EP0418965B1 - Kathodenstrahlröhre mit einer Photoablenkeinheit - Google Patents

Kathodenstrahlröhre mit einer Photoablenkeinheit Download PDF

Info

Publication number
EP0418965B1
EP0418965B1 EP90202454A EP90202454A EP0418965B1 EP 0418965 B1 EP0418965 B1 EP 0418965B1 EP 90202454 A EP90202454 A EP 90202454A EP 90202454 A EP90202454 A EP 90202454A EP 0418965 B1 EP0418965 B1 EP 0418965B1
Authority
EP
European Patent Office
Prior art keywords
electrode
tube
electron beam
brought
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90202454A
Other languages
English (en)
French (fr)
Other versions
EP0418965A1 (de
Inventor
Rémy Société Civile S.P.I.D. Polaert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0418965A1 publication Critical patent/EP0418965A1/de
Application granted granted Critical
Publication of EP0418965B1 publication Critical patent/EP0418965B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/74Deflecting by electric fields only

Definitions

  • the invention relates to a cathode ray tube, provided with means for electrostatic deflection of the path of an electron beam e f coming from an electron source.
  • a cathode ray tube it is usual to deflect the path of the electron beam using an electrostatic deflection formed by plates joined to different potentials.
  • the tube has a pair of plates for horizontal deflection to which a time base is applied and a pair of plates for vertical deflection to which the electrical signal to be processed is applied.
  • This electrical signal is introduced into the tube using connectors and cables which are connected to a signal generator. These signals can be generated initially in forms that are not electrical. Conversion to an electrical signal is therefore necessary, which in certain situations can be a disadvantage.
  • the electrostatic deflection means comprise at least one electrostatic photodeviator including a photodetector which, under the action of incident light radiation, creates electric charges e p which modify the electric deflection field of the photodeviator.
  • the light radiation is not converted into an electrical signal prior to its introduction into the cathode ray tube and the information it contains is thus better preserved. There is therefore direct intervention of light radiation on the electron beam.
  • the principle of the invention is to send the light radiation to be detected directly to one of the deflection plates through a window placed on the side of the tube.
  • This deflection plate can be coated with a photodetector which depends on the spectral range of the light radiation to be detected.
  • a photodetector receives light radiation, a quantity of charges is created in proportion to the intensity of the light radiation. If a positive electrode is placed nearby, these charges will transit and develop a positive potential on the deflection plate. This is equivalent to placing a photodetector inside the cathode ray tube.
  • the deflection plates and the photodetector constitute the photodevector.
  • the photodetector can be a photocathode which, under the action of incident light radiation, creates charges under vacuum, or a photoelectric element such as a photodiode, which, under the action of incident light radiation, creates charges in the material of the photoelectric element. This removes connecting cables, connectors and by-passes between the photodetector and the deflection plate of the cathode ray tube. This results in great freedom in the choice of the load impedance Z.
  • the photodevector can comprise 3 electrodes and for this comprises a first and second extreme electrode between which a central electrode is interposed, the central electrode separating on one side a first space through which the electron beam e f passes and on the other side a second space where the photodetector is located.
  • the photocathode is deposited on the most negative electrode of the electrodes delimiting the second space, the electric charges e p moving from the photocathode to the positive electrode and the electron beam e f crossing the first space in a substantially perpendicular direction.
  • the central electrode is, as the case may be, brought to an intermediate potential higher or lower than the potentials of the first and second extreme electrodes.
  • the photodetector is a photodiode
  • this can consist of a piece of silicon placed between the extreme positive electrode and the central electrode, the electron beam e f passing through the space delimited by the central electrode and l '' extreme negative electrode.
  • the photodetector is a photocathode
  • one way to reduce the capacitance between the photocathode and the deflection electrodes is to remove one of the electrodes.
  • the photodevector is with 2 electrodes, joined respectively to a positive and negative potential, the photocathode being deposited on the face of the negative electrode directed towards the positive electrode, the negative electrode being joined to the negative potential GND by a impedance Z, the electric charges e p moving from the photocathode to the positive electrode and the electron beam crossing the same interelectrode space in a substantially perpendicular direction.
  • the light radiation must reach the photodetector to create the electric charges e p .
  • It can be a transparent support, such as a metallized glass, for receiving the photocathode.
  • the electrode facing the photocathode may be a tight mesh grid.
  • the piece of silicon can be covered with a transparent metal oxide.
  • the photodevector When the photodevector has 2 electrodes with a single space for the electron beam e f and the electric charges generated e p , there is at rest a permanent deviation which it is normally necessary to compensate. This deflection at rest of the path of the electron beam e f is then compensated by means of corrections, for example correcting coils or an electrostatic deflector.
  • the various embodiments which have just been described relate to a photodevector whose basic structure comprises three electrodes or two electrodes. By electrode you must hear a plate or an element of appropriate shape which deflects the beam.
  • the fact that the photodetector is incorporated into the deflection means to form a photodevector makes it possible to increase the speed of response to a rapid light signal. However, it is still possible to increase this speed of response by producing a distributed photodevector which comprises several photodetectors arranged along the path of the electron beam e f , the light radiation being successively deflected from a photocathode or from a photodiode to the next one using reflectors.
  • the photodeviator or the distributed photodeviator can be placed inside a single enclosure, in which a vacuum has been created and which contains all the elements of a cathode ray tube. But in the case of an embodiment with 3 electrodes, to facilitate industrial production, it is possible to isolate the enclosure containing the photodeviator from the enclosure containing the other elements of the cathode ray tube. Thus when it is a photocathode, it is possible to independently carry out the heat treatments which are necessary for the formation of the photocathode on the one hand and of the cathode of the electron gun (source of electrons) of on the other hand so as not to damage them mutually. After mounting, these two enclosures can remain non-communicating but become mechanically integral after their adapted arrangement.
  • Figure 1 shows a cathode ray tube according to the known art. It comprises a vacuum chamber 10 in which an electron gun 11 emits an electron beam e f which is deflected (beam 14) by vertical deflection plates 12 and horizontal deflection plates 13.
  • the deflection plates can be formed by helical lines according to the prior art to increase the speed of deflection of the beam.
  • the rapid electrical signals to be analyzed are introduced by electrical connectors which are not shown.
  • At least one of the deflection means is replaced by a photodeviator.
  • FIG. 2A represents a photodeviator with 3 electrodes comprising a first extreme electrode 20, a second extreme electrode 21 and a central electrode 22.
  • the electron beam e f passes in the space between the electrodes 21 and 22.
  • the first extreme electrode 20 is brought to a positive potential HT
  • the second extreme electrode 21 is brought to a negative potential GND
  • the central electrode 22 is brought to an intermediate potential.
  • a photocathode 24 is deposited on the side of electrode 20.
  • the central electrode is connected to the negative potential GND by a charge impedance Z.
  • the photocathode emits electrons which are captured by the first extreme electrode 20.
  • the potential of the central electrode 22 varies and the electric deflection field between the electrodes 21 and 22 also varies, which makes it possible to deflect the electron beam e f .
  • FIG. 2B shows another arrangement of the elements of a photodeviator with 3 electrodes.
  • the first extreme electrode 20 is brought to a negative potential GND
  • the second extreme electrode 21 is brought to a positive potential HT
  • the central electrode 22 is brought to an intermediate potential, being connected to the positive potential HT by a load impedance Z.
  • the electron beam e f passes between the electrodes 21 and 22.
  • the photocathode is deposited on the negative electrode 20 opposite the central electrode 22 which is at a more positive potential. The same mechanism as before occurs to deflect the beam.
  • the central electrode can be brought to a potential lower or higher than the potentials of the first and second extreme electrodes, with the photocathode deposited on the most negative electrode of the electrodes 20 and 22.
  • FIG. 4A represents the electrical diagram of the principle of a photodeviator provided with a photodiode.
  • the photodiode 40 is connected on the one hand to a positive potential V p (lower than the high voltage HT in the case of a photocathode) and on the other hand to the central electrode 22 connected to ground through an impedance Z
  • the electron beam e f passes between the central electrode 22 and the second extreme electrode 21 brought to a negative potential.
  • FIG. 4B represents an embodiment diagram.
  • the photodiode is formed from a piece of silicon 41 placed between the first extreme electrode 20 brought to a positive potential and the central electrode 22. To capture the light radiation 251, 252 at least one of the electrodes must be transparent.
  • FIG. 5A represents an electrical diagram of a distributed photodevector. It comprises a first extreme electrode 20 brought to a positive potential, a second extreme electrode 21 brought to a negative potential and a plurality of central electrodes 221 to 226. Each of these central electrodes carries a photocathode such as 241 for the 221 electrode. Each central electrode is connected to the negative potential by an impedance 2.
  • FIG. 5B represents the optical path followed by the light radiation 50. It begins by striking the first photocathode 241. Part of the radiation is absorbed and generates electrons (electrical charges e p ) which act on the potential of the central electrode 221 according to the mechanisms already exposed. The other part of the radiation is reflected towards the first extreme electrode 20 which in turn sends it back to the second photocathode and so on. The light radiation is thus absorbed after its action on some photocathodes. To keep all the interest in the distributed photodevector it is desirable to distribute the absorption of light radiation between all the photocathodes concerned without favoring the former by adapting their absorption rate.
  • Each central electrode 221- 226 is connected to the negative potential by an impedance Z (see FIG. 5A).
  • the photocathode 24 is in this case deposited on a transparent support 53 which receives beforehand the first extreme semi-transparent electrode 20 brought to a negative potential.
  • the electron beam e f passes between these central electrodes and the second extreme electrode 21 brought to a positive potential.
  • the light radiation passes through the transparent support 53 and the semi-transparent electrode 20, is partially absorbed and is reflected on the photocathode 24, crosses the same elements and is reflected again on a reflector 55.
  • the successive reflection mechanisms are then produce in the same way as before.
  • the optical path can be adapted to the distance d by positioning the reflector 55.
  • FIGS. 6A, 6B represent an exemplary embodiment of a photodevector according to the diagram of FIG. 5B but with lateral reflectors 61, 62.
  • the light radiation 50 arrives in a direction very different from the direction of propagation of the electron beam e f on the first photocathode 241, deposited on the first central electrode 221, is partially absorbed and generates electric charges e p which are picked up by the first extreme electrode 20.
  • the other part of the light radiation is reflected on the lateral reflector 61 which returns the radiation to the second photocathode.
  • the radiation which is not absorbed is thus reflected towards the next photocathode, alternately by one and the other side reflector.
  • FIG. 6B represents a top view of the photodevector of FIG. 6A where the extreme electrodes have been omitted so as not to weigh down the drawing. The same elements are represented with the same references.
  • the central electrodes 221 to 226 constitute independent conductive surfaces each connected by an impedance Z to the negative potential GND.
  • the electrical potential of each central electrode is thus controlled by the electrical charges e p which are created by each photocathode. It is possible to realize different ways this plurality of central conductive electrodes.
  • Figures 7A and 7B show an exemplary embodiment.
  • an insulating support 70 is used on which the central electrodes 221 to 226 are placed individually and consecutively in the direction of propagation of the electron beam e f .
  • Each central electrode passes through the insulating support 70 so that it appears on both sides of the support.
  • the upper face receives the photocathode and the lower face serves to deflect the beam.
  • Each photocathode (for example 241) is connected by an impedance Z (for example 711) to the negative potential GND.
  • the conductive electrodes as well as the Z impedances can be produced by conventional thin film or thick film technologies.
  • the photocathodes are deposited by the usual methods.
  • FIG. 8 represents an exemplary embodiment of a cathode ray tube provided with a photodeviator with 3 electrodes according to the invention. We find the essential elements already described in Figure 1 but one of the deflectors is replaced here by a photodeviator.
  • the cathode ray tube is shown formed of two independent vacuum chambers 10 and 80.
  • the enclosure 80 is formed of an empty air bulb. It contains the first extreme electrode 20 and the central electrode 22 a provided with the photocathode 24. Thus this enclosure 80 can be treated independently for all the processes of formation of the photocathode which otherwise could receive a slight pollution of the other parts of the tube to cathode rays.
  • the enclosure 80 can receive the window which is used to introduce the light radiation therein.
  • the enclosure 10 is provided with the second extreme electrode 21 as well as with another central electrode 22 b which is accessible from the outside. So during assembly, the central electrodes 22 a and 22 b are electrically connected to each other (for example welded) and constitute the single central electrode 22 of the photodevector.
  • the central electrode 22b of the vacuum enclosure 10 can be placed in a re-entrant part of the vacuum enclosure 10 in order to reduce the distance which separates it from the electron beam e f , and therefore the capacities, and facilitate the positioning of the vacuum chamber 80.
  • Such a tube can be used to make an oscilloscope.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Measurement Of Radiation (AREA)

Claims (19)

  1. Kathodenstrahlröhre mit Mitteln zum elektrostatischen Ablenken eines Elektronenbündels ef aus einer Elektronenquelle, dadurch gekennzeichnet, daß die Ablenkmittel zum elektrostatischen Ablenken wenigstens eine elektrostatische Photoablenkeinheit mit einem Photodetektor enthalten, der unter Einwirkung einer einfallenden Lichtstrahlung elektrische Ladungen ep erzeugt, die das elektrische Ablenkfeld der Photoablenkeinheit ändern.
  2. Kathodenstrahlröhre nach Anspruch 1, dadurch gekennzeichnet, daß die Photoablenkeinheit eine erste und eine zweite äußere Elektrode enthält, zwischen denen eine Mittelelektrode eingeschaltet ist, wobei ein erster Raum, den das Elektronenbündel ef durchquert, von der Mittelelektrode und von der zweiten äußeren Elektrode begrenzt wird, und ein zweiter Raum, in dem sich der Photodetektor befindet, von der Mittelelektrode und von der ersten äußeren Elektrode begrenzt wird.
  3. Kathodenstrahlröhre nach Anspruch 2, dadurch gekennzeichnet, daß der Photodetektor eine Photokathode auf der negativsten der den zweiten Raum abgrenzenden Elektroden ist, die elektrischen Ladungen ep von der Photokathode nach der positiven Elektrode gehen und das Elektronenbündel ef den ersten Raum in einer im wesentlichen senkrechten Richtung durchquert.
  4. Kathodenstrahlröhre nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die erste äußere Elektrode ein negatives Potential führt. die zweite äußere Elektrode ein positives Potential führt und die Mittelelektrode ein Zwischenpotential führt.
  5. Kathodenstrahlröhre nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die erste äußere Elektrode ein positives Potential führt. die zweite äußere Elektrode ein negatives Potential führt und die Mittelelektrode ein Zwischenpotential führt.
  6. Kathodenstrahlröhre nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Mittelelektrode ein höheres oder niedrigeres Potential als die Potentiale der ersten und zweiten äußeren Elektroden führt.
  7. Kathodenstrahlröhre nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Mittelelektrode ein niedrigeres Potential führt als die Potentiale der ersten und zweiten äußeren Elektroden.
  8. Kathodenstrahlröhre nach Anspruch 1, dadurch gekennzeichnet, daß die Photoablenkeinheit 2 Elektroden enthält, die ein positives bzw. ein negatives Potential führen, wobei die Photokathode auf der der positiven Elektrode zugewandten Fläche der negativen Elektrode angeordnet ist, die negative Elektrode durch eine Impedanz Z mit dem negativen Potential GND verbunden ist, die elektrischen Ladungen ep sich von der Photokathode nach der positiven Elektrode begeben und das Elektronenbündel denselben Zwischenelektrodenraum in einer im wesentlichen senkrechten Richtung durchquert.
  9. Kathodenstrahlröhre nach Anspruch 8, dadurch gekennzeichnet, daß die Ablenkung des Weges des Elektronenbündels ef im Ruhezustand mittels Korrekturmittel ausgeglichen wird.
  10. Kathodenstrahlröhre nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Photodetektor eine Photodiode ist.
  11. Kathodenstrahlröhre nach Anspruch 10, sofern sie vom Anspruch 2 abhängig ist, dadurch gekennzeichnet, daß die Photodiode aus einem Siliziumstück besteht, das zwischen der äußeren positiven Elektrode und der Mittelelektrode angebracht ist, wobei das Elektronenbündel ef den von der Mittelelektrode und von der äußeren negativen Elektrode abgegrenzten Raum durchquert.
  12. Kathodenstrahlröhre nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Elektronenbündel ef durch die Kombination eines an wenigstens eine der Elektroden angelegten Signals mit einem dem Photodetektor zugeführten optischen Signal abgelenkt wird.
  13. Kathodenstrahlröhre nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß wenigstens eine der Elektroden zum Durchlassen der Lichtstrahlung nach dem Photodetektor transparent ist.
  14. Kathodenstrahlröhre nach Anspruch 13, dadurch gekennzeichnet, daß die transparente Elektrode aus einer engmaschigen Gitter zusammengesetzt ist.
  15. Kathodenstrahlröhre nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß sie mehrere Photoablenkeinheiten enthält, die eine verteilte Photoablenkeinheit auf dem Weg des Elektronenbündels ef bilden, wobei die Lichtstrahlung von einer Photokathode oder einer Photodiode nach der folgenden mit Hilfe von Reflektoren weitergeleitet wird.
  16. Kathodenstrahlröhre nach Anspruch 15, dadurch gekennzeichnet, daß die Abstände, die die Photokathoden oder die Photodioden von den Reflektoren einerseits trennen, und die Abstände, die zwei aufeinanderfolgenden Mittelelektroden voneinander trennen, zum Gewährleisten einer synchronisierten Wirkung auf das Elektronenbündel ef bestimmt werden.
  17. Kathodenstrahlröhre nach einem der Ansprüche 1 bis 7 oder nach einem der Ansprüche 10 bis 16, sofern er von den Ansprüchen 1 bis 7 abhängig ist, dadurch gekennzeichnet, daß sie einen ersten Vakuumraum, der die Photoablenkeinheit enthält, und einen zweiten mit dem ersten verbundenen Vakuumraum enthält, der die anderen Bauelemente der Röhre enthält.
  18. Kathodenstrahlröhre nach Anspruch 17, dadurch gekennzeichnet, daß vor dem Zusammenbau der erste Vakuumraum ein unabhängiges Element darstellt.
  19. Oszillograph, dadurch gekennzeichnet, daß er eine Kathodenstrahlröhre nach einem der Ansprüche 1 bis 18 enthält.
EP90202454A 1989-09-22 1990-09-17 Kathodenstrahlröhre mit einer Photoablenkeinheit Expired - Lifetime EP0418965B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8912474A FR2652447A1 (fr) 1989-09-22 1989-09-22 Tube a rayons cathodiques muni d'un photodeviateur.
FR8912474 1989-09-22

Publications (2)

Publication Number Publication Date
EP0418965A1 EP0418965A1 (de) 1991-03-27
EP0418965B1 true EP0418965B1 (de) 1994-08-24

Family

ID=9385765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202454A Expired - Lifetime EP0418965B1 (de) 1989-09-22 1990-09-17 Kathodenstrahlröhre mit einer Photoablenkeinheit

Country Status (5)

Country Link
US (1) US5157303A (de)
EP (1) EP0418965B1 (de)
JP (1) JPH03156837A (de)
DE (1) DE69011788T2 (de)
FR (1) FR2652447A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576692B1 (de) * 1992-06-22 1996-01-03 Siemens Aktiengesellschaft Bildverstärker mit Bildsensor
JP2005164350A (ja) * 2003-12-02 2005-06-23 Yokogawa Electric Corp 電子ビーム発生装置及びこの装置を用いた光サンプリング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1015514A (fr) * 1947-12-23 1952-10-14 Csf Oscillographe cathodique destiné à mesurer la puissance d'ondes ultra-courtes
US3774236A (en) * 1971-11-29 1973-11-20 Gec Owensboro Image converter utilizing the combination of an electrostatic deflection field and a magnetic focusing field

Also Published As

Publication number Publication date
DE69011788D1 (de) 1994-09-29
JPH03156837A (ja) 1991-07-04
FR2652447A1 (fr) 1991-03-29
DE69011788T2 (de) 1995-03-16
US5157303A (en) 1992-10-20
EP0418965A1 (de) 1991-03-27

Similar Documents

Publication Publication Date Title
EP0742954B1 (de) Detektor für ionisierende strahlung mit mikro-proportionalzählrohren
EP0186225B1 (de) Bilddetektor für eine Kamera mit "Tag-Nacht"-Arbeitsweise
EP0389326A1 (de) Röntgenröhre mit Strahlablenkung und Ablenkplatten
EP0418965B1 (de) Kathodenstrahlröhre mit einer Photoablenkeinheit
EP0046125B1 (de) Strahlungsdetektor
WO2004057675A1 (fr) Matrice de detecteurs multispectraux
EP0165119B1 (de) Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes
EP0368694A1 (de) Verfahren und Vorrichtung zur hochauflösenden Lokalisierung von neutralen Partikeln
EP0044239B1 (de) Bildverstärkerröhre mit Mikrokanälen und solch eine Röhre enthaltende Bildaufnahmeeinheit
EP0340126B1 (de) Parallaxenfreier gasgefüllter Röntgenstrahlen-Detektor
EP0155890B1 (de) Bildwandlerröhre mit Spaltenabtastung
WO2007003723A2 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP0423886A1 (de) Mehrweg-Photovervielfacher mit hoher Zwischensignalauflösung
FR2875331A1 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP0182405B1 (de) Photoelektrische Vorrichtung zum Nachweisen leuchtender Ereignisse
EP0013235A1 (de) Elektronenvervielfachungsvorrichtung mit axialem magnetischem Feld
EP0540093B1 (de) Bildröhre mit elektrostatischer Verschlussvorrichtung und Bildaufnahmeanordnung
EP0522114B1 (de) Sendeeinrichtung für wellenausbreitungssignale und deren anwendungen zur verstärkung solcher signale
EP0269472B1 (de) Bildaufnahmeröhre mit einer polarisierten Lichtquelle
FR2955427A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit et a structure simplifiee
CH191362A (fr) Analyseur électronique pour émetteur de télévision.
EP0056556A1 (de) Speichernde Aufnahmeröhre
WO2004112080A2 (fr) Tube photomultiplicateur a plusieurs voies a encombrement reduit
BE823576A (fr) Dispositif de representation de signaux video comportant une modulation de la vitesse de balayage
BE430125A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19910923

17Q First examination report despatched

Effective date: 19931102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940824

REF Corresponds to:

Ref document number: 69011788

Country of ref document: DE

Date of ref document: 19940929

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980901

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981123

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990917

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST