tool 1216, as illustrated in Fig. 3A-D.
  • the tool 1216 itself is constructed in such manner as to be compatible with the generation of such magnetic field and, indeed, to shape it appropriately.
  • the transverse coil 1251 generates a transaxial alternating magnetic field substantially orthogonal to the axis 1222 in fixed relation to the direction of deviation of the point 1224 from the axis 1222 and, hence, indicative of the direction thereof.
  • the sensing assembly 1246 is formed of three orthogonal pickup coils 1254, 1256 and 1258, as shown in Figs. 2 and 4, which may be called the X, Y and Z coils, respectively. These pickup coils are axially sensitive and can be of the box or solenoidal forms shown in Figs. 2 and 4.
  • the center of the coils may be taken as the origin of a three-dimensional coordinate system of coordinate system of coordinates x, y, z, where x is the general direction of the borehole, y is vertical and z is horizontal.
  • the coils 1254, 1256 and 1258 have respective axes extending from the origin of the coordinate ystem in the respective x, y and z directions.
  • Figs. 3A, 3B, 3C and 3D are illustrated four possible unique relationships of a sensing coil, the Y coil 1256 as an example, to the lines of flux 1260 of the axial magnetic field generated by the axial coil 1250 in the tool 1216.
  • Fig. 3A is shown the relationship when the X axis and the tool axis 1222 lie in the same plane with the Y axis of the coil 1256 normal to that plane. That is the relationship when the tool 1216 lies on the plane XZ (the plane perpendicular to the Y axis at the X axis) with the axis 1222 of the tool in that plane.
  • Fig. 3A is shown the relationship when the X axis and the tool axis 1222 lie in the same plane with the Y axis of the coil 1256 normal to that plane. That is the relationship when the tool 1216 lies on the plane XZ (the plane perpendicular to the Y axis at the X axis) with the
  • FIG. 3B is shown the relationship when the tool 1216 lies in the plane XZ with the tool axis 1222 not in that plane. That is the relationship when the tool 1216 is tilted up or down (up, clockwise, in the example illustrated).
  • Fig. 3C is shown the relationship when the tool 1216 is displaced up or down from the plane XZ (up, in the example illustrated) with the tool axis 1222 parallel to the plane XZ.
  • Other relationships involve combinations of the relationships shown in Figs. 3B and 3C; that is, where the tool 1216 lies off the XZ plane and has a component of motion transversely thereof.
  • Shown in Fig. 3D is the relationship where the combination of displacement (Fig. 3C) and tilting (Fig.
  • the pickup coil 1256 will generate no signal under the condition shown in Fig. 3A because no flux links the coil.
  • signals will be generated, of phase dependent upon which direction the magnetic field is tilted or displaced from the condition shown in Fig. 3D.
  • the effect of displacement in one direction is exactly offset by tilting so as to generate no signal.
  • the tool 1216 is off course (off the XZ plane) but the relationship shown in Fig. 3D is maintained, the tool will move toward the sensing assembly 1246 keeping the sensing assembly on a given line of flux 1260.
  • the tool 1216 will home in on the sensing assembly 1246 and get back on course vertically. Similar relationships exist in respect to the Z coil 1258 and horizontal deviation.
  • the outputs of the pickup coils 1256, 1258 are applied through a signal conditioner 1262 to a display 1264 in the controller 1230.
  • FIG. 3 The relationships shown in Fig. 3 can also be analyzed geometrically as shown in Fig. 3, where A is the angle between the tool axis 1222 and a line 1265 connecting the center of the tool with the center of the pickup coil 1256, and B is the angle between the line 1265 and the reference axis X, perpendicular to the axis Y of the sensing coil 1256.
  • the singal V thereupon developed in the pickup coil 1256 is proportional to the sum of flux components parallel to the coil axis Y.
  • the circuitry for operating the present invention is shown in greater detail in Fig. 4 in block diagram form.
  • the output of the pickup coil 1256 is amplified by an amplifier 1266 and applied to a synchronous detector 1268 to which the output of a regulated power supply 1270 is also applied.
  • the regulated power supply 1270 is driven by the same controlled power supply 1252 that drives the coils 1250, 1251 and produces an a.c. voltage of constant amplitude in fixed phase relationship to the voltage applied to the axial coil 1250.
  • the synchronous detector 1268 therefore produces a d.c. output of magnitude proportional to the output of the Y coil 1256 and of polarity indicative of phase relative to that of the power supply 1270.
  • An amplifier 1272 and a synchronous detector 1274 produce a similar d. c. output corresponding to the output of the Z coil 1258.
  • the outputs of the respective synchronous detectors 1268 and 1274 are applied to the display 1264 which displays in y, z coordinates the combination of the two signals. This indicates the direction or attitude the tool is off course, permitting the operator to provide control signals over the control lines 1228 to return the tool to its proper course or to modify the course to avoid obstacles, as the case may be.
  • the extent to which the tool is off a course leading to the target is indicated by the magnitude of the signals produced in the coils 1256 and 1258.
  • the magnitude of the respective signals is also affected by the range of the tool. That is, the farther away the tool, the lesser the flux density and, hence, the lesser the signals generated in the respective pickup coils 1256 and 1258 for a given deviation. It is the function of the X coil 1254 to remove this variable.
  • the X coil is sensitive to axial flux density substantially exclusively.
  • the y and z directed flux components have negligible effect on its output where the tool 1216 lies within a few degrees of the x direction .
  • the signal from the pickup coil 1254 is amplified by an amplifier 1276 and detected by a synchronous detector 1278 to provide a d. c. output proportional to the flux density strength at the X coil 1254.
  • This signal is applied to a control circuit 1280 which provides a field current control for the power supply 1252. This provides feedback to change the power applied to the axial coil 1250 in such direction as to maintain constant the output of the X coil 1254.
  • the power from the power supply 1252 is applied to the tool 1216 through a switch 1282.
  • the axial coil 1250 When in the switch 1282 position 1, the axial coil 1250 is energized, providing the mode of operation explained above. With the switch 1282 in position 2, the transverse coil 1251 is energized instead. The resulting magnetic field is substantially orthogonal to that provided by the axial coil 1250.
  • the signals generated by the Y and Z pickup coils 1256, 1258 then depend primarily upon the relative displacement of the coil 1251 around the axis 1222.
  • the displacement of the point is indicated by the relative magnitude of the respective signals from the respective Y and Z coils as detected by the respective synchronous detectors 1268 and 1274 and, hence, is indicated on the display 1264.
  • the present invention is useful in a simple form when it is desirable simply to keep the tool on a straight course. This is achieved simply by directing the tool 1216 toward the sensing assembly 1246 while keeping the outputs picked up by the Y and Z coils 1256, 1258 nulled. As mentioned above, it is possible to deviate to avoid obstacles and then return to the course.
  • Equation (4) may not be simply approximated.
  • the initial tool orientation is determined by means of the sensor coils. Then the tool is allowed to advance an incremental distance, which is also measured. The new location is then determined based on the initial angle and the incremental amount of progress, and integration process. This process is continuously repeated for continuous determination of the position of the tool.
  • the sensing assembly 1246 may be moved from place to place or its orientation changed during boring in order to change course.
  • the sensor coils can be located on the tool and the source coils can be located on the tool and the source coils placed in either pit. It is also within the scope of the present invention to provide sensors on the tool 1216 for sensing obstacles, hence permitting control of the direction of tool advance to avoid the obstacles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Drilling Tools (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Drilling And Boring (AREA)

Claims (7)

  1. Sensorsystem zum Lenken eines Bohrwerkzeugs (1216) in einem Bohrloch (1210), wobei das Werkzeug über eine Werkzeuglängsachse (1222) verfügt und Bewegungsmittel (1217) für den axialen Vortrieb des Werkzeugs durch den Erdboden und Steuermittel (1226) für die Lenkung der Werkzeugbewegung relativ zu besagter Achse als Reaktion auf Steuersignale aufweist, wobei dieses Sensorsystem folgendes aufweist:
    axiale elektromagnetische Quellmittel (1244) zur Erzeugung eines axialen, veränderlichen Magnetfeldes, das entlang einer Quellenachse verläuft;
    Sensorbaugruppe (1246), die sich entfernt von den Quellmitteln (1244) befindet und erste (1254) und zweite (1256) Suchspulen zum Erkennen des besagten veränderlichen Magnetfeldes aufweist;
    wobei jede der ersten und zweiten Suchspulen auf die Änderung des mit ihnen verbundenen magnetischen Feldes reagiert, indem sie entsprechend zugeordnete erste und zweite elektrische Signale erzeugt; diese Spulen verfügen über je eine Spulenachse (z, y) und sind gegenüber der jeweils anderen Spule starr angebracht, wobei ihre Achsen in einem bestimmten Winkel zueinander stehen und eine Sensorbaugruppenachse (x) gebildet wird, die im wesentlichen in der Normalen zu den beiden Spulenachsen verläuft, wobei eines der Quellmittel und die Sensorbaugruppe starr auf dem Werkzeug befestigt sind;
    stellungsanzeigende Mittel, die auf die ersten und zweiten elektrischen Signale reagieren, um die Richtung der magnetischen Feldlinien an der Sensorbaugruppe, bezogen auf die Sensorbaugruppenachse, und damit die Stellung des Quellmittels relativ zur ersten und zweiten Suchspule anzuzeigen;
    dadurch gekennzeichnet, daß jede erste und zweite Suchspule gegenüber der Sensorbaugruppenachse (x) ausbalanciert ist, um ein entsprechendes elektrisches Nullsignal zu erzeugen, wenn die magnetischen Feldlinien an der jeweiligen Spule (1254, 1256) in der Normalen zur entsprechenden Spulenachse (z,y) an der Sensorbaugruppenachse verlaufen.
  2. Sensorsystem nach Anspruch 1, gekennzeichnet dadurch, daß das Quellmittel auf dem Werkzeug montiert ist.
  3. Sensorsystem nach Anspruch 2, gekennzeichnet dadurch, daß die Sensorbaugruppe in einer Grube (1236) vor dem Werkzeug untergebracht ist.
  4. Sensorsystem nach einem der vorherigen Ansprüche, gekennzeichnet dadurch, daß die Sensorbaugruppe eine dritte Suchspule (1258) aufweist, die über eine Spulenachse (x) verfügt, welche im wesentlichen mit der Sensorbaugruppenachse (x) zusammenfällt, um die Komponente des axialen veränderlichen Magnetfeldes zu erkennen, die sich in Richtung der Sensorbaugruppenachse (x) erstreckt, indem ein entsprechendes dieser systematisch zugeordnetes drittes elektrisches Signal erzeugt wird,
    wobei das Sensorsystem weiterhin ein Rückkopplungsmittel (1280) aufweist, das auf das dritte elektrische Signal reagiert, um das axiale elektromagnetische Quellmittel zu steuern, damit es das axiale veränderliche Magnetfeld mit einer solchen Amplitude erzeugt, daß das dritte elektrische Signal unabhängig von der Entfernung zwischen dem Quellmittel und der Sensorbaugruppe im wesentlichen konstant bleibt.
  5. Sensorsystem nach einem der vorherigen Ansprüche, gekennzeichnet dadurch, daß es quer verlaufende elektromagnetische Quellmittel (1251) aufweist, die der Erzeugung eines quer verlaufenden veränderlichen Magnetfeldes dienen, das sich im wesentlichen am axialen Quellmittel befindet und eine Quellenquerachse aufweist, die quer zur axialen Quellachse verläuft, und Mittel (1252, 1282) für die abwechselnde Energieversorgung der axialen elektromagnetischen Quellmittel aufweist, wobei das besagte Anzeigemittel die Drehposition des Werkzeugs um die Werkzeugachse anzeigt.
  6. Sensorsystem nach einem der vorherigen Ansprüche, weiterhin gekennzeichnet durch Mittel (1284, 1286) für die Bestimmung des Vortriebs des Werkzeugs im Bohrloch durch die Erzeugung eines systematisch darauf bezogenen Verschiebungssignals,
    Mittel zur Messung der Verschiebung, die Weiterbewegungssignale als Reaktion auf zunehmende Veränderungen des Verschiebungssignals und auf die Stellung erzeugen, die durch die stellungsanzeigenden Mittel angezeigt wird; und signalintegrierende Mittel, die auf die Weiterbewegungssignale reagieren, um den Standort des Werkzeugs im Bohrloch zu bestimmen.
  7. Steuersystem, das das Sensorsystem nach einem der Ansprüche 1 - 6 aufweist, wobei das System weiterhin Steuermittel aufweist, um die Steuersignale für die Steuerung der Lenkmittel zu liefern.
EP90122530A 1985-04-05 1986-04-04 Kontrollsystem zum Leiten von Bohrwerkzeugen und Messsystem, diese zu lokalisieren Expired - Lifetime EP0428180B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US06/720,582 US4632191A (en) 1985-04-05 1985-04-05 Steering system for percussion boring tools
US720582 1985-04-05
US06/722,807 US4646277A (en) 1985-04-12 1985-04-12 Control for guiding a boring tool
US06/723,792 US4621698A (en) 1985-04-16 1985-04-16 Percussion boring tool
US723792 1985-04-16
EP86302534A EP0202013B1 (de) 1985-04-05 1986-04-04 Führungs- und Steuerungssystem für Schlagbohrwerkzeuge
US722807 2003-11-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP86302534.2 Division 1986-04-04

Publications (2)

Publication Number Publication Date
EP0428180A1 EP0428180A1 (de) 1991-05-22
EP0428180B1 true EP0428180B1 (de) 1995-12-27

Family

ID=27419012

Family Applications (3)

Application Number Title Priority Date Filing Date
EP86302534A Expired - Lifetime EP0202013B1 (de) 1985-04-05 1986-04-04 Führungs- und Steuerungssystem für Schlagbohrwerkzeuge
EP90122531A Expired - Lifetime EP0428181B1 (de) 1985-04-05 1986-04-04 Schlagwerkzeug zum Bohren von Löchern in den Boden
EP90122530A Expired - Lifetime EP0428180B1 (de) 1985-04-05 1986-04-04 Kontrollsystem zum Leiten von Bohrwerkzeugen und Messsystem, diese zu lokalisieren

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP86302534A Expired - Lifetime EP0202013B1 (de) 1985-04-05 1986-04-04 Führungs- und Steuerungssystem für Schlagbohrwerkzeuge
EP90122531A Expired - Lifetime EP0428181B1 (de) 1985-04-05 1986-04-04 Schlagwerkzeug zum Bohren von Löchern in den Boden

Country Status (5)

Country Link
EP (3) EP0202013B1 (de)
AT (3) ATE86355T1 (de)
AU (1) AU589615B2 (de)
CA (2) CA1255651A (de)
DE (3) DE3650461T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098715A1 (en) * 2020-11-03 2022-05-12 The Charles Machine Works, Inc. Piercing tool aiming device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1001218A3 (nl) * 1987-11-12 1989-08-22 Smet Marc Jozef Maria Detectie-inrichting voor een boorkop.
GB2215257B (en) * 1988-02-10 1992-03-04 Ronald Albert William Clarke Apparatus for reflex-percussive cutting of concrete etc.
US4878547A (en) * 1988-10-28 1989-11-07 Ingersoll-Rand Company Rock drilling apparatus
JP2819042B2 (ja) * 1990-03-08 1998-10-30 株式会社小松製作所 地中掘削機の位置検出装置
DE4438934C1 (de) * 1994-10-31 1995-11-16 Tracto Technik Ortungsvorrichtung für Rammbohrgeräte
WO1996018118A1 (en) * 1994-12-08 1996-06-13 Noranda Inc. Method for real time location of deep boreholes while drilling
US6411094B1 (en) * 1997-12-30 2002-06-25 The Charles Machine Works, Inc. System and method for determining orientation to an underground object
GB2341754B (en) 1998-09-19 2002-07-03 Cryoton Drill string telemetry
DE19859367C2 (de) * 1998-12-22 2003-03-20 Tracto Technik Lenkkopf-Rammbohrgerät
GB9903256D0 (en) 1999-02-12 1999-04-07 Halco Drilling International L Directional drilling apparatus
GB2382143B (en) * 2000-05-01 2004-05-26 Schlumberger Holdings A method for telemetering data between wellbores
US7413031B2 (en) * 2000-07-18 2008-08-19 The Charles Machine Works, Inc. Apparatus and method for maintaining control of a drilling machine
US6871712B2 (en) 2001-07-18 2005-03-29 The Charles Machine Works, Inc. Remote control for a drilling machine
US6607045B2 (en) 2001-10-10 2003-08-19 Donald Beyerl Steering apparatus
CN109209221B (zh) * 2018-11-14 2024-02-09 中国铁建重工集团股份有限公司 一种潜孔锤设备及其冲击导向系统
CN109372424B (zh) * 2018-12-13 2023-09-29 长江大学 一种连续油管用复合冲击提速钻具
CN112443274A (zh) * 2019-08-27 2021-03-05 永城煤电控股集团有限公司 一种煤仓电缆孔的施工方法
CN113700433B (zh) * 2021-09-09 2023-05-12 西南石油大学 一种自发电风压电磁联合冲击自转式空气锤及使用方法
CN113756788B (zh) * 2021-10-18 2022-08-02 中国地质大学(北京) 一种机械式随钻井斜测量仪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375885A (en) * 1965-09-13 1968-04-02 California Inst Res Found Burrowing apparatus
US3525405A (en) 1968-06-17 1970-08-25 Bell Telephone Labor Inc Guided burrowing device
US3529682A (en) * 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3630295A (en) * 1969-12-10 1971-12-28 Bell Telephone Labor Inc Steering apparatus for soil-burrowing mole
US3656161A (en) * 1969-12-31 1972-04-11 Bell Telephone Labor Inc Maintaining a circularly polarized magnetic field at a moving point
US3731752A (en) * 1971-06-25 1973-05-08 Kalium Chemicals Ltd Magnetic detection and magnetometer system therefor
US3712391A (en) * 1971-06-28 1973-01-23 Bell Telephone Labor Inc Mole guidance system
US3794128A (en) 1972-11-29 1974-02-26 Bell Telephone Labor Inc Subterranean penetrator steering system utilizing fixed and rotatable fins
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US3952813A (en) * 1975-02-07 1976-04-27 Nikolai Prokhorovich Chepurnoi Percussive device for driving holes in soil
DE2911419C2 (de) * 1979-03-23 1984-03-01 Wolfgang Dr.-Ing. 7500 Karlsruhe Ständer Vorrichtung zum richtungsgesteuerten Herstellen von Bohrlöchern in Lockergestein
DE3027990A1 (de) * 1980-07-24 1982-03-04 Paul 5940 Lennestadt Schmidt Selbstgetriebenes rammbohrgeraet
CA1111831A (en) * 1981-03-25 1981-11-03 Arthur Adam Broaching head
US4396073A (en) * 1981-09-18 1983-08-02 Electric Power Research Institute, Inc. Underground boring apparatus with controlled steering capabilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098715A1 (en) * 2020-11-03 2022-05-12 The Charles Machine Works, Inc. Piercing tool aiming device
US11674354B2 (en) 2020-11-03 2023-06-13 The Charles Machine Works, Inc. Piercing tool aiming device

Also Published As

Publication number Publication date
ATE86355T1 (de) 1993-03-15
DE3650026D1 (de) 1994-09-15
EP0202013A3 (en) 1988-08-03
DE3687855D1 (de) 1993-04-08
DE3650461T2 (de) 1996-05-15
AU5565286A (en) 1986-10-09
DE3687855T2 (de) 1993-07-01
EP0428180A1 (de) 1991-05-22
CA1274817A (en) 1990-10-02
DE3650026T2 (de) 1994-12-01
EP0428181A1 (de) 1991-05-22
EP0202013A2 (de) 1986-11-20
AU589615B2 (en) 1989-10-19
EP0202013B1 (de) 1993-03-03
CA1255651A (en) 1989-06-13
ATE109866T1 (de) 1994-08-15
EP0428181B1 (de) 1994-08-10
DE3650461D1 (de) 1996-02-08
ATE132226T1 (de) 1996-01-15

Similar Documents

Publication Publication Date Title
US4646277A (en) Control for guiding a boring tool
EP0428180B1 (de) Kontrollsystem zum Leiten von Bohrwerkzeugen und Messsystem, diese zu lokalisieren
JPS61274080A (ja) 土壌穴あけ用制御式衝撃工具
US6886644B2 (en) Apparatus and method for horizontal drilling
JP3466625B2 (ja) 独立した地中ボーリング機械の位置決め
US4621698A (en) Percussion boring tool
WO1996014491A1 (en) Solenoid guide system for horizontal boreholes
US5258755A (en) Two-source magnetic field guidance system
US6833795B1 (en) Underground utility detection system and method employing ground penetrating radar
EP0357314B1 (de) Einrichtung zum Steuern der Lage eines selbstgetriebenen Bohrwerkzeuges
EP0657006B1 (de) Gelenkte, selbstangetriebene bohrvorrichtung
EP0361805A1 (de) Selbstangetriebene Schlagbohrvorrichtung mit einer elektronischen Übertragungsvorrichtung
WO2001048353A1 (en) Autonomous omnidirectional driller
US20020010547A1 (en) Long range electronic guidance system for locating a discrete in-ground boring device
EP2414629B1 (de) Zweispuliges führungssystem für die verfolgung von bohrlöchern
JP3224004B2 (ja) 掘進管先端位置探査方法
JPH0387612A (ja) 地中掘削機の位置検出装置
Tanwani et al. Tracking and steering systems in trenchless construction
JP2913042B2 (ja) 地中掘進機の地中接合用推進管理測量装置
RU2114300C1 (ru) Способ определения положения устройства для образования скважин
Kramer et al. Instrumentation Systems for Guided Boring
JPH11159285A (ja) レーダー付推進装置と掘削ルートの調査方法
GB2116723A (en) Electromagnetic detection of underground objects
Kramer et al. Steerable Horizontal Boring
JPH11270280A (ja) 推進工法および測量装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 202013

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19911024

17Q First examination report despatched

Effective date: 19921201

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 202013

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19951227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951227

Ref country code: AT

Effective date: 19951227

Ref country code: CH

Effective date: 19951227

Ref country code: BE

Effective date: 19951227

Ref country code: LI

Effective date: 19951227

REF Corresponds to:

Ref document number: 132226

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3650461

Country of ref document: DE

Date of ref document: 19960208

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960319

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960401

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960416

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970404

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST