EP0427824A1 - Procede d'analyse de frequence pour agregats de fibres en mouvement - Google Patents

Procede d'analyse de frequence pour agregats de fibres en mouvement

Info

Publication number
EP0427824A1
EP0427824A1 EP19900906840 EP90906840A EP0427824A1 EP 0427824 A1 EP0427824 A1 EP 0427824A1 EP 19900906840 EP19900906840 EP 19900906840 EP 90906840 A EP90906840 A EP 90906840A EP 0427824 A1 EP0427824 A1 EP 0427824A1
Authority
EP
European Patent Office
Prior art keywords
sensor
fiber
evaluation unit
frequency spectrum
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19900906840
Other languages
German (de)
English (en)
Inventor
Sergej Toedtli
René Gloor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siegfried Peyer AG
Original Assignee
Siegfried Peyer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siegfried Peyer AG filed Critical Siegfried Peyer AG
Publication of EP0427824A1 publication Critical patent/EP0427824A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Definitions

  • the invention relates to a method for frequency analysis on moving fiber collectives according to the preamble of
  • the main disadvantage of laboratory determination of the fiber parameters in accordance with the prior art lies in the discontinuous adjustability of the production machines, as is not otherwise possible on the basis of individual measurements of the fiber parameters carried out in the laboratory. This means that the setting of production machines cannot be permanently optimized.
  • the invention seeks to remedy this.
  • the invention has for its object to provide a simple, reliable method for frequency analysis on moving fiber collectives create with which a change in the frequency spectrum can be determined practically without delay and thus relative statements about the fiber parameters can be made.
  • the invention achieves the stated object with a method which has the features of claim 1 and a device which has the features of claim 10.
  • the fibers should be approximately parallel within the nonwoven, i.e. have a certain pre-parallelization.
  • the movement of the non-woven fabric takes place either by means of a flow medium or by a transport device (e.g. air flow, clothing drum, needle bed, etc.)
  • the fibers to be analyzed are expediently guided past the sensor in the form of a thin nonwoven fabric, preferably comprising a fiber layer.
  • the sensor continuously measures a part or the entire width of the fleece. It can either be attached stationary, relative to the moving nonwoven fabric, or can be arranged so as to be movable, the speed being different from that of the nonwoven fabric.
  • the sensor can consist of a capacitor, a CCD camera or a reflection measuring device, in which reflective light is used with directed light, for example laser light Surfaces of the transport device are illuminated and the reflected light is collected by means of a light sensor.
  • the sensor measures the amount of fibers capacitively or optically and sends a correspondingly proportional signal to an evaluation unit.
  • the evaluation unit can either be structurally separate from the sensor or can also be part of the sensor.
  • the signal processing takes place in the evaluation unit, i.e. the separation of the interference signals from the useful signals, the amplification of the difference signals obtained in this way and the calculation of the frequency spectrum based thereon.
  • the evaluation unit should have at least one input amplifier, intensity regulator, filter, computer and an interface to the user.
  • the evaluation unit processes the signal generated by the sensor, which is proportional to the fiber quantity, and in this way determines a time diagram of the fiber quantity fluctuation in the measuring range of the sensor. Using the Fast Fourier Transformation (FFT) the evaluation unit can now calculate the frequency spectrum of the sensor signal.
  • FFT Fast Fourier Transformation
  • the signal generated by the sensor is stored in the evaluation unit before it is processed, preferably with a high clock frequency.
  • the transport device of the nonwoven fabric and other interference units cause additional, undesirable frequencies in the spectrum of the sensor signal. If these interference frequencies are not already known in advance and can therefore be eliminated by calculation, a second sensor can be attached to a fiber-free point of the transport device or the flow medium, which can now measure these interference frequencies alone. The frequency spectrum of this sensor signal without fiber influence can then be subtracted from the frequency spectrum with fiber influence in the evaluation unit. This gives you exactly the frequency spectrum of the fibers without system-related interference frequencies.
  • the advantages achieved by the invention are essentially to be seen in the fact that, thanks to the frequency analysis of the moving fiber collective obtained with the method according to the invention, on the one hand conclusions on the relative fiber parameters (changes in the fiber length, the dirt content, etc.), but on the other hand control of the fiber processing machines can also be carried out.
  • the relative length measurement of the fibers results directly from the frequencies of the determined spectrogram. As the frequencies decrease, the fibers become longer; if the frequencies increase, the fibers have become shorter. A change in the fiber damage of production machines (eg cards) can be determined practically without delay.
  • Fibers with defined properties have been included, the absolute parameters of the examined nonwovens can finally be determined.
  • Two sensors can also be used, which measure the moved nonwoven fabric once before and once after a processing process (eg drafting system), so that the differential frequency spectrum of the two is obtained from the two sensor signals in the evaluation unit by means of the Fast Fourier Transformation Sensor signals can be calculated, which is directly related to the machining process.
  • a processing process eg drafting system
  • the machine setting can be continuously optimized by appropriate interventions in the fiber production machine.
  • Fig. 1 shows a schematic representation of the device for performing the inventive method
  • FIG. 2 shows a schematic representation of the various signal processing stages.
  • the device for frequency analysis on moving fiber collectives shown in FIG. 1 essentially consists of two sensors 1 and 2, the transport device 6 for the fibers and the evaluation unit 7.
  • the sensors 1 and 2 comprise both a transmitting part 15, 16, 18 and a receiving part 19.
  • the transmitting part consists of a semiconductor laser 16 which generates laser light with the wavelength lambda - 670 nm and with With the help of a mirror wheel 15 and a mirror 18, a line pattern is drawn on the conveyor belt 6 underneath.
  • the light beam moving back and forth across the conveyor belt 6 illuminates the film passing by. rende collective of fibers 5.
  • the receiving part of the sensors 1 and 2 consists of a photodiode 19, which reflects the intensity of the laser beam reflected by the conveyor belt 6 and its structures (fibers 5, trimmings 3, etc.) and deflected by the semi-transparent mirror 17 and measures.
  • the transport device 6 consists of a motor-driven conveyor belt which, on its surface facing the sensors 1 and 2, has regularly arranged sets 3 in the form of hooks which hold the collective of fibers 5 to be measured at the measuring fields 4 of the sensors 1 and 2 passes.
  • the parts of the conveyor belt 6 lying between the sets 3 are mirrored (with the highest possible degree of reflection with respect to the illumination source used) in order to reflect the laser light emitted by sensors 1 and 2.
  • the evaluation unit 7 which is shown in more detail in FIG. 2, essentially consists of two signal processing units 10 (for the signals generated in the sensors 1 and 2) and a computer 14, which in turn has two Fast Fourier Transformation units 11 and two interfaces 12, 13 to the user.
  • the sequence of the method according to the invention is shown schematically on the basis of FIG. 2.
  • the light intensities measured by sensors 1 and 2 are converted into electrical signals and in the two assigned signal processing units 10 amplified, filtered and subjected to an analog / digital conversion.
  • the signals generated by sensors 1 and 2 can, if necessary, be stored in evaluation unit 7 before they are processed, preferably at a high clock frequency.
  • the processed signals are now fed to the computer 14 and there subjected to a Fast Fourier transformation 11.
  • the frequency spectrum of the sensor signals is calculated from the time diagram of the fiber quantity fluctuation or the clothing fluctuation in the measuring fields 4 of the sensors 1 and 2.
  • the frequency spectra of the two sensor signals calculated in this way (once with fiber influence by sensor 1 and once without fiber influence by sensor 2) can then be mathematically subtracted from one another in evaluation unit 14.
  • the group of 3 signals appearing on the left of the front of the schematic block representing the Fast Fourier transform 11 corresponds to the fiber information
  • the signal appearing in the middle of the spectrum corresponds to the sets 3
  • the signal arranged to the far right corresponds to the signals present in the system Dirt particles.
  • the frequency spectrum freed from all external influences can now be supplied to the output / input unit 9 via the interface 12 and to the machine control 8 via the interface 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Selon ce procédé, on fait passer devant un détecteur (1) les fibres à analyser (5) sous forme d'un non-tissé mince de fibres. Le détecteur (1) produit alors un signal proportionnel à la quantité de fibres qui passe devant lui et ce signal est redirigé vers une unité d'évaluation (7), où le signal produit par le détecteur (1) est traité; le diagramme des variations dans la quantité de fibres en fonction du temps est transformé par transformation accélérée de Fourier en un spectre de fréquences du signal du détecteur. Les modifications dans le spectre de fréquences que l'on peut constater presque immédiatement peuvent servir à commander la machine qui traite les fibres analysées (5).
EP19900906840 1989-06-06 1990-05-11 Procede d'analyse de frequence pour agregats de fibres en mouvement Withdrawn EP0427824A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH212089A CH678230A5 (fr) 1989-06-06 1989-06-06
CH2120/89 1989-06-06

Publications (1)

Publication Number Publication Date
EP0427824A1 true EP0427824A1 (fr) 1991-05-22

Family

ID=4226339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900906840 Withdrawn EP0427824A1 (fr) 1989-06-06 1990-05-11 Procede d'analyse de frequence pour agregats de fibres en mouvement

Country Status (4)

Country Link
EP (1) EP0427824A1 (fr)
JP (1) JPH04500272A (fr)
CH (1) CH678230A5 (fr)
WO (1) WO1990015325A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293049A (en) * 1991-05-01 1994-03-08 Alliedsignal Inc. Aerosol discriminator for particle discrimination
FR2689238A1 (fr) * 1992-03-30 1993-10-01 Scanera Sc Dispositif d'asservissement de machine de transformation de particules.
FI110340B (fi) * 1999-02-04 2002-12-31 Metso Paper Automation Oy Menetelmä ja laite liikkuvan rainan muodonmuutoksen identifioimiseksi
DE10354861A1 (de) * 2003-11-20 2005-06-02 Carl Baasel Lasertechnik Gmbh & Co. Kg Verfahren und Einrichtung zum Beobachten einer bewegten Oberfläche eines Werkstücks
JP6147536B2 (ja) * 2013-03-26 2017-06-14 ユニ・チャーム株式会社 着用物品の快適性評価方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816001A (en) * 1972-06-20 1974-06-11 W Duncan Measuring length and velocity of single staple fibers within an airflow
US4207001A (en) * 1976-05-24 1980-06-10 The University Of Queensland Particle size analyzer
US4277178A (en) * 1980-01-15 1981-07-07 Ford Aerospace & Communications Corp. Web element concentration detection system
JPS56128443A (en) * 1980-03-13 1981-10-07 Nippon Kokan Kk <Nkk> Grain size measuring method of granulous substance
CH675133A5 (fr) * 1987-07-06 1990-08-31 Zellweger Uster Ag

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9015325A1 *

Also Published As

Publication number Publication date
JPH04500272A (ja) 1992-01-16
WO1990015325A1 (fr) 1990-12-13
CH678230A5 (fr) 1991-08-15

Similar Documents

Publication Publication Date Title
EP0572592B1 (fr) Detection de fibres etrangeres dans des fils
EP2278328B1 (fr) Procédé pour caractériser des fils d&#39;effet
CH700821B1 (de) Vorrichtung an einer Spinnereivorbereitungsmaschine, insbesondere Karde oder Krempel.
EP0553446B2 (fr) Procédé de détection des impuretés, notamment des fibres étrangères dans des textiles allongés
WO1997036032A1 (fr) Procede et dispositif pour surveiller la qualite de fils
EP1454133A2 (fr) Utilisation de micro-ondes dans l&#39;industrie de la filature
EP0799916A3 (fr) Machine de peignage avec un banc d&#39;étirage contrÔlé
CH699383A2 (de) Vorrichtung für eine oder an einer Spinnereivorbereitungsmaschine, die ein Streckwerk zum Verstrecken von strangförmigem Fasermaterial aufweist.
EP0427824A1 (fr) Procede d&#39;analyse de frequence pour agregats de fibres en mouvement
CH696667A5 (de) Vorrichtung an einer Spinnereivorbereitungsmaschine zum Ermitteln von Abständen.
EP0466846A1 (fr) Procede de mesure de parametres de fibres textiles par traitement de donnees d&#39;image.
DE102005019760B4 (de) Spinnereimaschine mit einem Streckwerk zum Verstrecken eines Faserverbandes und entsprechendes Verfahren
DE19651891B4 (de) Verfahren und Vorrichtung an einer Karde, Krempel o. dgl. zur Verarbeitung von Textilfasern, z. B. Baumwolle, Chemiefasern o. dgl.
CH699382A2 (de) Vorrichtung für eine oder an einer Spinnereivorbereitungsmaschine, die ein Streckwerk zum Verstrecken von strangförmigem Fasermaterial aufweist.
DE3534933A1 (de) Vorrichtung zum messen der einer textilmaschine zuzufuehrenden fasermenge
EP0479984B1 (fr) Echantillonnage de textiles en ligne
EP1316630B1 (fr) Dispositif et procédé pour mesurer la masse et l&#39;humidité d&#39;une matière fibreuse dans une machine de préparation de filature
EP0485881B1 (fr) Procédé et dispositif pour commander une carde
DE4029172A1 (de) Verfahren und vorrichtung zum charakterisieren der qualitaet von baendern und litzen aus textilfasern
WO2020244867A1 (fr) Carde, élément de guidage de non-tissé, installation de préparation de filature et procédé pour détecter des particules gênantes
EP0978581A3 (fr) Machine pour le traitement de matériau textile avec banc d&#39;étirage
DE19943079A1 (de) Vorrichtung an einer Karde oder Krempel, bei der ein Faserflor aus Textilfasern, z.B. Baumwolle, Chemiefasern u.dgl., gebildet ist
DE102019115143A1 (de) Karde mit einer Vorrichtung zum Erkennen von störenden Partikeln
EP0892924B1 (fr) Procede et dispositif de determination des proprietes mecaniques du papier
EP3564420B1 (fr) Procédé et dispositif de traitement de fibres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19921113