EP0426788A1 - High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it. - Google Patents

High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it.

Info

Publication number
EP0426788A1
EP0426788A1 EP90906112A EP90906112A EP0426788A1 EP 0426788 A1 EP0426788 A1 EP 0426788A1 EP 90906112 A EP90906112 A EP 90906112A EP 90906112 A EP90906112 A EP 90906112A EP 0426788 A1 EP0426788 A1 EP 0426788A1
Authority
EP
European Patent Office
Prior art keywords
pipe string
pressure pipe
drilling
pressure
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90906112A
Other languages
German (de)
French (fr)
Other versions
EP0426788B1 (en
Inventor
Werner Foppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compisa AG
Original Assignee
Technologie Transfer Ets
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technologie Transfer Ets filed Critical Technologie Transfer Ets
Publication of EP0426788A1 publication Critical patent/EP0426788A1/en
Application granted granted Critical
Publication of EP0426788B1 publication Critical patent/EP0426788B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/12Devices for placing or drawing out wear protectors
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/203Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with plural fluid passages
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • E21B17/206Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables with conductors, e.g. electrical, optical
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/22Handling reeled pipe or rod units, e.g. flexible drilling pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets

Definitions

  • the present invention relates to a pressure pipe string for continuous fusion drilling for deep drilling.
  • the invention also relates to a method for producing this pressure train as well as for advancing it in the borehole and thereafter breaking it off.
  • the invention also relates to devices for performing the aforementioned methods.
  • Continuous screed drilling is understood to mean a drilling technique in which a temperature is generated in front of or at the drill head tip such that the rock is melted there and the rock melt due to the pressure exerted on the drill head into that due to thermostress resulting cracks (thermo-fraction) is pressed off in the side rock.
  • thermostress resulting cracks thermo-fraction
  • the drill head can continuously push in, melt and press rock.
  • fusion drilling techniques are for example described in the German patent DE 25 54 101 C2 and in the German patent application 37 01 676 AI.
  • the required temperatures are generated by high-pressure flame jets which stoichi etrically burn hydrogen and oxygen.
  • the method according to the German patent DE 25 54 101 C2 is designed for total compression of the drilling material resulting as a melt into the side rock.
  • German laid-open specification 37 01 676 AI is a profile melting drilling method, in which only the outer profile of a borehole is melted in a minimal cross section, which just offers space for the drilling device and its supply lines. The resulting melt from this area is largely pressed into the standing core of the borehole.
  • the core of the borehole is increased in volume and is sheared off in sections after passing through the inner cooling zone of the melting drilling rig and is conveyed upwards.
  • Both fusion drilling processes are designed as continuous processes, that is to say the drilling process takes place in one go up to the drilling target.
  • the lateral pressing of the melted drilling material creates a solid borehole casing which serves as a guide for the melting drilling machine and prevents side rocks from breaking into the borehole.
  • a continuous drilling process without interruption and "round trips" is possible by means of such a fusion drilling method even at depths of 10,000 m to 15 * 000 m because the service life of the pressure drilling head can be designed so that it has a service life that is Sufficient achievement of the drilling target.
  • methods are to be selected in which possible causes of failure are reduced to a minimum and devices are available several times, so that if one unit fails, the others can be used immediately.
  • a continuous, uninterrupted drilling process increases the drilling progress enormously and reduces the drilling costs.
  • a pressure pipe string for continuous melt drilling for deep drilling in the interior of which the supply, measuring and control lines for the drilling device are stored and which is characterized in that it includes at least two shell-shaped components, which each form a longitudinal segment of a tube, and that the longitudinal segments have means for assembly to form an externally smooth, dense, tensile and pressure-tight tube.
  • the object is also achieved by a method for producing, advancing and afterwards breaking off a pressure pipe string for continuous fusion drilling for deep drilling, in which the supply, measurement and control lines are fed continuously over the depth to be drilled and in which during the Drilling around the supply, measurement and control lines from several components a pressure and tensile, tight pressure pipe string is assembled in sections, which is then driven continuously.
  • a device for performing the above method which is characterized in that the supply, measurement and control lines are each wound on a supply carousel, which is a circular, rotatably mounted and motor-driven platform for receiving the windings, and that there is a multi-storey installation tower, in which, on its floors, means are arranged for section-wise assembly, for continuous propulsion and afterwards for breaking off the pressure pipe string.
  • FIG. 1 shows the three main components of the pressure
  • FIG. 1 Section during assembly; Figure 2 seen the assembled pressure pipe string from above; Figure 3 shows the interface of two pressure pipe sections;
  • FIG. 4 shows a section through an installation tower for assembling, driving forward and after breaking off the pressure pipe string
  • Figure 5 shows a supply carousel in perspective view with a segmental cut.
  • the lines for supplying the drill head with hydrogen, oxygen and cooling water and also for the control and measurement are endless, that is to say lines are used which are seamlessly produced over the entire depth to be drilled of up to approximately 15 km .
  • these pipes have to be pulled on site as transport is impossible.
  • the hydrogen and oxygen lines are endless tubes made of suitable tensile and bending-resistant steel alloys. These lines have to withstand a pressure of approx. 2 * 000 bar and have an outside diameter of the order of 20 mm.
  • the cooling water pipes are somewhat larger and have an outside diameter of approximately 50 mm. In order for the lines to withstand the high pressures, their wall thicknesses for these outside diameters are approximately 1/4 to 1/3 of the outside diameter.
  • Such cables can easily be bent elastically by a radius of around 20 meters. Even pipes with an even larger outside diameter are bent elastically by such a radius.
  • the invention now creates a pressure pipe string that allows such endless pipes continuously insert into the borehole.
  • the pressure pipe string receives and protects the continuous line system. In addition, it transmits the required pressure to the melt drilling rig or absorbs the tensile forces necessary to be able to pull the pressure pipe string out of the borehole again after the drilling target has been reached.
  • FIG. 1 shows a pressure pipe string during assembly. It consists of three components, namely an inner profile 1 with a central tube 2, which has profiles 3 on its outside, which give the entire inner profile 1 a cross-shaped cross section, and further consists of two congruent, shell-shaped components 4, each of which has a longitudinal segment Tube. On the inner sides of these longitudinal segments 4 there are lugs 5, 6, 7 projecting in the radial direction. The geometry of the three components 1, 4 is selected such that the lugs on the longitudinal segments 4 fit on the outer surfaces of the profiles 3. The components 1, 4 have joining surfaces which are hatched in FIG. 1 and which fit exactly onto one another during assembly. Before assembling the longitudinal segments 4, the inner profile 1 is mounted on the melting drilling machine or on the preceding pipe element of the pressure pipe string.
  • the uninterrupted lines 10, 11 are fastened in the free spaces 8 of the inner profile 1 by means of special insulating brackets 9, which then carry the lines 10, 11 by frictional adhesion.
  • the two longitudinal segments 4 are then assembled around the inner profile 1 and the lines 10, 11.
  • the assembly takes place Advantageously by means of temperature-resistant industrial adhesive with high shear and tensile strength, which are applied to the joining surfaces and hardened by heating. With each assembly of three such elements 1, 4, the pressure pipe string is extended by a further pipe section.
  • Figure 2 shows an assembled pressure pipe section from above.
  • the cross section shows a rosette-shaped geometry, which has four free spaces 12-15 on the inside and which gives the pressure pipe string optimum stability with the lowest weight.
  • the endless lines for hydrogen 10, oxygen 11 and cooling water 16 as well as for measurements 17 to be carried out and for the control 18 of the drill head are fastened by means of the insulating holders 9.
  • FIG. 3 shows an interface between two pressure pipe sections 30, 31. Each of these sections extends by approximately 20 meters. At their ends, the pressure pipe longitudinal segments each have an edge 3 __, 33 through which a flange is formed.
  • a two-part stabilizing ring 34, 35 is mounted behind each of these edges or flanges 32.33. Its two parts can be glued to one another and also to the pressure pipe and additionally screwed.
  • the stabilizing rings 34, 35 reinforce the pressure tube and enlarge the adhesive surface in the pressure tube attachment.
  • Two-part securing sleeves 36, 37 are also slipped over these stabilizing rings 34, 35 from the tube side and with the Stabilizing rings 34.35 glued. They can also be screwed together in the axial direction.
  • These sleeves 36, 37 pull the two pressure pipe sections 30, 31 together and additionally secure them for gluing.
  • a long pressure pipe string can absorb considerable tensile forces, so that it has come out of the borehole after drilling .
  • can be pulled up by the securing sleeves are gripped by the driver of a hydraulic pressure system.
  • the securing sleeves also take on an anti-slip function with respect to the borehole wall and protect the pressure pipe units from damage.
  • the dismantling of the pressure pipe string after reaching the drilling target with return is carried out in reverse order, in that the bonded joining surfaces are heated above the temperature resistance level of the industrial adhesive and so that the individual components of the pressure pipe can be dismantled.
  • the pressure pipe components are assembled in an installation tower above the borehole in stacked assembly halls to form a tight and pressure-stable, tight pressure pipe string, which is then used to guide the uninterrupted supply, measurement and control lines and to transmit pressure to the melt drilling rig.
  • Such an installation tower 40 is shown in a partial section in FIG. 4. It has four floors 41-44.
  • the endless lines 10, 11, 16 for hydrogen, oxygen and cooling water will be used later written supply carousel, then guided around a bending device 55 from rollers in a vertical direction upwards to the installation tower 40 and conveyed there vertically from above into the installation tower 40 via a driven deflection wheel 45.
  • the deflection wheel 45 is provided on its circumferential surface with rubber grooves in which the individual supply lines 10, 11, 16 are held by static friction.
  • the measuring and control lines are not shown here.
  • they can consist of telecommunication or fiber optic cables and can be unwound from a much smaller roll, which can be arranged directly on the roof of the installation tower 40, without these cables having to run over the deflection wheel 45.
  • the work processes for assembling the pressure pipe string 48 by means of processor-controlled automatic assembly machines 50, 51 take place with continuous drilling progress, in that they are tracked by the pressure pipe string 48, which is moving steadily downward.
  • the inner profile 1 of the pressure pipe string 48 is mounted on the top floor 44.
  • Such internal profiles 1 are stored in sufficient numbers on this floor and are fed to the automatic assembly machines 50 by a conveyor system (not shown).
  • the automatic assembly machines 50 grip the inner profile 1, for example by means of electromagnetic shoes 38 or grippers, and place it on that of the previously assembled pressure pipe section. Then they mount the insulating holders 9 in order to firmly attach the endless supply lines 10, 11 and 16 and the cables (not shown) for the measurements and the control of the drill head to the inner profile 1. to build. As soon as all the lines and cables have been mounted on the inner profile 1, the machines 50 each take a shell-shaped pipe segment 4, which is also fed by a corresponding bearing, and fit these two pipe segments 4 together and press them together. While the tube assembled in this way travels down from the fourth floor 44 to the third floor 43, the adhesive is thermally hardened by heating the joining strips by heating means, which can either be installed in the pressure tube segments themselves or are arranged externally.
  • a hydraulic molding press can also be used for this purpose, which hot presses the elements as the drilling progresses.
  • further assembly machines 51 On the third floor 43, further assembly machines 51 first mount the two-part stabilizing rings 34, 35 in the flange area of the interfaces of the pressure pipe string, as has already been described. The securing sleeves 36, 37 are then installed.
  • the automats 51 which are equipped, for example, with electromagnetic shoes 39, control the elements to be assembled in a processor-controlled manner in accordance with the drilling step of the pressure pipe string 48 and press them against the outside of the pressure pipe during the time required for the adhesive to harden .
  • the hydraulic pressure and lifting device is arranged, which consists of two multi-cylinder hydraulic systems 46, 47, which can transmit the high pressures required for the melt drilling process via the pressure pipe string 48 to the melt drilling machine, or that each by borehole depth and borehole diameter more or less large weight of the Druckrohr ⁇ strand 48 are able to lift.
  • Each hydraulic system includes grippers 49, by means of which the pressure pipe string 48 for pressing down above a securing collar 36, 37 can be encompassed.
  • the grippers 49 each enclose the pressure pipe string 48 below a securing sleeve 36, 37.
  • the grippers 49 can be actuated by means of hydraulic piston-cylinder units 52.
  • the force for pushing and pulling up the pressure pipe string 48 is generated by means of a plurality of multi-cylinder hydraulic piston-cylinder units 53. In the event of a cylinder failure, the remaining cylinders are able to continue drilling.
  • the pistons act on a continuous pressure beam 54, which lowers on the gripper 49 over the respective stroke.
  • the entire pressure and lifting device is designed on two levels, so that alternately one pressure system 46, 47 can be active. In FIG. 4, the pressure system 47 is currently in the process of pushing the pressure pipe string 48 downwards with its closed gripper 49, while the other 46 is moving up again with its open gripper 49 in order to then be ready for the next push cycle .
  • the process of vacuum stabilization serves as an additional reinforcement, with the upper opening space being sealed airtight and pressure-tight after installation of a new pressure pipe element, and the interior being evacuated via valves in the side wall.
  • the cooling water pumped through line 16 is passed under high pressure through the parts of the drill head to be cooled, so that it always remains in the liquid phase and can thus absorb and dissipate a maximum amount of heat. After the area to be cooled has passed and the optimum heat absorption has been reached, the cooling water outlet valves open on the top of the drill head, at the end of its cooling zone, directly into the borehole clearance, that is, between the borehole wall and the pressure pipe string.
  • the cooling water pressure must be significantly above the pressure of the water column building up in the borehole from the cooling water being released, so that the released energy of the overheated cooling water can still be used for motor forces.
  • steam pressure operated, self-advancing side pressure transmitters are installed for controlling and correcting the course of the melting drilling device, which are laser and glass fiber controlled via a gravitational pendulum.
  • the steam pressure is supplied via steam units, which are arranged in the melting drilling rig.
  • FIG. 5 shows a supply carousel 60 from which the supply lines can be unwound according to the "tube-coil system", that is to say the supply lines are deposited on such a supply carousel that can be unwound in each case over their entire length without break-prone connecting points , which also houses the required pressure, refrigeration or energy units, as well as storage tanks 61.
  • a supply carousel 60 consists of a rigid, circular platform 62, which runs in the outer and middle area on a circular track 63 and is driven, for example, by means of a gear drive via a plurality of synchronously running electric motors in a precisely controllable manner.
  • the supply carousel 60 is surrounded by a supply line 64 for tanker vehicles 65, so that it is possible to refuel its storage containers 61 while the carousel 60 is rotating.
  • the inner line end is connected to the storage container 61 via a pump station, so that the line 10 is continuously and at a constant pressure supplied with the liquid oxygen, hydrogen or the cooling water.
  • the supply line 10 is rolled up in a depot in several layers of several hundred windings, as in a huge, high-level open shelf.
  • the individual layers are secured on the outer edge of the platform 62 of the carousel 60 by hydraulically adjustable layer holders 66, which each release only the uppermost layer for processing.
  • layer holders 66 isolate the layer windings from the outside and are retracted layer by layer during the unwinding by means of hydraulic cylinder / piston units 67, so that the "endless" supply line is led out cleanly and in an orderly manner.
  • the windings of line 10 are covered by a well-insulating, tight cover 69, which also ensures that no water penetrates between the windings.
  • the uninterrupted line 10 is led via a hydraulically alignable conveying device 68 with rollers in a large arc to the bending device 55 on the installation tower.
  • the minimum bending radii should be chosen so that they remain within the elasticity limits of the pipes used, thus avoiding kink damage to the feed lines.
  • There is a separate carousel for each supply line so that there are no coordination problems due to the different unwinding speeds with different line diameters. Settlement by the individual. Carousels are synchronized by the drive motors of the carousels controlled by controllers, so that all lines of the entire supply line are always promoted at constant speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Earth Drilling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Punching Or Piercing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Paper (AREA)
  • Tents Or Canopies (AREA)
  • Golf Clubs (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PCT No. PCT/CH90/00123 Sec. 371 Date Mar. 1, 1991 Sec. 102(e) Date Mar. 1, 1991 PCT Filed May 3, 1990 PCT Pub. No. WO90/13729 PCT Pub. Date Nov. 15, 1990.A high pressure pipe string for continuous fusion drilling of deep wells which houses supply lines, measurement instrumentation and control wiring of the drilling device. It has at least two shell elements forming two halves of a pipe, and these parts are assembled into a smooth, tight, and compression and tension resistant pipe. In a process for assembling, propelling and subsequently dismantling a high-pressure pipe string for continuous fusion drilling of deep wells, the supply lines, the measurement instrumentation and the control wiring are fed to the boring head in a continuous manner. The supply lines, the measurement instrumentation and the control wiring are encased in a tight, compression and tension resistant high-pressure pipe string having several parts, the assembled pipe string being continuously propelled downward into the boring. The device for the execution of one of these processes has one storage carrousel for each of the supply lines, on which the supply lines are wound. Such a storage carrousel has a circular, rotating and motor-driven platform designed to hold the wound up supply lines. It also has a multi-level assembly tower housing the elements for assembling the pipe segments, to propel the pipe string downward into the boring, and to subsequently retrieve and dismantle the pipe string.

Description

Druckrohrstrang zum kontinuierlichen Schmelzbohren für Tief- bohrunαen sowie Verfahren und Vorrichtung zu dessen Herstel¬ len, Vortreiben und AbbrechenPressure pipe string for continuous fusion drilling for deep drilling as well as method and device for its manufacture, advancement and breaking off
Die vorliegende Erfindung betrifft einen Druckrohrstrang zum kontinuierlichen Schmelzbohren für Tiefbohrungen. Daneben be¬ trifft die Erfindung auch ein Verfahren zur Herstellung die¬ ses Druckstranges wie auch zu dessen Vortreiben im Bohrloch und hernach dessen Abbrechen. Schliesslich betrifft die Er¬ findung auch Vorrichtungen zur Ausübung der vorgenannten Ver¬ fahren.The present invention relates to a pressure pipe string for continuous fusion drilling for deep drilling. In addition, the invention also relates to a method for producing this pressure train as well as for advancing it in the borehole and thereafter breaking it off. Finally, the invention also relates to devices for performing the aforementioned methods.
Unter kontinuierlichem Sc rαelzbohren wird eine Bohrtechnik verstanden, bei der vor oder an der Boh-rkopfspitze eine so hohe Temperatur erzeugt wird, dass dort das Gestein aufge¬ schmolzen wird und die Gesteinsschmelze infolge des auf den Bohrkopf beaufschlagten Druckes in die aufgrund von Ther- mostress entstandenen Risse (Thermo-Fraction) im Seitenge¬ stein abgedrückt wird. Der Bohrkopf vermag in der Folge kon¬ tinuierlich weiter nachzustossen, Gestein aufzuschmelzen und zu verpressen. Solche Schmelzbohrtechniken sind zum Beispiel in der deutschen Patentschrift DE 25 54 101 C2 und in der deutschen Offenlegungsschrift 37 01 676 AI beschrieben. Die erforderlichen Temperaturen werden von Hochdruck-Flammstrah¬ len erzeugt, die stόchio etrisch Wasserstoff und Sauerstoff verbrennen. Das Verfahren nach der deutschen Patentschrift DE 25 54 101 C2 ist zur Totalverpressung des als Schmelze an¬ fallenden Bohrgutes ins Seitengestein konzipiert. Demgegen¬ über ist das Verfahren nach der deutschen Offenlegungsschrift 37 01 676 AI ein Profilschmelzbohrverfahren, bei dem nur das Aussenprofil eines Bohrloches in einem minimalen Querschnitt, der gerade Platz für das Bohrgerät und dessen Versorgungslei¬ tungen bietet, aufgeschmolzen wird. Die anfallende Schmelze aus diesem Bereich wird zum grösseren Teil in den stehenblei¬ benden Bohrlochkern gepresst. Der Bohrlochkern erfährt dabei eine Volumenvergrösserung und wird abschnittweise nach Pas¬ sieren der inneren Kühlzone des Schmelzbohrgerätes abgeschert und nach oben gefördert. Beide Schmelzbohrverfahren sind als kontinuierliche Verfahren ausgelegt, das heisst, der Bohrvor¬ gang erfolgt bis zum Bohrziel in einem Nu. Durch die seitli¬ che Verpressung des Schmelzbohrgutes entsteht eine feste Bohrlochverschalung, die dem Schmelzbohrgerät als Führung dient und Einbrüche von Seitengestein ins Bohrloch verhin¬ dert. Ein kontinuierlicher Bohrvorgang ohne Unterbrechung und "round-trips" ist mittels eines solchen Schmelzbohrverfahrens auch auf Tiefen von 10'000 m bis 15*000 m deshalb möglich, weil die Lebensdauer des Druckbohrkopfes so ausgelegt werden kann, dass er eine Standzeit aufweist, die zur Erreichung des Bohrziels ausreicht. Um den kontinuierlichen- Schmelzbohrpro- zess vor Unterbrechungen durch technische Pannen bestmöglich zu schützen, sind Verfahren zu wählen, bei denen mögliche Ausfallursachen auf ein Miniumum reduziert sind und Vorrich¬ tungen gleich mehrfach zur Verfügung stehen, sodass bei Aus¬ fall eines Aggregates sofort die weiteren zum Einsatz kommen können. Ein kontinuierlicher, ununterbrochener Bohrvorgang erhöht den Bohrfortschritt enorm und senkt die Bohrkosten. Diese Vorteile sind dem Schmelzbohrverfahrens grundsätzlich eigen, da es die BohrkopfWechsel, Bohrgestängewechsel oder Bohrkernziehungen, die den Vortrieb der Bohrung unterbrechen würden, wie das bei der konventionellen mechanischen Bohr¬ technik mit ihren bekannten "round-trips" der Fall ist, erüb¬ rigt. Diese Vorteile des Schmelzbohrverfahrens kommen aber nur dann zum Tragen, wenn die Versorung und Steuerung des Bohrkopfes ebenfalls über die ganze Bohrlochtiefe kontinuier¬ lich erfolgen kann. Damit also diese Schmelzbohrverfahren zum Erstellen von Tie bohrungen angewendet werden können, muss der sich kontinuierlich über einige tausend Meter ohne Halt nach unten bewegende Bohrkopf ständig unter einem Förderdruck in der Grössenordnung von* etwa 2'000 bar mit Wasserstoff, Sauerstoff und Kühlwasser versorgt werden sowie mit einem me¬ chanischen Anpressdruck beaufschlagt werden. Der abschnitt¬ weise Zusammenbau der Hochdruck-Versorgungsleitungen für Was¬ serstoff, Sauerstoff und Kühlwasser unter solchen Drucken so¬ wie der Zusammenbau der Mess- und Steuerleitungen würde durch eine Vielzahl von Verbindungsstellen die Gefahr von Leckstel¬ len und Ausfällen vorprogrammieren und die Montageabläufe verkomplizieren. Es muss deshalb mit anderen Mitteln eine kontinuierliche Versorgung, Steuerung und Kontrolle des Bohr¬ kopfes mit Nach- und Rückführung des Druckrohrstranges mit den Versorgungs-, Mess- und Steuerleitungen sichergestellt werden.Continuous screed drilling is understood to mean a drilling technique in which a temperature is generated in front of or at the drill head tip such that the rock is melted there and the rock melt due to the pressure exerted on the drill head into that due to thermostress resulting cracks (thermo-fraction) is pressed off in the side rock. As a result, the drill head can continuously push in, melt and press rock. Such fusion drilling techniques are for example described in the German patent DE 25 54 101 C2 and in the German patent application 37 01 676 AI. The required temperatures are generated by high-pressure flame jets which stoichi etrically burn hydrogen and oxygen. The method according to the German patent DE 25 54 101 C2 is designed for total compression of the drilling material resulting as a melt into the side rock. In contrast, the method according to German laid-open specification 37 01 676 AI is a profile melting drilling method, in which only the outer profile of a borehole is melted in a minimal cross section, which just offers space for the drilling device and its supply lines. The resulting melt from this area is largely pressed into the standing core of the borehole. The core of the borehole is increased in volume and is sheared off in sections after passing through the inner cooling zone of the melting drilling rig and is conveyed upwards. Both fusion drilling processes are designed as continuous processes, that is to say the drilling process takes place in one go up to the drilling target. The lateral pressing of the melted drilling material creates a solid borehole casing which serves as a guide for the melting drilling machine and prevents side rocks from breaking into the borehole. A continuous drilling process without interruption and "round trips" is possible by means of such a fusion drilling method even at depths of 10,000 m to 15 * 000 m because the service life of the pressure drilling head can be designed so that it has a service life that is Sufficient achievement of the drilling target. In order to continuously- To best protect the process from interruptions due to technical breakdowns, methods are to be selected in which possible causes of failure are reduced to a minimum and devices are available several times, so that if one unit fails, the others can be used immediately. A continuous, uninterrupted drilling process increases the drilling progress enormously and reduces the drilling costs. These advantages are inherent in the fusion drilling method, since it eliminates the need to change the drill head, change the drill rod or pull the drill core, which would interrupt the advance of the hole, as is the case with conventional mechanical drilling technology with its known "round trips". However, these advantages of the fusion drilling method only come into play if the supply and control of the drill head can also take place continuously over the entire depth of the borehole. So that these fusion drilling methods can be used to create deep holes, the drilling head, which moves continuously downwards over a few thousand meters without a stop, must be continuously supplied with hydrogen, oxygen and cooling water at a delivery pressure in the order of magnitude of * about 2,000 bar are subjected to a mechanical contact pressure. The section-by-section assembly of the high-pressure supply lines for hydrogen, oxygen and cooling water under such pressures, as well as the assembly of the measuring and control lines, would preprogramme the risk of leaks and failures through a large number of connection points and complicate the assembly processes. It must therefore be done by other means Continuous supply, control and monitoring of the drilling head with tracking and return of the pressure pipe string with the supply, measuring and control lines are ensured.
Es ist daher die Aufgabe der vorliegenden Erfindung, einen Druckrohrstrang zum kontinuierlichen Schmelzbohren für Tief¬ bohrungen zu schaffen. Ausserdem ist es eine Aufgabe der Er¬ findung, Verfahren und Vorrichtungen zum Herstellen, Vortrei¬ ben und hernach Abbrechen dieses Druckrohrstranges zu schaf¬ fen.It is therefore the object of the present invention to create a pressure pipe string for continuous fusion drilling for deep drilling. In addition, it is an object of the invention to create methods and devices for producing, advancing and then breaking off this pressure pipe string.
Gelöst wird diese Aufgabe von einem Druckrohrstrang zum kon¬ tinuierlichen Schmelzbohren für Tiefbohrungen, in dessen In¬ nerem die Versorgungs-, Mess-, und Steuerleitungen für das Bohrgerät gelagert sind und der sich dadurch auszeichnet, dass er wenigstens zwei schalenförmige Bauelemente ein- schliesst, die je ein Längssegment eines Rohres bilden, und dass die Längssegmente Mittel für den Zusammenbau zu einem aussen glatten, dichten, z'ug- und druckkraftschlüssigen Rohr aufweisen.This task is solved by a pressure pipe string for continuous melt drilling for deep drilling, in the interior of which the supply, measuring and control lines for the drilling device are stored and which is characterized in that it includes at least two shell-shaped components, which each form a longitudinal segment of a tube, and that the longitudinal segments have means for assembly to form an externally smooth, dense, tensile and pressure-tight tube.
Die Aufgabe wird ausserdem gelöst von einem Verfahren zum Herstellen, Vortreiben und hernach Abbrechen eines Druckrohr¬ stranges zum kontinuierlichen Schmelzbohren für Tiefbohrun¬ gen, bei dem die Versorgungs-, Mess- und Steuerleitungen über die zu bohrende Tiefe endlos zugeführt werden und bei dem während des Bohrvortriebes um die Versorgungs-, Mess- und Steuerleitungen herum aus mehreren Bauelementen ein druck- und zugfester, dichter Druckrohrstrang abschnittsweise zusam¬ mengebaut wird, der sodann kontinuierlich vorgetrieben wird. Schliesslich wird die Aufgabe gelöst von einer Vorrichtung zur Ausübung des obigen Verfahrens, die sich dadurch aus¬ zeichnet, dass die Versorgungs-, Mess-, und Steuerleitungen auf je einem Versorgungskarussell aufgewickelt sind, welches eine kreisförmige, drehbar gelagerte und motorisch antreib¬ bare Plattform zur Aufnahme der Wicklungen aufweist, und dass ein mehrstöckiger Installationsturm vorhanden ist, in dem auf dessen Stockwerke verteilt Mittel zum abschnittsweisen Zusam¬ menbau, zum kontinuierlichen Vortrieb und hernach zum Abbre¬ chen des Druckrohrstranges angeordnet sind.The object is also achieved by a method for producing, advancing and afterwards breaking off a pressure pipe string for continuous fusion drilling for deep drilling, in which the supply, measurement and control lines are fed continuously over the depth to be drilled and in which during the Drilling around the supply, measurement and control lines from several components a pressure and tensile, tight pressure pipe string is assembled in sections, which is then driven continuously. Finally, the object is achieved by a device for performing the above method, which is characterized in that the supply, measurement and control lines are each wound on a supply carousel, which is a circular, rotatably mounted and motor-driven platform for receiving the windings, and that there is a multi-storey installation tower, in which, on its floors, means are arranged for section-wise assembly, for continuous propulsion and afterwards for breaking off the pressure pipe string.
Besonders vorteilhafte Ausführungen des Druckrohrstranges so¬ wie besonders vorteilhafte Verfahrensvarianten und Vorrich¬ tungen zur Ausübung der Verfahren gehen aus den abhängigen Patentansprüchen hervor und werden in der nachfolgenden Be¬ schreibung erläutert. Die Beschreibung der Erfindung bezieht sich teilweise auf Zeichnungen, die beispielsweise Ausführun¬ gen der Erfindung darstellen.Particularly advantageous designs of the pressure pipe string, as well as particularly advantageous method variants and devices for carrying out the methods, are evident from the dependent patent claims and are explained in the following description. The description of the invention relates in part to drawings which, for example, represent embodiments of the invention.
Es zeigt:It shows:
Figur 1 die drei Haupt-Bauteile des Druckrόhrstrang-FIG. 1 shows the three main components of the pressure
Abschnittes beim Zusammenbau; Figur 2 den zusammengebauten Druckrohrstrang von oben gesehen; Figur 3 die Schnittstelle von zwei Druckrohrstrang- Abschnitten;Section during assembly; Figure 2 seen the assembled pressure pipe string from above; Figure 3 shows the interface of two pressure pipe sections;
Figur 4 einen Schnitt durch einen Installationstürm für das Zusammenbauen, das Vortreiben und her¬ nach Abbrechen des Druckrohrstranges;FIG. 4 shows a section through an installation tower for assembling, driving forward and after breaking off the pressure pipe string;
Figur 5 ein Versorgungskarussell in perspektivischer Ansicht mit einem Segmentschnitt.Figure 5 shows a supply carousel in perspective view with a segmental cut.
Erfindungsgemäss werden die Leitungen für die Versorgung des Bohrkopfes mit Wasserstoff, Sauerstoff und Kühlwasser sowie auch für die Steuerung und Messung endlos ausgeführt, das heisst es werden Leitungen verwendet, die über die ganze zu bohrende Tiefe von bis zu etwa 15 km nahtlos hergestellt wer¬ den. Diese Rohre müssen in der Regel vor Ort gezogen werden, da ein Transport ausgeschlossen ist. Bei den Wasserstoff- und Sauerstoffleitungen handelt es sich um Endlos-Rohre aus ge¬ eigneten zug- und biegefesten Stahllegierungen. Diese Leitun¬ gen müssen einen Druck von ca. 2*000 bar aushalten und weisen einen Aussendurchmesser von der Grδssenordnung 20 mm auf. Die Kühlwasserleitungen sind etwas grösser und weisen einen Aus¬ sendurchmesser von ca. 50 mm auf. Damit die Leitungen die ho¬ hen Drucke aushalten, betragen ihre Wandstärken bei diesen Aussendurchmessern etwa 1/4 bis 1/3 des Aussendurchmessers. Solche Leitungen lassen sich problemlos elastisch um einen Radius von etwa 20 Metern biegen. Sogar Rohre mit noch we¬ sentlich grösserem Aussendurchmesser Hessen sich um einen solchen Radius elastisch biegen. Die Erfindung schafft nun einen Druckrohrstrang, der es erlaubt, solche endlosen Rohre kontinuierlich in das Bohrloch einzuführen. Der Druckrohr¬ strang nimmt hierfür das kontinuierliche Leitungssystem auf und schützt es. Ausserdem überträgt er den erforderlichen An¬ druck auf das Schmelzbohrgerät oder nimmt die Zugkräfte auf, die nötig sind, um den Druckrohrstrang nach Erreichen des Bohrziels wieder aus dem Bohrloch herausziehen zu können.According to the invention, the lines for supplying the drill head with hydrogen, oxygen and cooling water and also for the control and measurement are endless, that is to say lines are used which are seamlessly produced over the entire depth to be drilled of up to approximately 15 km . As a rule, these pipes have to be pulled on site as transport is impossible. The hydrogen and oxygen lines are endless tubes made of suitable tensile and bending-resistant steel alloys. These lines have to withstand a pressure of approx. 2 * 000 bar and have an outside diameter of the order of 20 mm. The cooling water pipes are somewhat larger and have an outside diameter of approximately 50 mm. In order for the lines to withstand the high pressures, their wall thicknesses for these outside diameters are approximately 1/4 to 1/3 of the outside diameter. Such cables can easily be bent elastically by a radius of around 20 meters. Even pipes with an even larger outside diameter are bent elastically by such a radius. The invention now creates a pressure pipe string that allows such endless pipes continuously insert into the borehole. For this purpose, the pressure pipe string receives and protects the continuous line system. In addition, it transmits the required pressure to the melt drilling rig or absorbs the tensile forces necessary to be able to pull the pressure pipe string out of the borehole again after the drilling target has been reached.
In der Figur 1 ist ein Druckrohrstrang beim Zusammenbau dar¬ gestellt. Er besteht aus drei Bauteilen, nämlich aus einem Innenprofil 1 mit einem zentralen Rohr 2, welches an seiner Aussenseite Profile 3 aufweist, die dem ganzen Innenprofil 1 einen kreuzförmigen Querschnitt geben, und weiter aus zwei kongruenten, schalenförmigen Bauelementen 4, welche je ein Längssegment eines Rohres bilden. An den Innenseiten dieser Längssegmente 4 sind in radialer Richtung vorstehende Nasen 5,6,7 vorhanden. Die Geometrie der drei Bauelemente 1,4 ist so gewählt, dass die Nasen an den Längssegmenten 4 auf die Aussenflachen der Profile 3 passen. Die Bauelemente 1,4 wei¬ sen Fügeflächen auf, die in der Figur 1 schraffiert einge¬ zeichnet sind und beim Zusammenbau exakt aufeinander passen. Vor dem Zusammenbau der Längssegmente 4 wird das Innenprofil 1 auf das Schmelzbohrgerät oder auf das vorangehende Rohrele¬ ment des Druckrohrstranges montiert. Die ununterbrochenen Leitungen 10,11 werden in den Freiräümen 8 des Innenprofils 1 mittels spezieller Isolierhalterungen 9 befestigt, die dann durch Reibungshaftung die Leitungen 10,11 tragen. Anschlies- send werden die beiden Längssegmente 4 um das Innenprofil 1 und die Leitungen 10,11 zusammengebaut. Die Montage erfolgt vorteilhaft mittels temperaturfester Industriekleber mit ho¬ her Scher- und Zugfestigkeit, die auf die Fügeflächen aufge¬ bracht und durch Erhitzen ausgehärtet werden. Mit jedem Zu¬ sammenbau von drei solchen Elementen 1,4 wird der Druckrohr¬ strang jeweils um einen weiteren Rohrabschnitt verlängert.FIG. 1 shows a pressure pipe string during assembly. It consists of three components, namely an inner profile 1 with a central tube 2, which has profiles 3 on its outside, which give the entire inner profile 1 a cross-shaped cross section, and further consists of two congruent, shell-shaped components 4, each of which has a longitudinal segment Tube. On the inner sides of these longitudinal segments 4 there are lugs 5, 6, 7 projecting in the radial direction. The geometry of the three components 1, 4 is selected such that the lugs on the longitudinal segments 4 fit on the outer surfaces of the profiles 3. The components 1, 4 have joining surfaces which are hatched in FIG. 1 and which fit exactly onto one another during assembly. Before assembling the longitudinal segments 4, the inner profile 1 is mounted on the melting drilling machine or on the preceding pipe element of the pressure pipe string. The uninterrupted lines 10, 11 are fastened in the free spaces 8 of the inner profile 1 by means of special insulating brackets 9, which then carry the lines 10, 11 by frictional adhesion. The two longitudinal segments 4 are then assembled around the inner profile 1 and the lines 10, 11. The assembly takes place Advantageously by means of temperature-resistant industrial adhesive with high shear and tensile strength, which are applied to the joining surfaces and hardened by heating. With each assembly of three such elements 1, 4, the pressure pipe string is extended by a further pipe section.
Figur 2 zeigt einen zusammengebauten Druckrohrabschnitt von oben. Der Querschnitt zeigt eine rosettenförmige Geometrie, welche im Innern vier Freiräume 12-15 aufweist und'dem Druck¬ rohrstrang optimale Stabilität bei geringstem Gewicht ver¬ leiht. In den Freiräumen 12-15 des Druckrohrstranges sind die endlosen Leitungen für Wasserstoff 10, Sauerstoff 11 und Kühlwasser 16 sowie für vorzunehmende Messungen 17 und für die Steuerung 18 des Bohrköpfes mittels der Isolierhalterun¬ gen 9 befestigt.Figure 2 shows an assembled pressure pipe section from above. The cross section shows a rosette-shaped geometry, which has four free spaces 12-15 on the inside and which gives the pressure pipe string optimum stability with the lowest weight. In the free spaces 12-15 of the pressure pipe string, the endless lines for hydrogen 10, oxygen 11 and cooling water 16 as well as for measurements 17 to be carried out and for the control 18 of the drill head are fastened by means of the insulating holders 9.
Figur 3 zeigt eine Schnittstelle zwischen zwei Druckrohr¬ strang-Abschnitten 30, 31. Jeder dieser Abschnitte erstreckt sich um etwa 20 Meter. Die Druckrohr-Längssegmente weisen an ihrem Ende je einen Rand 3__,33 auf, durch den ein Flansch ge¬ bildet wird. Hinter jedem dieser Ränder oder Flansche 32.33 ist ein zweiteiliger Stabilisierungsring 34,35 montiert. Seine beiden Teile können miteinander und auch mit dem Druck¬ rohr verklebt sein und zusätzlich verschraubt sein. Die Sta¬ bilisierungsringe 34,35 verstärken das Druckrohr und vergrös- sern die Klebefläche im Druckrohransatz. Ueber diese Stabili¬ sierungsringe 34,35 sind von der Rohrseite her ebenfalls zweiteilige Sicherungsmanschetten 36,37 gestülpt und mit den Stabilisierungsringen 34,35 verklebt. Sie können ausserdem in axialer Richtung miteinander verschraubt sind. Diese Man¬ schetten 36,37 ziehen die beiden Druckrohr-Abschnitte 30,31 zusammen und sichern sie zusätzlich zur Verklebung. Mittels dieser Verbindung von mehreren Druckrohrabschnitten kann ein langer Druckrohrstrang erhebliche Zugkräfte aufnehmen, sodass er nach erfolgter Bohrung aus dem Bohrloch .hochgezogen werden kann, indem die Sicherungsmanschetten vom Mitnehmer einer hydraulischen Druckanlage umfasst werden. Ausserdem überneh¬ men die Sicherungsmanschetten neben einer zusätzlichen Stabi¬ lisierung eine Gleitschutzfunktion gegenüber der Bohrlochwan¬ dung und schützen die Druckrohreinheiten vor Beschädigungen. Die Demontage des Druckrohrstrangs nach Erreichen des Bohr¬ ziels mit Rückführung erfolgt in umgekehrter Reihenfolge, in¬ dem die geklebten Fügeflächen über den Temperaturbeständig¬ keitsgrad des Industrieklebers hinaus erhitzt werden und so¬ mit die einzelnen Bauelemente des Druckrohres demontierbar werde .FIG. 3 shows an interface between two pressure pipe sections 30, 31. Each of these sections extends by approximately 20 meters. At their ends, the pressure pipe longitudinal segments each have an edge 3 __, 33 through which a flange is formed. A two-part stabilizing ring 34, 35 is mounted behind each of these edges or flanges 32.33. Its two parts can be glued to one another and also to the pressure pipe and additionally screwed. The stabilizing rings 34, 35 reinforce the pressure tube and enlarge the adhesive surface in the pressure tube attachment. Two-part securing sleeves 36, 37 are also slipped over these stabilizing rings 34, 35 from the tube side and with the Stabilizing rings 34.35 glued. They can also be screwed together in the axial direction. These sleeves 36, 37 pull the two pressure pipe sections 30, 31 together and additionally secure them for gluing. By means of this connection of several pressure pipe sections, a long pressure pipe string can absorb considerable tensile forces, so that it has come out of the borehole after drilling . can be pulled up by the securing sleeves are gripped by the driver of a hydraulic pressure system. In addition to an additional stabilization, the securing sleeves also take on an anti-slip function with respect to the borehole wall and protect the pressure pipe units from damage. The dismantling of the pressure pipe string after reaching the drilling target with return is carried out in reverse order, in that the bonded joining surfaces are heated above the temperature resistance level of the industrial adhesive and so that the individual components of the pressure pipe can be dismantled.
Die Druckrohr-Bauteile werden in einem Installationsturm über dem Bohrloch in übereinanderliegenden Montagehallen zu einem zug- und druckstabilen, dichten Druckrohrstrang zusammenge¬ baut, der dann zur Führung der ununterbrochenen Versorgungs-, Mess- und Steuerzuleitungen und zur Druckübertragung auf das Schmelzbohrgerät dient. Ein solcher Installationsturm 40 ist in einem Teilschnitt in Figur 4 dargestellt. Er weist vier Stockwerke 41-44 auf. Die endlosen Leitungen 10,11,16 für Wasserstoff, Sauerstoff und Kühlwasser werden von später be- schriebenen Versorungskarussells abgewickelt, sodann um eine Biegevorrichtung 55 aus Walzen in senkrechter Richtung nach oben auf den Installationsturm 40 geführt und dort über ein angetriebenes Umlenkrad 45 senkrecht von oben in den Instal¬ lationsturm 40 gefördert. Das Umlenkrad 45 ist an seiner Um- fangsfläche mit Gummirillen versehen, in denen die einzelnen Versorgungsleitungen 10,11,16 durch Haftreibung gehalten sind. Die Mess- und Steuerleitungen sind hier nicht einge¬ zeichnet. Sie können zum Beispiel aus Fernmelde- oder Glas¬ faserkabel bestehen und von einer viel kleineren Rolle abge¬ wickelt werden, die direkt auf dem Dach des Installationstur- mes 40 angeordnet sein kann, ohne dass diese Kabel über das Umlenkrad 45 zu laufen brauchen. Im Installationsturm 40 lau¬ fen die Arbeitsvorgänge des Zusammenbaus des DruckrohrStran¬ ges 48 mittels prozessorgesteuerter Montageautomaten 50,51 bei kontiniuerlichem Bohrfortschritt ab, indem diese dem sich stetig abwärts bewegenden Druckrohrstrang 48 nachgeführt wer¬ den. Im obersten Stockwerk 44 wird das Innenprofil 1 des Druckrohrstranges 48 montiert. Solche Innenprofile 1 sind in diesem Stockwerk in hinreichender Anzahl gelagert und werden von einer nicht dargestellten Förderanlage den Montageautoma¬ ten 50 zugeführt. Die Montageautomaten 50 ergreifen das In¬ nenprofil 1, zum Beispiel, mittels Elektromagnet-Schuhen 38 oder Greifern, und setzen es auf jenes des zuvor montierten Druckrohrabschnittes auf. Danach montieren sie die Isolier¬ halterungen 9, um die endlosen Versorgungsleitungen 10,11 und 16 sowie die nicht dargestellten Kabel für die Messungen und die Steuerung des Bohrkopfes fest an das Innenprofil 1 anzu- bauen. Sobald alle Leitungen und Kabel am Innenporfil 1 mon¬ tiert sind, ergreifen die Automaten 50 je ein schalenförmiges Rohrsegment 4, welches ebenfalls von einem entsprechenden La¬ ger zugeführt wird, und fügen diese beiden Rohrsegmente 4 passgenau zusammen und verpressen sie. Während das so zusam¬ mengebaute Rohr vom vierten Stockwerk 44 zum dritten Stock¬ werk 43 hinabfährt, erfolgt die Temperaturhärtung des Klebers mittels Aufheizung der Fügeleisten durch Heizmittel, die ent¬ weder in den Druckrohrsegmenten selbst eingebaut sein können oder extern angeordnet sind. Hierzu kann zusätzlich eine nicht dargestellte Hydraulikformpresse dienen, welche unter Mitgehen mit dem Bohrfortschritt die Elemente heiss ver- presst. Im dritten Stockwerk 43 werden von weiteren Montage¬ automaten 51 zuerst im Flanschbereich der Schnittstellen des Druckrohrstranges die zweiteiligen Stabilisierungsringe 34,35 montiert, wie diese schon beschrieben wurden. Danach erfolgt die Montage der Sicherungsmanschetten 36,37. Auch hier führen die Automaten 51, welche zum Beispiel mit Elektromagnetschu¬ hen 39 bestückt sind, prozessorgesteuert die zu montierenden Elemente gemäss dem Bohrfόrtschritt des Druckrohrstranges 48 demselben nach und pressen diese während der für die Aushär¬ tung des Klebers erforderlichen Zeit an die Druckrohraussen- wand. In den Stockwerken 42 und 41 ist die hydraulische Druck- und Hebevorrichtung angeordnet, die aus zwei mehrzy¬ lindrischen Hydraulikanlagen 46,47 besteht, welche die für den Schmelzbohrprozess erforderlichen hohen Drucke über den Druckrohrstrang 48 auf das Schmelzbohrgerät übertragen kön¬ nen, beziehungsweise das je nach Bohrlochtiefe und Bohrloch- durchmesser mehr oder weniger grosse Gewicht des Druckrohr¬ stranges 48 zu heben vermögen. Jede Hydraulikanlage schliesst Greifer 49 ein, mittels derer der Druckrohrstrang 48 für das Hinunterpressen oberhalb einer Sicherungsmanschette 36,37 um¬ fasst werden kann. Für das Heben des Druckrohrstranges 48 um¬ fassen die Greifer 49 den Druckrohrstrang 48 jeweils unter¬ halb einer Sicherungsmanschette 36,37. Die Greifer 49 sind mittels hydraulischer Kolben-Zylinder-Einheiten 52 betätig¬ bar. Die Kraft für das Hinuterdrücken und Hochziehen des Druckrohrstranges 48 wird mittels mehreren mehrzylindrischen hydraulischen Kolben-Zylinder-Einheiten 53 erzeugt. Im Falle eines Zylinderausfalls vermögen die verbleibenden Zylinder den Bohrvorgang aufrechtzuerhalten. Die Kolben wirken auf einen durchgehenden Druckbalken 54, welcher sich über den jeweiligen Hubweg auf die Greifer 49 absenkt. Die ganze Druck- und Hebevorrichtung ist doppelstöckig angelegt, damit abwechslungsweise je eine Druckanlage 46,47 aktiv sein kann. In der Figur 4 ist im Augenblick gerade die Druckanlage 47 daran, den Druckrohrstrang 48 mit ihrem geschlossenen Greifer 49 abwärts zu stossen, während die andere 46 mit ihrem geöff¬ neten Greifer 49 wieder nach oben fährt, um dann für den nächsten Schubtakt bereit zu sein.The pressure pipe components are assembled in an installation tower above the borehole in stacked assembly halls to form a tight and pressure-stable, tight pressure pipe string, which is then used to guide the uninterrupted supply, measurement and control lines and to transmit pressure to the melt drilling rig. Such an installation tower 40 is shown in a partial section in FIG. 4. It has four floors 41-44. The endless lines 10, 11, 16 for hydrogen, oxygen and cooling water will be used later written supply carousel, then guided around a bending device 55 from rollers in a vertical direction upwards to the installation tower 40 and conveyed there vertically from above into the installation tower 40 via a driven deflection wheel 45. The deflection wheel 45 is provided on its circumferential surface with rubber grooves in which the individual supply lines 10, 11, 16 are held by static friction. The measuring and control lines are not shown here. For example, they can consist of telecommunication or fiber optic cables and can be unwound from a much smaller roll, which can be arranged directly on the roof of the installation tower 40, without these cables having to run over the deflection wheel 45. In the installation tower 40, the work processes for assembling the pressure pipe string 48 by means of processor-controlled automatic assembly machines 50, 51 take place with continuous drilling progress, in that they are tracked by the pressure pipe string 48, which is moving steadily downward. The inner profile 1 of the pressure pipe string 48 is mounted on the top floor 44. Such internal profiles 1 are stored in sufficient numbers on this floor and are fed to the automatic assembly machines 50 by a conveyor system (not shown). The automatic assembly machines 50 grip the inner profile 1, for example by means of electromagnetic shoes 38 or grippers, and place it on that of the previously assembled pressure pipe section. Then they mount the insulating holders 9 in order to firmly attach the endless supply lines 10, 11 and 16 and the cables (not shown) for the measurements and the control of the drill head to the inner profile 1. to build. As soon as all the lines and cables have been mounted on the inner profile 1, the machines 50 each take a shell-shaped pipe segment 4, which is also fed by a corresponding bearing, and fit these two pipe segments 4 together and press them together. While the tube assembled in this way travels down from the fourth floor 44 to the third floor 43, the adhesive is thermally hardened by heating the joining strips by heating means, which can either be installed in the pressure tube segments themselves or are arranged externally. A hydraulic molding press, not shown, can also be used for this purpose, which hot presses the elements as the drilling progresses. On the third floor 43, further assembly machines 51 first mount the two-part stabilizing rings 34, 35 in the flange area of the interfaces of the pressure pipe string, as has already been described. The securing sleeves 36, 37 are then installed. Here, too, the automats 51, which are equipped, for example, with electromagnetic shoes 39, control the elements to be assembled in a processor-controlled manner in accordance with the drilling step of the pressure pipe string 48 and press them against the outside of the pressure pipe during the time required for the adhesive to harden . In the floors 42 and 41 the hydraulic pressure and lifting device is arranged, which consists of two multi-cylinder hydraulic systems 46, 47, which can transmit the high pressures required for the melt drilling process via the pressure pipe string 48 to the melt drilling machine, or that each by borehole depth and borehole diameter more or less large weight of the Druckrohr¬ strand 48 are able to lift. Each hydraulic system includes grippers 49, by means of which the pressure pipe string 48 for pressing down above a securing collar 36, 37 can be encompassed. For the lifting of the pressure pipe string 48, the grippers 49 each enclose the pressure pipe string 48 below a securing sleeve 36, 37. The grippers 49 can be actuated by means of hydraulic piston-cylinder units 52. The force for pushing and pulling up the pressure pipe string 48 is generated by means of a plurality of multi-cylinder hydraulic piston-cylinder units 53. In the event of a cylinder failure, the remaining cylinders are able to continue drilling. The pistons act on a continuous pressure beam 54, which lowers on the gripper 49 over the respective stroke. The entire pressure and lifting device is designed on two levels, so that alternately one pressure system 46, 47 can be active. In FIG. 4, the pressure system 47 is currently in the process of pushing the pressure pipe string 48 downwards with its closed gripper 49, while the other 46 is moving up again with its open gripper 49 in order to then be ready for the next push cycle .
Für Druckrohrstränge mit grossem Druchmesser dient als zu¬ sätzliche Verstärkung das Verfahren der Vakuumstabilisierung, wobei jeweils nach Montage eines neuen Druckrohrelementes der obere Öffnungsraum über eine Dichtung luftdicht und druckfest verschlossen und der Innenraum über Ventile in der Seitenwan¬ dung evakuiert wird. Das durch die Leitung 16 gepumpte Kühlwasser wird dunter ho¬ hem Druck durch die zu kühlenden Teile des Bohrkopfes ge¬ führt, sodass es stets in flüssiger Phase bleibt und so eine maximale Wärmemenge aufnehmen und abführen kann. Die Kühlwasseraustrittsventile öffnen, nachdem der zu kühlende Bereich durchlaufen und die optimale Wärmeaufnähme erreicht ist, auf der Oberseite des Bohrkopfes, am Ende dessen Kühl¬ zone, direkt in den Bohrlochfreiraum, das heisst zwischen Bohrlochwand und Druckrohrstrang. Der Kühlwasserdruck muss deutlich oberhalb des Drucks der sich im Bohrich aufbauenden Wassersäule aus dem freiwerdenden Kühlwasser liegen, sodass die freiwerdende Energie des überhitzten Kühlwassers noch für motorische Kräfte genutzt werden kann. Im unteren Bereich des Druckrohrstranges, oberhalb des Schmelzbohrgerätes und zwi¬ schen Bohrlochwandung und dem Druckrohr sind zur Steuerung und Kurskorrektur des Schmelzbohrgerätes dampfdruckbetrie¬ bene, selbstschreitende Seitendruckgeber eingebaut, die über ein Gravitationspendel laser- und glasfasergesteuert sind. Die Dampfdruckversorgung erfolgt über Dampfaggregate, die im Schmelzbohrgerät angeordnet sind.For pressure pipe strings with a large diameter, the process of vacuum stabilization serves as an additional reinforcement, with the upper opening space being sealed airtight and pressure-tight after installation of a new pressure pipe element, and the interior being evacuated via valves in the side wall. The cooling water pumped through line 16 is passed under high pressure through the parts of the drill head to be cooled, so that it always remains in the liquid phase and can thus absorb and dissipate a maximum amount of heat. After the area to be cooled has passed and the optimum heat absorption has been reached, the cooling water outlet valves open on the top of the drill head, at the end of its cooling zone, directly into the borehole clearance, that is, between the borehole wall and the pressure pipe string. The cooling water pressure must be significantly above the pressure of the water column building up in the borehole from the cooling water being released, so that the released energy of the overheated cooling water can still be used for motor forces. In the lower area of the pressure pipe string, above the melting drilling device and between the borehole wall and the pressure pipe, steam pressure operated, self-advancing side pressure transmitters are installed for controlling and correcting the course of the melting drilling device, which are laser and glass fiber controlled via a gravitational pendulum. The steam pressure is supplied via steam units, which are arranged in the melting drilling rig.
Für die Rückführung eines übergewichtigen DruckrohrStranges 48 zu desse Abbruch, das heisst, wenn das Eigengewicht des Druckrohrstranges 48 grδsser wird als die Zugkräfte des Druckrohrmaterials, wird nach Erreichen des Bohrziels der im Bohrloch verbliebene Freiraum zwischen Druckrohrstrang 48 und Bohrloch gänzlich geflutet und der Druckrohrstrang unmittel¬ bar über dem Schmelzbohrgerät so abgesprengt, das sich das untere Ende des Druckrohrstranges verschliesst und sich damit das Gewicht des zu hebenden Druckrohrstranges um den Eigen¬ auftrieb, das heisst um das Gewicht des von Druckrohrstrang verdrängten Wassers, vermindert.For the return of an overweight pressure pipe string 48 to its demolition, that is, if the dead weight of the pressure pipe string 48 becomes greater than the tensile forces of the pressure pipe material, the free space remaining in the borehole between the pressure pipe string 48 and the borehole is completely flooded and the pressure pipe string immediately after the drilling target has been reached blown off bar above the melting drill so that the lower end of the pressure pipe string closes and thus the weight of the pressure pipe string to be lifted by its own buoyancy, that is to say by the weight of the water displaced by the pressure pipe string, is reduced.
Figur 5 zeigt ein Versorgungskarussell 60, von dem die Ver¬ sorgungsleitungen nach dem "Tube-Coil-System" abgewickelt werden können, das heisst, die Versorgungsleitungen sind da¬ bei in gesamter Länge ohne bruchgefährdete Verbindungsstellen auf je einem solchen abspulbaren Versorgungskarussell depo¬ niert, das gleichzeitig die benötigten Druck-, Kälte- oder Energieaggregate, sowie Speicherbehälter 61 beherbergt. Ein solches Versorgungskarussell 60 besteht aus einer starren, kreisrunden Plattform 62, die im Aussen- und Mittelbereich auf je einem kreisförmig angelegten Schienenstrang 63 läuft und zum Beispiel mittels eines Zahnrad-Antriebes über mehrere synchronlaufende Elektromotoren exakt steuerbar angetrieben wird. Auf dem inneren Bereich der kreisrunden Plattform 62 des Karussells sind sämtliche benötigten Aggregate wie zum Beispiel die Steuerzentrale, die Druckerzeuger sowie die Speicherbehälter 61 für das Versorgungkarussell 60 unterge¬ bracht. Das Versorgungskarussell 60 ist von einer Versorgungsstrasse 64 für Tankfahrzeuge 65 umgeben, sodass ein Betanken seiner Speicherbehälter 61 möglich ist, während¬ dem sich das Karussell 60 dreht. Das innere Leitungsende ist über eine Pumpstation am Speicherbehälter 61 angeschlossen, sodass die Leitung 10 kontinuierlich und auf einem konstanten Druck mit dem flüssigen Sauerstoff, Wasserstoff oder dem Kühlwasser versorgt wird. Im Aussenbereich der Plattform 62 ist wie in einem riesigen, nach aussen offenen Hochregal die Versorgungsleitung 10 in einem Depot in mehreren Lagen von mehrhunder fachen Wicklungen aufgerollt. Die einzelnen Lagen werden am äusseren Rand der Plattform 62 des Karussells 60 von hydraulisch regelbaren Lagenhaltern 66 gesichert, die je¬ weils nur die oberste Lage für die Abwicklung freigeben. Diese Lagenhalter 66 isolieren die Lagenwicklungen gegen aus¬ sen und werden bei der Abwicklung mittels hydraulischer Zy¬ linder-Kolben-Einheiten 67 Lage um Lage eingefahren, sodass die Herausführung der "endlosen" Versorgungsleitung sauber und geordnet erfolgt. Die Wicklungen der Leitung 10 sind von einer gut isolierenden, dichten Abdeckung 69 überdeckt, die auch sicherstellt, dass keine Wasser zwischen die Wicklungen eindringt. Von dem entsprechend des Bohrfortschritts laufen¬ den Versorgungskarussell 10 wird die abgewickelte unun¬ terbrochene Leitung 10 über eine hydraulisch ausrichtbare Fördereinrichtung 68 mit Walzen in grossem Bogen zur Biege¬ vorrichtung 55 am Installationsturm geführt. Die minimalen Biegeradien so zu wählen, dass sie innerhalb der Elastizi¬ tätsgrenzen der verwendeten Rohre bleiben, womit eine Knick¬ beschädigung der Zuleitungen vermieden wird. Für jede Versor¬ gungsleitung ist ein gesondertes Karussell vorhanden, damit bei unterschiedlichen Leitungsdurchmessern keine Koordinati¬ onsprobleme infolge der unterschiedlichen Abwickelgeschwin¬ digkeiten auftreten. Die Abwicklung von den einzelnen. Karus¬ sells wird durch die mittels Regler gesteuerten Antriebsmoto¬ ren der Karussells synchronisiert, sodass alle Leitungen des gesamten Versorgungsstranges immer in gleichbleibender Ge¬ schwindigkeit gefördert werden. FIG. 5 shows a supply carousel 60 from which the supply lines can be unwound according to the "tube-coil system", that is to say the supply lines are deposited on such a supply carousel that can be unwound in each case over their entire length without break-prone connecting points , which also houses the required pressure, refrigeration or energy units, as well as storage tanks 61. Such a supply carousel 60 consists of a rigid, circular platform 62, which runs in the outer and middle area on a circular track 63 and is driven, for example, by means of a gear drive via a plurality of synchronously running electric motors in a precisely controllable manner. All the necessary units, such as the control center, the pressure generators and the storage containers 61 for the supply carousel 60, are accommodated on the inner area of the circular platform 62 of the carousel. The supply carousel 60 is surrounded by a supply line 64 for tanker vehicles 65, so that it is possible to refuel its storage containers 61 while the carousel 60 is rotating. The inner line end is connected to the storage container 61 via a pump station, so that the line 10 is continuously and at a constant pressure supplied with the liquid oxygen, hydrogen or the cooling water. Outside of platform 62 the supply line 10 is rolled up in a depot in several layers of several hundred windings, as in a huge, high-level open shelf. The individual layers are secured on the outer edge of the platform 62 of the carousel 60 by hydraulically adjustable layer holders 66, which each release only the uppermost layer for processing. These layer holders 66 isolate the layer windings from the outside and are retracted layer by layer during the unwinding by means of hydraulic cylinder / piston units 67, so that the "endless" supply line is led out cleanly and in an orderly manner. The windings of line 10 are covered by a well-insulating, tight cover 69, which also ensures that no water penetrates between the windings. From the supply carousel 10 which is running in accordance with the drilling progress, the uninterrupted line 10 is led via a hydraulically alignable conveying device 68 with rollers in a large arc to the bending device 55 on the installation tower. The minimum bending radii should be chosen so that they remain within the elasticity limits of the pipes used, thus avoiding kink damage to the feed lines. There is a separate carousel for each supply line so that there are no coordination problems due to the different unwinding speeds with different line diameters. Settlement by the individual. Carousels are synchronized by the drive motors of the carousels controlled by controllers, so that all lines of the entire supply line are always promoted at constant speed.

Claims

Patentansprüche Claims
1. Verfahren zum Herstellen und Vortreiben eines Druckrohr¬ stranges (48) zum kontinuierlichen Schmelzbohren für Tiefbohrungen, bei dem die Versorgungs- (10,11,16), Mess- (17) und Steuerleitungen (18) über die zu bohrende Tiefe endlos zugeführt werden und bei dem während des Bohrvortriebes um die Versorgungs- (10,11,16), Mess- (17) und Steuerleitungen (18) aus mehreren Bauelementen (1,4) ein druck- und zugfester, dichter Druckrohrstrang (48) abschnittweise zusammengebaut wird, der sodann kontinuierlich vorgetrieben wird.1. A method for producing and driving a Druckrohr¬ strand (48) for continuous fusion drilling for deep drilling, in which the supply (10,11,16), measuring (17) and control lines (18) fed endlessly over the depth to be drilled and in which during the drilling operation around the supply (10, 11, 16), measuring (17) and control lines (18) from several components (1,4) a pressure and tensile, tight pressure pipe string (48) is assembled in sections which is then continuously advanced.
2. Verfahren nach Anspruch 1, dadruch gekennzeichnet, dass die Versorgungs- (10,11,16), Mess- (17), und Steuerlei¬ tungen (18) durch Abwickeln von einem Versorgungskarus- sell (60) zugeführt werden, auf dem die vorgenannten Leitungen (10,11,16) in der gesamten zu verwendenden Länge endlos aufgewickelt sind.2. The method according to claim 1, characterized in that the supply (10, 11, 16), measuring (17) and control lines (18) are supplied by unwinding from a supply carousel (60) on which the aforementioned lines (10, 11, 16) are wound endlessly over the entire length to be used.
3. Verfahren nach einem der vorgenannten Ansprüche, bei dem der Druckrohrstrang (48) mittels Verkleben mit tempera¬ turhärtenden Industrieklebern zusammengebaut wird. 3. The method according to any one of the preceding claims, in which the pressure pipe string (48) is assembled by means of gluing with temperature-hardening industrial adhesives.
4. Verfahren nach einem der vorgenannten Ansprüche, bei dem das Innere des Druckrohrstranges (48) zur Erhöhung des¬ sen Stabilität abschnittweise oben dichtend abgeschlos¬ sen und hernach evakuiert wird.4. The method according to any one of the preceding claims, in which the interior of the pressure pipe string (48) to increase its stability in sections is sealed off at the top and is subsequently evacuated.
5. Verfahren nach einem der vorgenannten Ansprüche, bei dem der Zusammenbau des Druckrohrstranges (48) um die Ver¬ sorgungs- (10,11,16), Mess- (17), und Steuerleitungen (18) mittels prozessorgesteuerter Robot-Automaten (50,51) erfolgt.5. The method according to any one of the preceding claims, wherein the assembly of the pressure pipe string (48) around the supply (10, 11, 16), measuring (17) and control lines (18) by means of processor-controlled robotic machines (50 , 51) takes place.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Vortrieb des Druckstranges (48) in bezug auf dessen Richtung gesteuert wird, indem im unteren Bereich des Druckrohrstranges (48) oberhalb des Schmelzbohrgerätes zwischen Bohrlochwand und Druckrohr dampfdruckbetriebene selbstschreitende Seitendruckgeber von Signalen eines Gravitationspendels angesteuert wer¬ den.6. The method according to any one of the preceding claims, characterized in that the propulsion of the pressure line (48) is controlled with respect to its direction by in the lower region of the pressure pipe line (48) above the fusion drill between the borehole wall and the pressure pipe, steam-pressure-operated, self-advancing side pressure transmitters of signals Gravitational pendulums are controlled.
7. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Hochziehen des Druckrohrstran¬ ges (48) zu dessem Abbruch erfolgt, indem der im Bohr¬ loch verbliebene Freiraum zwischen Druckrohrstrang (48) und Bohrloch gänzlich geflutet und der Druckrohrstrang (48) unmittelbar über dem Schmelzbohrgerät so abge¬ sprengt wird, das sich das untere Ende' des Druckrohr- Stranges (48) verschliesst und sich damit das Gewicht des zu hebenden Druckrohrstranges (48) um den Eigenauf¬ trieb, das heisst um das Gewicht des von Druckrohrstrang (48) verdrängten Wassers, vermindert.7. The method according to any one of the preceding claims, characterized in that the pulling up of the Druckrohrstran¬ ges (48) to its termination is carried out by the remaining in the Bohr¬ hole between the pressure pipe string (48) and borehole completely flooded and the pressure pipe string (48) is bursts directly above the fusion drilling device so abge¬ that the lower end 'of the pressure tube Strands (48) closes and thus the weight of the pressure pipe string (48) to be lifted is reduced by self-propulsion, that is to say by the weight of the water displaced by pressure pipe string (48).
8. Vorrichtung zur Ausübung eines der Verfahren nach An¬ spruch 1 bis 6, dadurch gekennzeichnet, dass wenigstens ein Versorgungskarussell (60) vorhanden sind, auf das die Versorgungs- (10,11,16) aufwickelbar sind und wel¬ ches eine drehbar gelagerte und motorisch antreibbare Plattform (62) zur Aufnahme der Wicklungen aufweist, und dass ein mehrstöckiger Installationsturm (40) vorhanden ist, in dem auf dessen Stockwerke (41,-44) verteilt Mit¬ tel (50,51;46,47) zum abschnittweisen Zusammenbau und zum kontinuierlichen Vortrieb des Druckrohrstranges (48) angeordnet sind.8. Device for carrying out one of the methods according to claim 1 to 6, characterized in that at least one supply carousel (60) is present, onto which the supply (10, 11, 16) can be wound and which one is rotatably mounted and motor-driven platform (62) for receiving the windings, and that there is a multi-storey installation tower (40) in which on its floors (41, -44) distributed means (50, 51; 46, 47) for sections Assembly and for the continuous propulsion of the pressure pipe string (48) are arranged.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass im Installationsturm (40) eine hydraulische Druck- und Hebevorrichtung (46,47) vorhanden ist, mittels der in zwei Takten abwechslungsweise der Druckrohrstrang (48) kontinuierlich vortreibbar ist.9. The device according to claim 8, characterized in that in the installation tower (40) there is a hydraulic pressure and lifting device (46, 47) by means of which the pressure pipe string (48) can be continuously driven in alternation in two cycles.
10. Druckrohrstrang zum kontinuierlichen Schmelzbohren für Tiefbohrungen, in dessem Inneren (12-15) die Versor¬ gungs- (10,11,16), Mess- (17), und Steuerleitungen (18) für das Bohrgerät gelagert sind, dadurch gekennzeichnet, dass er wenigstens zwei schalenförmige'Bauelemente (4) einschliesst, die je ein Längssegment eines Rohres bil¬ den, und dass diese Bauelemente Mittel (3,5-7) für den Zusammenbau zu einem aussen glatten, dichten, . zug- und druckkraftschlüssigen Rohr aufweisen.10. Pressure pipe string for continuous fusion drilling for deep drilling, in the interior (12-15) of which the supply (10, 11, 16), measuring (17) and control lines (18) for the drilling device are stored, characterized in that that it has at least two shell-shaped components (4) includes, which each form a longitudinal segment of a tube, and that these components have means (3, 5-7) for assembly to form an externally smooth, dense,. Have traction and compression tube.
11. Druckrohrstrang nach Anspruch 10, dadurch gekennzeich¬ net, dass zur Erhöhung der Stabilität des Druckrohr¬ stranges (48) als weiteres Bauelement wenigstens ein Profil (1) vorhanden ist, das dazu bestimmt ist, im In¬ nern längs des Druckrohrstranges (48) zu verlaufen und das kraftschlüssig mit den anderen Bauelementen (4) ver¬ bindbar ist.11. Pressure pipe string according to claim 10, characterized in that, in order to increase the stability of the pressure pipe string (48) as a further component, at least one profile (1) is provided, which is intended to be inside along the pressure pipe string (48 ) to run and that can be non-positively connected to the other components (4).
12. Druckrohrstrang nach einem der Ansprüche 10 bis 11, da¬ durch gekennzeichnet, dass die Mittel für den Zusammen¬ bau seiner Bauelemente (1,4) zu einem aussen glatten, dichten, zug- und druckkraftschlüssigen Rohr Fügeflächen einschliessen, die mittels temperaturhärtbaren zug- und scherkraftfesten Industrieklebern zusammenklebbar sind.12. Pressure pipe string according to one of claims 10 to 11, characterized in that the means for the assembly of its components (1,4) to an outer smooth, tight, tensile and compressive tube include joining surfaces which by means of temperature-hardenable tension - and shear-resistant industrial adhesives can be glued together.
13. Druckrohrstrang nach einem der Ansprüche 10 bis 12, da¬ durch gekennzeichnet, dass auf der Innenseite des Druck¬ rohrstranges Isolierhalterungen (9) vorhanden sind, die dazu bestimmt sind, die ununterbrochenen Leitungen (10,11,16,17,18) in den inneren Freiräumen (12-15) des Druckrohrstranges (48) mittels Reibungshaftung zu tra¬ gen. 13. Pressure pipe string according to one of claims 10 to 12, characterized in that insulating brackets (9) are provided on the inside of the pressure pipe string, which are intended for the uninterrupted lines (10, 11, 16, 17, 18). in the inner free spaces (12-15) of the pressure pipe string (48) by friction.
14. Druckrohrstrang nach einem der Ansprüche 10 bis 13, da¬ durch gekennzeichnet, dass die Bauteile (1,4) von zwei Abschnitten endseitig je mittels eines Stabilise- rungsrings (34,35) und einer Sicherungsmanschette (36,37) verklebt und/oder verschraubt sind. 14. Pressure pipe string according to one of claims 10 to 13, characterized in that the components (1, 4) are glued to the ends of two sections each by means of a stabilizing ring (34, 35) and a securing collar (36, 37) and / or screwed.
EP90906112A 1989-05-03 1990-05-03 High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it Expired - Lifetime EP0426788B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3914617 1989-05-03
DE3914617A DE3914617A1 (en) 1989-05-03 1989-05-03 DEVICES AND METHODS FOR THE WARRANTY OF CONTINUOUSLY PROCESSING MELT DRILLING PROCESSES FOR DEEP HOLES
PCT/CH1990/000123 WO1990013729A1 (en) 1989-05-03 1990-05-03 High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it

Publications (2)

Publication Number Publication Date
EP0426788A1 true EP0426788A1 (en) 1991-05-15
EP0426788B1 EP0426788B1 (en) 1996-06-26

Family

ID=6380012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90906112A Expired - Lifetime EP0426788B1 (en) 1989-05-03 1990-05-03 High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it

Country Status (12)

Country Link
US (1) US5148874A (en)
EP (1) EP0426788B1 (en)
JP (1) JPH04502044A (en)
KR (1) KR910005457B1 (en)
AT (1) ATE139822T1 (en)
AU (1) AU648504B2 (en)
BR (1) BR9006753A (en)
CA (1) CA2033068A1 (en)
DE (2) DE3914617A1 (en)
FI (1) FI95617C (en)
HU (1) HU205787B (en)
WO (1) WO1990013729A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168940A (en) * 1987-01-22 1992-12-08 Technologie Transfer Est. Profile melting-drill process and device
US6870128B2 (en) 2002-06-10 2005-03-22 Japan Drilling Co., Ltd. Laser boring method and system
DE102006013836A1 (en) * 2006-03-24 2007-09-27 Werner Foppe Creating final geological repository in base region of super-deep bore shaft by magnetically glided, directional melt drilling for disposing highly radioactive waste materials, comprises subcritically disposing the materials into the shaft
DE102008049943A1 (en) * 2008-10-02 2010-04-08 Werner Foppe Method and device for melt drilling
KR101437133B1 (en) * 2010-06-25 2014-09-02 현대중공업 주식회사 Permanent Magnet Actuator for Magnetic Contactor
EP2635760A4 (en) * 2010-11-04 2017-05-10 Norhard Geo AS Drilling device for use especially during directional drilling for recovery of geothermal energy
SK500062013A3 (en) 2013-03-05 2014-10-03 Ga Drilling, A. S. Electric arc generating, that affects on material (directly, planar, thermally, mechanicaly) and device for generating an electric arc
CN107313749A (en) * 2017-07-12 2017-11-03 张发旺 3D printing gas ions intelligence Moho well drilling completion method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB733628A (en) * 1952-05-22 1955-07-13 Nat Res Dev Improvements in or relating to articulated rods
US3193918A (en) * 1962-01-08 1965-07-13 Russell C Heldenbrand Method of fabricating drill pipe
US3467206A (en) * 1967-07-07 1969-09-16 Gulf Research Development Co Plasma drilling
US3476194A (en) * 1968-04-29 1969-11-04 Browning Eng Corp Flame jet drilling
US3690136A (en) * 1970-10-27 1972-09-12 Bowen Tools Inc Well tubing guide and straightener apparatus
US3791697A (en) * 1971-05-12 1974-02-12 Z Hokao Method and apparatus for flame jet cutting
FR2151467A5 (en) * 1971-08-27 1973-04-20 Inst Francais Du Petrole
US3841407A (en) * 1973-01-02 1974-10-15 J Bozeman Coil tubing unit
DE2554101C2 (en) * 1975-12-02 1986-01-23 Werner 5130 Geilenkirchen Foppe Fusible drill
US4099584A (en) * 1976-06-10 1978-07-11 Pei, Inc. Flame jet tool for drilling to great depths
GB1597951A (en) * 1976-12-20 1981-09-16 Sabol K Bendalble hose apparatus for effecting lateral channelling in coal or oil shale beds
US4193461A (en) * 1978-02-13 1980-03-18 Intrusion-Prepakt, Inc. Means and method for forming and enlarging holes in soil
US4523644A (en) * 1978-08-14 1985-06-18 Dismukes Newton B Thermal oil recovery method
FR2483509A1 (en) * 1980-05-28 1981-12-04 Remlinger Francois Longitudinally expandable flexible hose - for thermal drilling of coal seams by jet of oxygen and steam of subterranean gasification of coal
US4585066A (en) * 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
DE3701676A1 (en) * 1987-01-22 1988-08-04 Werner Foppe PROFILE MELT DRILLING PROCESS
SE456431B (en) * 1987-02-06 1988-10-03 Bo Andreasson PALNINGSMETOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9013729A1 *

Also Published As

Publication number Publication date
AU648504B2 (en) 1994-04-28
HUT58119A (en) 1992-01-28
KR910005457B1 (en) 1991-07-29
CA2033068A1 (en) 1990-11-04
WO1990013729A1 (en) 1990-11-15
EP0426788B1 (en) 1996-06-26
DE3914617A1 (en) 1990-11-08
US5148874A (en) 1992-09-22
BR9006753A (en) 1991-08-06
FI906397A0 (en) 1990-12-27
KR920701605A (en) 1992-08-12
DE59010390D1 (en) 1996-08-01
AU5442390A (en) 1990-11-29
FI95617B (en) 1995-11-15
ATE139822T1 (en) 1996-07-15
JPH04502044A (en) 1992-04-09
HU205787B (en) 1992-06-29
FI95617C (en) 1996-02-26
HU903468D0 (en) 1991-12-30

Similar Documents

Publication Publication Date Title
EP2013438B1 (en) Method and devices for trenchless pipeline laying
DE2552095C2 (en) Apparatus and method for letting in and pulling up pipes in boreholes or out of boreholes
DE102005021216A1 (en) Methods and devices for trenchless laying of pipelines
WO2005073495A1 (en) Device for the production of deep drilling in geological structures
DE102012203342A1 (en) LOCAL PRODUCTION OF A COMPOSITE PIPELINE
EP0426788B1 (en) High-pressure pipe string for continuous fusion drilling of deep wells, process and device for manufacturing, propelling and dismantling it
DE2211247B2 (en) PROCEDURE FOR INSTALLING AN OVERHEAD LINE FOR RAILWAYS AND DEVICE FOR CARRYING OUT THE PROCEDURE
DE102010006824B3 (en) Method for trenchless laying of pipelines
EP3933241A1 (en) Method for laying piping
DE112012002117T5 (en) Pipe guiding device, pipe slide, roller block and method for laying a pipe in a substrate
EP2047064B1 (en) Device for installing a seal in a tunnel
EP2085567A1 (en) Method for laying piping without digging
DE102012012139B4 (en) Apparatus and method for bending pipes for pipelines
WO2015197828A1 (en) Method and device for creating a borehole
DE19511732C2 (en) Procedure for laying pipes in the ground between inspection shafts
DE3729560A1 (en) METHOD AND DEVICE FOR PRODUCING A PIPELINE IN A HOLE DESIGNED IN THE GROUND
EP3431702B1 (en) Method and device for trenchless laying of a cable or pipe in the ground
DE19929893C2 (en) Process for trenchless laying of pipes and cables
WO2006063562A1 (en) Pump arrangement for transporting a liquid from a borehole
AT505667B1 (en) DEVICE AND METHOD FOR PULLING PIPES INTO EXISTING ALTROHUMS
EP4013949A1 (en) Underground drilling rig and method for erecting same
DE1552131A1 (en) Machine for the production of wire reinforcement cages
DE3911469A1 (en) Drilling installation
EP2072880A2 (en) Method and device for drawing pipes into existing old pipes
DE3825811A1 (en) Method and apparatus for the gradual, automatic driving of a pipe section through a through-bore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19910502

17Q First examination report despatched

Effective date: 19921221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPISA AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960626

Ref country code: DK

Effective date: 19960626

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960626

REF Corresponds to:

Ref document number: 139822

Country of ref document: AT

Date of ref document: 19960715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59010390

Country of ref document: DE

Date of ref document: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960926

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER & PARTNER AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960926

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed

Free format text: CORRECTIONS

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980428

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980429

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980512

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980514

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980602

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980609

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990503

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: COMPISA A.G.

Effective date: 19990531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST