DE3735905A1 - Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner - Google Patents

Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner

Info

Publication number
DE3735905A1
DE3735905A1 DE19873735905 DE3735905A DE3735905A1 DE 3735905 A1 DE3735905 A1 DE 3735905A1 DE 19873735905 DE19873735905 DE 19873735905 DE 3735905 A DE3735905 A DE 3735905A DE 3735905 A1 DE3735905 A1 DE 3735905A1
Authority
DE
Germany
Prior art keywords
distance
measured
profile
measuring
laser distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19873735905
Other languages
German (de)
Inventor
Johann F Dipl Phys Hipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hipp johann F dipl-Phys
Original Assignee
Hipp johann F dipl-Phys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hipp johann F dipl-Phys filed Critical Hipp johann F dipl-Phys
Priority to DE19873735905 priority Critical patent/DE3735905A1/en
Publication of DE3735905A1 publication Critical patent/DE3735905A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Thermal Sciences (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

For the continuous sampling of a bulk goods surface on conveyor belt devices, a laser distance profile scanner is used by means of which a distance measuring beam is swept over the bulk goods transversely to the conveyor direction, and the cross-sectional area is continuously calculated from the difference between the empty profile and the measured profile, the level is calculated, and the volume flow is calculated from the product of area and belt speed (which is measured by a further sensor).

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Durchführung dieses Verfahrens nach Anspruch 1. Die Erfindung findet vorzugsweise Anwendung in einem Verfahren zum automatischen Messen von Volumenströmen oder Massenströmen von Schüttgütern auf Bandfördergeräten.The invention relates to a method and an apparatus for performing this method according to claim 1. The invention is preferably used in one Process for the automatic measurement of volume flows or Mass flows of bulk goods on belt conveyors.

Bekannt ist die Volumenstrommessung von Schüttgütern auf Bandförderern mittels Entfernungsmeßgeräten, mit denen an einer oder mehreren Stellen zur Konturbestimmung auf die Oberfläche des Schüttgutes gemessen wird. Aus der Differenz zwischen den Messungen auf das leere Band und das gefüllte Band kann die Fläche des Schüttgutes und aus dem Produkt aus Fläche und Geschwindigkeit des Bandes der Volumenstrom näherungsweise berechnet werden. Als Entfernungsmesser finden Ultraschall- oder Laserentfernungsmesser Verwendung. Wird das spezifische Gewicht berücksichtigt, kann auch der Massenstrom ermittelt werden.The volume flow measurement of bulk goods is known Belt conveyors using distance measuring devices with which one or more places for contour determination on the Surface of the bulk material is measured. From the difference between the measurements on the empty band and the filled one Tape can cover the surface of the bulk material and out of the product the volume flow from the area and speed of the belt can be calculated approximately. As a rangefinder find ultrasonic or laser range finders. If the specific weight is taken into account, the Mass flow can be determined.

Alle bekannten Vorrichtungen der genannten Art arbeiten mit einem oder mehr Entfernungsmessern, die auf die Oberfläche des Schüttgutes messen. Die Nachteile der Ultraschall­ entfernungsmessung liegen in dem breiten Meßstrahl und der Beeinflußbarkeit der Messung durch Luftströmung. Beide Nachteile führen zu fehlerhaften Meßergebnissen.All known devices of the type mentioned work with one or more range finders that hit the surface measure the bulk material. The disadvantages of ultrasound distance measurement lie in the wide measuring beam and the Influenceability of the measurement by air flow. Both Disadvantages lead to incorrect measurement results.

Diese Fehler werden durch Laserentfernungsmesser wie in OS DE 34 11 540 A1 angegeben, vermieden. Einer der Vorteile der Laserentfernungsmesser ist der kleine Querschnitt des Meßstrahles, der eine dichte Abtastung der Oberfläche zumindest in Förderrichtung erlaubt. Es ist gleichzeitig jedoch auch ein Nachteil, weil für die lückenlose Abtastung der Oberfläche eine große Zahl von Entfernungsmessern erforderlich sind. Die Zahl der Entfernungsmesser ist um so größer, je dichter die Abtastung und damit je genauer die Messung von Volumenstrom etc. erfolgen soll. Schon aus räumlichen Gründen ist eine enge Packung von Entfernungs­ messern nur sehr schwer möglich. Das bedeutet, daß der Vorteil des kleinen Meßstrahls nicht genutzt werden kann. Der Hauptnachteil ist jedoch, daß die Anwendung vieler nebeneinander angeordneten Laserentfernungsmesser zur Lösung des Meßproblems nicht wirtschaftlich ist. Ein weiterer Vorteil des Laserentfernungsmessers besteht darin, daß er nicht wie die Ultraschallsensoren sehr nahe am Fördergut installiert werden muß sondern daß er viele Meter entfernt angebracht werden kann.These errors are caused by laser rangefinders like in OS DE 34 11 540 A1 specified, avoided. One of the advantages the laser rangefinder is the small cross section of the Measuring beam, which is a dense scanning of the surface allowed at least in the conveying direction. It is at the same time but also a disadvantage because of the gapless sampling the surface of a large number of range finders required are. The number of range finders is all the more larger, the denser the scanning and therefore the more precise the Measurement of volume flow etc. should take place. Already out spatial reasons is a tight packing of distance knives very difficult. That means that the Advantage of the small measuring beam can not be used. The main disadvantage, however, is that the use of many laser rangefinders arranged side by side for  Solving the measurement problem is not economical. A Another advantage of the laser rangefinder is that that it is not, like the ultrasonic sensors, very close to the Conveyed goods must be installed but that there are many Meters away.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, die es ermöglichen, die Vorteile eines Laserentfernungsmessers, wie großer Installationsabstand, kleiner Meßstrahlquerschnitt, hohe Meßrate zu nutzen, die hohe Kosten bei Verwendung vieler Entfernungsmesser zu vermeiden und die Meßgenauigkeit für die Volumenstrom­ messung oder Massenstrommessung zu erhöhen.The invention has for its object a method and a device for performing the method create that enable to take advantage of a Laser rangefinder, such as large installation distance, small measuring beam cross-section, high measuring rate to use the high cost when using many rangefinders avoid and the measurement accuracy for the volume flow increase measurement or mass flow measurement.

Vorteilhafte Ausgestaltungen des neuen Verfahrens sind in den Ansprüchen 1 bis 5 und der zugehörigen Vorrichtung in den Ansprüchen 6 und 7 wiedergegeben.Advantageous refinements of the new method are in claims 1 to 5 and the associated device reproduced in claims 6 and 7.

Ausführungsbeispiele des nachfolgend näher erläuterten Verfahrens und zugehörige Vorrichtungen sind in den Zeichnungen schematisch wiedergegeben. Es zeigtEmbodiments of the explained in more detail below Process and associated devices are in the Drawings shown schematically. It shows

Fig. 1 eine Meßeinrichtung zur Messung von Entfer­ nungsprofilen, Fig. 1 shows a measuring device for measuring Entfer voltage profiles,

Fig. 2 eine über einem Bandförderer angeordnete Meßvorrichtung, Fig. 2 is a arranged above a belt conveyor measuring device,

Fig. 3 ein gemessenes Entfernungsprofil bestehend aus Eichprofil und Meßprofil, Fig. 3 is a measured removal profile consisting of calibration profile and measured profile,

Fig. 4 Meßvorrichtung in Schrägansicht mit den Meßpunkten zur Oberflächenabtastung. Fig. 4 measuring device in an oblique view with the measuring points for surface scanning.

Wie aus Fig. 1 zu ersehen ist, besteht die Meßvorrichtung 9 aus einem Laserentfernungsmesser mit Rechner 1, dessen Meßstrahl 2 auf einen drehbaren, mit einem Motor 4 angetriebenen Ablenkspiegel 3 trifft. Die Winkelstellung des Drehspiegels wird mit einem an der Drehachse befestigten elektronischen Winkelmesser 5 gemessen. In diesem Ausführungsbeispiel wird der Meßstrahl des Entfernungsmessers um 90 Grad abgelenkt und senkrecht zur Strahlaustrittsrichtung rotiert. Diese Meßvorrichtung erfüllt die Aufgaben eines Entfernungsprofilscanners mit Hilfe eines Lasers als Lichtquelle und wird daher im folgenden Laser-Entfernungsprofilscanner genannt.As can be seen from FIG. 1, the measuring device 9 consists of a laser rangefinder with a computer 1 , the measuring beam 2 of which strikes a rotatable deflection mirror 3 driven by a motor 4 . The angular position of the rotating mirror is measured with an electronic protractor 5 attached to the rotating axis. In this exemplary embodiment, the measuring beam of the range finder is deflected by 90 degrees and rotated perpendicular to the beam exit direction. This measuring device fulfills the tasks of a distance profile scanner with the aid of a laser as a light source and is therefore called laser distance profile scanner in the following.

Der Laser-Entfernungsprofilscanner 9 ist mit einem geschlossenen Gehäuse umgeben. Die Lichtaustrittsfläche ist mit einer Glasscheibe 7 geschlossen. Der Vorraum wird zur Vermeidung von Staubablagerungen mittels gefilterter Luft, die von der Motor/Filtereinheit 6 angesaugt wird, frei­ gehalten.The laser distance profile scanner 9 is surrounded by a closed housing. The light exit surface is closed with a glass pane 7 . The anteroom is kept free to avoid dust deposits by means of filtered air, which is sucked in by the motor / filter unit 6 .

Der zum Laser-Entfernungsprofilmesser gehörige Entfernungs­ messer sendet kontinuierlich Lichtpulse aus, deren Laufzeit zur Schüttgutoberfläche und zurück zum Entfernungsmesser gemessen und in eine Entfernung umgesetzt werden. Der Drehspiegel dreht sich kontinuierlich, so daß der Meßstrahl über das Schüttgut geschwenkt wird (Fig. 2). Auf diese Weise entsteht ein Entfernungsprofil, dessen Punkte jeweils aus dem Polarkoordinatenpaar Drehwinkel/Entfernung bestehen.The range finder belonging to the laser range finder continuously sends out light pulses, the transit time of which to the bulk material surface and back to the range finder are measured and converted into a distance. The rotating mirror rotates continuously so that the measuring beam is swung over the bulk material ( Fig. 2). This creates a distance profile, the points of which each consist of the polar coordinate pair rotation angle / distance.

Fig. 2 zeigt die Schrägansicht des Laser- Entfernungsprofilscanners. Die Platten 14 sind seitlich angebrachte, ortsfeste Eichflächen, die dazu dienen, daß bei jedem Schwenk des Meßstrahls eine Überprüfung der Funktion des Entfernungsmessers erfolgen kann. Das Fließband 10 läuft in einem aus den Stützrollen 11 gebildeten Bett in dem das Schüttgut 15 transportiert wird. Die Meßstrahlen 12 und 13 bilden die seitliche Begrenzung des genutzten Winkelbereiches für den Schwenkbereich. Die Querschnitts­ fläche 16 ergibt sich aus dem Leerprofil 17 und dem Meß­ profil 18 (Fig. 3). Fig. 2 shows the oblique view of the laser distance profile scanner. The plates 14 are laterally attached, stationary calibration surfaces, which serve to ensure that the function of the range finder can be checked each time the measuring beam is swiveled. The assembly line 10 runs in a bed formed from the support rollers 11 in which the bulk material 15 is transported. The measuring beams 12 and 13 form the lateral limitation of the angular range used for the swivel range. The cross-sectional area 16 results from the empty profile 17 and the measuring profile 18 ( Fig. 3).

Fig. 4 zeigt, wie die Oberfläche kontinuierlich abgetastet wird. Die Profile 18, 18.1, 18.2, . . . stellen die bereits gemessenen Profile dar, die sich auf Grund der Bandgeschwindigkeit von der Meßstelle wegbewegen. Mit einem Geschwindigkeitsmesser 19 wird die Bandgeschwindigkeit detektiert und dem Rechner der Meßvorrichtung 1 zugeführt. Dieser Rechner errechnet aus der Differenz aus dem gespeicherten Leerprofil (Eichprofil) und dem Meßprofil die Schüttgutquerschnittsfläche 16, multipliziert diese mit der Bandgeschwindigkeit und erhält als Zwischenergebnis den Volumenstrom, der geeignet zur Verwendung gestellt wird, integriert den Volumenstrom über die Zeit und erhält als Zwischenergebnis das geförderte Volumen, dessen Wert eben­ falls zur weiteren Verwendung bereitgestellt wird. Fig. 4 shows how the surface is scanned continuously. The profiles 18, 18.1, 18.2,. . . represent the already measured profiles that move away from the measuring point due to the belt speed. The belt speed is detected with a speedometer 19 and fed to the computer of the measuring device 1 . This computer calculates the bulk cross-sectional area 16 from the difference between the stored empty profile (calibration profile) and the measurement profile, multiplies this by the belt speed and receives the volume flow as an intermediate result, which is suitable for use, integrates the volume flow over time and receives the intermediate result as Funded volume, the value of which is also made available for further use.

Zur Inbetriebnahme ist der Laser-Entfernungsprofilscanner mittels einer Handsteuerung steuer- und richtbar. Der mit einer sichtbaren Lichtquelle (z. B. ein HeNe-Laser) überlagerte Meßstrahl kann per Hand entsprechend der gewünschten Winkelbreite eingestellt werden. Die zu den Meßstrahlen 12 und 13 gehörigen Winkel werden als solche gekennzeichnet gespeichert. Ebenso wird das Leerprofil und der zur Eichplatte 14 gehörige Entfernungswert gespeichert. Die Speicherung erfolgt mittels eines im Rechner integrier­ ten EEPROMS, einem nichtflüchtigen Speicher, der mit den Ergebnissen beschrieben wird.For commissioning, the laser distance profile scanner can be controlled and set using a manual control. The measuring beam overlaid with a visible light source (e.g. a HeNe laser) can be adjusted by hand according to the desired angular width. The angles associated with the measuring beams 12 and 13 are stored as such. The empty profile and the distance value associated with the calibration plate 14 are also stored. The storage takes place by means of an EEPROMS integrated in the computer, a non-volatile memory which is described with the results.

Ist die Inbetriebnahme erfolgt, so läuft der oben beschriebene Meßzyklus zur Volumenstromberechnung und weiterer Berechnungen bei Einschalten des Gerätes automatisch ab.Once commissioning has taken place, it will run at the top described measuring cycle for volume flow calculation and further calculations when switching on the device automatically.

Mit dieser einfachen Vorrichtung, bestehend aus einem Laser-Entfernungsprofilscanner mit nur einem Entfernungs­ messer ist man in der Lage, den Volumenstrom sehr genau zu bestimmen, da die Meßpunkte sehr dicht gesetzt werden können. Nachteilig sind ggf. Schattenzonen bei sehr groben Schüttgütern, die in Form von Brocken über das Band gefördert werden. In diesem Fall könnte mit zwei Meßvorrichtungen gemessen werden, deren Entfernungsprofile vom Rechner zu einem Profil zusammengesetzt werden und damit selbst die Schattenzonen noch exakt erfaßt werden.With this simple device consisting of a Laser distance profile scanner with only one distance knives are able to control the volume flow very precisely determine, because the measuring points are set very close can. Shadow zones with very coarse areas may be disadvantageous Bulk goods in the form of chunks over the belt be promoted. In this case, two Measuring devices are measured, their distance profiles are put together from the computer into a profile and so that even the shadow zones can still be captured exactly.

Claims (7)

1. Verfahren zur Ermittlung von Volumenstrom und Füllhöhe von mittels Bandförderern o. dgl. geförderten Güter durch fortlaufende Oberflächenprofilmessung quer zur Förderrichtung durch kontinuierliche berührungslose Entfernungs- und Winkelmessung, dadurch gekenn­ zeichnet, daß als Meßvorrichtung ein Laser-Entfernungsprofilscanner verwendet wird, dessen Entfernungsmeßstrahl mittels einer Strahlschwenkeinrichtung periodisch über das Fördergut geschwenkt wird und dabei Schwenkwinkel und Entfernung kontinuierlich gemessen und gespeichert werden.1.Procedure for determining the volume flow and filling level of goods conveyed by means of belt conveyors or the like by continuous surface profile measurement transverse to the conveying direction by continuous contactless distance and angle measurement, characterized in that a laser distance profile scanner is used as the measuring device, the distance measuring beam of which is measured by means of a The beam swivel device is periodically swiveled over the material to be conveyed and the swivel angle and distance are continuously measured and stored. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlschwenkeinrichtung ein motorisch angetriebener Spiegel ist.2. The method according to claim 1, characterized in that the jet swivel device is a motor-driven one Mirror is. 3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Drehbewegung des Spiegels mittels Winkelmeß­ einrichtung kontinuierlich gemessen wird.3. The method according to claim 1 to 2, characterized in that the rotational movement of the mirror by means of angle measurement device is measured continuously. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Entfernungsmesser nach dem Pulslaufzeitmeßprinzip arbeitet.4. The method according to claim 1, characterized in that the rangefinder based on the pulse transit time principle is working. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Laser-Entfernungsprofilscanner mit einem Rechner einschließlich beschreibbarem Permanentspeicher verbunden ist, in dem Eichprofil, Schwenkwinkelbereich, Eichentfernung, Winkelstellung zur Förderrichtung und Offsetwerte eingegeben bzw. gemessen und gespeichert werden können.5. The method according to claim 1, characterized in that the laser distance profile scanner with a computer including writable permanent storage connected is, in the calibration profile, swivel angle range, Calibration distance, angular position to the conveying direction and Offset values are entered or measured and saved can. 6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Meßstrahl mit einem sichtbaren Lichtstrahl überlagert wird und auf diese Weise der jeweilige Meßfleck sichtbar gemacht wird.6. The device according to claim 1, characterized in that the measuring beam is overlaid with a visible light beam and the respective measuring spot becomes visible in this way is made. 7. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 und 5, dadurch gekennzeichnet, daß der Rechner im Laser-Entfernungsprofilscanner integriert ist.7. Device for performing the method according to Claims 1 and 5, characterized in that the computer in Laser distance profile scanner is integrated.
DE19873735905 1987-10-23 1987-10-23 Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner Ceased DE3735905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873735905 DE3735905A1 (en) 1987-10-23 1987-10-23 Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873735905 DE3735905A1 (en) 1987-10-23 1987-10-23 Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner

Publications (1)

Publication Number Publication Date
DE3735905A1 true DE3735905A1 (en) 1989-05-03

Family

ID=6338934

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873735905 Ceased DE3735905A1 (en) 1987-10-23 1987-10-23 Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner

Country Status (1)

Country Link
DE (1) DE3735905A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024849A1 (en) * 1990-08-06 1992-02-13 Horn Hannes Dr Schulze Object dimension digital measurement - uses pulsed laser beam passed across pulse detection path in repeated, pref. oscillatory, manner
DE4200770A1 (en) * 1992-01-14 1993-07-15 Bat Cigarettenfab Gmbh Determining filling ability of tobacco material during transit on conveyor belt - determining mass flow, conveyor speed and height profile of tobacco flow to produce volume flow and forming quotient.
DE4339441A1 (en) * 1993-11-19 1995-05-24 Incatronic Phoenix Mestechnik Container filling level measuring system
EP1653202A1 (en) * 2004-10-11 2006-05-03 Robert Schmidt Method and device for measurement of a volume flow of a belt conveyor
EP1804039A1 (en) * 2005-12-29 2007-07-04 WAM S.p.A. Process and device for controlling a filling level
EP2246673A1 (en) * 2009-04-28 2010-11-03 Sick Ag Method for determining the volume of loads and device
WO2011023853A3 (en) * 2009-08-27 2011-04-21 Outotec Oyj Method and equipment for measuring the surface height of a material bed conducted on a conveyor belt
DE102009055952A1 (en) * 2009-11-27 2011-06-01 Rwe Power Ag Method for monitoring volume flow of material to be transported on belt conveyor in brown coal mine to determine conveyor loading condition, involves testing volume flow upon changes and signalization when flow is not changed over period
US8063780B2 (en) 2008-05-20 2011-11-22 Keyence Corporation Monitor area setting device for optical scanning unit
US8069007B2 (en) 2008-05-14 2011-11-29 Keyence Corporation Light scanning photoelectric switch
US8248235B2 (en) 2008-06-03 2012-08-21 Keyence Corporation Area monitoring sensor
US8319171B2 (en) 2009-01-31 2012-11-27 Keyence Corporation Optical scanning type photoelectric switch
US8330095B2 (en) 2009-01-31 2012-12-11 Keyence Corporation Safety photoelectric switch
US8415609B2 (en) 2009-01-31 2013-04-09 Keyence Corporation Safety photoelectric switch
DE102012203579B3 (en) * 2012-03-07 2013-06-06 Hauni Maschinenbau Ag Measuring device and measuring method for determining a measured variable at one end of a rod-shaped product of the tobacco processing industry
DE102012210031A1 (en) * 2012-06-14 2013-12-19 Hauni Maschinenbau Ag Apparatus and method for evaluating an end face of a rod-shaped product of the tobacco processing industry
EP2803952A1 (en) * 2013-05-17 2014-11-19 VEGA Grieshaber KG Measuring device control for determining a topology of a surface of a bulk material
EP2803951A1 (en) * 2013-05-17 2014-11-19 VEGA Grieshaber KG Topology determination for bulk materials
CN106197599A (en) * 2016-06-23 2016-12-07 中国神华能源股份有限公司 For measuring the system and method for coal conveying belt amount
CN107702755A (en) * 2017-11-27 2018-02-16 宁夏广天夏电子科技有限公司 Belt conveyor flow detector and detection method
CN113008317A (en) * 2021-02-26 2021-06-22 中冶南方工程技术有限公司 Method for measuring real-time material piling and taking volume flow of cantilever type bucket-wheel stacker-reclaimer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821558A (en) * 1972-08-09 1974-06-28 Fleet Electronics Ltd Determination or monitoring of the distances of surfaces from reference positions
GB1492114A (en) * 1975-01-31 1977-11-16 Coal Ind Measurement of flow of particulate material
DE2100280B2 (en) * 1971-01-05 1979-05-23 Rheinische Braunkohlenwerke Ag, 5000 Koeln Material quantity measurement on conveyor belt - involves continuous evaluation of profile using television camera
DE2948295A1 (en) * 1978-12-06 1980-06-26 Centre Rech Metallurgique METHOD FOR MONITORING THE FEEDING SURFACE OF A SHAFT OVEN
DE3325122A1 (en) * 1982-07-12 1984-01-12 L'Etat Français représenté par le Délégué Général pour l'Armement, 75997 Paris Stabilised panoramic sighting instrument with infrared detector
DE3411540A1 (en) * 1984-03-29 1985-10-10 Fried. Krupp Gmbh, 4300 Essen METHOD AND DEVICE FOR DETERMINING THE QUANTITY OF CONVEYED MATERIAL FROM BAND CONVEYORS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2100280B2 (en) * 1971-01-05 1979-05-23 Rheinische Braunkohlenwerke Ag, 5000 Koeln Material quantity measurement on conveyor belt - involves continuous evaluation of profile using television camera
US3821558A (en) * 1972-08-09 1974-06-28 Fleet Electronics Ltd Determination or monitoring of the distances of surfaces from reference positions
GB1492114A (en) * 1975-01-31 1977-11-16 Coal Ind Measurement of flow of particulate material
DE2948295A1 (en) * 1978-12-06 1980-06-26 Centre Rech Metallurgique METHOD FOR MONITORING THE FEEDING SURFACE OF A SHAFT OVEN
DE3325122A1 (en) * 1982-07-12 1984-01-12 L'Etat Français représenté par le Délégué Général pour l'Armement, 75997 Paris Stabilised panoramic sighting instrument with infrared detector
DE3411540A1 (en) * 1984-03-29 1985-10-10 Fried. Krupp Gmbh, 4300 Essen METHOD AND DEVICE FOR DETERMINING THE QUANTITY OF CONVEYED MATERIAL FROM BAND CONVEYORS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 60 230022 A. In: Patents Abstracts of Japan, P-446, April 15, 1986, Vol.10, Nr.97 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024849A1 (en) * 1990-08-06 1992-02-13 Horn Hannes Dr Schulze Object dimension digital measurement - uses pulsed laser beam passed across pulse detection path in repeated, pref. oscillatory, manner
DE4200770A1 (en) * 1992-01-14 1993-07-15 Bat Cigarettenfab Gmbh Determining filling ability of tobacco material during transit on conveyor belt - determining mass flow, conveyor speed and height profile of tobacco flow to produce volume flow and forming quotient.
DE4339441A1 (en) * 1993-11-19 1995-05-24 Incatronic Phoenix Mestechnik Container filling level measuring system
EP1653202A1 (en) * 2004-10-11 2006-05-03 Robert Schmidt Method and device for measurement of a volume flow of a belt conveyor
EP1804039A1 (en) * 2005-12-29 2007-07-04 WAM S.p.A. Process and device for controlling a filling level
US8069007B2 (en) 2008-05-14 2011-11-29 Keyence Corporation Light scanning photoelectric switch
US8063780B2 (en) 2008-05-20 2011-11-22 Keyence Corporation Monitor area setting device for optical scanning unit
US8248235B2 (en) 2008-06-03 2012-08-21 Keyence Corporation Area monitoring sensor
US8648292B2 (en) 2009-01-31 2014-02-11 Keyence Corporation Safety photoelectric switch
US8319171B2 (en) 2009-01-31 2012-11-27 Keyence Corporation Optical scanning type photoelectric switch
US8330095B2 (en) 2009-01-31 2012-12-11 Keyence Corporation Safety photoelectric switch
US8415609B2 (en) 2009-01-31 2013-04-09 Keyence Corporation Safety photoelectric switch
EP2246673A1 (en) * 2009-04-28 2010-11-03 Sick Ag Method for determining the volume of loads and device
WO2011023853A3 (en) * 2009-08-27 2011-04-21 Outotec Oyj Method and equipment for measuring the surface height of a material bed conducted on a conveyor belt
DE102009055952A1 (en) * 2009-11-27 2011-06-01 Rwe Power Ag Method for monitoring volume flow of material to be transported on belt conveyor in brown coal mine to determine conveyor loading condition, involves testing volume flow upon changes and signalization when flow is not changed over period
DE102012203579B3 (en) * 2012-03-07 2013-06-06 Hauni Maschinenbau Ag Measuring device and measuring method for determining a measured variable at one end of a rod-shaped product of the tobacco processing industry
DE102012210031A1 (en) * 2012-06-14 2013-12-19 Hauni Maschinenbau Ag Apparatus and method for evaluating an end face of a rod-shaped product of the tobacco processing industry
CN104165671B (en) * 2013-05-17 2019-01-15 Vega格里沙贝两合公司 The topology of bulk material determines
EP2803951A1 (en) * 2013-05-17 2014-11-19 VEGA Grieshaber KG Topology determination for bulk materials
WO2014184089A1 (en) * 2013-05-17 2014-11-20 Vega Grieshaber Kg Measuring device control for determining the topology of a surface of bulk material
CN104165671A (en) * 2013-05-17 2014-11-26 Vega格里沙贝两合公司 Topology determination for bulk materials
CN105247327A (en) * 2013-05-17 2016-01-13 Vega格里沙贝两合公司 Measuring device control for determining the topology of a surface of bulk material
US9739877B2 (en) 2013-05-17 2017-08-22 Vega Grieshaber Kg Topology determination for bulk materials
EP2803952A1 (en) * 2013-05-17 2014-11-19 VEGA Grieshaber KG Measuring device control for determining a topology of a surface of a bulk material
US10337903B2 (en) 2013-05-17 2019-07-02 Vega Grieshaber Kg Measurement device control system for determining a topology of a surface of a bulk material
US20190271581A1 (en) * 2013-05-17 2019-09-05 Vega Grieshaber Kg Measurement Device Control System for Determining a Topology of a Surface of a Bulk Material
CN106197599A (en) * 2016-06-23 2016-12-07 中国神华能源股份有限公司 For measuring the system and method for coal conveying belt amount
CN107702755A (en) * 2017-11-27 2018-02-16 宁夏广天夏电子科技有限公司 Belt conveyor flow detector and detection method
CN113008317A (en) * 2021-02-26 2021-06-22 中冶南方工程技术有限公司 Method for measuring real-time material piling and taking volume flow of cantilever type bucket-wheel stacker-reclaimer

Similar Documents

Publication Publication Date Title
DE3735905A1 (en) Method and device for volume flow measurement on conveyor belts by means of a laser distance profile scanner
DE3411540C2 (en)
DE3901185C2 (en)
EP2246673B1 (en) Method for determining the volume of loads and device
DE3911307C2 (en) Method for determining whether two shafts arranged one behind the other are aligned or offset with respect to their central axis
DE3642377A1 (en) METHOD AND DEVICE FOR MEASURING THE THICKNESS OF A FILM OR LEAF-LIKE MATERIAL
DE3913988A1 (en) METHOD AND DEVICE FOR MEASURING ROADS REGARDING AXLE LENGTH, WIDTH AND HEIGHT OR HEIGHT. PITCH
EP0412398A1 (en) Dug volume measure according to the cutting profile of a bucket wheel excavator or the like
EP1653202A1 (en) Method and device for measurement of a volume flow of a belt conveyor
DE2100280A1 (en) Method and device for measuring a flow rate
EP0726445A2 (en) Procedure and device to measure the volume of a moving object
EP0146829A2 (en) Ultrasonic measuring device
DE1303574B (en) Length measuring device
DE19740614A1 (en) Device to measure thickness, parallelism, length, straightness, or roughness of long body
DE3611896C2 (en)
DE102012209495A1 (en) Road finisher has main spring joint that is provided with floating bearing and fixed bearing, and main unit that is arranged in conveyer unit to facilitate instrumentation acquisition of mass, volumetric flow and bulk material density
DE2822479C2 (en) Method for measuring the speed of a moving object and device for carrying out the method
DE3313932C2 (en)
DE3933472C2 (en) Measuring device for determining the delivery rate of bulk goods
DE3016458A1 (en) Coating thickness of article measured immediately after application - by radiometric thickness method and used to regulate coating apparatus
DE3608384C2 (en)
DE10315902A1 (en) Volume flow measurement method for bulk loose material, e.g. for use in materials handling stations, employs two or more contactless measurement methods in order to determine an optimum reference measurement values
DE2348204A1 (en) METHOD AND DEVICE FOR DETERMINING THE PRESENCE OF AN EDGE OF A DISC OR TAPE OF TRANSPARENT MATERIAL IN A SPECIFIED AREA
DE102004021447A1 (en) Adhesive application inspection unit moves along fillet and triangulates distance using modulated laser light
DE19926546C2 (en) Method and device for high-precision measurement of a surface of an object

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8131 Rejection