EP0412398A1 - Dug volume measure according to the cutting profile of a bucket wheel excavator or the like - Google Patents

Dug volume measure according to the cutting profile of a bucket wheel excavator or the like Download PDF

Info

Publication number
EP0412398A1
EP0412398A1 EP90114611A EP90114611A EP0412398A1 EP 0412398 A1 EP0412398 A1 EP 0412398A1 EP 90114611 A EP90114611 A EP 90114611A EP 90114611 A EP90114611 A EP 90114611A EP 0412398 A1 EP0412398 A1 EP 0412398A1
Authority
EP
European Patent Office
Prior art keywords
delivery volume
measurement according
laser
profile
volume measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90114611A
Other languages
German (de)
French (fr)
Other versions
EP0412398B1 (en
Inventor
Edmund Heimes
Hans-Jörg Nüsslin
Johann Hipp
Franz-Josef Hartlief
Franz-Arno Fassbender
Ralf Eckoldt
Dieter Dr. Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Siemens AG
Original Assignee
Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Rheinbraun AG
Rheinische Braunkohlenwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan, Rheinbraun AG, Rheinische Braunkohlenwerke AG, Siemens AG filed Critical Ibeo Ingenieurbuero fur Elektronik und Optik J Hipp and G Brohan
Publication of EP0412398A1 publication Critical patent/EP0412398A1/en
Application granted granted Critical
Publication of EP0412398B1 publication Critical patent/EP0412398B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the invention relates to the measurement of the delivery volume from the cutting contour of a bucket wheel excavator or other surface mining device with the aid of the contactlessly measured geometry of a mining site.
  • a direct measurement of the conveyed material volume on the paddle wheel is not known and does not appear to be solvable with today's technical means.
  • methods are known for indirectly concluding the volume of the chip milled off by the bucket wheel by measuring geometric parameters of the excavator and calculating the volume conveyed therefrom. This calculation includes, among other things, the onward movement carried out by the excavator after each swiveling operation, which is used as a measure of the thickness of the chip.
  • the excavator's further travel is measured, for example, by means of displacement sensors on the excavator undercarriages.
  • this measured value is very often subject to considerable errors, due to mechanical inaccuracies and contamination problems.
  • a volume flow measurement of bulk materials on belt conveyors in a variety of configurations is known. These are mostly about measurements with distance measuring devices with which measurements are taken at one or more points for contour determination on the surface of the bulk material. From the difference between the measurements on the empty belt and the filled belt, the area of the bulk material and from the product of the area and speed of the belt the volume flow in the loosened form in which it is present on the belt can be calculated with good accuracy. Since the conveyed material is transferred from the bucket wheel to a conveyor belt, the volume flow measurement of the bulk material on the conveyor belt can only be used to infer the conveyed volume of the excavated material with the great inaccuracy of material-dependent loosening factors.
  • DE-Al-34 11 540 shows measuring devices of the type described above, by means of which the conveying volume of the mining material can be deduced. Points of the contour of the free surface of the conveyed material are transversely to the conveying direction by means of continuous, non-contact distance measurements with the aid of transmission / Receiving devices scanned, which is followed by a computer.
  • the measuring of the filling height of the conveyor belt is achieved in that laser range finders are used as the transmitting / receiving device, which operate according to the pulse transit time measuring principle and where at least two individual lasers give their measurement results to a computer for determining the conveying volume on the belt .
  • the measurement result is relatively imprecise, since the measured individual points do not allow any information about the exact course of the surface contour.
  • the determination of the chip volume should be insensitive to different temperatures, to whirled up dust and the rest of the environment be influences. The results obtained should be so precise that it is possible to regulate the dismantling process and create a measurement.
  • the object is achieved in that the geometry of the extraction site is determined by at least one laser beam, generated in a position-oriented measuring laser carried by the surface mining device, over the running times of the laser light, the running times being evaluated in a computer.
  • the angular position of the measuring beam is given to the computer during the measuring process.
  • the positional orientation of the measuring laser can take place both mechanically and virtually in the computer using a sensor.
  • the control of the paddle wheel movement can be optimized in this way.
  • the use of a measuring laser in particular in the form of a laser scanner, has the advantage in this application that the area to be machined is recorded in a line.
  • the line-by-line or wavy-line scanning not only makes it possible to record individual data, but also the configuration of the dismantling front.
  • the use of a laser preferably a solid-state laser, which preferably works with a wavelength of 905 nanometers, a pulse rate of 3.6 kHz and a pulse duration of approximately 10 nanoseconds, is particularly advantageous for the scanning, since its very little diverging light
  • a high energy density is achieved by means of a low-cost optics, as a result of which errors caused by excessive scattering, insufficient reflection, etc. are avoided or reduced.
  • the laser scanners 8, 9 are mounted next to the paddle wheel 6 with the blades 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downwards.
  • the profile is determined from distance / angle value pairs.
  • the profile 1, 2 of the side on which the paddle wheel 6 is moving is primarily used for the control. If the movement is even in one direction and there is no difference measurement, the second profile scanner can also be omitted.
  • the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.
  • the rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away.
  • the cross-sectional area 14 of the respective chip is calculated from the rear contour 12 and the measured profile 13.
  • the overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference surface.
  • the bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator. The faster the swivel movement, the greater the volume of the chip.
  • the volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away.
  • the necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cutting surface and oversize are carried out in a computer which is the laser scanner is connected downstream.
  • This calculator can be in the laser scanner be integrated.
  • For the calculation essentially the swivel radius, the swivel speed, the stroke angle ( ⁇ ) of the bucket wheel boom, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are necessary. This information can easily be saved in the computer of the laser scanner.
  • the computer is advantageously equipped with a writable permanent memory.
  • the stroke angle ( ⁇ ) of the bucket wheel boom can be used directly in the laser scanner 8, 9 or in the downstream computer.
  • the length of the bucket wheel boom is a known parameter.
  • the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer.
  • a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable.
  • the spatial profile has to be oriented by reference to the solder 15 in space for the specification of a cut surface.
  • the profile part on the level 3 can be approximated by a straight line.
  • the slope of this straight line can be calculated.
  • the height of the paddle wheel 6 above the level can also be determined from the profile in which the projection onto the vertical is calculated from the oblique distance to the approximated straight line in the level.
  • ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 relative to the position of the excavator 16 can thus be continuously avoided. If 6 TARGET values are specified for the location of the paddle wheel, a control variable for controlling the paddle wheel 6 can be derived from the difference between the ACTUAL values and TARGET values on any surface shapes.
  • the distance of the boom 7 from the material present can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.
  • the above invention which solves a basic problem in the work of bucket-wheel excavators that was previously considered to be unsolvable, can preferably be carried out with laser scanners.
  • other radiation sources comparable to a laser can also be used, e.g. electromagnetic radiators of very high frequency and comparable beam bundling.
  • other positions of the measuring lasers than those indicated in the drawing are also possible. If there is a lot of dust, e.g. an attachment to the excavator and a contour detection of the mining front at a distance of 10-20 m from the bucket wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Branching, Merging, And Special Transfer Between Conveyors (AREA)
  • Special Conveying (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)
  • Sorting Of Articles (AREA)

Abstract

The invention relates to the measurement of the extracted volume from the cutting profile of a bucket wheel excavator (6) or the like by means of pulse transit-time measurements of the geometry of a working face. The geometry of the working face is determined by at least one laser beam via transit-time measurements of the laser light, which laser beam is produced in a positionally orientated measuring laser (8, 9) carried along by the machine, the transit time being analysed in a computer. <IMAGE>

Description

Die Erfindung betrifft die Fördervolumenmessung aus der Schnitt­kontur eines Schaufelradbaggers oder anderen Tagebaugeräts mit Hilfe der berührungslos gemessenen Geometrie eines Abbauortes.The invention relates to the measurement of the delivery volume from the cutting contour of a bucket wheel excavator or other surface mining device with the aid of the contactlessly measured geometry of a mining site.

Für den Betrieb eines Schaufelradbaggers ist es wesentlich, das geförderte Volumen des abzubauenden Materials zu messen, so daß dieses z.B. als Führungsgröße für die Regelung des Baggers ver­wendet werden kann. So ist es möglich, die Förderleistung des Baggers zu optimieren. Weiterer Einsatzfall ist z.B. die Erstel­lung des Aufmasses für die übergeordnete Betriebssteuerung.For the operation of a bucket wheel excavator, it is essential to measure the volume of the material to be mined, so that it e.g. can be used as a reference variable for controlling the excavator. This makes it possible to optimize the excavator's conveying capacity. Another application is e.g. the creation of the measurement for the higher-level operational control.

Eine direkte Messung des geförderten Materialvolumens am Schau­felrad ist nicht bekannt und erscheint mit den heutigen techni­schen Mitteln auch nicht lösbar. Bekannt sind jedoch Verfahren, durch die Messung von geometrischen Parametern des Baggers in­direkt auf das Volumen des vom Schaufelrad abgefrästen Spans zu schließen und daraus das geförderte Volumen zu berechnen. In diese Berechnung geht unter anderem die nach jedem Schwenkvor­gang vom Bagger durchgeführte Weiterfahrt ein, die als Maß für die Dicke des Spans herangezogen wird. Die Weiterfahrt des Bag­gers wird beispielsweise mittels Wegmeßaufnehmer an den Bagger­fahrwerken gemessen. Dieser Meßwert ist jedoch sehr oft mit erheblichen Fehlern behaftet, bedingt durch mechanische Unge­nauigkeiten und Verschmutzungsprobleme.A direct measurement of the conveyed material volume on the paddle wheel is not known and does not appear to be solvable with today's technical means. However, methods are known for indirectly concluding the volume of the chip milled off by the bucket wheel by measuring geometric parameters of the excavator and calculating the volume conveyed therefrom. This calculation includes, among other things, the onward movement carried out by the excavator after each swiveling operation, which is used as a measure of the thickness of the chip. The excavator's further travel is measured, for example, by means of displacement sensors on the excavator undercarriages. However, this measured value is very often subject to considerable errors, due to mechanical inaccuracies and contamination problems.

Im Gegensatz zu der Messung des geförderten Festmaterialvolumens ist eine Volumenstrommessung bei Schüttgütern auf Bandförderern in vielfältiger Ausgestaltung bekannt. Es handelt sich dabei meist um Messungen mit Entfernungsmeßgeräten, mit denen an einer oder mehreren Stellen zur Konturbestimmung auf die Oberfläche des Schüttgutes gemessen wird. Aus der Differenz zwischen den Messungen auf das leere Band und das gefüllte Band kann die Fläche des Schüttgutes und aus dem Produkt aus Fläche und Ge­schwindigkeit des Bandes der Volumenstrom in der aufgelockerten Form, in der er auf dem Band vorliegt, mit guter Genauigkeit berechnet werden. Da das geförderte Material vom Schaufelrad auf ein Förderband übertragen wird, kann durch die Volumenstrom­messung des Schüttgutes am Förderband nur mit der großen Unge­nauigkeit materialabhängiger Auflockerungsfaktoren auf das ge­förderte Volumen des Abbaumaterials geschlossen werden.In contrast to the measurement of the volume of solid material conveyed, a volume flow measurement of bulk materials on belt conveyors in a variety of configurations is known. These are mostly about measurements with distance measuring devices with which measurements are taken at one or more points for contour determination on the surface of the bulk material. From the difference between the measurements on the empty belt and the filled belt, the area of the bulk material and from the product of the area and speed of the belt the volume flow in the loosened form in which it is present on the belt can be calculated with good accuracy. Since the conveyed material is transferred from the bucket wheel to a conveyor belt, the volume flow measurement of the bulk material on the conveyor belt can only be used to infer the conveyed volume of the excavated material with the great inaccuracy of material-dependent loosening factors.

Meßgeräte der vorbeschriebenen Art, durch die auf das Förder­volumen des Abbaumaterials geschlossen werden kann, zeigt bei­spielsweise die DE-Al-34 11 540. Hier werden Punkte der Kontur der freien Oberfläche des geförderten Gutes quer zur Förder­richtung durch fortlaufende, berührungsfreie Entfernungsmes­sungen mit Hilfe von Sende/Empfangs-Einrichtungen abgetastet, denen ein Rechner nachgeschaltet ist. Bei dieser bekannten Füllquerschnittsermittlung wird das Messen der Füllhöhe des Förderbandes dadurch erzielt, daß als Sende/Empfangs-Einrichtung Laserentfernungsmesser verwendet werden, die nach dem Impuls-­Laufzeitmeßprinzip arbeiten und wobei mindestens zwei Einzel­laser ihre Meßergebnisse auf einen Rechner zur Ermittlung des Fördervolumens auf dem Band geben. Das Meßergebnis ist relativ ungenau, da die gemessenen Einzelpunkte keine Aussage über den genauen Verlauf der Oberflächenkontur ermöglichen.DE-Al-34 11 540, for example, shows measuring devices of the type described above, by means of which the conveying volume of the mining material can be deduced. Points of the contour of the free surface of the conveyed material are transversely to the conveying direction by means of continuous, non-contact distance measurements with the aid of transmission / Receiving devices scanned, which is followed by a computer. In this known filling cross-section determination, the measuring of the filling height of the conveyor belt is achieved in that laser range finders are used as the transmitting / receiving device, which operate according to the pulse transit time measuring principle and where at least two individual lasers give their measurement results to a computer for determining the conveying volume on the belt . The measurement result is relatively imprecise, since the measured individual points do not allow any information about the exact course of the surface contour.

Es ist Aufgabe der Erfindung, eine Fördervolumenmessung anzu­geben, die die Konturen des abzutragenden Materials und daraus abzuleitende Größen wie Spandicke, Spanhöhe, Lage der Schnitt­fläche an der Abbaustelle usw. direkt mißt. Dabei soll die Er­mittlung des Spanvolumens unempfindlich gegen unterschiedliche Temperaturen, gegen aufgewirbelten Staub und die übrigen Umwelt­ einflüsse sein. Die ermittelten Ergebnisse sollen so genau sein, daß eine Regelung des Abbauvorganges und die Erstellung eines Aufmasses möglich ist.It is an object of the invention to provide a delivery volume measurement which directly measures the contours of the material to be removed and the quantities to be derived therefrom, such as chip thickness, chip height, position of the cut surface at the extraction site, etc. The determination of the chip volume should be insensitive to different temperatures, to whirled up dust and the rest of the environment be influences. The results obtained should be so precise that it is possible to regulate the dismantling process and create a measurement.

Die Aufgabe wird dadurch gelöst, daß die Ermittlung der Geome­trie des Abbauortes durch zumindest einen, in einem vom Tage­baugerät mitgeführten, lageorientierten Meßlaser erzeugten, Laserstrahl über Laufzeiten des Laserlichtes erfolgt, wobei die Laufzeiten in einem Rechner ausgewertet werden. Zusätzlich wird während des Meßvorganges die Winkellage des Meßstrahles an den Rechner gegeben. Die Lageorientierung des Meßlasers kann dabei sowohl mechanisch als auch virtuell im Rechner unter Benutzung eines Sensors erfolgen.The object is achieved in that the geometry of the extraction site is determined by at least one laser beam, generated in a position-oriented measuring laser carried by the surface mining device, over the running times of the laser light, the running times being evaluated in a computer. In addition, the angular position of the measuring beam is given to the computer during the measuring process. The positional orientation of the measuring laser can take place both mechanically and virtually in the computer using a sensor.

Die Steuerung der Schaufelradbewegung kann so optimiert werden. Die Verwendung eines Meßlasers, insbesondere in Form eines Laserscanners, hat bei dieser Anwendung den Vorteil, daß eine linienförmige Erfassung des abzuspanenden Gebietes erfolgt. Durch die zeilenweise oder wellenlinienförmige Abtastung werden nicht nur Einzeldaten, sondern die Konfiguration der Abbaufront erfaßbar. Die Verwendung eines Lasers, vorzugsweise eines Fest­körperlasers, der vorzugsweise mit einer Wellenlänge von 905 Nanometer, einer Pulsrate von 3,6 kHz und einer Pulsdauer von ca. 10 Nanosekunden arbeitet, für das Scanning ist dabei besonders vorteilhaft, da durch sein sehr gering divergierendes Licht über eine aufwandsarme Optik eine hohe Energiedichte erreicht wird, wodurch Fehler durch zu starke Streuung, ungenügende Reflektion etc. vermieden oder verkleinert werden.The control of the paddle wheel movement can be optimized in this way. The use of a measuring laser, in particular in the form of a laser scanner, has the advantage in this application that the area to be machined is recorded in a line. The line-by-line or wavy-line scanning not only makes it possible to record individual data, but also the configuration of the dismantling front. The use of a laser, preferably a solid-state laser, which preferably works with a wavelength of 905 nanometers, a pulse rate of 3.6 kHz and a pulse duration of approximately 10 nanoseconds, is particularly advantageous for the scanning, since its very little diverging light A high energy density is achieved by means of a low-cost optics, as a result of which errors caused by excessive scattering, insufficient reflection, etc. are avoided or reduced.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, anhand der Zeichnung und in Verbindung mit den Unteransprüchen. Es zeigen:

  • FIG 1 eine Sicht auf den Abbauort,
  • FIG 2 eine Darstellung der geometrischen Verhältnisse bei einer Spanmessung und
  • FIG 3 eine Darstellung der geometrischen Verhältnisse am Abbauort in vereinfachter Form.
Further advantages and details of the invention result from the following description, with reference to the drawing and in connection with the subclaims. Show it:
  • 1 shows a view of the extraction site,
  • 2 shows a representation of the geometric relationships in a chip measurement and
  • 3 shows a representation of the geometric conditions at the extraction site in a simplified form.

Die FIG 1 zeigt die Ermittlung der Einzelheiten des Abbauortes durch zwei Meßlaser, insbesondere Laserscanner 8, 9, die das Oberflächenprofil auf dem Abbaumaterial 1 und die abgearbei­tete Fläche 3 durch scannen auf den Scanlinien 10, 11 vertikal vermessen. Die Laserscanner 8, 9 sind neben dem Schaufelrad 6 mit den Schaufeln 5 am Schaufelradträger 7 angebracht und ver­messen vornehmlich den nach unten gerichteten Profilteil 2. Das Profil wird aus Entfernung/Winkel-Wertepaaren ermittelt. Es wird in erster Linie das Profil 1, 2 derjenigen Seite für die Rege­lung verwendet, auf die sich das Schaufelrad 6 zubewegt. Bei gleichmäßiger Bewegung in nur eine Richtung und wenn keine Dif­ferenzmessung erfolgt, kann auch auf den zweiten Profilscanner verzichtet werden. Während der Schwenkbewegung dreht sich das Schaufelrad 6 und fräst das Festmaterial 1 um das Oberflächen­maß 4 ab.1 shows the determination of the details of the mining site by two measuring lasers, in particular laser scanners 8, 9, which measure the surface profile on the mining material 1 and the processed area 3 by scanning on the scan lines 10, 11 vertically. The laser scanners 8, 9 are mounted next to the paddle wheel 6 with the blades 5 on the paddle wheel carrier 7 and primarily measure the profile part 2 directed downwards. The profile is determined from distance / angle value pairs. The profile 1, 2 of the side on which the paddle wheel 6 is moving is primarily used for the control. If the movement is even in one direction and there is no difference measurement, the second profile scanner can also be omitted. During the swiveling movement, the paddle wheel 6 rotates and mills off the solid material 1 by the surface dimension 4.

Das hintere Profil 12 (weggefrästes Festmaterial) ist, wie FIG 2 zeigt, durch die Kontur des Schaufelrades 6 vorgegeben, da al­les vorstehende Material zwangsweise weggefräst wird. Aus der hinteren Kontur 12 und dem gemessenen Profil 13 wird die Quer­schnittsfläche 14 des jeweiligen Spans errechnet. Die Überlap­pung des Schaufelrades 6 über das gemessene Profil des Laser­scanners stellt diese Differenzfläche dar. Durch die Schwenkbe­wegung des Baggers fräst sich das Schaufelrad 6 seitlich in das Festmaterial. Das Volumen des Spans ist umso größer, je schneller diese Schwenkbewegung erfolgt. Das von der Spanquerschnittsflä­che 14 überstrichene Volumen pro Zeiteinheit stellt den geför­derten Volumenstrom des momentan weggefrästen Festmaterials dar. Die erforderlichen Rechnungen für Festmaterial, Fördervolumen, Spandicke, Spanhöhe, Lage der Schnittfläche und Aufmaß (separat vermessen), werden in einem Rechner vorgenommen, der dem Laser­scanner nachgeschaltet ist. Dieser Rechner kann im Laserscanner integriert sein. Für die Berechnung ist im wesentlichen der Schwenkradius, die Schwenkgeschwindigkeit, der Hubwinkel (α) des Schaufelradauslegers, die Anbauposition des Laserscanners 8, 9, weitere geometrische Abmessungen des Baggers sowie seine Lage im Raum notwendig. Diese Informationen können im Rechner des Laserscanners leicht gespeichert werden. Vorteilhaft wird der Rechner mit einem beschreibbaren Permanentspeicher ausgerüstet.The rear profile 12 (milled solid material), as shown in FIG. 2, is predetermined by the contour of the paddle wheel 6, since all of the above material is forcibly milled away. The cross-sectional area 14 of the respective chip is calculated from the rear contour 12 and the measured profile 13. The overlap of the bucket wheel 6 over the measured profile of the laser scanner represents this difference surface. The bucket wheel 6 mills laterally into the solid material due to the swiveling movement of the excavator. The faster the swivel movement, the greater the volume of the chip. The volume swept by the chip cross-sectional area 14 represents the conveyed volume flow of the solid material currently milled away. The necessary calculations for solid material, conveying volume, chip thickness, chip height, position of the cutting surface and oversize (measured separately) are carried out in a computer which is the laser scanner is connected downstream. This calculator can be in the laser scanner be integrated. For the calculation, essentially the swivel radius, the swivel speed, the stroke angle (α) of the bucket wheel boom, the mounting position of the laser scanner 8, 9, further geometric dimensions of the excavator and its position in space are necessary. This information can easily be saved in the computer of the laser scanner. The computer is advantageously equipped with a writable permanent memory.

Da der Montageort und die Ausrichtung des Laserscanners 8, 9 relativ zum Bagger 16 bekannt ist, bzw. einmalig bestimmt werden kann, ist der Hubwinkel (α) des Schaufelradauslegers direkt im Laserscanner 8, 9 oder im nachgeschalteten Rechner zu verwerten. Die Länge des Schaufelradauslegers ist ein bekannter Parameter. In Verbindung mit der Schwenkgeschwindigkeit reichen die Infor­mationen aus, um im Laserscanner 8, 9 oder im nachgeschalteten Rechner den Festmaterial-Volumenstrom aus den Profildaten zu berechnen, ohne daß weitere Meßwerte dem Laserscanner 8, 9 bzw. dem nachgeschalteten Rechner zugeleitet werden müssen. Bei einer Schrägstellung des Baggers 16 ist gegebenenfalls eine Korrektur notwendig, die aus einer Lotmessung ermittelt werden kann und als Korrekturgröße dem Rechner aufgegeben wird. Für die Vorgabe einer Schnittfläche ist, wie FIG 2 zeigt, das räumliche Profil durch Bezug auf das Lot 15 im Raum zu orientieren.Since the installation location and the orientation of the laser scanner 8, 9 relative to the excavator 16 are known or can be determined once, the stroke angle (α) of the bucket wheel boom can be used directly in the laser scanner 8, 9 or in the downstream computer. The length of the bucket wheel boom is a known parameter. In connection with the swiveling speed, the information is sufficient to calculate the solid material volume flow from the profile data in the laser scanner 8, 9 or in the downstream computer, without further measured values having to be supplied to the laser scanner 8, 9 or the downstream computer. If the excavator 16 is tilted, a correction may be necessary which can be determined from a plumb measurement and which is given to the computer as a correction variable. As shown in FIG. 2, the spatial profile has to be oriented by reference to the solder 15 in space for the specification of a cut surface.

Der Profilteil auf dem Planum 3 (abgearbeitete Fläche) ist durch eine Gerade approximierbar. Die Steigung dieser Geraden ist be­rechenbar. Die Höhe des Schaufelrades 6 über Planum kann eben­falls aus dem Profil bestimmt werden, in dem aus der Schrägent­fernung auf die approximierte Gerade in Planum die Projektion auf die Vertikale berechnet wird. Aus beiden Größen können IST-­Werte für den Ort des Schaufelrades 6 berechnet werden. Damit ist der Ort des Schaufelrades 6 relativ zum Standpunkt des Baggers 16 kontinuierlich vermeßbar. Gibt man für den Ort des Schaufel­rades 6 SOLL-Werte vor, so kann aus der Differenz der IST-Werte und SOLL-Werte eine Regelgröße zur Steuerung des Schaufelrades 6 auf beliebige Oberflächenformen abgeleitet werden.The profile part on the level 3 (machined surface) can be approximated by a straight line. The slope of this straight line can be calculated. The height of the paddle wheel 6 above the level can also be determined from the profile in which the projection onto the vertical is calculated from the oblique distance to the approximated straight line in the level. ACTUAL values for the location of the impeller 6 can be calculated from both variables. The location of the bucket wheel 6 relative to the position of the excavator 16 can thus be continuously avoided. If 6 TARGET values are specified for the location of the paddle wheel, a control variable for controlling the paddle wheel 6 can be derived from the difference between the ACTUAL values and TARGET values on any surface shapes.

Da sowohl die Lage des Schaufelradauslegers 7 als auch die Ober­flächenkontur des Planums 3 und der Fräsfläche bekannt sind, kann auch der Abstand des Auslegers 7 zum anstehenden Material berechnet werden. Die Unterschreitung eines bestimmten Abstandes kann sehr vorteilhaft dazu benutzt werden, einen Kollisionsalarm auszulösen.Since both the position of the bucket wheel boom 7 as well as the surface contour of the formation 3 and the milling surface are known, the distance of the boom 7 from the material present can also be calculated. Falling short of a certain distance can be used very advantageously to trigger a collision alarm.

Die vorstehende Erfindung, die ein bisher als unlösbar angese­henes Grundproblem bei der Arbeit von Schaufelradbaggern löst, ist bevorzugt mit Laserscannern durchführbar. Es versteht sich jedoch für den Fachmann von selbst, daß auch andere, einem Laser vergleichbare Strahlungsquellen eingesetzt werden können, z.B. elektromagnetische Strahler sehr hoher Frequenz und vergleich­barer Strahlbündelung. Desgleichen sind auch andere, als in der Zeichnung angegebene, Positionen der Meßlaser möglich. Bei großer Staubentwicklung empfiehlt sich z.B. eine Anbringung am Bagger und eine Konturerfassung der Abbaufront in einem Abstand von 10-20 m vom Schaufelrad.The above invention, which solves a basic problem in the work of bucket-wheel excavators that was previously considered to be unsolvable, can preferably be carried out with laser scanners. However, it goes without saying for the person skilled in the art that other radiation sources comparable to a laser can also be used, e.g. electromagnetic radiators of very high frequency and comparable beam bundling. Likewise, other positions of the measuring lasers than those indicated in the drawing are also possible. If there is a lot of dust, e.g. an attachment to the excavator and a contour detection of the mining front at a distance of 10-20 m from the bucket wheel.

Claims (11)

1. Fördervolumenmessung aus der Schnittkontur eines Schaufel­radbaggers oder von anderen Tagebaugeräten mit Hilfe der berüh­rungslos gemessenen Geometrie eines Abbauortes, dadurch gekennzeichnet, daß die, Ermittlung der Geometrie des Abbauortes durch zumindest einen, in einem vom Tagebaugerät mitgeführten, lageorientierten Meß­laser erzeugten, Laserstrahl über Laufzeiten des Laserlichtes erfolgt, wobei die Laufzeiten in einem Rechner ausgewertet werden.1. Delivery volume measurement from the cutting contour of a bucket wheel excavator or from other open-cast mining equipment with the aid of the contactlessly measured geometry of a mining site, characterized in that the determination of the geometry of the mining site by at least one laser beam generated in a position-oriented measuring laser carried by the open-mining machine over running times of the Laser light occurs, the runtimes are evaluated in a computer. 2. Fördervolumenmessung nach Anspruch 1, dadurch gekennzeichnet, daß der Laserstrahl das räum­liche Oberflächenprofil des neben dem Schaufelrad anstehenden Festmaterials durch fortlaufende Messung von Entfernung und Winkel auf die Materialoberfläche mißt, diese Profildaten dem Rechner zuführt und daß in diesem Rechner aus dem Profil, den geometrischen Abmessungen des Schaufelrades sowie der Anbau­position des Meßlasers, die Querschnittsfläche des vom Schau­felrad abgefrästen Spans berechnet wird.2. Delivery volume measurement according to claim 1, characterized in that the laser beam measures the spatial surface profile of the solid material next to the paddle wheel by continuous measurement of distance and angle on the material surface, feeds this profile data to the computer and that in this computer from the profile, the geometric Dimensions of the impeller and the mounting position of the measuring laser, the cross-sectional area of the chip milled off by the impeller is calculated. 3. Fördervolumenmessung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß aus der Differenz des Ober­flächenprofils und der äußeren Kontur des Schaufelrades sowie dem Hubwinkel und der Drehgeschwindigkeit des Schaufelradarmes der Volumenstrom des geförderten Festmaterials berechnet wird.3. Delivery volume measurement according to claim 1 or 2, characterized in that the volume flow of the conveyed solid material is calculated from the difference in the surface profile and the outer contour of the paddle wheel and the stroke angle and the rotational speed of the paddle wheel arm. 4. Fördervolumenmessung nach Anspruch 1,2 oder 3, da­durch gekennzeichnet, daß die Geometrie des Abbauortes aus einer Meßposition im Schaufelradbereich ermittelt wird.4. Delivery volume measurement according to claim 1, 2 or 3, characterized in that the geometry of the extraction site is determined from a measuring position in the paddle wheel area. 5. Fördervolumenmessung nach Anspruch 1,2,3 oder 4, da­durch gekennzeichnet, daß durch konti­nuierliche Messung das Profil beidseitig neben dem Schaufel­rad ermittelt und aus der Profildifferenz und der Schwenk­geschwindigkeit ein Momentenwert des Fördervolumens ermittelt wird.5. Delivery volume measurement according to claim 1, 2, 3 or 4, characterized in that the profile is determined on both sides next to the impeller by continuous measurement and a torque value of the delivery volume is determined from the profile difference and the swiveling speed. 6. Fördervolumenmessung nach Anspruch 1,2,3,4 oder 5, da ­durch gekennzeichnet, daß der Meßlaser und der Rechner mit einem beschreibbaren Permanentspeicher verbunden ist, in dem Parameter über den Bagger und über die Anbauposition des Laserscanners und Justagewerte gespeichert werden.6. Delivery volume measurement according to claim 1, 2, 3, 4 or 5, characterized in that the measuring laser and the computer are connected to a writable permanent memory in which parameters about the excavator and the mounting position of the laser scanner and adjustment values are stored. 7. Fördervolumenmessung nach Anspruch 1,2,3,4,5 oder 6, da ­durch gekennzeichnet, daß der Meßlaser in den Winkelbereichen, die nicht zur Profilauswertung heran­gezogen werden, auf ein geräteinternes Ziel mißt und die dabei gemessene, bekannte Entfernung als Kontrollwert für die Funk­tionsfähigkeit des Gerätes und als Eichwert verwendet wird.7. Delivery volume measurement according to claim 1, 2, 3, 4, 5 or 6, characterized in that the measuring laser in the angular ranges, which are not used for profile evaluation, measures to an internal device target and the known distance measured as a control value for this the functionality of the device and is used as a calibration value. 8. Fördervolumenmessung nach Anspruch 1,2,3,4,5,6 oder 7, dadurch gekennzeichnet, daß für die Impulslaufzeitmessung zunächst ein Startpuls generiert wird, dessen reflektierter Anteil über Verzögerungsleitungen, vor­zugsweise in Spulenform, laufzeitverlängert und für eine Start-Stop-Messung verwendet wird.8. Delivery volume measurement according to claim 1, 2, 3, 4, 5, 6 or 7, characterized in that a start pulse is first generated for the pulse transit time measurement, the reflected portion of which is extended by delay lines, preferably in the form of a coil, and for a start-stop Measurement is used. 9. Fördervolumenmessung nach einem oder mehreren der vorher­gehenden Ansprüche, dadurch gekennzeich­net, daß der Meßlaser mit Impulsdauern von 1-10 Nano­sekunden und einer Impulsrate im Kilohertzbereich, vorzugs­weise im 3-30 kHz-Bereich, arbeitet.9. Delivery volume measurement according to one or more of the preceding claims, characterized in that the measuring laser operates with pulse durations of 1-10 nanoseconds and a pulse rate in the kilohertz range, preferably in the 3-30 kHz range. 10. Fördervolumenmessung nach einem oder mehreren der vorher­gehenden Ansprüche, dadurch gekennzeich­net, daß zur Fördervolumenmessung eines Tagebauförder­gerätes ein vom Gerät mitgeführter Laserscanner verwendet wird.10. Delivery volume measurement according to one or more of the preceding claims, characterized in that a laser scanner carried by the device is used to measure the delivery volume of an open-cast mine. 11. Fördervolumenmessung nach Anspruch 10, dadurch gekennzeichnet, daß das gemessene, geförderte Volumen eines Tagebaufördergerätes zur Bilanzierung des Tage­baubetriebes verwendet wird.11. Delivery volume measurement according to claim 10, characterized in that the measured, delivered volume of an open-cast conveyor is used to balance the open-cast operation.
EP90114611A 1989-08-08 1990-07-30 Dug volume measure according to the cutting profile of a bucket wheel excavator or the like Expired - Lifetime EP0412398B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3926223 1989-08-08
DE3926223 1989-08-08

Publications (2)

Publication Number Publication Date
EP0412398A1 true EP0412398A1 (en) 1991-02-13
EP0412398B1 EP0412398B1 (en) 1994-09-21

Family

ID=6386750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114611A Expired - Lifetime EP0412398B1 (en) 1989-08-08 1990-07-30 Dug volume measure according to the cutting profile of a bucket wheel excavator or the like

Country Status (4)

Country Link
EP (1) EP0412398B1 (en)
AT (1) ATE111995T1 (en)
AU (2) AU634801B2 (en)
DE (1) DE59007214D1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133392C1 (en) * 1991-10-09 1992-12-24 Rheinbraun Ag, 5000 Koeln, De Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip
AU726388B2 (en) * 1996-06-11 2000-11-09 Nec Corporation Gain controller
GB2350346A (en) * 1999-05-24 2000-11-29 Univ Carnegie Mellon Method for estimating volume of material swept into the bucket of a digging machine
CN101778998B (en) * 2008-08-09 2012-11-21 艾柯夫山体构造技术有限公司 Method and device for monitoring a cutting extraction machine
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
WO2017152916A1 (en) * 2016-03-09 2017-09-14 Leica Geosystems Technology A/S Measuring equipment for determining the result of earthmoving work
USRE48491E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition lidar system
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US11933967B2 (en) 2019-08-22 2024-03-19 Red Creamery, LLC Distally actuated scanning mirror
EP1452087B2 (en) 2003-02-14 2024-05-29 Trioliet Mullos B.V. Method and apparatus for removing a quantity of fodder from a stock thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005227398B1 (en) 2005-10-28 2006-04-27 Leica Geosystems Ag Method and apparatus for determining the loading of a bucket
US10689830B2 (en) * 2018-08-06 2020-06-23 Deere & Company Container angle sensing using vision sensor for feedback loop control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1436740A (en) * 1973-09-11 1976-05-26 Secr Defence Semi-automated surveying apparatus
DE3511611A1 (en) * 1984-03-29 1985-10-17 Mitsubishi Denki K.K., Tokio/Tokyo MEASURING SYSTEM FOR MEASURING THREE-DIMENSIONAL COORDINATES
WO1989011630A1 (en) * 1988-05-26 1989-11-30 Wild Leitz Ag Process and device for measuring surfaces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408195A (en) * 1981-08-17 1983-10-04 Fmc Corporation Boundary plane warning system
US4835537A (en) * 1986-07-16 1989-05-30 Manion James H Telemetry burst collision avoidance system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1436740A (en) * 1973-09-11 1976-05-26 Secr Defence Semi-automated surveying apparatus
DE3511611A1 (en) * 1984-03-29 1985-10-17 Mitsubishi Denki K.K., Tokio/Tokyo MEASURING SYSTEM FOR MEASURING THREE-DIMENSIONAL COORDINATES
WO1989011630A1 (en) * 1988-05-26 1989-11-30 Wild Leitz Ag Process and device for measuring surfaces

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133392C1 (en) * 1991-10-09 1992-12-24 Rheinbraun Ag, 5000 Koeln, De Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip
AU726388B2 (en) * 1996-06-11 2000-11-09 Nec Corporation Gain controller
GB2350346A (en) * 1999-05-24 2000-11-29 Univ Carnegie Mellon Method for estimating volume of material swept into the bucket of a digging machine
GB2350346B (en) * 1999-05-24 2003-03-26 Univ Carnegie Mellon System and method for estimating volume of material swept into the bucket of a digging machine
EP1452087B2 (en) 2003-02-14 2024-05-29 Trioliet Mullos B.V. Method and apparatus for removing a quantity of fodder from a stock thereof
USRE48504E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48688E1 (en) 2006-07-13 2021-08-17 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48490E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48503E1 (en) 2006-07-13 2021-04-06 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48666E1 (en) 2006-07-13 2021-08-03 Velodyne Lidar Usa, Inc. High definition LiDAR system
USRE48491E1 (en) 2006-07-13 2021-03-30 Velodyne Lidar Usa, Inc. High definition lidar system
CN101778998B (en) * 2008-08-09 2012-11-21 艾柯夫山体构造技术有限公司 Method and device for monitoring a cutting extraction machine
US9567725B2 (en) 2011-04-14 2017-02-14 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US11028560B2 (en) 2011-04-14 2021-06-08 Joy Global Surface Mining Inc Swing automation for rope shovel
US10227754B2 (en) 2011-04-14 2019-03-12 Joy Global Surface Mining Inc Swing automation for rope shovel
US9315967B2 (en) 2011-04-14 2016-04-19 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US8768579B2 (en) 2011-04-14 2014-07-01 Harnischfeger Technologies, Inc. Swing automation for rope shovel
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
US10655301B2 (en) 2012-03-16 2020-05-19 Joy Global Surface Mining Inc Automated control of dipper swing for a shovel
US9745721B2 (en) 2012-03-16 2017-08-29 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
US11698443B2 (en) 2016-01-31 2023-07-11 Velodyne Lidar Usa, Inc. Multiple pulse, lidar based 3-D imaging
US11137480B2 (en) 2016-01-31 2021-10-05 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11822012B2 (en) 2016-01-31 2023-11-21 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US11550036B2 (en) 2016-01-31 2023-01-10 Velodyne Lidar Usa, Inc. Multiple pulse, LIDAR based 3-D imaging
US10738441B2 (en) 2016-03-09 2020-08-11 Leica Geosystems Technology A/S Measuring equipment for determining the result of earthmoving work
WO2017152916A1 (en) * 2016-03-09 2017-09-14 Leica Geosystems Technology A/S Measuring equipment for determining the result of earthmoving work
US11073617B2 (en) 2016-03-19 2021-07-27 Velodyne Lidar Usa, Inc. Integrated illumination and detection for LIDAR based 3-D imaging
US10983218B2 (en) 2016-06-01 2021-04-20 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11561305B2 (en) 2016-06-01 2023-01-24 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11808854B2 (en) 2016-06-01 2023-11-07 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11550056B2 (en) 2016-06-01 2023-01-10 Velodyne Lidar Usa, Inc. Multiple pixel scanning lidar
US11874377B2 (en) 2016-06-01 2024-01-16 Velodyne Lidar Usa, Inc. Multiple pixel scanning LIDAR
US11808891B2 (en) 2017-03-31 2023-11-07 Velodyne Lidar Usa, Inc. Integrated LIDAR illumination power control
US11703569B2 (en) 2017-05-08 2023-07-18 Velodyne Lidar Usa, Inc. LIDAR data acquisition and control
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
US11933967B2 (en) 2019-08-22 2024-03-19 Red Creamery, LLC Distally actuated scanning mirror

Also Published As

Publication number Publication date
DE59007214D1 (en) 1994-10-27
AU6027690A (en) 1991-02-14
AU634801B2 (en) 1993-03-04
AU637125B2 (en) 1993-05-20
AU6028190A (en) 1991-02-14
ATE111995T1 (en) 1994-10-15
EP0412398B1 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
EP0412398A1 (en) Dug volume measure according to the cutting profile of a bucket wheel excavator or the like
EP0412399B1 (en) Dug volume control for a bucket wheel excavator
EP0412400B1 (en) Collision safety device for earth moving machines
EP2256246B1 (en) Paving machines for applying a cover layer of a road surface
DE112008003444B4 (en) System for loader
CN104838072B (en) Reclaimer three-D volumes rate control device and its control method
EP0412395B1 (en) Bucket wheel excavator steering for building planned surfaces
DE112013005525B4 (en) measuring device
EP3270109B1 (en) Device and method for measuring distance on a construction machine having a tracks drive and construction machine
DE10060903A1 (en) Laser height control device for a construction machine
EP0915203B1 (en) Ballast leveling machine and method for placing the ballast of a railway track
GB2352460A (en) Determining the cross slope of a surface created by an earth moving machine
DE19531662A1 (en) Device for the automatic filling of loading containers
EP3296467B1 (en) Excavation equipment and method
DE112007000285T5 (en) Position indicating guide control system and method for the same
DE4414578C2 (en) Device for the automatic setting of the cutting horizon of a mining extraction plant
DE3735905A1 (en) Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner
EP1653202A1 (en) Method and device for measurement of a volume flow of a belt conveyor
DE3925900A1 (en) METHOD AND DEVICE FOR CONTROLLING THE FOLLOWING CUTTING DRUM OF A DOUBLE-ENDED CUTTING MACHINE IN MINING
EP3699357A1 (en) Work train comprising two soil working machines with an automated distance monitoring
CN208439990U (en) A kind of automatic heap feeding device for bar shaped stock ground
DE4243631A1 (en) Control of overhead transporter bridge
DE19841570C2 (en) Quay crane for loading and unloading containers
DE19953008A1 (en) Device for controlling the flow of traffic at an intersection, in particular for controlling traffic lights
DE19726554A1 (en) Excavator with rotating bucket wheel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19940921

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940921

Ref country code: BE

Effective date: 19940921

Ref country code: NL

Effective date: 19940921

Ref country code: GB

Effective date: 19940921

Ref country code: FR

Effective date: 19940921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940921

REF Corresponds to:

Ref document number: 111995

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59007214

Country of ref document: DE

Date of ref document: 19941027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941221

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950731

Ref country code: LI

Effective date: 19950731

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040920

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201