EP3699357B1 - Work train comprising a self-propelled soil working machine and at least one other self-propelled vehicle, with an automated distance monitoring - Google Patents

Work train comprising a self-propelled soil working machine and at least one other self-propelled vehicle, with an automated distance monitoring Download PDF

Info

Publication number
EP3699357B1
EP3699357B1 EP20157903.4A EP20157903A EP3699357B1 EP 3699357 B1 EP3699357 B1 EP 3699357B1 EP 20157903 A EP20157903 A EP 20157903A EP 3699357 B1 EP3699357 B1 EP 3699357B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
axis
sensor
source
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20157903.4A
Other languages
German (de)
French (fr)
Other versions
EP3699357A1 (en
Inventor
Matthias Fritz
Herbert Lange
Marc Pees
Carmen Kania
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirtgen GmbH
Original Assignee
Wirtgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirtgen GmbH filed Critical Wirtgen GmbH
Publication of EP3699357A1 publication Critical patent/EP3699357A1/en
Application granted granted Critical
Publication of EP3699357B1 publication Critical patent/EP3699357B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4886Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ for forming in a continuous operation kerbs, gutters, berms, safety kerbs, median barriers or like structures in situ, e.g. by slip-forming, by extrusion
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/065Recycling in place or on the road, i.e. hot or cold reprocessing of paving in situ or on the traffic surface, with or without adding virgin material or lifting of salvaged material; Repairs or resurfacing involving at least partial reprocessing of the existing paving
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/02Feeding devices for pavers
    • E01C2301/04Independent shuttles

Definitions

  • the present invention relates to a work train, comprising a self-propelled soil cultivation machine as a first vehicle and at least one further self-propelled vehicle, the vehicles of the work train being designed to move one after the other with a target distance located in a predetermined target distance value range during normal operation to move a common working direction, the work train having a distance monitoring device which, in accordance with a detection state of the distance monitoring device that is dependent on an actual actual distance of the vehicles, outputs a distance signal containing information about the vehicle distance, the distance monitoring device being a radiation source emitting electromagnetic radiation and has a sensor arrangement that is sensitive to the electromagnetic radiation of the radiation source, a vehicle comprising the first and the further vehicle g carries the radiation source as the source vehicle, with the radiation source in the direction of the other vehicle from the first when the work train is in a predetermined reference state, i.e.
  • the electromagnetic radiation for distance monitoring is only present in a radiation space which extends over a first angular range around a first radiation space axis and over a second angular range around an angle with the first radiation space axis enclosing second radiation space axis, wherein the second angular range is equal in magnitude to or is greater than the first angular range and wherein the radiation space with respect to the working direction about the first radiation space axis ge tends is.
  • the soil cultivation machine is a road paver, hereinafter also referred to as a "paver" for short.
  • the other vehicle is a feeder that loads the paver with asphalt while it is in operation.
  • An LED light source is arranged on the known feeder, which emits light to the paver in a vertically narrow beam space which does not exceed an opening angle of 6 ° and which extends horizontally approximately over the width of the paver.
  • Light from the LED light source reflected by the paver is detected by a sensor arrangement on the feeder. From the transit time of the light from the LED source to the paver and back to the sensor arrangement, the amount of the distance between the feeder and the paver is calculated and a distance signal containing this distance information is output to the feeder to support the movement control of the work train.
  • the vehicles involved in the work train are therefore less complex and therefore more robust, but at least as a result accurate solution for distance monitoring of the vehicles of the work train desirable.
  • the present invention with a work train as described at the beginning of the present application, in which the sensor arrangement also extends along a sensor axis and is arranged on the target vehicle to be carried along by it, with a predetermined one - when viewing the work train in the reference state sensor-axial reference detection area on the sensor arrangement is irradiated by the radiation source, and wherein the sensor axis is inclined relative to a straight line connecting the detection area and the radiation source about a tilt axis parallel to the first radiation area axis, that is, non-parallel, so that a change in the vehicle distance to a Change in position of the detection area irradiated by the radiation source on the sensor arrangement along the sensor axis and thus leads to a change in the detection state of the sensor arrangement.
  • the sensor axis can, but does not have to, be inclined about a further axis.
  • the detection of the electromagnetic radiation emitted by the radiation source by the sensor arrangement is preferably carried out in the direct beam path, ie without prior reflection on a vehicle surface. Due to the specified inclinations of both the radiation room and the sensor arrangement located at least in sections in the radiation room in the reference state, a change in the distance between the vehicles of the work train starting from the reference distance or from any other starting distance leads to a longitudinal displacement of the detection area of the sensor arrangement irradiated by the radiation source their sensor axis. This change is direction-sensitive, ie it takes place starting from an initially irradiated detection area with a shortening of the Vehicle distance on the sensor arrangement always in the same direction and, when the vehicle distance is increased, in always the same opposite direction.
  • the distance monitoring can - and preferably is - the distance monitoring without calculating the amount Distance can be carried out solely on the basis of the position of the irradiated detection area on the sensor arrangement relative to a reference position.
  • the sensor arrangement In the reference state, there is preferably a dark area of the sensor arrangement on both sides of the irradiated detection area, so that when the distance changes from the reference distance in both directions, the detection area can irradiate a previously non-irradiated area of the sensor arrangement and preferably no longer irradiate a previously irradiated area.
  • the sensor arrangement therefore preferably completely penetrates the radiation space and protrudes out of it on both sides in the penetration direction, that is to say along its sensor axis.
  • the sensor arrangement can have a plurality of sensor elements sensitive to the electromagnetic radiation of the radiation source one after the other, so that, depending on the sensor-axial position of the detection area, different sensor elements are irradiated with the electromagnetic radiation of the radiation source or are not irradiated if they are in the dark area of the respective detection status.
  • the reference distance is preferably in the setpoint distance value range, particularly preferably at a distance, preferably at the same distance, from the two edges of the setpoint distance value range.
  • the working direction is thus also the distance direction, at least when driving straight ahead together. If the two vehicles of the work train move locally in different spatial directions, for example because of cornering or because of driving over a hilltop or driving through a hollow, the working direction is the shortest connection between the reference points for determining the distance when driving straight ahead.
  • the two reference points are at the same height above the ground on which the two vehicles of the work train move, so that the working direction in a reference state in which the work train is standing on a flat surface with a predetermined reference distance runs parallel to the contact plane of the ground .
  • the subsurface and the contact area defined by it if the subsoil or its contact area serve as a reference variable, is the subsoil located between the vehicles in the working direction or the surface defined by it.
  • the distance monitoring described above already works with a single radiation source on the source vehicle and with a single sensor arrangement on the target vehicle of the work train. More precise and more meaningful information about the distance between the vehicles of the work train can, however, be obtained if the target vehicle is at least two each having sensor arrangements extending along a sensor axis.
  • each sensor axis of a sensor arrangement - when viewing the work train in the reference state - is inclined relative to a straight line connecting the detection area and the radiation source about a tilting axis parallel to the first radiation space axis.
  • the detection state of a plurality of sensor arrangements changes, preferably of all sensor arrangements, when the distance between the source and target vehicle changes.
  • the at least two sensor arrangements are then preferably arranged at a distance from one another in the circumferential direction around the second radiation space axis.
  • the extension of the radiation space along the second angular range is used to irradiate or illuminate as large an angular range as possible with the radiation from the radiation source, so that in this largest possible second angular range, a sensor arrangement can be arranged on the target vehicle at locations that are relatively far apart .
  • the second angular range is therefore preferably greater than the first angular range.
  • signals of the respective sensor arrangements can also be used, in addition to achieving detection redundancy, to avoid changes in detection states that are based on actual changes in distance without changes in the relative orientation of the vehicles of the work train to distinguish the detection status.
  • the informative value of the distance signal from the distance monitoring device is increased as a result.
  • the electromagnetic radiation from the radiation source can be any radiation as long as it can only be limited to a relatively small first angular range with sufficient intensity. Such a first angular range is preferably not greater than 3 ° around the first radiation space axis. Electromagnetic radiation that is available almost everywhere and, at the same time, is highly precise because it can be locally limited, is emitted as laser light by a laser beam source. Therefore, a laser beam source is preferred as the above-mentioned radiation source.
  • a laser beam source can be coherent for several tens of meters Emit light and can therefore only generate one point of light over several tens of meters.
  • the target distance value range in the sense of a clear width between the work train vehicles generally does not, or only rarely, exceeds distance values of 20 meters.
  • the first angular range is preferably limited to the mere extension of the laser beam which the laser beam source emits as the preferred radiation source. In this case, the first angular range is significantly smaller than 3 °.
  • the second angular range can be generated in order to cover as large an area as possible on the target vehicle by targeted alignment of the laser beam emitted by the radiation source or the emitted electromagnetic radiation.
  • the radiation source can emit a laser beam that oscillates or rotates about the second spatial axis of the radiation.
  • a rotating laser beam can be shaded in circumferential areas around the second radiation space axis, where there will certainly be no target vehicle irradiation, in order to protect personnel working on the construction site in the vicinity of the work train from exposure to electromagnetic radiation, in particular the laser beam.
  • the sensor arrangement is preferably arranged at a distance from the ground on the target vehicle. This also applies in the event that more than one sensor arrangement is provided on the target vehicle.
  • An advantageous arrangement of a sensor arrangement in particular of several sensor arrangements in the direction parallel to the yaw axis at a distance from the ground of the target vehicle with at the same time great freedom in the arrangement of the at least one sensor arrangement in the direction parallel to the pitch axis on the target vehicle can be made possible by the fact that the first beam space axis to the pitch axis of the source vehicle is parallel and / and that the second radiation space axis in a or is located parallel to a plane defined by the yaw axis and roll axis of the source vehicle.
  • the second beam space axis can be parallel to the yaw axis; then a laser beam emanating from a preferred rotating or oscillating laser beam source will describe a conical surface or a partial conical surface. Or the second beam space axis is inclined both to the yaw axis and to the roll axis, then the beam space can particularly preferably be a plane spanned by the laser beam or, in the case of an oscillating laser beam, a flat sector.
  • the term "level" is not to be understood in a purely mathematical sense.
  • the plane described here has an extent orthogonal to its flat surface, which corresponds to the thickness of the laser beam.
  • a change in the detection state can advantageously be reliably detected when the sensor axis of at least one sensor arrangement in a Cartesian vehicle coordinate system of roll, pitch and yaw axes has a greater extension component parallel to the plane spanned by the yaw axis and roll axis of the target vehicle than orthogonal to it.
  • the sensor arrangement is preferably parallel to the plane defined by the yaw axis and roll axis of the target vehicle. Additionally or alternatively, the at least one sensor arrangement, preferably each sensor arrangement, can be arranged with its sensor axis oriented orthogonally to a straight line between the sensor arrangement and the radiation source. In this case, the sensor arrangement has great sensitivity in the event of a change in distance with a large sensing range at the same time.
  • the radiation source and / or the at least one sensor arrangement is preferably arranged movably on the source vehicle or on the target vehicle relative to a vehicle body of the vehicle carrying it.
  • the target distance and / or the target distance value range between the source and target vehicle change during a work operation should, for example because one of the two vehicles from the source and target vehicle is exchanged for a vehicle that has the same effect but has a different design.
  • the source vehicle has a source actuator and / or the target vehicle has a sensor actuator, the source actuator being coupled to the radiation source in a movement-transmitting manner and / or the sensor actuator being coupled to the sensor arrangement in a movement-transmitting manner, so that the Radiation source and / or the at least one sensor arrangement on the vehicle carrying it is or are accommodated such that it can be actuated displaceably relative to the respective vehicle body about an adjustment axis parallel to the first radiation space axis.
  • One or both of the aforementioned actuators can also be displaceable about a further adjustment axis.
  • the work train is described in the reference state, i.e. H.
  • the two vehicles of the work train are located one after the other in the working direction on a flat, horizontal surface.
  • Their yaw axes are parallel, as are their pitch axes.
  • the roll axes of the two vehicles, which extend parallel to the working direction, are parallel or collinear in the reference state.
  • a change in the operating state of the work train starting from the reference state can lead to a change in the detection state of the distance monitoring device without the distance between the vehicles of the work train actually changing.
  • the distance monitoring device has a control device and that the first and / or the further vehicle has a yaw angle detection device which detects a yaw angle of the respective vehicle, wherein at least one yaw angle detection device transmits a yaw angle signal, which contains information about the yaw angle of at least one vehicle, to the control device, wherein the control device transmits the distance signal in accordance with the detection state of the at least one sensor arrangement and in accordance with the yaw angle signal which generates at least one yaw rate sensing device.
  • the yaw angle detection device can detect the information about the yaw angle of at least one vehicle in any way, for example by a GPS system or by appropriate sensors, such as those used in cell phones to determine their spatial orientation.
  • the yaw angle of a vehicle can be detected indirectly by detecting the steering angle and the distance covered by the vehicle and / or the vehicle speed over a common period of time.
  • Each vehicle of the work train preferably has a yaw angle detection device, so that a relative yaw angle of the two vehicles relative to one another can be detected directly and precisely by means of data communication between the two vehicles.
  • only one vehicle can have a yaw angle detection device. This is then preferably the vehicle driving ahead in the working direction. If the work train begins its work in the reference state or in a defined, known state with a known relative orientation of the vehicles of the work train to each other, at least one vehicle of the work train, preferably the vehicle ahead in the working direction, can be based on the speed of the vehicle ahead in the work direction and on the basis of distance information from the distance monitoring device under the reasonable assumption that the yaw angle of the following vehicle will change locally along the working route in the same way as the yaw angle of the preceding vehicle, a temporal and / or local offset between a yaw angle change of the preceding vehicle and the following vehicle determine. This temporal and / or local offset can be taken into account by the control device when evaluating the detection state for generating the distance signal.
  • the control device advantageously has an input device with which data can be input into the control device and thus into the distance monitoring device.
  • the input device can include a keyboard, mouse, touchscreen, microphone and the like.
  • a distance value assigned to the reference distance can be entered in a predefined or selectable unit of measurement so that the temporal and / or local offset of yaw angle changes between the two vehicles of the work train can be calculated using the speed information of one of the vehicles and the distance value.
  • the input device can also be used to input into the control device which change in distance between the vehicles corresponds to a predetermined change in position of the detection area of the electromagnetic radiation on the sensor arrangement.
  • this information can also be stored in a data memory of the control device.
  • this information can also be determined taking into account data stored in a data memory for different orientations.
  • the distance monitoring device has a control device and that the first and / or the further vehicle has a pitch angle detection device which has a pitch angle of the respective vehicle, wherein at least one pitch angle detection device transmits a pitch angle signal, which contains information about the pitch angle of at least one vehicle, to the control device, wherein the control device transmits the distance signal in accordance with the detection state of the at least one sensor arrangement and in accordance with the pitch angle signal of the at least generated a pitch angle detection device.
  • the sensor arrangements on the target vehicle being arranged at a distance from one another in the circumferential direction around the yaw axis of the source vehicle, change when the relative yaw angle of the two vehicles of the work train changes the detection states of at least two sensor arrangements are in opposite directions when the two sensor arrangements are arranged on different sides of a vertical longitudinal plane through the radiation source that is parallel to the roll axis and the yaw axis of the target vehicle.
  • the detection states of such sensor arrangements change in the same direction.
  • the yaw angle signal and / or the pitch angle signal may be sufficient in principle for the yaw angle signal and / or the pitch angle signal to contain only information about a yaw angle or a pitch angle of the vehicle carrying the respective detection device, it is advantageous to avoid detection errors as comprehensively and precisely as possible, if the yaw angle signal contains information about the relative yaw angle between the source and target vehicle and / or that the pitch angle signal contains information about the relative pitch angle between the source and target vehicle.
  • one of one A change in the detection state caused by a change in the relative yaw angle can also be distinguished from a change in the detection state caused by a change in the relative pitch angle by at least two sensor arrangements located essentially at the same roll axis position, which are arranged on the same side of the vertical longitudinal plane, but at different distances from it.
  • a change in the relative yaw angle causes a change in the detection state that increases in amount.
  • this does not apply to a change in the relative pitch angle.
  • the distance signal is advantageously used to keep the distance between the vehicles of the work train in the predetermined target distance value range during a work operation. In this target distance value range, normal operation is usually safely possible.
  • the distance signal contains operating information about the operation of a drive motor and / or a vehicle brake of at least one of the vehicles.
  • the operating information can be information output to a driver of one of the vehicles to decelerate or accelerate his vehicle or to leave the vehicle speed unchanged.
  • the operating information can, however, also directly be control information for a vehicle control system in order to automate one of the vehicles, d. H. without the intervention of a human operator, to decelerate or accelerate and / or to set a certain driving speed.
  • the aim of such a control or regulation can be to keep the detection range of the sensor arrangement in a predetermined detection zone or, if necessary, to return it to this.
  • the detection zone is determined by a distance interval corresponding to the predetermined target distance value range.
  • history information about the change in the detection states and / or about the detection states in their temporal course can be stored in a data storage device.
  • the data storage device is preferred by a control device that of the distance monitoring device can be queried.
  • operational information can even be output that is used to establish an operating state with a distance between the vehicles of the work train located in the target distance value range when the sensor arrangement no longer detects the radiation from the radiation source, i.e. if the sensor arrangement is too large in terms of magnitude Change in distance is outside of the radiation room.
  • From the history information stored in the data storage device it is then possible to determine in which direction the detection area has left the sensor arrangement even without a detection signal on the sensor arrangement. Depending on this direction, it can be determined whether one of the vehicles has to be accelerated or decelerated in order to change the currently existing distance from a distance in the target distance value range.
  • the vehicles of a work train do not work independently of one another and, for example, there may be operational limits that must be complied with for a successful work operation, it is advantageous if the vehicles of the work train are in data communication with one another through a data communication connection in at least one data transmission direction, preferably bidirectional.
  • one of the two vehicles can use the data communication link to inform the other vehicle that it has reached a limit working speed and cannot accelerate or decelerate any further.
  • This can be particularly helpful for an automated setting of the distance between the vehicles of a vehicle platoon.
  • a vehicle consisting of the source vehicle and the target vehicle as the lead vehicle specifies a movement speed of the work train along the working direction and that the distance signal is output to the other vehicle from the source vehicle and the target vehicle as the following vehicle.
  • that vehicle is the lead vehicle or master vehicle whose change in operating parameters has a more critical effect on the work result than a change in operating parameters of the respective other vehicle, which is then consequently the follower vehicle.
  • the first vehicle is a soil cultivating machine that applies material to the ground
  • the further vehicle is a delivery vehicle that transfers material intended for application to the first vehicle.
  • the soil cultivation machine usually a road paver
  • the lead vehicle since changes in the operating parameters of this vehicle have a direct impact on the quality of the soil generated, such as B. Flatness or freedom from elevations and depressions. Since changes to the operating parameters of the delivery vehicle have less critical effects on the work result of the work train, the delivery vehicle is then the follower vehicle.
  • the delivery vehicle can be a feeder or it can be a transport truck or it can be a recycler who removes the ground immediately in front of a road paver as the lead vehicle, processes removed material and transfers it to the paver for rebuilding.
  • the soil cultivation machine that directly constructively brings about the work result is preferably the lead vehicle and even if the other vehicle of the work train is also a soil cultivation machine, this soil cultivation machine is the following vehicle when it contributes not directly, but only indirectly, to the work result of the work train.
  • the above-mentioned control device of the distance monitoring device is preferably arranged on the following vehicle, so that the distance signal from the distance monitoring device is present directly on the vehicle, on its control the distance signal should influence.
  • the lead vehicle can then work with the best possible operating parameters for the given work order and the follower vehicle is based on the lead vehicle.
  • the distance signal on the following vehicle is used directly to control the speed of the following vehicle in order to maintain a predetermined target distance between the vehicles within the predetermined target distance value range as precisely as possible.
  • the sensor arrangement is preferably also arranged on the following vehicle, while the radiation source is preferably arranged on the lead vehicle.
  • the radiation source is preferably arranged on the lead vehicle.
  • data communication between the leading vehicle and the following vehicle can be minimized. Only when the following vehicle, such as a recycler, has reached its maximum speed, is it advantageous if the following vehicle indicates this to the lead vehicle so that it does not increase its speed any further, although this would be possible according to the basic conditions of the respective construction site.
  • the source vehicle is preferably the leading vehicle and the target vehicle is preferably the following vehicle.
  • the following vehicle does not necessarily follow the lead vehicle. Especially in the preferred example of a road paver as the soil cultivation machine of the first vehicle, the following vehicle will generally lead the lead vehicle in the working direction.
  • the work train 10 comprises a first vehicle 12 and a further vehicle 14.
  • the first vehicle 12 is, for example, a road paver
  • the further vehicle 14 is a recycler. Both vehicles 12 and 14 are therefore tillage machines.
  • the work train 10 moves in a work direction A, which is parallel to the drawing planes of the Figs. 1 to 4 is oriented. Since the vehicles 12 and 14 are ground-based vehicles, the working direction A is also oriented parallel to the ground U on which the vehicles 12 and 14 stand.
  • the other vehicle 14 for example the recycler, removes material from the ground with a work device 16 comprising a milling drum and prepares the removed underground material by adding binding agents so that recycled underground material 17 is transported via a conveyor belt 18 from the further vehicle 14 into the bunker 20 of the first vehicle 12 is promoted.
  • a work device 16 comprising a milling drum
  • binding agents so that recycled underground material 17 is transported via a conveyor belt 18 from the further vehicle 14 into the bunker 20 of the first vehicle 12 is promoted.
  • the material present in the bunker 20 is built into a solid base by the paver 12.
  • the subsurface U is prepared by the recycler 14 for the pavement to be built up by the paver 12.
  • the paver 12 works constructively and immediately creates the work result desired by the work train 10.
  • the subsurface U in working direction A between the two vehicles 12 and 14 is to be used as the reference subsurface, which forms a uniform reference surface or reference plane for both vehicles 12 and 14.
  • Vehicles 12 and 14 are in the in Fig. 1 Reference state shown in the working direction A at a distance D from each other.
  • the paver 12 Since the paver 12 directly influences the work result of the work train 10, while changes in the operating parameters of the recycler 14 only indirectly influence the work result of the work train 10, the paver 12, i.e. the first vehicle 12, is the lead vehicle in the present example, which determines the speed of the work train 10 essentially pretends.
  • the recycler 14 is accordingly the following vehicle, the speed of which in the working direction A is based on the specifications of the leading vehicle 12 within predetermined limits.
  • An operator's platform 22 of the paver 12 is manned by an operator.
  • An operator's platform 24 of the recycler 14 can be manned by an operator, and this is usually also the case for reasons of occupational safety.
  • at least the feed speed of the recycler 14 in the working direction A can be controlled automatically as a function of the feed speed of the paver 12 and a vehicle distance interval to be observed between the vehicles 12 and 14.
  • the vehicle distance D should lie within predetermined limits in a predetermined target distance value range, so that, for example, recycled underground material 17 thrown off the conveyor belt 18 safely only reaches the bunker 20 of the paver 12 reached.
  • the conveying device for conveying recycled underground material 17 from the recycler 14 to the paver 12 can differ from that in the Figures 1 to 6 only roughly schematically shown conveyor belt promotion by another means of funding.
  • the work train 10 To monitor the vehicle distance D, the work train 10 has a distance monitoring device 26.
  • This comprises a laser beam source 28 and two sensor arrangements 30 arranged at a distance from one another along the pitch axis N2 of the recycler 14 Figs. 1 to 4 only the sensor arrangement 30 which is closer to the viewer is shown in each case.
  • the further sensor arrangement 30 located behind it is covered by what is shown.
  • the laser beam source 28 emits a laser beam 32, which in the in Fig. 1
  • the reference state shown here reaches the sensor arrangement 30 only in a central detection area 34.
  • the sensor arrangement 30 extends along a sensor axis 36 and has a plurality of sensor elements sensitive to the light of the laser beam 32, one after the other, along this sensor axis 36. Exemplary in Fig. 1 only the sensor element 38 located in the detection area 34 is shown.
  • the laser beam source 28 is either a rotating laser, which can be shaded in radiation areas that are not required for occupational safety reasons, or is a source of an oscillating laser beam 32 which only covers a predetermined angular range (see second angular range 46 in Fig. 5 ) illuminates.
  • the orthogonal spatial beam axis 42 extends over a very small first angular range 43 which essentially only corresponds to the thickness of the laser beam 32.
  • the laser beam 32 sweeps over a second beam space axis 44, compared with the first angular range 43 around the first ray space axis 42, a very large second angular range 46 (see Fig. 5 and 6th ).
  • the second angular range 46 is so large that the two sensor arrangements 30 of the recycler 14 can be reliably reached by the laser beam 32 in the entire target distance value range of the vehicle distance D.
  • the illustration of the second angular range 46 is in FIG Fig. 5 and 6th only roughly schematically.
  • the first radiation space axis 42 is parallel to the pitch axis N1 of the paver 12.
  • the second radiation space axis 44 is parallel to a plane spanned by the yaw axis G1 and the roll axis R1 of the paver 12.
  • the beam space 40 is inclined about the first beam space axis 42 with respect to the working direction A.
  • the sensor axis 36 is also inclined with respect to a tilt axis 48 which is preferably parallel to the first radiation space axis 42.
  • the sensor axis 36 runs parallel to a plane spanned by the yaw axis G2 and the roll axis R2 of the recycler 14.
  • the inclination of the sensor arrangement 30 about the inclination axis 48 is preferably such that the sensor axis 36 in the in Fig. 1
  • the reference state shown is oriented orthogonally to the laser beam 32 impinging on the sensor arrangement 30.
  • the sensor axis 36 and the second spatial radiation axis 44 are thus preferably parallel to one another in the exemplary embodiment. This arrangement results in a high sensitivity of the sensor arrangement 30 to a change in the vehicle distance D with a large sensing range at the same time.
  • Fig. 5 is a straight connecting line 33 between the laser light source 28 and the detection area 34 of FIG Fig. 1 shown sensor arrangement 30 is shown.
  • the illustration of the connecting straight line 33 is in the side views of FIG Figs. 1 to 3 identical to the representation of the first angular range 43 or to the representation of the laser beam 32.
  • the sensor axis 36 preferably runs parallel to a straight line of intersection of a plane orthogonal to the connecting straight line 33 on the one hand and parallel to a plane containing the roll axis R2 and the yaw axis G2 of the further vehicle 14 on the other hand.
  • the sensor axis then runs orthogonally to the connecting straight line 33 and is nevertheless inclined only about the tilt axis 48 parallel to the pitch axis N2 of the further vehicle 14.
  • the laser beam source 28 on the machine body 12a of the paver 12 can be adjusted about an adjustment axis 50 on the paver side by a preferably electromotive actuator 52.
  • the setting axis 50 on the paver side is parallel to the first radiation space axis 42 and is also parallel to the pitch axis N1 of the first vehicle 12 (paver).
  • its orientation relative to the vehicle body 14a of the further vehicle 14 can be changed about an adjustment axis 54 on the recycler side by means of a preferably electromotive actuator 56.
  • the recycler-side adjustment axis 54 is parallel to the pitch axis N2 of the recycler 14 and is also parallel to the tilt axis 48 of the sensor arrangement 30.
  • a Cartesian tripod is shown above the respective vehicle with the vehicle's own coordinate axes: roll axis R, pitch axis N and yaw axis G.
  • the axes of the first vehicle 12 also have the number 1
  • the corresponding coordinate axes of the second vehicle 14 also have the number 2.
  • the yaw axes G1 and G2 of the first and second vehicles 12 and 14 are parallel to one another, as are the pitch axes N1 and N2 and the roll axes R1 and R2.
  • the distance monitoring device 26 has a control device 58, which is arranged, for example, on the recycler 14, which is not only the following vehicle, but also the target vehicle because of the arrangement of the sensor arrangement 30 thereon.
  • the control device 58 can send a distance signal with information about the vehicle distance Output D.
  • the distance signal can be displayed via a data line on a display device 60 in the operator's platform 24 of the recycler 14 as operating information.
  • the display device 60 can be used to indicate to a machine operator in the control station 24 that he should accelerate the recycler 14 in the working direction A if the vehicle distance D is too small, decelerate it if the vehicle distance D is too great or leave the vehicle speed unchanged if the vehicle distance D fits.
  • control device 58 can also output the distance signal to traction motors 62 and 64 of the recycler 14 and accelerate or decelerate them depending on the detection state of the sensor arrangement 30 or continue to operate them at the existing drive speed.
  • the output of the distance signal to the traction motors 62 and 64 is equivalent to an output to a motor control device or central control device which is designed and provided separately from the control device 58 and controls the traction motors 62 and 64.
  • the control device 58 can also be the central control device of the recycler 14.
  • the simplest type of distance monitoring by the distance monitoring device 26 functions in this way. It is particularly advantageous that this type of distance monitoring of the vehicle distance D functions without any data communication between the first vehicle 12 and the second vehicle 14. Thus, a distance control or regulation can only be implemented in the following vehicle: here recycler 14, without any need for any feedback to the lead vehicle, here: paver 12.
  • the work train 10 with the distance monitoring device 26 functions in the manner described above, its functionality can nonetheless be expanded.
  • the following and target vehicle 14 can thus have a transmitting / receiving unit 66, which can also be controlled via the control device 58.
  • the transceiver unit 66 is used to exchange data with a transceiver unit 68 on the source and guide vehicle 12.
  • a control device 70 can also be provided on the paver 12, by means of which the transmitter / receiver unit 68 on the paver side can be controlled.
  • the control device 70 of the paver 12 can have a data output unit 72 with which data can be output, in particular displayed, to an operator in the control stand 22.
  • the transmitting / receiving units 66 and 68 the two vehicles 12 and 14 can exchange data between them.
  • the data communication can be unidirectional, but is preferably bidirectional. If it is unidirectional, the communication preferably takes place from the following vehicle 14 to the leading vehicle 12.
  • the recycler 14 can have a yaw angle sensor 74 and a pitch angle sensor 76. Both sensors are connected to the control device 58 of the paver 14 for data transmission.
  • the paver 12 as the lead vehicle, can have a yaw angle sensor 78 and a pitch angle sensor 80, which are also each connected to their control device 70 in terms of data transmission.
  • Fig. 2 is the work train 10 of Fig. 1 shown with enlarged vehicle distance D '. It can be seen that the detection area 34 ′ on the sensor arrangement 30, in which the laser beam 32 of the source vehicle 12 is detected, has shifted from the originally central detection area 34 to the upper longitudinal end with respect to the sensor axis 36. The laser light thus no longer radiates into the central sensor element 38, but only into an upper end sensor element 38 ′.
  • the control unit 58 can only use the relative displacement of the detection area 34 to 34 'to recognize that the vehicle distance D is different based on the reference distance of Fig. 1 has changed.
  • it can be stored in a data memory of the control device 58 that a displacement of the detection area 34 from a sensor-axially central detection area 34 to an upper end detection area 34 'means an increase in the vehicle distance.
  • the control device 58 can indicate on the display device 60 in the operator's platform 24 of the recycler 14 that the speed of the following vehicle 14 should be reduced and / or can directly control the traction motors 62 and 64 in the sense of slowing the travel speed of the recycler 14 in working direction A.
  • Fig. 3 is the work train 10 of Fig. 1 with shortened vehicle distance D ".
  • the detection area 34" with which the laser beam 32 is received at the sensor arrangement 30 is now located at the lower sensor-axial end of the sensor arrangement 30.
  • a lower end sensor element 38 now receives the laser light, while the other sensor elements of the sensor arrangement 30 cannot be reached by the laser light from the laser beam source 28 and lie in a dark area.
  • the control device 58 recognizes from the position of the detection area 34 ′′ that the distance D ′′ between the vehicles 12 and 14 has decreased or has even reached a lower limit value.
  • the control device 58 can output a signal to the display device 60 in the control stand 24 which prompts a vehicle driver in the control stand 24 to accelerate the recycler 14 in the working direction A and / or the control device 58 can control the traction motors 62 and 64 of the recycler 14 in the sense of a Control speed increase.
  • control device 58 transmits a corresponding signal via the transmitting / receiving unit 66 to the transmitting / receiving unit 68 of the paver 12, where the local control device 70 indicates to the machine operator in the operator's platform 22 on the data output unit 72 that the paver 12 is not producing any faster may or should even reduce its working speed in working direction A.
  • the recycler 14 Since the recycler 14 is the following vehicle and its speed in the working direction A is based on the speed of the paver 12 in the working direction A, when the recycler 14 has reached its maximum speed in the working direction A and the distance D between the vehicles 12 and 14 further shortened, this distance can only be increased again by control interventions on the paver 12.
  • Fig. 4 is the work train 12 of Fig. 1 shown when driving over a dome.
  • the background U is around one to the plane of the drawing Fig. 4 orthogonal axis of curvature curved.
  • Fig. 4 shows that the change in the detection state of the sensor arrangement 36 corresponds to an increase in the vehicle distance D, although the vehicle distance D has actually not changed.
  • the control device 58 on the recycler 14 can detect that the pitch angle of the recycler 14 has changed in an absolute coordinate system. On the basis of the travel speed of the recycler 14 in the working direction A known to the control device 58, the control device 58 can thus determine when the paver 12 will also understand the same change in orientation about its pitch axis N1.
  • the control device 58 can thus recognize on the basis of a pitch angle signal from the pitch angle sensor 76 that the change of the detection state on the sensor arrangement 30 is not due to a change in the vehicle distance D, but to a change in the relative orientation of the two vehicles 12 and 14 about a change axis parallel to the pitch axis, the control device 58 being able to calculate in advance by measuring the time and by measuring the speed of the recycler 14 the coordinate systems of the two vehicles 12 and 14 again have three spatial axes parallel to one another.
  • the control device 58 of the recycler 14 alone can assess, without data exchange with the paver 12, whether a displacement of the detection area 34 along the sensor axis 36 is due to a change in distance or to a terrain formation. This is based on the fact that both vehicles 12 and 14 travel the same route one after the other with a time offset.
  • the pitch angle sensor 80 on the paver 12 can also be used, and its pitch angle signal can be transmitted via the transmitter / receiver unit 68 to the transmitter / receiver unit 66 of the recycler 14. From the pitch angle information of both vehicles 12 and 14, the control device 58 can calculate a relative pitch angle of the two vehicles 12 and 14 to one another and thus directly determine whether the two coordinate systems are rotated relative to one another about their pitch axes N1 and N2 or not. An evaluation of the detection result of the sensor arrangement 30 can thus be carried out with even greater accuracy.
  • Fig. 5 is the work train 10 of Fig. 1 shown from above in plan view.
  • the second sensor arrangement 30 can be seen here, which however completely corresponds to the sensor arrangement 30 explained so far.
  • Identical and functionally identical components and component sections as in the already explained sensor arrangement 30, that is in FIG Fig. 5 the lower sensor assembly 30 are shown in FIGS Fig. 5 and 6th also assigned to the second, upper sensor arrangement.
  • the explanations given for the sensor arrangement 30 apply to both sensor arrangements 30.
  • a dashed sector line indicates the detection areas 34 on both sensor arrangements 30 when driving straight ahead.
  • the two vehicles 12 and 14 can have an offset in the direction of the pitch axis in the direction of their roll axes R1 and R2, which are parallel in the reference state.
  • the Fig. 5 shows that when driving straight ahead, the detection areas 34 on both sensor devices 30 are approximately in the same sensor-axial area.
  • Fig. 6 the beginning of a cornering of the work train along a right-hand bend is shown as an example.
  • the recycler 14 has already turned into the right-hand bend, the paver 12 not yet. Accordingly, with the vehicle distance between the vehicles 12 and 14 unchanged, the detection areas of the two sensor arrangements 30 have shifted along the respective sensor axes 36. Because of the inclination of the beam space 40 about the first beam space axis 42 parallel to the pitch axis N1 of the paver 12, the displacement takes place in opposite directions at different yaw angles of the vehicles 12 and 14.
  • the detection area 34 is the one shown in FIG Fig. 6 upper sensor arrangement 30 based on the state of Fig.
  • Such a detection state can basically have two causes: On the one hand, the in Fig. 6 The cornering shown and, on the other hand, a terrain formation in which the two vehicles 12 and 14 are rotated relative to one another about an axis parallel to their two initially parallel roll axes R1, R2.
  • the control device 58 can determine that the is opposite to that of Fig. 5
  • the changed detection state is based on a change in the yaw angle of the recycler 14 and not on a change in distance or on a rotation around the roll axis.
  • a roll angle sensor can be provided on one or both vehicles 12 and 14. However, since cornering is a much more frequent operating situation than driving around a lane that is twisted in the working direction, the arrangement of a yaw angle sensor is preferred.
  • information of the same value can alternatively or additionally be obtained by recording machine data over a common period of time and evaluating the same, for example by recording steering angles, driving speed and time and / and driving distance, and the position of individuals Lifting columns, by means of which the distance of the respective vehicle body relative to the chassis connected to the lifting column and thus to the contact surface of the floor area on which the respective chassis rests can be determined.
  • the control device 58 would only be able to detect a change in the detection state at the beginning of a cornering, which change cannot be distinguished from a change in distance without additional information.
  • the second sensor arrangement at a distance along the pitch axis N2 from the first on different sides of a plane parallel to the roll axis and the yaw axis of the recycler 14, which in the reference state of the work train 10 passes through the laser beam source 28, the above-described contradiction in the change in the detection state can occur Cornering provoked and thus cornering can be recognized by the sensor arrangements 30. The cornering can be recognized even more precisely by additional information from the yaw angle sensor 74.
  • yaw angle information from the paver side yaw angle sensor 78 can also be transmitted from the paver 12 to the recycler 14 and converted there by the control device 58 together with the yaw angle information from the yaw angle sensor 74 into relative yaw angle information for the two vehicles 12 and 14 relative to one another. This provides the most accurate way of to assess the detection state of the at least one sensor arrangement 30 with regard to a change in the vehicle distance D.

Description

Die vorliegende Erfindung betrifft einen Arbeitszug, umfassend eine selbstfahrende Bodenbearbeitungsmaschine als ein erstes Fahrzeug und wenigstens ein weiteres selbstfahrendes Fahrzeug, wobei die Fahrzeuge des Arbeitszuges dazu ausgebildet sind, sich während eines bestimmungsgemäßen Arbeitsbetriebs mit einem in einem vorbestimmten Soll-Abstandswertebereich gelegenen Soll-Abstand hintereinander in eine gemeinsame Arbeitsrichtung zu bewegen, wobei der Arbeitszug eine Abstandsüberwachungseinrichtung aufweist, welche nach Maßgabe eines von einem tatsächlichen Ist-Abstand der Fahrzeuge abhängigen Erfassungszustands der Abstandsüberwachungseinrichtung ein Abstandssignal ausgibt, das eine Information über den Fahrzeugabstand enthält, wobei die Abstandsüberwachungseinrichtung eine elektromagnetische Strahlung aussendende Strahlenquelle und eine für die elektromagnetische Strahlung der Strahlenquelle sensitive Sensoranordnung aufweist, wobei ein Fahrzeug aus dem ersten und dem weiteren Fahrzeug als Quellenfahrzeug die Strahlenquelle mitführt, wobei dann, wenn sich der Arbeitszug in einem vorbestimmten Bezugszustand, d. h. auf einem ebenen horizontalen Untergrund mit in einem vorbestimmten Bezugsabstand voneinander entfernt arbeitsbetriebsbereit angeordneten Fahrzeugen, befindet, die Strahlenquelle in Richtung zu dem jeweils anderen Fahrzeug aus dem ersten und dem weiteren Fahrzeug als einem Zielfahrzeug eine elektromagnetische Strahlung derart gerichtet abstrahlt, dass die elektromagnetische Strahlung zur Abstandsüberwachung nur in einem Strahlenraum vorhanden ist, welcher sich über einen ersten Winkelbereich um eine erste Strahlenraumachse sowie über einen zweiten Winkelbereich um eine mit der ersten Strahlenraumachse einen Winkel einschließende zweite Strahlenraumachse erstreckt, wobei der zweite Winkelbereich betragsmäßig gleich groß ist wie oder größer ist als der erste Winkelbereich und wobei der Strahlenraum bezüglich der Arbeitsrichtung um die erste Strahlenraumachse geneigt ist.The present invention relates to a work train, comprising a self-propelled soil cultivation machine as a first vehicle and at least one further self-propelled vehicle, the vehicles of the work train being designed to move one after the other with a target distance located in a predetermined target distance value range during normal operation to move a common working direction, the work train having a distance monitoring device which, in accordance with a detection state of the distance monitoring device that is dependent on an actual actual distance of the vehicles, outputs a distance signal containing information about the vehicle distance, the distance monitoring device being a radiation source emitting electromagnetic radiation and has a sensor arrangement that is sensitive to the electromagnetic radiation of the radiation source, a vehicle comprising the first and the further vehicle g carries the radiation source as the source vehicle, with the radiation source in the direction of the other vehicle from the first when the work train is in a predetermined reference state, i.e. on a flat horizontal surface with vehicles ready for operation at a predetermined reference distance from one another and the further vehicle as a target vehicle emits electromagnetic radiation in a directed manner in such a way that the electromagnetic radiation for distance monitoring is only present in a radiation space which extends over a first angular range around a first radiation space axis and over a second angular range around an angle with the first radiation space axis enclosing second radiation space axis, wherein the second angular range is equal in magnitude to or is greater than the first angular range and wherein the radiation space with respect to the working direction about the first radiation space axis ge tends is.

Ein solcher Arbeitszug ist aus der US 2018/0142427 A1 , insbesondere aus deren Figur 6 bekannt. Die Bodenbearbeitungsmaschine ist darin ein Straßenfertiger, nachfolgend auch kurz als "Fertiger" bezeichnet. Das weitere Fahrzeug ist ein den Fertiger während dessen Betrieb mit Asphalt beladender Beschicker.Such a work train is from the US 2018/0142427 A1 , especially from their Figure 6 famous. The soil cultivation machine is a road paver, hereinafter also referred to as a "paver" for short. The other vehicle is a feeder that loads the paver with asphalt while it is in operation.

An dem bekannten Beschicker ist eine LED-Lichtquelle angeordnet, welche Licht in einem vertikal schmalen, einen Öffnungswinkel von 6° nicht überschreitenden, und horizontal in etwa sich über die Breite des Fertigers erstreckenden Strahlenraum zum Fertiger ausstrahlt.An LED light source is arranged on the known feeder, which emits light to the paver in a vertically narrow beam space which does not exceed an opening angle of 6 ° and which extends horizontally approximately over the width of the paver.

Vom Fertiger reflektiertes Licht der LED-Lichtquelle wird von einer Sensoranordnung am Beschicker erfasst. Aus der Laufzeit des Lichts von der LED-Quelle zum Fertiger und zurück zur Sensoranordnung wird der Abstand zwischen dem Beschicker und dem Fertiger betragsmäßig errechnet und ein diese Abstandsinformation enthaltendes Abstandssignal am Beschicker zur Unterstützung der Bewegungssteuerung des Arbeitszuges ausgegeben.Light from the LED light source reflected by the paver is detected by a sensor arrangement on the feeder. From the transit time of the light from the LED source to the paver and back to the sensor arrangement, the amount of the distance between the feeder and the paver is calculated and a distance signal containing this distance information is output to the feeder to support the movement control of the work train.

Nachteilig an diesem Arbeitszug ist zum einen der hohe Aufwand, der zur Abstandsmessung betrieben werden muss. Es muss nämlich eine zur Abstandsrichtung zwischen Fertiger und Beschicker möglichst orthogonale und ebene Fläche am Beschicker bestrahlt werden, denn vorspringende und zurückgesetzte Strukturen sowie unterschiedlich geneigte Oberflächenbereiche am bestrahlten Bereich des Fertigers können unerwünschte Signalstörungen verursachen oder das zur Laufzeitbestimmung benötigte reflektierte Licht "verrauschen".The disadvantage of this work train is, on the one hand, the great effort that has to be made to measure the distance. A surface on the feeder that is as orthogonal and even as possible to the direction of the distance between the paver and the feeder must be irradiated, because protruding and recessed structures as well as differently inclined surface areas on the irradiated area of the paver can cause unwanted signal interference or "noisy" the reflected light required to determine the transit time.

Zum anderen muss zur Ermittlung von Laufzeiten des Lichts aufwendig moduliertes Licht von der bekannten LED-Lichtquelle abgestrahlt werden, damit Laufzeiten überhaupt erkennbar werden.On the other hand, in order to determine the transit times of the light, complex modulated light must be emitted by the known LED light source so that transit times can be recognized at all.

Gerade in stark schmutzbelasteter Baustellenumgebung mit zusätzlicher thermischer Belastung, auch Wechselbelastung, der am Arbeitszug beteiligten Fahrzeuge ist daher eine weniger komplexe und daher robustere, aber im Ergebnis wenigstens ebenso genau arbeitende Lösung zur Abstandsüberwachung der Fahrzeuge des Arbeitszuges wünschenswert.Particularly in a construction site environment with a heavy load of dirt with additional thermal loads, including alternating loads, the vehicles involved in the work train are therefore less complex and therefore more robust, but at least as a result accurate solution for distance monitoring of the vehicles of the work train desirable.

Es ist daher Aufgabe der vorliegenden Erfindung, einen Arbeitszug der eingangs genannten Art so weiterzuentwickeln, dass der zwischen seinen Fahrzeugen einzuhaltende Abstand mit einfachen, störungsunanfälligen Mitteln überwacht werden kann. Der Abstand soll weiterhin ohne mechanisch-körperliche Kopplung der Fahrzeuge eingehalten werden können.It is therefore the object of the present invention to further develop a work train of the type mentioned at the outset in such a way that the distance to be maintained between its vehicles can be monitored using simple, trouble-free means. It should still be possible to maintain the distance without mechanical-physical coupling of the vehicles.

Diese Aufgabe löst die vorliegende Erfindung mit einem Arbeitszug, wie er eingangs der vorliegenden Anmeldung beschrieben ist, bei welchem zusätzlich die Sensoranordnung sich längs einer Sensorachse erstreckt und am Zielfahrzeug zur Mitführung durch dieses angeordnet ist, wobei - bei Betrachtung des Arbeitszuges im Bezugszustand - ein vorbestimmter sensoraxialer Bezugserfassungsbereich an der Sensoranordnung von der Strahlenquelle bestrahlt wird, und wobei die Sensorachse relativ zu einer Verbindungsgeraden zwischen dem Erfassungsbereich und der Strahlenquelle um eine zur ersten Strahlenraumachse parallele Neigeachse geneigt, also nicht-parallel, angeordnet ist, so dass eine Veränderung des Fahrzeugabstands zu einer Lageänderung des von der Strahlenquelle bestrahlten Erfassungsbereichs an der Sensoranordnung längs der Sensorachse und somit zu einer Änderung des Erfassungszustands der Sensoranordnung führt. Die Sensorachse kann, muss aber nicht, um eine weitere Achse geneigt sein.This object is achieved by the present invention with a work train as described at the beginning of the present application, in which the sensor arrangement also extends along a sensor axis and is arranged on the target vehicle to be carried along by it, with a predetermined one - when viewing the work train in the reference state sensor-axial reference detection area on the sensor arrangement is irradiated by the radiation source, and wherein the sensor axis is inclined relative to a straight line connecting the detection area and the radiation source about a tilt axis parallel to the first radiation area axis, that is, non-parallel, so that a change in the vehicle distance to a Change in position of the detection area irradiated by the radiation source on the sensor arrangement along the sensor axis and thus leads to a change in the detection state of the sensor arrangement. The sensor axis can, but does not have to, be inclined about a further axis.

Die Erfassung der von der Strahlenquelle abgestrahlten elektromagnetischen Strahlung durch die Sensoranordnung erfolgt bevorzugt im direkten Strahlengang, d. h. ohne vorherige Reflexion an einer Fahrzeugoberfläche. Aufgrund der angegebenen Neigungen sowohl des Strahlenraums als auch der sich im Bezugszustand wenigstens abschnittsweise im Strahlenraum befindenden Sensoranordnung führt eine Änderung des Abstands zwischen den Fahrzeugen des Arbeitszugs ausgehend vom Bezugsabstand oder von einem beliebigen anderen Startabstand zu einer Verlagerung des von der Strahlenquelle bestrahlten Erfassungsbereichs der Sensoranordnung längs deren Sensorachse. Diese Änderung ist richtungssensitiv, d. h. sie erfolgt ausgehend von einem zunächst bestrahlten Erfassungsbereich bei Verkürzung des Fahrzeugabstands an der Sensoranordnung in stets gleicher Richtung und bei Vergrößerung des Fahrzeugabstands in stets gleicher entgegengesetzter Richtung.The detection of the electromagnetic radiation emitted by the radiation source by the sensor arrangement is preferably carried out in the direct beam path, ie without prior reflection on a vehicle surface. Due to the specified inclinations of both the radiation room and the sensor arrangement located at least in sections in the radiation room in the reference state, a change in the distance between the vehicles of the work train starting from the reference distance or from any other starting distance leads to a longitudinal displacement of the detection area of the sensor arrangement irradiated by the radiation source their sensor axis. This change is direction-sensitive, ie it takes place starting from an initially irradiated detection area with a shortening of the Vehicle distance on the sensor arrangement always in the same direction and, when the vehicle distance is increased, in always the same opposite direction.

Bei einem einmal eingerichteten Arbeitszug, bei welchem die Strahlenquelle im Bezugszustand einen vorbestimmten Erfassungsbereich der Sensoranordnung bestrahlt, während vorzugsweise ein sensoraxial auf wenigstens einer Seite des bestrahlten Erfassungsbereichs gelegener Dunkelbereich der Sensoranordnung nicht bestrahlt wird, kann - und wird vorzugsweise - die Abstandsüberwachung ohne betragsmäßige Berechnung des Abstands alleine auf Grundlage der Lage des bestrahlten Erfassungsbereichs an der Sensoranordnung relativ zu einer Bezugslage durchgeführt werden.In the case of a work train that has been set up once, in which the radiation source in the reference state irradiates a predetermined detection area of the sensor arrangement, while a dark area of the sensor arrangement located axially on the sensor axis on at least one side of the irradiated detection area is not irradiated, the distance monitoring can - and preferably is - the distance monitoring without calculating the amount Distance can be carried out solely on the basis of the position of the irradiated detection area on the sensor arrangement relative to a reference position.

Mit "sensoraxial" ist zum Ausdruck gebracht, dass es sich das Adjektiv "axial" auf die Sensorachse bezieht. Es ist gleichbedeutend mit "längs der Sensorachse"."Sensoraxial" is used to express that the adjective "axial" refers to the sensor axis. It is synonymous with "along the sensor axis".

Bevorzugt ist im Bezugszustand sensoraxial beiderseits des bestrahlten Erfassungsbereichs je ein Dunkelbereich der Sensoranordnung vorhanden, so dass bei Veränderung des Abstands ausgehend vom Bezugsabstand in beiden Richtungen der Erfassungsbereich einen zuvor nicht bestrahlten Bereich der Sensoranordnung bestrahlen kann und bevorzugt einen zuvor bestrahlten Bereich dann nicht mehr bestrahlt. Im Bezugszustand durchsetzt daher die Sensoranordnung vorzugsweise den Strahlenraum vollständig und ragt in Durchsetzungsrichtung, also längs ihrer Sensorachse, beiderseits aus diesem heraus.In the reference state, there is preferably a dark area of the sensor arrangement on both sides of the irradiated detection area, so that when the distance changes from the reference distance in both directions, the detection area can irradiate a previously non-irradiated area of the sensor arrangement and preferably no longer irradiate a previously irradiated area. In the reference state, the sensor arrangement therefore preferably completely penetrates the radiation space and protrudes out of it on both sides in the penetration direction, that is to say along its sensor axis.

Weiterhin bevorzugt kann die Sensoranordnung sensoraxial aufeinanderfolgend eine Mehrzahl von für die elektromagnetische Strahlung der Strahlenquelle sensitive Sensorelemente aufweisen, so dass abhängig von der sensoraxialen Position des Erfassungsbereichs unterschiedliche Sensorelemente mit der elektromagnetischen Strahlung der Strahlenquelle bestrahlt werden, bzw. nicht bestrahlt werden, wenn sie im Dunkelbereich des jeweiligen Erfassungszustands gelegen sind.Furthermore, the sensor arrangement can have a plurality of sensor elements sensitive to the electromagnetic radiation of the radiation source one after the other, so that, depending on the sensor-axial position of the detection area, different sensor elements are irradiated with the electromagnetic radiation of the radiation source or are not irradiated if they are in the dark area of the respective detection status.

Der Bezugsabstand liegt bevorzugt in dem Soll-Abstandswertebereich, besonders bevorzugt jeweils mit Abstand, vorzugsweise mit gleichem Abstand, zu den beiden Rändern des Soll-Abstandswertebereichs.The reference distance is preferably in the setpoint distance value range, particularly preferably at a distance, preferably at the same distance, from the two edges of the setpoint distance value range.

Für die Bemessung des Abstandes ist es grundsätzlich gleichgültig, anhand welcher Bezugspunkte an den beiden Fahrzeugen des Arbeitszuges der Abstand bestimmt wird, solange nur dieser für einen gegebenen Arbeitszug stets anhand der gleichen Bezugspunkte bestimmt wird.For the measurement of the distance, it is basically irrelevant which reference points on the two vehicles of the work train are used to determine the distance, as long as this is always determined for a given work train using the same reference points.

Die Arbeitsrichtung ist somit wenigstens bei gemeinsamer Geradeausfahrt auch die Abstandsrichtung. Sofern sich die beiden Fahrzeuge des Arbeitszuges, etwa wegen Kurvenfahrt, oder wegen Überfahren einer Kuppe oder Durchfahren einer Mulde lokal in unterschiedliche Raumrichtungen bewegen, ist im Zweifelsfall die Arbeitsrichtung die kürzeste Verbindung zwischen den Bezugspunkten zur Abstandsbestimmung bei Geradeausfahrt. Die beiden Bezugspunkte befinden sich in gleicher Höhe über dem Untergrund, auf welchem sich die beiden Fahrzeuge des Arbeitszugs bewegen, so dass die Arbeitsrichtung in einem Bezugszustand, in welchem der Arbeitszug mit einem vorbestimmten Bezugsabstand auf einem ebenen Untergrund aufsteht, parallel zur Aufstandsebene des Untergrundes verläuft.The working direction is thus also the distance direction, at least when driving straight ahead together. If the two vehicles of the work train move locally in different spatial directions, for example because of cornering or because of driving over a hilltop or driving through a hollow, the working direction is the shortest connection between the reference points for determining the distance when driving straight ahead. The two reference points are at the same height above the ground on which the two vehicles of the work train move, so that the working direction in a reference state in which the work train is standing on a flat surface with a predetermined reference distance runs parallel to the contact plane of the ground .

Da der Untergrund, auf dem der Arbeitszug aufsteht, wenigstens durch das erste Fahrzeug bearbeitet werden kann, können längs des Arbeitszugs mehr als eine Aufstandsebene bestehen. Dies gilt umso mehr, als auch das weitere Fahrzeug eine Bodenbearbeitungsmaschine sein kann. Im Zweifel ist der Untergrund und die durch ihn definierte Aufstandsfläche, wenn der Untergrund oder dessen Aufstandsfläche als Bezugsgröße dienen, der in Arbeitsrichtung zwischen den Fahrzeugen gelegene Untergrund bzw. die durch diesen definierte Oberfläche.Since the ground on which the work train stands can be worked on by at least the first vehicle, there can be more than one contact level along the work train. This is all the more true as the other vehicle can also be a tillage machine. In case of doubt, the subsurface and the contact area defined by it, if the subsoil or its contact area serve as a reference variable, is the subsoil located between the vehicles in the working direction or the surface defined by it.

Grundsätzlich funktioniert die oben beschriebene Abstandsüberwachung bereits mit einer einzigen Strahlenquelle am Quellenfahrzeug und mit einer einzigen Sensoranordnung am Zielfahrzeug des Arbeitszugs. Eine genauere und aussagekräftigere Information über den Abstand zwischen den Fahrzeugen des Arbeitszuges kann jedoch dann erhalten werden, wenn das Zielfahrzeug wenigstens zwei sich jeweils längs einer Sensorachse erstreckende Sensoranordnungen aufweist. In diesem Falle ist jede Sensorachse einer Sensoranordnung - bei Betrachtung des Arbeitszuges im Bezugszustand - relativ zu einer Verbindungsgeraden zwischen dem Erfassungsbereich und der Strahlenquelle um eine zur ersten Strahlenraumachse parallele Neigeachse geneigt angeordnet. In diesem Falle verändert sich der Erfassungszustand von mehreren Sensoranordnungen, vorzugsweise von allen Sensoranordnungen, bei Änderung des Abstands zwischen dem Quellen- und Zielfahrzeug. Die wenigstens zwei Sensoranordnungen sind dann bevorzugt in Umfangsrichtung um die zweite Strahlenraumachse mit Abstand voneinander angeordnet. Die Ausdehnung des Strahlenraums längs des zweiten Winkelbereichs dient dazu, einen möglichst großen Winkelbereich mit der Strahlung der Strahlenquelle zu bestrahlen bzw. zu beleuchten, so dass in diesem möglichst großen zweiten Winkelbereich an verhältnismäßig weit voneinander entfernt gelegenen Orten je eine Sensoranordnung am Zielfahrzeug angeordnet werden kann. Bevorzugt ist daher der zweite Winkelbereich größer als der erste Winkelbereich.In principle, the distance monitoring described above already works with a single radiation source on the source vehicle and with a single sensor arrangement on the target vehicle of the work train. More precise and more meaningful information about the distance between the vehicles of the work train can, however, be obtained if the target vehicle is at least two each having sensor arrangements extending along a sensor axis. In this case, each sensor axis of a sensor arrangement - when viewing the work train in the reference state - is inclined relative to a straight line connecting the detection area and the radiation source about a tilting axis parallel to the first radiation space axis. In this case, the detection state of a plurality of sensor arrangements changes, preferably of all sensor arrangements, when the distance between the source and target vehicle changes. The at least two sensor arrangements are then preferably arranged at a distance from one another in the circumferential direction around the second radiation space axis. The extension of the radiation space along the second angular range is used to irradiate or illuminate as large an angular range as possible with the radiation from the radiation source, so that in this largest possible second angular range, a sensor arrangement can be arranged on the target vehicle at locations that are relatively far apart . The second angular range is therefore preferably greater than the first angular range.

Durch möglichst große Entfernung zwischen wenigstens zwei Sensoranordnungen können Signale der jeweiligen Sensoranordnungen neben einer Erzielung einer Erfassungsredundanz auch herangezogen werden, um Änderungen von Erfassungszuständen, die ohne tatsächliche Abstandsänderung nur auf eine Änderung der relativen Orientierung der Fahrzeuge des Arbeitszuges zurückgehen, von auf tatsächlichen Abstandsänderungen beruhenden Änderungen des Erfassungszustands zu unterscheiden. Die Aussagekraft des Abstandssignals der Abstandsüberwachungseinrichtung wird dadurch erhöht.With the greatest possible distance between at least two sensor arrangements, signals of the respective sensor arrangements can also be used, in addition to achieving detection redundancy, to avoid changes in detection states that are based on actual changes in distance without changes in the relative orientation of the vehicles of the work train to distinguish the detection status. The informative value of the distance signal from the distance monitoring device is increased as a result.

Grundsätzlich kann die elektromagnetische Strahlung der Strahlenquelle eine beliebige Strahlung sein, so lange sie nur mit ausreichender Intensität auf einen verhältnismäßig kleinen ersten Winkelbereich begrenzt werden kann. Ein solcher erster Winkelbereich ist vorzugsweise nicht größer als 3° um die erste Strahlenraumachse. Eine nahezu überall verfügbare und gleichzeitig hochgenaue, weil lokal stark begrenzbare elektromagnetische Strahlung wird von einer Laserstrahlenquelle als Laserlicht abgestrahlt. Daher ist eine Laserstrahlenquelle als die oben genannte Strahlenquelle bevorzugt. Eine Laserstrahlenquelle kann über mehrere 10 Meter kohärentes Licht ausstrahlen und kann somit auch über mehrere 10 Meter nur einen Lichtpunkt erzeugen. Dabei übersteigt der Soll-Abstandswertebereich im Sinne einer lichten Weite zwischen den Arbeitszug-Fahrzeugen in der Regel Abstandswerte von 20 Metern nicht oder nur selten.In principle, the electromagnetic radiation from the radiation source can be any radiation as long as it can only be limited to a relatively small first angular range with sufficient intensity. Such a first angular range is preferably not greater than 3 ° around the first radiation space axis. Electromagnetic radiation that is available almost everywhere and, at the same time, is highly precise because it can be locally limited, is emitted as laser light by a laser beam source. Therefore, a laser beam source is preferred as the above-mentioned radiation source. A laser beam source can be coherent for several tens of meters Emit light and can therefore only generate one point of light over several tens of meters. The target distance value range in the sense of a clear width between the work train vehicles generally does not, or only rarely, exceeds distance values of 20 meters.

Bevorzugt ist der erste Winkelbereich auf die bloße Ausdehnung des Laserstrahls begrenzt, den die Laserstrahlenquelle als bevorzugte Strahlenquelle ausstrahlt. In diesem Falle ist der erste Winkelbereich deutlich kleiner als 3°.The first angular range is preferably limited to the mere extension of the laser beam which the laser beam source emits as the preferred radiation source. In this case, the first angular range is significantly smaller than 3 °.

Der zweite Winkelbereich kann zur Überstreichen eines möglichst großen Bereichs am Zielfahrzeug durch gezielte Ausrichtung des von der Strahlenquelle ausgestrahlten Laserstrahls bzw. der ausgestrahlten elektromagnetischen Strahlung erzeugt werden. Hierzu kann die Strahlenquelle einen um die zweite Strahlenraumachse oszillierenden oder rotierenden Laserstrahl ausstrahlen. Ein rotierender Laserstrahl kann aus Arbeitsschutzgründen in Umfangsbereichen um die zweite Strahlenraumachse, wo sicher keine Zielfahrzeugbestrahlung erfolgen wird, abgeschattet sein, um auf der Baustelle in der Umgebung des Arbeitszuges arbeitendes Personal vor einer Bestrahlung mit der elektromagnetischen Strahlung, insbesondere dem Laserstrahl, zu schützen.The second angular range can be generated in order to cover as large an area as possible on the target vehicle by targeted alignment of the laser beam emitted by the radiation source or the emitted electromagnetic radiation. For this purpose, the radiation source can emit a laser beam that oscillates or rotates about the second spatial axis of the radiation. For occupational health and safety reasons, a rotating laser beam can be shaded in circumferential areas around the second radiation space axis, where there will certainly be no target vehicle irradiation, in order to protect personnel working on the construction site in the vicinity of the work train from exposure to electromagnetic radiation, in particular the laser beam.

Zwar sind viele Fahrzeuge höher als breit, oder mit anderen Worten: Weisen längs ihrer Gierachse eine größere Erstreckung auf als längs ihrer Nickachse. Jedoch ist gerade bei einer Bodenbearbeitung nicht erwünscht, eine empfindliche Sensoranordnung in der Nähe des Untergrundes anzuordnen. Bevorzugt ist die Sensoranordnung mit Entfernung vom Untergrund am Zielfahrzeug angeordnet. Dies gilt auch für den Fall, dass mehr als eine Sensoranordnung am Zielfahrzeug vorgesehen ist. Eine vorteilhafte Anordnung einer Sensoranordnung, insbesondere von mehreren Sensoranordnungen in Richtung parallel zur Gierachse mit Abstand vom Untergrund des Zielfahrzeugs bei gleichzeitig großer Freiheit in der Anordnung der wenigstens einen Sensoranordnung in Richtung parallel zur Nickachse am Zielfahrzeug kann dadurch ermöglicht werden, dass die erste Strahlenraumachse zur Nickachse des Quellenfahrzeugs parallel ist oder/und dass die zweite Strahlenraumachse in einer oder parallel zu einer aus Gierachse und Rollachse des Quellenfahrzeugs aufgespannten Ebene gelegen ist.It is true that many vehicles are taller than they are wide, or in other words: they have a greater extent along their yaw axis than along their pitch axis. However, especially when working the soil, it is not desirable to arrange a sensitive sensor arrangement in the vicinity of the subsurface. The sensor arrangement is preferably arranged at a distance from the ground on the target vehicle. This also applies in the event that more than one sensor arrangement is provided on the target vehicle. An advantageous arrangement of a sensor arrangement, in particular of several sensor arrangements in the direction parallel to the yaw axis at a distance from the ground of the target vehicle with at the same time great freedom in the arrangement of the at least one sensor arrangement in the direction parallel to the pitch axis on the target vehicle can be made possible by the fact that the first beam space axis to the pitch axis of the source vehicle is parallel and / and that the second radiation space axis in a or is located parallel to a plane defined by the yaw axis and roll axis of the source vehicle.

Die zweite Strahlenraumachse kann dabei parallel zur Gierachse sein; dann wird ein von einer bevorzugten rotierenden oder oszillierenden Laserstrahlquelle ausgehender Laserstrahl einen Konusmantel oder einen Teil-Konusmantel beschreiben. Oder die zweite Strahlenraumachse ist sowohl zur Gierachse als auch zur Rollachse geneigt, dann kann der Strahlenraum besonders bevorzugt eine vom Laserstrahl aufgespannte Ebene bzw. im Falle eines oszillierenden Laserstrahls ein ebener Sektor sein. Dabei ist der Begriff der "Ebene" nicht im rein mathematischen Sinne zu verstehen. Die hier beschriebene Ebene hat eine Ausdehnung orthogonal zu ihrer ebenen Fläche, die der Dicke des Laserstrahls entspricht. Vorteilhaft kann eine Änderung des Erfassungszustands dann zuverlässig erfasst werden, wenn die Sensorachse wenigstens einer Sensoranordnung in einem kartesischen Fahrzeugkoordinatensystem aus Roll-, Nick- und Gierachse eine größere Erstreckungskomponente parallel zu der aus Gierachse und Rollachse des Zielfahrzeugs aufgespannten Ebene als orthogonal dazu aufweist.The second beam space axis can be parallel to the yaw axis; then a laser beam emanating from a preferred rotating or oscillating laser beam source will describe a conical surface or a partial conical surface. Or the second beam space axis is inclined both to the yaw axis and to the roll axis, then the beam space can particularly preferably be a plane spanned by the laser beam or, in the case of an oscillating laser beam, a flat sector. The term "level" is not to be understood in a purely mathematical sense. The plane described here has an extent orthogonal to its flat surface, which corresponds to the thickness of the laser beam. A change in the detection state can advantageously be reliably detected when the sensor axis of at least one sensor arrangement in a Cartesian vehicle coordinate system of roll, pitch and yaw axes has a greater extension component parallel to the plane spanned by the yaw axis and roll axis of the target vehicle than orthogonal to it.

Bevorzugt ist dabei die Sensoranordnung parallel zu der aus Gierachse und Rollachse des Zielfahrzeugs aufgespannten Ebene. Zusätzlich oder alternativ kann die wenigstens eine Sensoranordnung, vorzugsweise jede Sensoranordnung, mit ihrer Sensorachse orthogonal zu einer Abstandsgeraden zwischen der Sensoranordnung und der Strahlenquelle orientiert angeordnet sein. In diesem Falle weist die Sensoranordnung eine große Sensitivität im Falle einer Abstandsänderung bei gleichzeitig großem Sensierungsbereich auf.The sensor arrangement is preferably parallel to the plane defined by the yaw axis and roll axis of the target vehicle. Additionally or alternatively, the at least one sensor arrangement, preferably each sensor arrangement, can be arranged with its sensor axis oriented orthogonally to a straight line between the sensor arrangement and the radiation source. In this case, the sensor arrangement has great sensitivity in the event of a change in distance with a large sensing range at the same time.

Zur Erleichterung einer Justage der Abstandsüberwachungseinrichtung ist bevorzugt die Strahlenquelle oder/und ist bevorzugt die wenigstens eine Sensoranordnung relativ zu einem Fahrzeugkörper des sie jeweils tragenden Fahrzeugs beweglich an dem Quellenfahrzeug bzw. an dem Zielfahrzeug angeordnet.To facilitate adjustment of the distance monitoring device, the radiation source and / or the at least one sensor arrangement is preferably arranged movably on the source vehicle or on the target vehicle relative to a vehicle body of the vehicle carrying it.

Manchmal kann es sein, dass sich während eines Arbeitsbetriebs der Soll-Abstand oder/und der Soll-Abstandswertebereich zwischen Quellen- und Zielfahrzeug ändern soll, beispielsweise weil eines der beiden Fahrzeuge aus Quellen- und Zielfahrzeug gegen ein gleichwirkendes aber konstruktiv andersartig aufgebautes Fahrzeug ausgetauscht wird. In einem solchen Fall ist es vorteilhaft, wenn die jeweiligen Fahrzeugführer oder der einzige Fahrzeugführer im Falle einer automatisierten Abstandsregelung, seinen Fahrstand zur Einrichtung der Abstandsüberwachungseinrichtung auf die neue Betriebssituation nicht verlassen muss. Zu diesem Zweck kann gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung vorgesehen sein, dass das Quellenfahrzeug einen Quellenaktuator oder/und das Zielfahrzeug einen Sensoraktuator aufweist, wobei der Quellenaktuator bewegungsübertragend mit der Strahlenquelle oder/und der Sensoraktuator bewegungsübertragend mit der Sensoranordnung gekoppelt ist, so dass die Strahlenquelle oder/und die wenigstens eine Sensoranordnung an dem sie jeweils tragenden Fahrzeug um eine zur ersten Strahlenraumachse parallele Einstellachse relativ zum jeweiligen Fahrzeugkörper aktuatorisch verlagerbar aufgenommen ist bzw. sind. Einer oder beide genannten Aktuatoren können zusätzlich um eine weitere Einstellachse verlagerbar sein.Sometimes it can be the case that the target distance and / or the target distance value range between the source and target vehicle change during a work operation should, for example because one of the two vehicles from the source and target vehicle is exchanged for a vehicle that has the same effect but has a different design. In such a case, it is advantageous if the respective vehicle driver or the only vehicle driver in the case of an automated distance control does not have to leave his control station to set up the distance monitoring device for the new operating situation. For this purpose, according to an advantageous development of the present invention, it can be provided that the source vehicle has a source actuator and / or the target vehicle has a sensor actuator, the source actuator being coupled to the radiation source in a movement-transmitting manner and / or the sensor actuator being coupled to the sensor arrangement in a movement-transmitting manner, so that the Radiation source and / or the at least one sensor arrangement on the vehicle carrying it is or are accommodated such that it can be actuated displaceably relative to the respective vehicle body about an adjustment axis parallel to the first radiation space axis. One or both of the aforementioned actuators can also be displaceable about a further adjustment axis.

In der vorliegenden Anmeldung wird der Arbeitszug, sofern nichts anderes ausdrücklich angegeben ist, in dem Bezugszustand beschrieben, d. h. die beiden Fahrzeuge des Arbeitszuges befinden sich in Arbeitsrichtung aufeinander folgend auf einem ebenen horizontalen Untergrund. Ihre Gierachsen sind parallel, ebenso ihre Nickachsen. Die Rollachsen der beiden Fahrzeuge, die sich parallel zur Arbeitsrichtung erstrecken, sind im Bezugszustand parallel oder kollinear.In the present application, unless otherwise expressly stated, the work train is described in the reference state, i.e. H. the two vehicles of the work train are located one after the other in the working direction on a flat, horizontal surface. Their yaw axes are parallel, as are their pitch axes. The roll axes of the two vehicles, which extend parallel to the working direction, are parallel or collinear in the reference state.

Abhängig von den Anbringungsorten der Strahlenquelle einerseits und der Sensoranordnung andererseits kann eine Änderung des Betriebszustands des Arbeitszugs ausgehend vom Bezugszustand, etwa durch Kurvenfahrt des Arbeitszuges, zu einer Änderung des Erfassungszustands der Abstandsüberwachungseinrichtung führen, ohne dass sich der Abstand zwischen den Fahrzeugen des Arbeitszuges tatsächlich ändert. Um die Wahrscheinlichkeit einer Fehlerfassung oder Fehlbeurteilung des Erfassungszustands der Abstandsüberwachungseinrichtung zu verringern, kann gemäß einer Weiterbildung der vorliegenden Erfindung vorgesehen sein, dass die Abstandsüberwachungseinrichtung eine Steuereinrichtung aufweist und dass das erste oder/und das weitere Fahrzeug eine Gierwinkel-Erfassungsvorrichtung aufweist, welche einen Gierwinkel des jeweiligen Fahrzeugs erfasst, wobei wenigstens eine Gierwinkel-Erfassungsvorrichtung ein Gierwinkelsignal, welches eine Information über den Gierwinkel wenigstens eines Fahrzeugs enthält, an die Steuereinrichtung überträgt, wobei die Steuereinrichtung das Abstandssignal nach Maßgabe des Erfassungszustands der wenigstens einen Sensoranordnung und nach Maßgabe des Gierwinkelsignals der wenigstens einen Gierwinkel-Erfassungsvorrichtung erzeugt.Depending on the location of the radiation source on the one hand and the sensor arrangement on the other hand, a change in the operating state of the work train starting from the reference state, for example when the work train takes a curve, can lead to a change in the detection state of the distance monitoring device without the distance between the vehicles of the work train actually changing. In order to reduce the probability of an incorrect detection or incorrect assessment of the detection status of the distance monitoring device, it can be provided according to a development of the present invention that the distance monitoring device has a control device and that the first and / or the further vehicle has a yaw angle detection device which detects a yaw angle of the respective vehicle, wherein at least one yaw angle detection device transmits a yaw angle signal, which contains information about the yaw angle of at least one vehicle, to the control device, wherein the control device transmits the distance signal in accordance with the detection state of the at least one sensor arrangement and in accordance with the yaw angle signal which generates at least one yaw rate sensing device.

Die Gierwinkel-Erfassungsvorrichtung kann die Information über den Gierwinkel wenigstens eines Fahrzeugs in beliebiger Weise erfassen, beispielsweise durch ein GPS-System oder durch entsprechende Sensoren, wie sie beispielsweise auch in Mobiltelefonen zur Ermittlung ihrer räumlichen Orientierung verwendet werden. Dabei kann der Gierwinkel eines Fahrzeugs zusätzlich oder alternativ zu einem den Gierwinkel unmittelbar erfassenden Gierwinkelsensor mittelbar durch Erfassung des Lenkwinkels sowie der vom Fahrzeug zurückgelegten Strecke oder/und der Fahrzeuggeschwindigkeit über einen gemeinsamen Zeitraum erfasst werden.The yaw angle detection device can detect the information about the yaw angle of at least one vehicle in any way, for example by a GPS system or by appropriate sensors, such as those used in cell phones to determine their spatial orientation. In addition or as an alternative to a yaw angle sensor that directly detects the yaw angle, the yaw angle of a vehicle can be detected indirectly by detecting the steering angle and the distance covered by the vehicle and / or the vehicle speed over a common period of time.

Vorzugsweise weist jedes Fahrzeug des Arbeitszuges eine Gierwinkel-Erfassungsvorrichtung auf, so dass durch Datenkommunikation zwischen den beiden Fahrzeugen ein Relativgierwinkel der beiden Fahrzeuge relativ zueinander unmittelbar und exakt erfassbar ist.Each vehicle of the work train preferably has a yaw angle detection device, so that a relative yaw angle of the two vehicles relative to one another can be detected directly and precisely by means of data communication between the two vehicles.

Es kann jedoch auch nur ein Fahrzeug eine Gierwinkel-Erfassungsvorrichtung aufweisen. Das ist dann bevorzugt das in Arbeitsrichtung vorausfahrende Fahrzeug. Beginnt der Arbeitszug seinen Arbeitsbetrieb im Bezugszustand oder in einem definierten bekannten Zustand mit bekannter relativer Orientierung der Fahrzeuge des Arbeitszugs zueinander, kann wenigstens ein Fahrzeug des Arbeitszuges, bevorzugt wiederum das in Arbeitsrichtung vorausfahrende Fahrzeug, anhand der Fahrgeschwindigkeit des in Arbeitsrichtung vorausfahrenden Fahrzeugs und anhand einer Abstandsinformation aus der Abstandsüberwachungseinrichtung unter der vernünftigen Annahme, dass sich der Gierwinkel des nachlaufenden Fahrzeugs örtlich längs der Arbeitsstrecke in gleicher Weise ändern wird wie der Gierwinkel des vorausfahrenden Fahrzeugs, einen zeitlichen oder/und örtlichen Versatz zwischen einer Gierwinkeländerung des vorausfahrenden Fahrzeugs und des nachlaufenden Fahrzeugs ermitteln. Dieser zeitliche oder/und örtliche Versatz kann von der Steuereinrichtung bei der Auswertung des Erfassungszustands zur Erzeugung des Abstandssignals berücksichtigt werden.However, only one vehicle can have a yaw angle detection device. This is then preferably the vehicle driving ahead in the working direction. If the work train begins its work in the reference state or in a defined, known state with a known relative orientation of the vehicles of the work train to each other, at least one vehicle of the work train, preferably the vehicle ahead in the working direction, can be based on the speed of the vehicle ahead in the work direction and on the basis of distance information from the distance monitoring device under the reasonable assumption that the yaw angle of the following vehicle will change locally along the working route in the same way as the yaw angle of the preceding vehicle, a temporal and / or local offset between a yaw angle change of the preceding vehicle and the following vehicle determine. This temporal and / or local offset can be taken into account by the control device when evaluating the detection state for generating the distance signal.

Vorteilhaft weist die Steuereinrichtung eine Eingabevorrichtung auf, mit welcher Daten in die Steuereinrichtung und damit in die Abstandsüberwachungseinrichtung eingebbar sind. Die Eingabevorrichtung kann eine Tastatur, Maus, Touchscreen, Mikrofon und dergleichen umfassen. Mit dieser Eingabevorrichtung kann beispielsweise ein dem Bezugsabstand zugeordneter Abstandswert in einer vorgegebenen oder auswählbaren Maßeinheit eingegeben werden, so dass anhand der Geschwindigkeitsinformation eines der Fahrzeuge und anhand des Abstandswerts der zeitliche oder/und örtliche Versatz von Gierwinkeländerungen zwischen den beiden Fahrzeugen des Arbeitszuges errechnet werden kann.The control device advantageously has an input device with which data can be input into the control device and thus into the distance monitoring device. The input device can include a keyboard, mouse, touchscreen, microphone and the like. With this input device, for example, a distance value assigned to the reference distance can be entered in a predefined or selectable unit of measurement so that the temporal and / or local offset of yaw angle changes between the two vehicles of the work train can be calculated using the speed information of one of the vehicles and the distance value.

Ebenso kann durch die Eingabevorrichtung in die Steuereinrichtung eingebbar sein, welche Abstandsänderung zwischen den Fahrzeugen einer vorbestimmten Lageänderung des Erfassungsbereichs der elektromagnetischen Strahlung an der Sensoranordnung entspricht. Bei feststehender Orientierung der Sensoranordnung und der Strahlenquelle kann diese Information auch in einem Datenspeicher der Steuereinrichtung hinterlegt sein. Für eine aus etwaigen Stellungen von Quellen- oder/und Sensoraktuatoren ermittelbare Orientierung von Sensoranordnung und Strahlenquelle kann diese Information auch unter Berücksichtigung von in einem Datenspeicher hinterlegten Daten für unterschiedliche Orientierungen ermittelbar sein.The input device can also be used to input into the control device which change in distance between the vehicles corresponds to a predetermined change in position of the detection area of the electromagnetic radiation on the sensor arrangement. With a fixed orientation of the sensor arrangement and the radiation source, this information can also be stored in a data memory of the control device. For an orientation of the sensor arrangement and radiation source that can be determined from any positions of source and / or sensor actuators, this information can also be determined taking into account data stored in a data memory for different orientations.

Was für die relative Änderung der Fahrzeugorientierung ausgehend vom Bezugszustand um eine gierachsenparallele Änderungsachse bei Kurvenfahrt gilt, kann zusätzlich oder alternativ auch für eine Änderung der Relativorientierung der beiden Fahrzeuge um eine nickachsenparallele Änderungsachse beim Überfahren einer Geländekuppe oder beim Durchfahren einer Geländemulde gelten. Aus diesem Grunde kann zur Erhöhung der Erfassungsgenauigkeit gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung vorgesehen sein, dass die Abstandsüberwachungseinrichtung eine Steuereinrichtung aufweist und dass das erste oder/und das weitere Fahrzeug eine Nickwinkel-Erfassungsvorrichtung aufweist, welche einen Nickwinkel des jeweiligen Fahrzeugs erfasst, wobei wenigstens eine Nickwinkel-Erfassungsvorrichtung ein Nickwinkelsignal, welches eine Information über den Nickwinkel wenigstens eines Fahrzeugs enthält, an die Steuereinrichtung überträgt, wobei die Steuereinrichtung das Abstandssignal nach Maßgabe des Erfassungszustands der wenigstens einen Sensoranordnung und nach Maßgabe des Nickwinkelsignals der wenigstens einen Nickwinkel-Erfassungsvorrichtung erzeugt.What applies to the relative change in the vehicle orientation starting from the reference state around a yaw axis parallel change axis when cornering, can additionally or alternatively also apply to a change in the relative orientation of the two vehicles around a pitch axis parallel change axis when driving over a crest or when driving through a terrain hollow. For this reason, in order to increase the detection accuracy, according to an advantageous development of the present invention, it can be provided that the distance monitoring device has a control device and that the first and / or the further vehicle has a pitch angle detection device which has a pitch angle of the respective vehicle, wherein at least one pitch angle detection device transmits a pitch angle signal, which contains information about the pitch angle of at least one vehicle, to the control device, wherein the control device transmits the distance signal in accordance with the detection state of the at least one sensor arrangement and in accordance with the pitch angle signal of the at least generated a pitch angle detection device.

Es gilt für die Nickwinkel-Erfassungsvorrichtung das oben zur Gierwinkel-Erfassungsvorrichtung Gesagte mutatis mutandis entsprechend, mit der Maßgabe, dass der Gierwinkel durch den Nickwinkel und dementsprechend eine Gierachse durch eine Nickachse ersetzt gedacht sein soll.For the pitch angle detection device, what was said above about the yaw angle detection device applies mutatis mutandis accordingly, with the proviso that the yaw angle is intended to be replaced by the pitch angle and, accordingly, a yaw axis by a pitch axis.

Gerade dann, wenn die oben als bevorzugt angegebene Ausführungsform mit einer Mehrzahl von Sensoranordnungen am Zielfahrzeug realisiert ist, wobei die Sensoranordnungen am Zielfahrzeug in Umfangsrichtung um die Gierachse des Quellenfahrzeugs mit Abstand voneinander angeordnet sind, ändern sich bei einer Änderung des Relativgierwinkels der beiden Fahrzeuge des Arbeitszugs die Erfassungszustände von wenigstens zwei Sensoranordnungen dann gegensinnig, wenn die beiden Sensoranordnungen auf unterschiedlichen Seiten einer zur Rollachse und zur Gierachse des Zielfahrzeugs parallelen Vertikallängsebene durch die Strahlenquelle angeordnet sind. Bei Änderung des Relativnickwinkels ändern sich dagegen die Erfassungszustände derartiger Sensoranordnungen gleichsinnig. Wenngleich oben bereits herausgestellt wurde, dass es grundsätzlich ausreichen kann, dass das Gierwinkelsignal oder/und das Nickwinkelsignal nur eine Information über einen Gierwinkel bzw. einen Nickwinkel des die jeweilige Erfassungsvorrichtung tragenden Fahrzeugs enthält, ist es zur möglichst umfassenden und genauen Vermeidung von Erfassungsfehlern vorteilhaft, wenn das Gierwinkelsignal eine Information über den Relativgierwinkel zwischen Quellen- und Zielfahrzeug enthält oder/und dass das Nickwinkelsignal eine Information über den Relativnickwinkel zwischen Quellen- und Zielfahrzeug enthält.Especially when the preferred embodiment specified above is implemented with a plurality of sensor arrangements on the target vehicle, the sensor arrangements on the target vehicle being arranged at a distance from one another in the circumferential direction around the yaw axis of the source vehicle, change when the relative yaw angle of the two vehicles of the work train changes the detection states of at least two sensor arrangements are in opposite directions when the two sensor arrangements are arranged on different sides of a vertical longitudinal plane through the radiation source that is parallel to the roll axis and the yaw axis of the target vehicle. In contrast, when the relative pitch angle changes, the detection states of such sensor arrangements change in the same direction. Although it has already been pointed out above that it may be sufficient in principle for the yaw angle signal and / or the pitch angle signal to contain only information about a yaw angle or a pitch angle of the vehicle carrying the respective detection device, it is advantageous to avoid detection errors as comprehensively and precisely as possible, if the yaw angle signal contains information about the relative yaw angle between the source and target vehicle and / or that the pitch angle signal contains information about the relative pitch angle between the source and target vehicle.

Alternativ oder zusätzlich zur Anordnung von wenigstens zwei Sensoranordnungen auf unterschiedlichen Seiten der genannten Vertikallängsebene, kann eine von einer Änderung des Relativgierwinkels bewirkte Änderung des Erfassungszustands von einer durch Änderung des Relativnickwinkels bewirkten Erfassungszustandsänderung auch durch wenigstens zwei im Wesentlichen an derselben Rollachsenposition gelegenen Sensoranordnungen unterschieden werden, die zwar auf derselben Seite der Vertikallängsebene, aber mit unterschiedlichem Abstand von dieser angeordnet sind. Mit zunehmendem Abstand von der Vertikallängsebene bewirkt eine Änderung des Relativgierwinkels eine betragsmäßig zunehmende Änderung des Erfassungszustands. Für eine Änderung des Relativnickwinkels gilt dies dagegen nicht.As an alternative or in addition to the arrangement of at least two sensor arrangements on different sides of said vertical longitudinal plane, one of one A change in the detection state caused by a change in the relative yaw angle can also be distinguished from a change in the detection state caused by a change in the relative pitch angle by at least two sensor arrangements located essentially at the same roll axis position, which are arranged on the same side of the vertical longitudinal plane, but at different distances from it. As the distance from the vertical longitudinal plane increases, a change in the relative yaw angle causes a change in the detection state that increases in amount. However, this does not apply to a change in the relative pitch angle.

Vorteilhafterweise wird das Abstandssignal genutzt, um den Abstand zwischen den Fahrzeugen des Arbeitszuges während eines Arbeitsbetriebes in dem vorbestimmten Soll-Abstandswertebereich zu halten. In diesem Soll-Abstandswertebereich ist ein bestimmungsgemäßer Arbeitsbetrieb in der Regel sicher möglich. Zu diesem Zweck kann vorgesehen sein, dass das Abstandssignal eine Betriebsinformation zum Betrieb eines Antriebsmotors oder/und einer Fahrzeugbremse wenigstens eines der Fahrzeuge enthält.The distance signal is advantageously used to keep the distance between the vehicles of the work train in the predetermined target distance value range during a work operation. In this target distance value range, normal operation is usually safely possible. For this purpose, it can be provided that the distance signal contains operating information about the operation of a drive motor and / or a vehicle brake of at least one of the vehicles.

Die Betriebsinformation kann eine an einen Fahrzeugführer eines der Fahrzeuge ausgegebene Information sein, sein Fahrzeug zu verzögern oder zu beschleunigen oder die Fahrzeuggeschwindigkeit unverändert zu belassen. Die Betriebsinformation kann aber auch unmittelbar eine Steuerinformation für eine Fahrzeugsteuerung sein, um eines der Fahrzeuge automatisiert, d. h. ohne Eingriff einer menschlichen Bedienperson, zu verzögern oder zu beschleunigen oder/und eine bestimmte Fahrgeschwindigkeit einzustellen. Ziel einer solchen Steuerung oder Regelung kann sein, den Erfassungsbereich der Sensoranordnung in einer vorbestimmten Erfassungszone zu halten oder in diese erforderlichenfalls zurückzuführen. Die Erfassungszone ist durch ein dem vorbestimmten Soll-Abstandswertebereich entsprechendes Abstandsintervall bestimmt.The operating information can be information output to a driver of one of the vehicles to decelerate or accelerate his vehicle or to leave the vehicle speed unchanged. The operating information can, however, also directly be control information for a vehicle control system in order to automate one of the vehicles, d. H. without the intervention of a human operator, to decelerate or accelerate and / or to set a certain driving speed. The aim of such a control or regulation can be to keep the detection range of the sensor arrangement in a predetermined detection zone or, if necessary, to return it to this. The detection zone is determined by a distance interval corresponding to the predetermined target distance value range.

Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung kann Historie-Information über die Änderung der Erfassungszustände oder/und über die Erfassungszustände in ihrem zeitlichen Verlauf in einer Datenspeichervorrichtung gespeichert werden. Die Datenspeichervorrichtung ist durch eine Steuereinrichtung, bevorzugt jene der Abstandsüberwachungseinrichtung, abfragbar. So kann selbst dann eine Betriebsinformation ausgegeben werden, die der Herstellung eines Betriebszustands mit einem im Soll-Abstandswertebereich gelegenen Abstand der Fahrzeuge des Arbeitszugs dient, wenn die Sensoranordnung die Strahlung der Strahlenquelle nicht mehr erfasst, also wenn sich etwa die Sensoranordnung aufgrund einer betragsmäßig zu großen Abstandsänderung außerhalb des Strahlenraums befindet. Aus der in der Datenspeichervorrichtung hinterlegten Historie-Information kann dann auch ohne Erfassungssignal an der Sensoranordnung ermittelt werden, in welcher Richtung der Erfassungsbereich die Sensoranordnung verlassen hat. Abhängig von dieser Richtung ist ermittelbar, ob eines der Fahrzeuge beschleunigt oder verzögert werden muss, um den aktuell vorhandenen Abstand zu einem Abstand im Soll-Abstandswertebereich zu verändern.According to an advantageous development of the present invention, history information about the change in the detection states and / or about the detection states in their temporal course can be stored in a data storage device. The data storage device is preferred by a control device that of the distance monitoring device can be queried. In this way, operational information can even be output that is used to establish an operating state with a distance between the vehicles of the work train located in the target distance value range when the sensor arrangement no longer detects the radiation from the radiation source, i.e. if the sensor arrangement is too large in terms of magnitude Change in distance is outside of the radiation room. From the history information stored in the data storage device, it is then possible to determine in which direction the detection area has left the sensor arrangement even without a detection signal on the sensor arrangement. Depending on this direction, it can be determined whether one of the vehicles has to be accelerated or decelerated in order to change the currently existing distance from a distance in the target distance value range.

Da die Fahrzeuge eines Arbeitszuges nicht unabhängig voneinander arbeiten und beispielsweise Betriebsgrenzen bestehen können, die für einen erfolgreichen Arbeitsbetrieb einzuhalten sind, ist es vorteilhaft, wenn die Fahrzeuge des Arbeitszugs durch eine Datenkommunikationsverbindung in wenigstens einer Datenübertragungsrichtung, vorzugsweise bidirektional, in Datenkommunikationsverbindung miteinander stehen.Since the vehicles of a work train do not work independently of one another and, for example, there may be operational limits that must be complied with for a successful work operation, it is advantageous if the vehicles of the work train are in data communication with one another through a data communication connection in at least one data transmission direction, preferably bidirectional.

So kann beispielsweise eines der beiden Fahrzeuge dem jeweils anderen Fahrzeug über die Datenkommunikationsverbindung mitteilen, dass es eine Grenzarbeitsgeschwindigkeit erreicht hat und nicht weiter beschleunigen oder nicht weiter verzögern kann. Dies kann gerade für eine automatisierte Einstellung des Abstands zwischen den Fahrzeugen eines Fahrzeugzuges hilfreich sein. Zur möglichst definierten Führung des Arbeitszuges in Arbeitsrichtung ist es weiter vorteilhaft, wenn ein Fahrzeug aus Quellenfahrzeug und Zielfahrzeug als Führungsfahrzeug eine Bewegungsgeschwindigkeit des Arbeitszugs längs der Arbeitsrichtung vorgibt und dass das Abstandssignal an das jeweils andere Fahrzeug aus Quellenfahrzeug und Zielfahrzeug als Folgefahrzeug ausgegeben wird. Dabei ist in der Regel dasjenige Fahrzeug Führungsfahrzeug oder Master-Fahrzeug, dessen Änderung von Betriebsparametern sich kritischer auf das Arbeitsergebnis auswirken als eine Änderung von Betriebsparametern des jeweils anderen Fahrzeugs, das dann folgerichtig Folgefahrzeug ist.For example, one of the two vehicles can use the data communication link to inform the other vehicle that it has reached a limit working speed and cannot accelerate or decelerate any further. This can be particularly helpful for an automated setting of the distance between the vehicles of a vehicle platoon. For the most defined guidance of the work train in the working direction, it is further advantageous if a vehicle consisting of the source vehicle and the target vehicle as the lead vehicle specifies a movement speed of the work train along the working direction and that the distance signal is output to the other vehicle from the source vehicle and the target vehicle as the following vehicle. As a rule, that vehicle is the lead vehicle or master vehicle whose change in operating parameters has a more critical effect on the work result than a change in operating parameters of the respective other vehicle, which is then consequently the follower vehicle.

In weiterer Präzisierung der Anzeige eines Erreichens von Grenz-Betriebsparametern kann dann vorgesehen sein, dass das Folgefahrzeug dazu ausgebildet ist, während eines bestimmungsgemäßen Arbeitsbetriebs dem Führungsfahrzeug anzuzeigen, dass ein Betriebsparameter sich seinem Parametergrenzwert über einen vorbestimmten Warnschwellenwert hinaus angenähert hat oder/und seinen Parametergrenzwert erreicht hat.In a further specification of the indication of reaching limit operating parameters, provision can then be made for the following vehicle to be designed to indicate to the lead vehicle during normal operation that an operating parameter has approached its parameter limit value beyond a predetermined warning threshold or / and has reached its parameter limit value Has.

In einer bevorzugten Ausgestaltung ist das erste Fahrzeug eine Material auf dem Untergrund auftragende Bodenbearbeitungsmaschine und ist das weitere Fahrzeug ein Lieferfahrzeug, welches zum Auftrag bestimmtes Material an das erste Fahrzeug übergibt. Die Untergrund auftragende Bodenbearbeitungsmaschine, üblicherweise ein Straßenfertiger, ist dabei das Führungsfahrzeug, da Änderungen von Betriebsparametern dieses Fahrzeugs unmittelbar Einfluss auf die Qualität des erzeugten Untergrunds, wie z. B. Ebenheit oder Freiheit von Erhebungen und Einsenkungen, haben. Da Änderungen von Betriebsparametern des Lieferfahrzeugs weniger kritische Auswirkungen auf das Arbeitsergebnis des Arbeitszuges haben, ist das Lieferfahrzeug dann das Folgefahrzeug. Das Lieferfahrzeug kann ein Beschicker sein oder kann ein Transport-Lastkraftwagen sein oder kann ein Recycler sein, der unmittelbar vor einem Straßenfertiger als dem Führungsfahrzeug Untergrund abträgt, abgetragenes Material aufbereitet und zum erneuten Verbauen an den Straßenfertiger übergibt.In a preferred embodiment, the first vehicle is a soil cultivating machine that applies material to the ground, and the further vehicle is a delivery vehicle that transfers material intended for application to the first vehicle. The soil cultivation machine, usually a road paver, is the lead vehicle, since changes in the operating parameters of this vehicle have a direct impact on the quality of the soil generated, such as B. Flatness or freedom from elevations and depressions. Since changes to the operating parameters of the delivery vehicle have less critical effects on the work result of the work train, the delivery vehicle is then the follower vehicle. The delivery vehicle can be a feeder or it can be a transport truck or it can be a recycler who removes the ground immediately in front of a road paver as the lead vehicle, processes removed material and transfers it to the paver for rebuilding.

Als Grundregel kann herangezogen werden, dass bei Betrachtung des vom Arbeitszug insgesamt gewünschten Arbeitsergebnisses die unmittelbar konstruktiv das Arbeitsergebnis bewirkende Bodenbearbeitungsmaschine bevorzugt das Führungsfahrzeug ist und selbst dann, wenn das weitere Fahrzeug des Arbeitszuges ebenfalls eine Bodenbearbeitungsmaschine ist, diese Bodenbearbeitungsmaschine dann das Folgefahrzeug ist, wenn sie nicht unmittelbar, sondern nur mittelbar zum Arbeitsergebnis des Arbeitszuges beiträgt.As a basic rule, it can be used that when considering the overall work result desired by the work train, the soil cultivation machine that directly constructively brings about the work result is preferably the lead vehicle and even if the other vehicle of the work train is also a soil cultivation machine, this soil cultivation machine is the following vehicle when it contributes not directly, but only indirectly, to the work result of the work train.

Die oben genannte Steuereinrichtung der Abstandsüberwachungseinrichtung ist bevorzugt am Folgefahrzeug angeordnet, so dass das Abstandssignal der Abstandsüberwachungseinrichtung unmittelbar an dem Fahrzeug vorliegt, auf dessen Steuerung das Abstandssignal Einfluss nehmen sollte. Das Führungsfahrzeug kann dann mit den jeweils für den gegebenen Arbeitsauftrag bestmöglichen Betriebsparametern arbeiten und das Folgefahrzeug richtet sich nach dem Führungsfahrzeug.The above-mentioned control device of the distance monitoring device is preferably arranged on the following vehicle, so that the distance signal from the distance monitoring device is present directly on the vehicle, on its control the distance signal should influence. The lead vehicle can then work with the best possible operating parameters for the given work order and the follower vehicle is based on the lead vehicle.

In einem bevorzugten Fall dient das Abstandssignal am Folgefahrzeug unmittelbar zur Geschwindigkeitssteuerung des Folgefahrzeugs, um möglichst exakt einen vorgegebenen Soll-Abstand zwischen den Fahrzeugen innerhalb des vorgegebenen Soll-Abstandswertebereichs einzuhalten.In a preferred case, the distance signal on the following vehicle is used directly to control the speed of the following vehicle in order to maintain a predetermined target distance between the vehicles within the predetermined target distance value range as precisely as possible.

Da das Abstandssignal anhand des Erfassungszustands der Sensoranordnung ermittelt wird, ist bevorzugt auch die Sensoranordnung am Folgefahrzeug angeordnet, während die Strahlenquelle bevorzugt am Führungsfahrzeug angeordnet ist. In diesem Fall kann eine Datenkommunikation zwischen Führungsfahrzeug und Folgefahrzeug minimiert werden. Lediglich dann, wenn das Folgefahrzeug, etwa ein Recycler, seine Maximalgeschwindigkeit erreicht hat, ist es vorteilhaft, wenn das Folgefahrzeug dies dem Führungsfahrzeug anzeigt, so dass dieses seine Geschwindigkeit nicht weiter erhöht, wenngleich dies nach den grundsätzlichen Gegebenheiten der jeweiligen Baustelle möglich wäre.Since the distance signal is determined on the basis of the detection state of the sensor arrangement, the sensor arrangement is preferably also arranged on the following vehicle, while the radiation source is preferably arranged on the lead vehicle. In this case, data communication between the leading vehicle and the following vehicle can be minimized. Only when the following vehicle, such as a recycler, has reached its maximum speed, is it advantageous if the following vehicle indicates this to the lead vehicle so that it does not increase its speed any further, although this would be possible according to the basic conditions of the respective construction site.

Somit ist bevorzugt das Quellenfahrzeug das Führungsfahrzeug und das Zielfahrzeug ist bevorzugt das Folgefahrzeug.Thus, the source vehicle is preferably the leading vehicle and the target vehicle is preferably the following vehicle.

Es sei ausdrücklich klargestellt, dass das Folgefahrzeug nicht notwendigerweise dem Führungsfahrzeug nachläuft. Gerade in dem bevorzugten Beispiel eines Straßenfertigers als der Bodenbearbeitungsmaschine des ersten Fahrzeugs wird in der Regel das Folgefahrzeug dem Führungsfahrzeug in Arbeitsrichtung vorauseilen.It should be expressly made clear that the following vehicle does not necessarily follow the lead vehicle. Especially in the preferred example of a road paver as the soil cultivation machine of the first vehicle, the following vehicle will generally lead the lead vehicle in the working direction.

Die vorliegende Erfindung wird nachfolgend anhand der beiliegenden Zeichnungen näher erläutert. Es stellt dar:

Fig. 1
eine grobschematische Seitenansicht eines Arbeitszugs der vorliegenden Erfindung mit den beiden Fahrzeugen des Arbeitszugs in Bezugsabstand,
Fig. 2
die grobschematische Seitenansicht des Arbeitszugs von Fig. 1 mit vergrößertem Abstand zwischen den beiden Fahrzeugen des Arbeitszugs,
Fig. 3
die grobschematische Seitenansicht des Arbeitszugs von Fig. 1 mit verkürztem Abstand zwischen den Fahrzeugen des Arbeitszugs,
Fig. 4
die grobschematische Seitenansicht von Fig. 1 mit kuppenartig gekrümmtem Untergrund,
Fig. 5
eine grobschematische Draufsicht des Arbeitszugs im Bezugszustand der Fig. 1 und
Fig. 6
den Arbeitszug von Fig. 5 nach Einfahrt in eine Rechtskurve.
The present invention is explained in more detail below with reference to the accompanying drawings. It shows:
Fig. 1
a highly schematic side view of a work train of the present invention with the two vehicles of the work train at a reference distance,
Fig. 2
the roughly schematic side view of the work train from Fig. 1 with increased distance between the two vehicles of the work train,
Fig. 3
the roughly schematic side view of the work train from Fig. 1 with a shorter distance between the vehicles of the work train,
Fig. 4
the roughly schematic side view of Fig. 1 with dome-like curved subsoil,
Fig. 5
a roughly schematic plan view of the work train in the reference state of FIG Fig. 1 and
Fig. 6
the work train from Fig. 5 after entering a right-hand bend.

In den Fig. 1 bis 6 ist eine erfindungsgemäße Ausführungsform eines Arbeitszuges der vorliegenden Anmeldung allgemein mit 10 bezeichnet. Der Arbeitszug 10 umfasst ein erstes Fahrzeug 12 und ein weiteres Fahrzeug 14. Das erste Fahrzeug 12 ist beispielhaft ein Straßenfertiger, das weitere Fahrzeug 14 ist ein Recycler. Beide Fahrzeuge 12 und 14 sind daher Bodenbearbeitungsmaschinen.In the Figures 1 to 6 an embodiment according to the invention of a work train of the present application is generally designated by 10. The work train 10 comprises a first vehicle 12 and a further vehicle 14. The first vehicle 12 is, for example, a road paver, the further vehicle 14 is a recycler. Both vehicles 12 and 14 are therefore tillage machines.

Der Arbeitszug 10 bewegt sich in eine Arbeitsrichtung A, welche parallel zu den Zeichenebenen der Fig. 1 bis 4 orientiert ist. Da die Fahrzeuge 12 und 14 bodengebundene Fahrzeuge sind, ist die Arbeitsrichtung A auch parallel zum Untergrund U orientiert, auf welchem die Fahrzeuge 12 und 14 aufstehen.The work train 10 moves in a work direction A, which is parallel to the drawing planes of the Figs. 1 to 4 is oriented. Since the vehicles 12 and 14 are ground-based vehicles, the working direction A is also oriented parallel to the ground U on which the vehicles 12 and 14 stand.

Das weitere Fahrzeug 14, also beispielhaft der Recycler, trägt mit einer eine Fräswalze umfassenden Arbeitseinrichtung 16 Material vom Boden ab und bereitet abgetragenes Untergrundmaterial durch Beimischung von Bindemitteln so auf, dass rezykliertes Untergrundmaterial 17 über ein Förderband 18 vom weiteren Fahrzeug 14 in den Bunker 20 des ersten Fahrzeugs 12 gefördert wird.The other vehicle 14, for example the recycler, removes material from the ground with a work device 16 comprising a milling drum and prepares the removed underground material by adding binding agents so that recycled underground material 17 is transported via a conveyor belt 18 from the further vehicle 14 into the bunker 20 of the first vehicle 12 is promoted.

Das im Bunker 20 vorhandene Material wird vom Straßenfertiger 12 zu einer festen Untergrundlage verbaut.The material present in the bunker 20 is built into a solid base by the paver 12.

Der Recycler 14, welcher dem Fertiger 12 in Arbeitsrichtung A vorauseilt, arbeitet wie beschrieben destruktiv am Boden. Der Untergrund U wird vom Recycler 14 so für den Belagaufbau durch den Fertiger 12 vorbereitet. Der Fertiger 12 arbeitet konstruktiv und erstellt unmittelbar das vom Arbeitszug 10 gewünschte Arbeitsergebnis.The recycler 14, which runs ahead of the paver 12 in working direction A, works destructively on the ground as described. The subsurface U is prepared by the recycler 14 for the pavement to be built up by the paver 12. The paver 12 works constructively and immediately creates the work result desired by the work train 10.

Da der Untergrund im Anwendungsbeispiel örtlich unterschiedliche Oberflächenebenen aufweist, ist als Bezugsuntergrund der in Arbeitsrichtung A zwischen den beiden Fahrzeugen 12 und 14 vorhandene Untergrund U heranzuziehen, der für beide Fahrzeuge 12 und 14 eine einheitliche Bezugsoberfläche bzw. Bezugsebene bildet.Since the subsurface in the application example has locally different surface planes, the subsurface U in working direction A between the two vehicles 12 and 14 is to be used as the reference subsurface, which forms a uniform reference surface or reference plane for both vehicles 12 and 14.

Die Fahrzeuge 12 und 14 befinden sich in dem in Fig. 1 gezeigten Bezugszustand in Arbeitsrichtung A in einem Abstand D voneinander.Vehicles 12 and 14 are in the in Fig. 1 Reference state shown in the working direction A at a distance D from each other.

Da der Fertiger 12 unmittelbar das Arbeitsergebnis des Arbeitszuges 10 beeinflusst, während Änderungen in Betriebsparametern des Recyclers 14 das Arbeitsergebnis des Arbeitszuges 10 nur mittelbar beeinflussen, ist der Fertiger 12, also das erste Fahrzeug 12, im vorliegenden Beispiel Führungsfahrzeug, welches die Geschwindigkeit des Arbeitszuges 10 im Wesentlichen vorgibt. Der Recycler 14 ist dementsprechend Folgefahrzeug, dessen Fahrgeschwindigkeit in Arbeitsrichtung A sich innerhalb vorbestimmter Grenzen nach den Vorgaben des Führungsfahrzeugs 12 richtet.Since the paver 12 directly influences the work result of the work train 10, while changes in the operating parameters of the recycler 14 only indirectly influence the work result of the work train 10, the paver 12, i.e. the first vehicle 12, is the lead vehicle in the present example, which determines the speed of the work train 10 essentially pretends. The recycler 14 is accordingly the following vehicle, the speed of which in the working direction A is based on the specifications of the leading vehicle 12 within predetermined limits.

Ein Fahrstand 22 des Fertigers 12 ist mit einer Bedienperson besetzt. Ein Fahrstand 24 des Recyclers 14 kann mit einer Bedienperson besetzt sein und ist dies aus Arbeitssicherheitsgründen in der Regel auch. Wie nachfolgend näher erläutert werden wird, kann jedoch wenigstens die Vorschubgeschwindigkeit des Recyclers 14 in Arbeitsrichtung A abhängig von der Vorschubgeschwindigkeit des Fertigers 12 und von einem zwischen den Fahrzeugen 12 und 14 einzuhaltenden Fahrzeugabstandsintervall automatisiert gesteuert werden.An operator's platform 22 of the paver 12 is manned by an operator. An operator's platform 24 of the recycler 14 can be manned by an operator, and this is usually also the case for reasons of occupational safety. As will be explained in more detail below, however, at least the feed speed of the recycler 14 in the working direction A can be controlled automatically as a function of the feed speed of the paver 12 and a vehicle distance interval to be observed between the vehicles 12 and 14.

Der Fahrzeugabstand D soll innerhalb vorgegebener Grenzen in einem vorbestimmten Soll-Abstandswertebereich liegen, so dass beispielsweise vom Förderband 18 abgeworfenes rezykliertes Untergrundmaterial 17 sicher nur den Bunker 20 des Fertigers 12 erreicht. Die Fördereinrichtung zur Förderung von rezykliertem Untergrundmaterial 17 vom Recycler 14 zum Fertiger 12 kann abweichend von der in den Fig. 1 bis 6 lediglich grobschematisch dargestellten Förderband-Förderung durch ein anderes Fördermittel erfolgen.The vehicle distance D should lie within predetermined limits in a predetermined target distance value range, so that, for example, recycled underground material 17 thrown off the conveyor belt 18 safely only reaches the bunker 20 of the paver 12 reached. The conveying device for conveying recycled underground material 17 from the recycler 14 to the paver 12 can differ from that in the Figures 1 to 6 only roughly schematically shown conveyor belt promotion by another means of funding.

Zur Überwachung des Fahrzeugabstands D weist der Arbeitszug 10 eine Abstandsüberwachungseinrichtung 26 auf.To monitor the vehicle distance D, the work train 10 has a distance monitoring device 26.

Diese umfasst eine Laserstrahlenquelle 28 und zwei längs der Nickachse N2 des Recyclers 14 mit Abstand voneinander angeordnete Sensoranordnungen 30. In den Fig. 1 bis 4 ist jeweils nur die dem Betrachter näher gelegene Sensoranordnung 30 dargestellt. Die dahinter liegende weitere Sensoranordnung 30 ist durch die Dargestellte verdeckt.This comprises a laser beam source 28 and two sensor arrangements 30 arranged at a distance from one another along the pitch axis N2 of the recycler 14 Figs. 1 to 4 only the sensor arrangement 30 which is closer to the viewer is shown in each case. The further sensor arrangement 30 located behind it is covered by what is shown.

Die Laserstrahlenquelle 28 sendet einen Laserstrahl 32 aus, welche in dem in Fig. 1 dargestellten Bezugszustand die Sensoranordnung 30 nur in einem zentralen Erfassungsbereich 34 erreicht.The laser beam source 28 emits a laser beam 32, which in the in Fig. 1 The reference state shown here reaches the sensor arrangement 30 only in a central detection area 34.

Die Sensoranordnung 30 erstreckt sich längs einer Sensorachse 36 und weist längs dieser Sensorachse 36 aufeinander folgend eine Mehrzahl von für das Licht des Laserstrahls 32 empfindlichen Sensorelementen auf. Beispielhaft in Fig. 1 dargestellt ist lediglich das im Erfassungsbereich 34 gelegene Sensorelement 38.The sensor arrangement 30 extends along a sensor axis 36 and has a plurality of sensor elements sensitive to the light of the laser beam 32, one after the other, along this sensor axis 36. Exemplary in Fig. 1 only the sensor element 38 located in the detection area 34 is shown.

Die Laserstrahlenquelle 28 ist entweder ein Rotationslaser, welcher aus Arbeitssicherheitsgründen in nicht benötigten Abstrahlbereichen abgeschattet sein kann, oder ist eine Quelle eines oszillierenden Laserstrahls 32, welcher nur einen vorbestimmten Winkelbereich (s. zweiten Winkelbereich 46 in Fig. 5) ausleuchtet.The laser beam source 28 is either a rotating laser, which can be shaded in radiation areas that are not required for occupational safety reasons, or is a source of an oscillating laser beam 32 which only covers a predetermined angular range (see second angular range 46 in Fig. 5 ) illuminates.

Ausgehend von der Laserstrahlenquelle 28 ist nur ein Strahlenraum 40 mit dem Laserstrahl 32 erfüllt, welcher um eine erste, zur Zeichenebene der Fig. 1 bis 4 orthogonale Strahlenraumachse 42 sich über einen sehr geringen ersten Winkelbereich 43 erstreckt, der im Wesentlichen nur der Dicke des Laserstrahls 32 entspricht. Um eine zweite Strahlenraumachse 44 überstreicht der Laserstrahl 32 einen, verglichen mit dem ersten Winkelbereich 43 um die erste Strahlenraumachse 42, sehr großen zweiten Winkelbereich 46 (siehe Fig. 5 und 6). Der zweite Winkelbereich 46 ist dabei so groß, dass die beiden Sensoranordnungen 30 des Recyclers 14 im gesamten Soll-Abstandswertebereich des Fahrzeugabstands D sicher vom Laserstrahl 32 erreicht werden. Auch hier ist die Darstellung des zweiten Winkelbereichs 46 in den Fig. 5 und 6 lediglich grobschematisch.Starting from the laser beam source 28, only one beam space 40 is filled with the laser beam 32, which around a first, to the plane of the drawing Figs. 1 to 4 The orthogonal spatial beam axis 42 extends over a very small first angular range 43 which essentially only corresponds to the thickness of the laser beam 32. The laser beam 32 sweeps over a second beam space axis 44, compared with the first angular range 43 around the first ray space axis 42, a very large second angular range 46 (see Fig. 5 and 6th ). The second angular range 46 is so large that the two sensor arrangements 30 of the recycler 14 can be reliably reached by the laser beam 32 in the entire target distance value range of the vehicle distance D. Here, too, the illustration of the second angular range 46 is in FIG Fig. 5 and 6th only roughly schematically.

Die erste Strahlenraumachse 42 ist parallel zur Nickachse N1 des Fertigers 12. Die zweite Strahlenraumachse 44 ist parallel zu einer von der Gierachse G1 und der Rollachse R1 des Fertigers 12 aufgespannten Ebene.The first radiation space axis 42 is parallel to the pitch axis N1 of the paver 12. The second radiation space axis 44 is parallel to a plane spanned by the yaw axis G1 and the roll axis R1 of the paver 12.

Wie in Fig. 1 dargestellt ist, ist der Strahlenraum 40 um die erste Strahlenraumachse 42 bezüglich der Arbeitsrichtung A geneigt. Ebenso ist die Sensorachse 36 bezüglich einer bevorzugt zur ersten Strahlenraumachse 42 parallele Neigeachse 48 geneigt. Die Sensorachse 36 verläuft parallel zu einer von der Gierachse G2 und der Rollachse R2 des Recyclers 14 aufgespannten Ebene Die Neigung der Sensoranordnung 30 um die Neigeachse 48 ist bevorzugt derart, dass die Sensorachse 36 in dem in Fig. 1 gezeigten Bezugszustand orthogonal zu dem auf die Sensoranordnung 30 auftreffenden Laserstrahl 32 orientiert ist. Da der Laserstrahl 32 im dargestellten bevorzugten Ausführungsbeispiel orthogonal zur zweiten Strahlenraumachse 44 abgestrahlt wird, sind damit bevorzugt die Sensorachse 36 und die zweite Strahlenraumachse 44 im Ausführungsbeispiel zueinander parallel. Durch diese Anordnung ergibt sich eine große Sensitivität der Sensoranordnung 30 gegenüber einer Änderung des Fahrzeugabstands D bei gleichzeitig großem Sensierungsbereich.As in Fig. 1 is shown, the beam space 40 is inclined about the first beam space axis 42 with respect to the working direction A. The sensor axis 36 is also inclined with respect to a tilt axis 48 which is preferably parallel to the first radiation space axis 42. The sensor axis 36 runs parallel to a plane spanned by the yaw axis G2 and the roll axis R2 of the recycler 14. The inclination of the sensor arrangement 30 about the inclination axis 48 is preferably such that the sensor axis 36 in the in Fig. 1 The reference state shown is oriented orthogonally to the laser beam 32 impinging on the sensor arrangement 30. Since the laser beam 32 is emitted orthogonally to the second spatial radiation axis 44 in the preferred exemplary embodiment shown, the sensor axis 36 and the second spatial radiation axis 44 are thus preferably parallel to one another in the exemplary embodiment. This arrangement results in a high sensitivity of the sensor arrangement 30 to a change in the vehicle distance D with a large sensing range at the same time.

In Fig. 5 ist eine Verbindungsgerade 33 zwischen der Laserlichtquelle 28 und dem Erfassungsbereich 34 der in Fig. 1 dargestellten Sensoranordnung 30 gezeigt. Die Darstellung der Verbindungsgerade 33 ist in den Seitenansichten der Fig. 1 bis 3 identisch mit der Darstellung des ersten Winkelbereichs 43 oder mit der Darstellung des Laserstrahls 32.In Fig. 5 is a straight connecting line 33 between the laser light source 28 and the detection area 34 of FIG Fig. 1 shown sensor arrangement 30 is shown. The illustration of the connecting straight line 33 is in the side views of FIG Figs. 1 to 3 identical to the representation of the first angular range 43 or to the representation of the laser beam 32.

Bevorzugt verläuft die Sensorachse 36 im Bezugszustand parallel zu einer Schnittgeraden einer zur Verbindungsgeraden 33 orthogonalen Ebene einerseits und parallel zu einer die Rollachse R2 und die Gierachse G2 des weiteren Fahrzeugs 14 enthaltenden Ebene andererseits. Dann verläuft die Sensorachse orthogonal zur Verbindungsgeraden 33 und ist dennoch nur um die zur Nickachse N2 des weiteren Fahrzeugs 14 parallele Neigeachse 48 geneigt.In the reference state, the sensor axis 36 preferably runs parallel to a straight line of intersection of a plane orthogonal to the connecting straight line 33 on the one hand and parallel to a plane containing the roll axis R2 and the yaw axis G2 of the further vehicle 14 on the other hand. The sensor axis then runs orthogonally to the connecting straight line 33 and is nevertheless inclined only about the tilt axis 48 parallel to the pitch axis N2 of the further vehicle 14.

Zur Erleichterung der Einrichtung der Abstandsüberwachungseinrichtung 26 ist die Laserstrahlenquelle 28 am Maschinenkörper 12a des Fertigers 12 um eine fertigerseitige Einstellachse 50 durch einen, vorzugsweise elektromotorischen, Aktuator 52 verstellbar. Die fertigerseitige Einstellachse 50 ist im vorliegenden Beispiel parallel zur ersten Strahlenraumachse 42 und ist außerdem parallel zur Nickachse N1 des ersten Fahrzeugs 12 (Fertiger).To make it easier to set up the distance monitoring device 26, the laser beam source 28 on the machine body 12a of the paver 12 can be adjusted about an adjustment axis 50 on the paver side by a preferably electromotive actuator 52. In the present example, the setting axis 50 on the paver side is parallel to the first radiation space axis 42 and is also parallel to the pitch axis N1 of the first vehicle 12 (paver).

Ebenso ist zur Einrichtung der Sensoranordnung 30 diese um eine recyclerseitige Einstellachse 54 durch einen, vorzugsweise elektromotorischen, Aktuator 56 in ihrer Orientierung relativ zum Fahrzeugkörper 14a des weiteren Fahrzeugs 14 veränderlich. Die recyclerseitige Einstellachse 54 ist parallel zur Nickachse N2 des Recyclers 14 und ist ebenso parallel zur Neigeachse 48 der Sensoranordnung 30.Likewise, in order to set up the sensor arrangement 30, its orientation relative to the vehicle body 14a of the further vehicle 14 can be changed about an adjustment axis 54 on the recycler side by means of a preferably electromotive actuator 56. The recycler-side adjustment axis 54 is parallel to the pitch axis N2 of the recycler 14 and is also parallel to the tilt axis 48 of the sensor arrangement 30.

Zur Verdeutlichung der Orientierung des ersten Fahrzeugs 12 und des weiteren Fahrzeugs 14 im Bezugszustand ist über dem jeweiligen Fahrzeug ein kartesisches Dreibein gezeigt mit den jeweils fahrzeugeigenen Koordinatenachsen: Rollachse R, Nickachse N und Gierachse G. Die Achsen des ersten Fahrzeugs 12 tragen zusätzlich die Ziffer 1, die entsprechenden Koordinatenachsen des zweiten Fahrzeugs 14 tragen zusätzlich die Ziffer 2. Die Gierachsen G1 und G2 des ersten und des zweiten Fahrzeugs 12 bzw. 14 sind ebenso zueinander parallel wie die Nickachsen N1 und N2 sowie die Rollachsen R1 und R2.To clarify the orientation of the first vehicle 12 and the further vehicle 14 in the reference state, a Cartesian tripod is shown above the respective vehicle with the vehicle's own coordinate axes: roll axis R, pitch axis N and yaw axis G. The axes of the first vehicle 12 also have the number 1 The corresponding coordinate axes of the second vehicle 14 also have the number 2. The yaw axes G1 and G2 of the first and second vehicles 12 and 14 are parallel to one another, as are the pitch axes N1 and N2 and the roll axes R1 and R2.

Die Abstandsüberwachungseinrichtung 26 weist eine Steuereinrichtung 58 auf, welche beispielhaft an dem Recycler 14 angeordnet ist, das nicht nur Folgefahrzeug, sondern wegen der Anordnung der Sensoranordnung 30 daran auch Zielfahrzeug ist.The distance monitoring device 26 has a control device 58, which is arranged, for example, on the recycler 14, which is not only the following vehicle, but also the target vehicle because of the arrangement of the sensor arrangement 30 thereon.

Abhängig davon, wo der Laserstrahl 32 auf die Sensoranordnung 30 auftrifft, kann die Steuereinrichtung 58 ein Abstandssignal mit einer Information über den Fahrzeugabstand D ausgeben. Das Abstandssignal kann in einem einfachen Fall über eine Datenleitung an einer Anzeigevorrichtung 60 im Fahrstand 24 des Recyclers 14 als Betriebsinformation angezeigt werden. Beispielsweise kann mit der Anzeigevorrichtung 60 einem Maschinenführer im Fahrstand 24 angezeigt werden, er solle den Recycler 14 in Arbeitsrichtung A beschleunigen, falls der Fahrzeugabstand D zu klein ist, verzögern, falls der Fahrzeugabstand D zu groß ist oder die Fahrzeuggeschwindigkeit unverändert belassen, falls der Fahrzeugabstand D passt.Depending on where the laser beam 32 strikes the sensor arrangement 30, the control device 58 can send a distance signal with information about the vehicle distance Output D. In a simple case, the distance signal can be displayed via a data line on a display device 60 in the operator's platform 24 of the recycler 14 as operating information. For example, the display device 60 can be used to indicate to a machine operator in the control station 24 that he should accelerate the recycler 14 in the working direction A if the vehicle distance D is too small, decelerate it if the vehicle distance D is too great or leave the vehicle speed unchanged if the vehicle distance D fits.

Alternativ kann die Steuereinrichtung 58 auch das Abstandssignal an Fahrmotoren 62 und 64 des Recyclers 14 ausgeben und diese abhängig vom Erfassungszustand der Sensoranordnung 30 beschleunigen oder verzögern oder mit der vorhandenen Antriebsgeschwindigkeit weiterbetreiben. Der Ausgabe des Abstandssignals an die Fahrmotoren 62 und 64 steht eine Ausgabe an eine gesondert von der Steuereinrichtung 58 ausgebildete und vorgesehene, die Fahrmotoren 62 und 64 steuernde Motorsteuervorrichtung oder zentrale Steuervorrichtung gleich. Ebenso kann die Steuereinrichtung 58 die zentrale Steuervorrichtung des Recyclers 14 sein.Alternatively, the control device 58 can also output the distance signal to traction motors 62 and 64 of the recycler 14 and accelerate or decelerate them depending on the detection state of the sensor arrangement 30 or continue to operate them at the existing drive speed. The output of the distance signal to the traction motors 62 and 64 is equivalent to an output to a motor control device or central control device which is designed and provided separately from the control device 58 and controls the traction motors 62 and 64. The control device 58 can also be the central control device of the recycler 14.

In dieser Weise funktioniert die einfachste Art der Abstandsüberwachung durch die Abstandsüberwachungseinrichtung 26. Besonders vorteilhaft ist, dass diese Art der Abstandsüberwachung des Fahrzeugabstands D ohne jegliche Datenkommunikation zwischen dem ersten Fahrzeug 12 und dem zweiten Fahrzeug 14 funktioniert. Somit kann eine Abstandssteuerung oder -regelung ausschließlich im Folgefahrzeug: Hier Recycler 14, realisiert sein, ohne dass es hierfür irgendeiner Rückmeldung an das Führungsfahrzeug, hier: Fertiger 12, bedarf.The simplest type of distance monitoring by the distance monitoring device 26 functions in this way. It is particularly advantageous that this type of distance monitoring of the vehicle distance D functions without any data communication between the first vehicle 12 and the second vehicle 14. Thus, a distance control or regulation can only be implemented in the following vehicle: here recycler 14, without any need for any feedback to the lead vehicle, here: paver 12.

Es reicht aus, die Geschwindigkeit des Recyclers 14 in Arbeitsrichtung A so zu manipulieren, dass der Erfassungsbereich 34 an der Sensoranordnung 30 in einer vorbestimmten sensoraxialen Erfassungszone liegt.It is sufficient to manipulate the speed of the recycler 14 in the working direction A in such a way that the detection area 34 on the sensor arrangement 30 lies in a predetermined sensor-axial detection zone.

Gleichwohl soll eine solche Kommunikation nicht ausgeschlossen sein.However, such communication should not be ruled out.

Wenngleich der Arbeitszug 10 mit der Abstandsüberwachungseinrichtung 26 in der oben bisher beschriebenen Weise funktioniert, kann dessen Funktionalität dennoch erweitert werden. So kann das Folge- und Zielfahrzeug 14 eine Sende/Empfangseinheit 66 aufweisen, welche ebenfalls über die Steuereinrichtung 58 steuerbar sein kann. Die Sende/Empfangseinheit 66 dient zum Datenaustausch mit einer Sende/- Empfangseinheit 68 am Quellen- und Führungsfahrzeug 12.Although the work train 10 with the distance monitoring device 26 functions in the manner described above, its functionality can nonetheless be expanded. The following and target vehicle 14 can thus have a transmitting / receiving unit 66, which can also be controlled via the control device 58. The transceiver unit 66 is used to exchange data with a transceiver unit 68 on the source and guide vehicle 12.

Am Fertiger 12 kann ebenfalls eine Steuereinrichtung 70 vorgesehen sein, durch welche die fertigerseitige Sende/Empfangseinheit 68 ansteuerbar ist. Außerdem kann die Steuereinrichtung 70 des Fertigers 12 eine Datenausgabeeinheit 72 aufweisen, mit welcher zu einer Bedienperson im Fahrstand 22 Daten ausgegeben, insbesondere angezeigt werden können.A control device 70 can also be provided on the paver 12, by means of which the transmitter / receiver unit 68 on the paver side can be controlled. In addition, the control device 70 of the paver 12 can have a data output unit 72 with which data can be output, in particular displayed, to an operator in the control stand 22.

Mit den Sende/Empfangseinheiten 66 und 68 können die beiden Fahrzeuge 12 und 14 Daten zwischen sich austauschen. Die Datenkommunikation kann unidirektional sein, ist jedoch bevorzugt bidirektional. Wenn sie unidirektional ist, erfolgt die Kommunikation bevorzugt vom Folgefahrzeug 14 zum Führungsfahrzeug 12.With the transmitting / receiving units 66 and 68, the two vehicles 12 and 14 can exchange data between them. The data communication can be unidirectional, but is preferably bidirectional. If it is unidirectional, the communication preferably takes place from the following vehicle 14 to the leading vehicle 12.

Zur weiteren Erhöhung der Genauigkeit der Abstandsüberwachung kann der Recycler 14 einen Gierwinkelsensor 74 und einen Nickwinkelsensor 76 aufweisen. beide Sensoren sind datenübertragungsmäßig mit der Steuereinrichtung 58 des Fertigers 14 verbunden.To further increase the accuracy of the distance monitoring, the recycler 14 can have a yaw angle sensor 74 and a pitch angle sensor 76. Both sensors are connected to the control device 58 of the paver 14 for data transmission.

Ebenso kann der Fertiger 12 als das Führungsfahrzeug einen Gierwinkelsensor 78 und einen Nickwinkelsensor 80 aufweisen, welche ebenfalls jeweils mit ihrer Steuereinrichtung 70 datenübertragungsmäßig verbunden sind.Likewise, the paver 12, as the lead vehicle, can have a yaw angle sensor 78 and a pitch angle sensor 80, which are also each connected to their control device 70 in terms of data transmission.

In Fig. 2 ist der Arbeitszug 10 von Fig. 1 mit vergrößertem Fahrzeugabstand D' dargestellt. Zu erkennen ist, dass sich der Erfassungsbereich 34' an der Sensoranordnung 30, in welchem der Laserstrahl 32 des Quellenfahrzeugs 12 erfasst wird, von dem ursprünglich zentralen Erfassungsbereich 34 zu dem bezüglich der Sensorachse 36 oberen Längsende hin verlagert hat. Damit strahlt das Laserlicht nicht mehr in das zentrale Sensorelement 38, sondern nur in ein oberes endseitiges Sensorelement 38' ein.In Fig. 2 is the work train 10 of Fig. 1 shown with enlarged vehicle distance D '. It can be seen that the detection area 34 ′ on the sensor arrangement 30, in which the laser beam 32 of the source vehicle 12 is detected, has shifted from the originally central detection area 34 to the upper longitudinal end with respect to the sensor axis 36. The laser light thus no longer radiates into the central sensor element 38, but only into an upper end sensor element 38 ′.

Ohne jegliche Kommunikation zwischen den beiden Fahrzeugen 12 und 14 kann so die Steuereinheit 58 lediglich anhand der relativen Verlagerung des Erfassungsbereichs 34 nach 34' erkennen, dass sich der Fahrzeugabstand D ausgehend vom Bezugsabstand der Fig. 1 verändert hat. In einem Datenspeicher der Steuereinrichtung 58 kann überdies hinterlegt sein, dass eine Verlagerung des Erfassungsbereichs 34 von einem sensoraxial zentralen Erfassungsbereich 34 zu einem oberen endseitigen Erfassungsbereich 34' eine Vergrößerung des Fahrzeugabstands bedeutet. Dementsprechend kann die Steuereinrichtung 58 an der Anzeigevorrichtung 60 im Fahrstand 24 des Recyclers 14 anzeigen, dass die Geschwindigkeit des Folgefahrzeugs 14 verringert werden soll oder/und kann unmittelbar die Fahrmotoren 62 und 64 im Sinne einer Verlangsamung der Fahrgeschwindigkeit des Recyclers 14 in Arbeitsrichtung A ansteuern.Without any communication between the two vehicles 12 and 14, the control unit 58 can only use the relative displacement of the detection area 34 to 34 'to recognize that the vehicle distance D is different based on the reference distance of Fig. 1 has changed. In addition, it can be stored in a data memory of the control device 58 that a displacement of the detection area 34 from a sensor-axially central detection area 34 to an upper end detection area 34 'means an increase in the vehicle distance. Accordingly, the control device 58 can indicate on the display device 60 in the operator's platform 24 of the recycler 14 that the speed of the following vehicle 14 should be reduced and / or can directly control the traction motors 62 and 64 in the sense of slowing the travel speed of the recycler 14 in working direction A.

In Fig. 3 ist der Arbeitszug 10 von Fig. 1 mit verkürztem Fahrzeugabstand D" dargestellt. Der Erfassungsbereich 34", mit welchem der Laserstrahl 32 an der Sensoranordnung 30 empfangen wird, befindet sich nun am unteren sensoraxialen Ende der Sensoranordnung 30. Ein unteres endseitiges Sensorelement 38" empfängt nun das Laserlicht, während die übrigen Sensorelemente der Sensoranordnung 30 vom Laserlicht der Laserstrahlenquelle 28 nicht erreicht werden und in einem Dunkelbereich liegen.In Fig. 3 is the work train 10 of Fig. 1 with shortened vehicle distance D ". The detection area 34" with which the laser beam 32 is received at the sensor arrangement 30 is now located at the lower sensor-axial end of the sensor arrangement 30. A lower end sensor element 38 "now receives the laser light, while the other sensor elements of the sensor arrangement 30 cannot be reached by the laser light from the laser beam source 28 and lie in a dark area.

Entsprechend der obigen Erläuterung zur Fig. 2 erkennt die Steuereinrichtung 58 aus der Lage des Erfassungsbereichs 34", dass der Abstand D" zwischen den Fahrzeugen 12 und 14 sich verringert hat oder sogar einen unteren Grenzwert erreicht hat. Entsprechend kann die Steuereinrichtung 58 an der Anzeigevorrichtung 60 im Fahrstand 24 ein Signal ausgeben, welches einen Fahrzeugführer im Fahrstand 24 zur Beschleunigung des Recyclers 14 in der Arbeitsrichtung A auffordert oder/und kann die Steuereinrichtung 58 die Fahrmotoren 62 und 64 des Recyclers 14 im Sinne einer Geschwindigkeitserhöhung ansteuern.According to the above explanation for Fig. 2 The control device 58 recognizes from the position of the detection area 34 ″ that the distance D ″ between the vehicles 12 and 14 has decreased or has even reached a lower limit value. Correspondingly, the control device 58 can output a signal to the display device 60 in the control stand 24 which prompts a vehicle driver in the control stand 24 to accelerate the recycler 14 in the working direction A and / or the control device 58 can control the traction motors 62 and 64 of the recycler 14 in the sense of a Control speed increase.

Dann, wenn der Recycler 14 bereits seine maximale Fahrgeschwindigkeit in Arbeitsrichtung A erreicht hat, die auch die Vorschubgeschwindigkeit der Arbeitseinrichtung 16 ist, ist eine weitere Beschleunigung des Recyclers 14 technisch nicht mehr möglich. In diesem Falle überträgt die Steuereinrichtung 58 über die Sende/Empfangseinheit 66 ein entsprechendes Signal an die Sende/Empfangseinheit 68 des Fertigers 12, wo die dortige Steuereinrichtung 70 dem Maschinenführer im Fahrstand 22 an der Datenausgabeeinheit 72 anzeigt, dass der Fertiger 12 nicht noch schneller fertigen darf oder seine Arbeitsgeschwindigkeit in Arbeitsrichtung A sogar verringern sollte. Da der Recycler 14 Folgefahrzeug ist und seine Geschwindigkeit in der Arbeitsrichtung A nach der Geschwindigkeit des Fertigers 12 in der Arbeitsrichtung A richtet, kann dann, wenn der Recycler 14 seine maximale Geschwindigkeit in Arbeitsrichtung A erreicht hat und sich der Abstand D zwischen den Fahrzeugen 12 und 14 weiter verkürzt, dieser Abstand nur noch durch Steuerungseingriffe am Fertiger 12 wieder vergrößert werden.When the recycler 14 has already reached its maximum travel speed in the working direction A, which is also the feed speed of the working device 16, further acceleration of the recycler 14 is no longer technically possible. In this case, the control device 58 transmits a corresponding signal via the transmitting / receiving unit 66 to the transmitting / receiving unit 68 of the paver 12, where the local control device 70 indicates to the machine operator in the operator's platform 22 on the data output unit 72 that the paver 12 is not producing any faster may or should even reduce its working speed in working direction A. Since the recycler 14 is the following vehicle and its speed in the working direction A is based on the speed of the paver 12 in the working direction A, when the recycler 14 has reached its maximum speed in the working direction A and the distance D between the vehicles 12 and 14 further shortened, this distance can only be increased again by control interventions on the paver 12.

In Fig. 4 ist der Arbeitszug 12 von Fig. 1 beim Überfahren einer Geländekuppel dargestellt. Der Untergrund U ist um eine zur Zeichenebene der Fig. 4 orthogonale Krümmungsachse gekrümmt.In Fig. 4 is the work train 12 of Fig. 1 shown when driving over a dome. The background U is around one to the plane of the drawing Fig. 4 orthogonal axis of curvature curved.

Die Darstellung von Fig. 4 zeigt, dass die Änderung des Erfassungszustands der Sensoranordnung 36 einer Vergrößerung des Fahrzeugabstands D entspricht, obwohl der Fahrzeugabstand D sich tatsächlich nicht verändert hat.The representation of Fig. 4 shows that the change in the detection state of the sensor arrangement 36 corresponds to an increase in the vehicle distance D, although the vehicle distance D has actually not changed.

Eine in der Mitte oben von Fig. 4 dargestellte Übereinanderanordnung der beiden fahrzeugspezifischen Koordinatensysteme zeigt, dass die Nickachsen N1 und N2 der Fahrzeuge 12 und 14 nach wie vor parallel zueinander sind, jedoch die Gierachsen und die Rollachsen relativ zueinander um eine nickachsen- bzw. krümmungsachsenparallele Drehachse um den Winkel γ zueinander verdreht angeordnet sind.One in the middle of the top of Fig. 4 The superimposed arrangement of the two vehicle-specific coordinate systems shown here shows that the pitch axes N1 and N2 of the vehicles 12 and 14 are still parallel to one another, but the yaw axes and the roll axes are arranged rotated relative to one another about an axis of rotation parallel to the pitch axis or the axis of curvature by the angle γ .

Mit dem Nickwinkelsensor 76 kann die Steuereinrichtung 58 am Recycler 14 erfassen, dass sich der Nickwinkel des Recyclers 14 in einem absoluten Koordinatensystem geändert hat. Anhand der der Steuereinrichtung 58 bekannten Fahrgeschwindigkeit des Recyclers 14 in Arbeitsrichtung A kann die Steuereinrichtung 58 somit ermitteln, wann auch der Fertiger 12 die gleiche Orientierungsänderung um dessen Nickachse N1 nachvollziehen wird. Somit kann die Steuereinrichtung 58 aufgrund eines Nickwinkelsignals vom Nickwinkelsensor 76 erkennen, dass die Änderung des Erfassungszustands an der Sensoranordnung 30 nicht auf eine Änderung des Fahrzeugabstands D zurückgeht, sondern auf eine Änderung der Relativorientierung der beiden Fahrzeuge 12 und 14 um eine nickachsenparallele Änderungsachse, wobei die Steuereinrichtung 58 durch Zeitmessung und durch Messung der Geschwindigkeit des Recyclers 14 vorausberechnen kann, wann die Koordinatensysteme der beiden Fahrzeuge 12 und 14 wieder drei zueinander parallele Raumachsen aufweisen. Somit kann alleine die Steuereinrichtung 58 des Recyclers 14 ohne Datenaustausch mit dem Fertiger 12 beurteilen, ob eine Verlagerung des Erfassungsbereichs 34 längs der Sensorachse 36 auf eine Abstandsänderung oder auf eine Geländeformation zurückgeht. Dies beruht auf dem Umstand, dass beide Fahrzeuge 12 und 14 mit zeitlichem Versatz nacheinander die gleiche Strecke durchfahren.With the pitch angle sensor 76, the control device 58 on the recycler 14 can detect that the pitch angle of the recycler 14 has changed in an absolute coordinate system. On the basis of the travel speed of the recycler 14 in the working direction A known to the control device 58, the control device 58 can thus determine when the paver 12 will also understand the same change in orientation about its pitch axis N1. The control device 58 can thus recognize on the basis of a pitch angle signal from the pitch angle sensor 76 that the change of the detection state on the sensor arrangement 30 is not due to a change in the vehicle distance D, but to a change in the relative orientation of the two vehicles 12 and 14 about a change axis parallel to the pitch axis, the control device 58 being able to calculate in advance by measuring the time and by measuring the speed of the recycler 14 the coordinate systems of the two vehicles 12 and 14 again have three spatial axes parallel to one another. Thus, the control device 58 of the recycler 14 alone can assess, without data exchange with the paver 12, whether a displacement of the detection area 34 along the sensor axis 36 is due to a change in distance or to a terrain formation. This is based on the fact that both vehicles 12 and 14 travel the same route one after the other with a time offset.

Es kann jedoch zusätzlich auch der Nickwinkelsensor 80 am Fertiger 12 herangezogen werden, wobei dessen Nickwinkelsignal über die Sende/Empfangseinheit 68 zur Sende/Empfangseinheit 66 des Recyclers 14 übertragen werden kann. Aus den Nickwinkelinformationen beider Fahrzeuge 12 und 14 kann die Steuereinrichtung 58 einen Relativnickwinkel der beiden Fahrzeuge 12 und 14 zueinander berechnen und so unmittelbar ermitteln, ob die beiden Koordinatensysteme um ihre Nickachsen N1 bzw. N2 relativ zueinander verdreht sind oder nicht. Somit kann eine Bewertung des Erfassungsergebnisses der Sensoranordnung 30 mit noch größerer Genauigkeit erfolgen.However, the pitch angle sensor 80 on the paver 12 can also be used, and its pitch angle signal can be transmitted via the transmitter / receiver unit 68 to the transmitter / receiver unit 66 of the recycler 14. From the pitch angle information of both vehicles 12 and 14, the control device 58 can calculate a relative pitch angle of the two vehicles 12 and 14 to one another and thus directly determine whether the two coordinate systems are rotated relative to one another about their pitch axes N1 and N2 or not. An evaluation of the detection result of the sensor arrangement 30 can thus be carried out with even greater accuracy.

In Fig. 5 ist der Arbeitszug 10 von Fig. 1 von oben in der Draufsicht dargestellt. Zu erkennen ist hier die zweite Sensoranordnung 30, welche jedoch der bisher erläuterten Sensoranordnung 30 vollständig entspricht. Gleiche und funktionsgleiche Bauteile und Bauteilabschnitte wie in der bereits erläuterten Sensoranordnung 30, das ist in Fig. 5 die untere Sensoranordnung 30, sind in den Fig. 5 und 6 auch der zweiten, oberen Sensoranordnung zugeordnet. Die für die Sensoranordnung 30 gegebenen Erläuterungen gelten für beide Sensoranordnungen 30.In Fig. 5 is the work train 10 of Fig. 1 shown from above in plan view. The second sensor arrangement 30 can be seen here, which however completely corresponds to the sensor arrangement 30 explained so far. Identical and functionally identical components and component sections as in the already explained sensor arrangement 30, that is in FIG Fig. 5 the lower sensor assembly 30 are shown in FIGS Fig. 5 and 6th also assigned to the second, upper sensor arrangement. The explanations given for the sensor arrangement 30 apply to both sensor arrangements 30.

Eine strichlinierte Sektorlinie zeigt die Erfassungsbereiche 34 an beiden Sensoranordnungen 30 bei Geradeausfahrt an.A dashed sector line indicates the detection areas 34 on both sensor arrangements 30 when driving straight ahead.

Da eine Fräswalze im Recycler 14 in der Regel nicht symmetrisch in Nickachsenrichtung am Recycler angeordnet ist, können die beiden Fahrzeuge 12 und 14 in Richtung ihrer im Bezugszustand parallelen Rollachsen R1 bzw. R2 einen Versatz in Nickachsenrichtung aufweisen.Since a milling drum in the recycler 14 is usually not arranged symmetrically in the direction of the pitch axis on the recycler, the two vehicles 12 and 14 can have an offset in the direction of the pitch axis in the direction of their roll axes R1 and R2, which are parallel in the reference state.

Die Fig. 5 zeigt, dass bei Geradeausfahrt die Erfassungsbereiche 34 an beiden Sensoreinrichtungen 30 etwa im gleichen sensoraxialen Bereich liegen.the Fig. 5 shows that when driving straight ahead, the detection areas 34 on both sensor devices 30 are approximately in the same sensor-axial area.

In Fig. 6 ist beispielhaft der Beginn einer Kurvenfahrt des Arbeitszuges längs einer Rechtskurve dargestellt. Der Recycler 14 hat bereits in die Rechtskurve eingelenkt, der Fertiger 12 noch nicht. Dementsprechend haben sich bei unverändertem Fahrzeugabstand zwischen den Fahrzeugen 12 und 14 die Erfassungsbereiche der beiden Sensoranordnungen 30 längs der jeweiligen Sensorachsen 36 verlagert. Die Verlagerung erfolgt wegen der Neigung des Strahlenraums 40 um die zur Nickachse N1 des Fertigers 12 parallele erste Strahlenraumachse 42 bei unterschiedlichen Gierwinkeln der Fahrzeuge 12 und 14 gegensinnig. Im dargestellten Beispiel ist der Erfassungsbereich 34 der in Fig. 6 oberen Sensoranordnung 30 ausgehend vom Zustand von Fig. 5 zum oberen Längsende der Sensoranordnung 30 hin gewandert, das ist also in Richtung des Erfassungsbereichs 34' von Fig. 2. Ebenso ist der Erfassungsbereich 34 der in Fig. 6 unteren Sensoranordnung 30 ausgehend vom Zustand von Fig. 5 zum unteren Längsende dieser Sensoranordnung 30 hin gewandert, das ist in Richtung zum Erfassungsbereich 34" von Fig. 3 hin.In Fig. 6 the beginning of a cornering of the work train along a right-hand bend is shown as an example. The recycler 14 has already turned into the right-hand bend, the paver 12 not yet. Accordingly, with the vehicle distance between the vehicles 12 and 14 unchanged, the detection areas of the two sensor arrangements 30 have shifted along the respective sensor axes 36. Because of the inclination of the beam space 40 about the first beam space axis 42 parallel to the pitch axis N1 of the paver 12, the displacement takes place in opposite directions at different yaw angles of the vehicles 12 and 14. In the example shown, the detection area 34 is the one shown in FIG Fig. 6 upper sensor arrangement 30 based on the state of Fig. 5 migrated towards the upper longitudinal end of the sensor arrangement 30, that is to say in the direction of the detection area 34 'of Fig. 2 . Likewise, the detection area 34 of the in Fig. 6 lower sensor arrangement 30 based on the state of Fig. 5 migrated to the lower longitudinal end of this sensor arrangement 30, that is in the direction of the detection area 34 "of Fig. 3 down.

Ein solcher Erfassungszustand kann grundsätzlich zweierlei Ursachen haben: Zum einen die in Fig. 6 gezeigte Kurvenfahrt und zum anderen eine Geländeformation, bei welcher die beiden Fahrzeuge 12 und 14 um eine zu ihren beiden zunächst parallelen Rollachsen R1, R2 parallele Achse relativ zueinander verdreht sind.Such a detection state can basically have two causes: On the one hand, the in Fig. 6 The cornering shown and, on the other hand, a terrain formation in which the two vehicles 12 and 14 are rotated relative to one another about an axis parallel to their two initially parallel roll axes R1, R2.

Durch den Gierwinkelsensor 74 im Recycler 14 kann jedoch aufgrund des von diesem gelieferten Gierwinkelsignals die Steuereinrichtung 58 ermitteln, dass der sich gegenüber jenem von Fig. 5 geänderte Erfassungszustand auf einer Änderung des Gierwinkels des Recyclers 14 beruht und nicht auf einer Abstandsänderung oder auf einer Verdrehung um die Rollachse. Anstelle eines oder zusätzlich zu einem Gierwinkelsensor 74 bzw. 78 kann ein Rollwinkelsensor an einem oder beiden Fahrzeugen 12 und 14 vorgesehen sein. Da jedoch die Kurvenfahrt eine wesentlich häufigere Betriebssituation darstellt als eine Fahrt um eine in Arbeitsrichtung verwundene Fahrbahn, ist die Anordnung eines Gierwinkelsensors bevorzugt.By means of the yaw angle sensor 74 in the recycler 14, however, on the basis of the yaw angle signal supplied by the latter, the control device 58 can determine that the is opposite to that of Fig. 5 The changed detection state is based on a change in the yaw angle of the recycler 14 and not on a change in distance or on a rotation around the roll axis. Instead of or in addition to a yaw angle sensor 74 or 78, a roll angle sensor can be provided on one or both vehicles 12 and 14. However, since cornering is a much more frequent operating situation than driving around a lane that is twisted in the working direction, the arrangement of a yaw angle sensor is preferred.

Anstelle von Gierwinkel- und Rollwinkelsensoren können in ihrer Aussagekraft gleichwertige Informationen alternativ oder zusätzlich durch Erfassung von Maschinendaten über einen gemeinsamen Zeitraum hinweg und Auswertung derselben erhalten werden, etwa durch Erfassung von Lenkwinkeln, von Fahrgeschwindigkeit und Zeit oder/und von Fahrstrecke, von der Stellung einzelner Hubsäulen, durch welche der Abstand des jeweiligen Fahrzeugkörpers relativ zu dem mit der Hubsäule verbundenen Fahrwerk und damit mit der Aufstandsoberfläche des Bodenbereichs, auf welchem das jeweilige Fahrwerk aufsteht, ermittelbar ist.Instead of yaw angle and roll angle sensors, information of the same value can alternatively or additionally be obtained by recording machine data over a common period of time and evaluating the same, for example by recording steering angles, driving speed and time and / and driving distance, and the position of individuals Lifting columns, by means of which the distance of the respective vehicle body relative to the chassis connected to the lifting column and thus to the contact surface of the floor area on which the respective chassis rests can be determined.

Wäre an dem Recycler 14 nur eine Sensoranordnung 30 angeordnet, wäre von der Steuereinrichtung 58 bei Beginn einer Kurvenfahrt nur eine Änderung des Erfassungszustands erfassbar, die ohne zusätzliche Information von einer Abstandsänderung nicht zu unterscheiden ist. Durch die zweite Sensoranordnung mit Abstand längs der Nickachse N2 von der ersten auf unterschiedlichen Seiten einer zur Rollachse und zur Gierachse des Recyclers 14 parallelen Ebene, welche im Bezugszustand des Arbeitszuges 10 die Laserstrahlenquelle 28 durchsetzt, kann jedoch die oben beschriebene Gegensinnigkeit der Änderung des Erfassungszustands bei Kurvenfahrt provoziert und somit die Kurvenfahrt an den Sensoranordnungen 30 erkannt werden. Noch genauer kann die Kurvenfahrt durch zusätzliche Information des Gierwinkelsensors 74 erkannt werden.If only one sensor arrangement 30 were arranged on the recycler 14, the control device 58 would only be able to detect a change in the detection state at the beginning of a cornering, which change cannot be distinguished from a change in distance without additional information. However, due to the second sensor arrangement at a distance along the pitch axis N2 from the first on different sides of a plane parallel to the roll axis and the yaw axis of the recycler 14, which in the reference state of the work train 10 passes through the laser beam source 28, the above-described contradiction in the change in the detection state can occur Cornering provoked and thus cornering can be recognized by the sensor arrangements 30. The cornering can be recognized even more precisely by additional information from the yaw angle sensor 74.

Wie oben bereits im Zusammenhang mit dem Überfahren der Geländekuppe (siehe Fig. 4) erläutert wurde, kann auch hier eine Gierwinkelinformation des fertigerseitigen Gierwinkelsensors 78 vom Fertiger 12 an den Recycler 14 übertragen werden und dort von der Steuereinrichtung 58 zusammen mit der Gierwinkelinformation des Gierwinkelsensors 74 in eine Relativgierwinkelinformation der beiden Fahrzeuge 12 und 14 relativ zueinander umgerechnet werden. Dies liefert die genaueste Möglichkeit, den Erfassungszustand der wenigstens einen Sensoranordnung 30 hinsichtlich einer Änderung des Fahrzeugabstands D zu beurteilen.As above in connection with driving over the crest of the terrain (see Fig. 4 ), yaw angle information from the paver side yaw angle sensor 78 can also be transmitted from the paver 12 to the recycler 14 and converted there by the control device 58 together with the yaw angle information from the yaw angle sensor 74 into relative yaw angle information for the two vehicles 12 and 14 relative to one another. This provides the most accurate way of to assess the detection state of the at least one sensor arrangement 30 with regard to a change in the vehicle distance D.

Claims (14)

  1. A working combination (10) encompassing a self-propelled earth working machine (12) constituting a first vehicle (12) and at least one further self-propelled vehicle (14), the vehicles (12, 14) of the working combination (10) being embodied to move, during working operation as intended, one behind another in a common working direction (A) with a setpoint spacing that is within a predetermined setpoint spacing value range; the working combination (10) having a spacing monitoring device (26) that, on the basis of a detection state of the spacing monitoring device (26) which depends on an actual true spacing (D, D', D") of the vehicles (12, 14), outputs a spacing signal that contains information regarding the vehicle spacing (D, D', D"); the spacing monitoring device (26) comprising a beam source (28) emitting electromagnetic radiation (32) and a sensor arrangement (30) sensitive to the electromagnetic radiation (32) of the beam source (28); one vehicle (12) from among the first and the further vehicle (12, 14), constituting a source vehicle (12), carrying the beam source (28); when the working combination (10) is in a predetermined reference state, i.e. on a flat horizontal substrate (U) with vehicles (12, 14) arranged in readiness for working operation with a predetermined reference spacing (D) from one another, the beam source (28) radiating, toward the respective other vehicle (14) from among the first and the further vehicle (12, 14) constituting a target vehicle (14), an electromagnetic radiation (32) directed in such a way that the electromagnetic radiation (32) for spacing monitoring is present only in a beam space (40) that extends over a first angular region (43) around a first beam space axis (42) and over a second angular region (46) around a second beam space axis (44) that encloses an angle with the first beam space axis (42); the second angular region (46) being of equal magnitude to, or of greater magnitude than, the first angular region (43); and the beam space (40) being inclined around the first beam space axis (42) with reference to the working direction (A),
    characterized in that the sensor arrangement (30) extends along a sensor axis (36) and is arranged on the target vehicle (14) to be carried by it; when considering the working combination (10) in the reference state, a predetermined sensor-axial reference detection region (34) on the sensor arrangement (30) being irradiated by the beam source (28); and the sensor axis (36) being arranged with an inclination around an inclination axis (48) parallel to the first beam space axis (42), relative to a connecting line (33) between the detection region (34) and the beam source (28), so that a change in the vehicle spacing (D, D', D") results in a change, along the sensor axis (36), in the position of the detection region (34) on the sensor arrangement (30) which is irradiated by the beam source (28), and thus in a change in the detection state of the sensor arrangement (30).
  2. The working combination (10) according to Claim 1,
    characterized in that the target vehicle (14) comprises at least two sensor arrangements (30) that extend along a sensor axis (36), which sensor axes (36), when considering the working combination (10) in the reference state, are each arranged with an inclination, relative to a connecting line (33) between the detection region (34) and the beam source (28), around an inclination axis (48) parallel to the first beam space axis (42); the at least two sensor arrangements (30) being arranged with a spacing from one another in a circumferential direction around the second beam space axis (44).
  3. The working combination (10) according to Claim 1 or 2,
    characterized in that the beam source (28) is a laser beam source (28) that emits laser light as the electromagnetic radiation (32).
  4. The working combination (10) according to Claim 3,
    characterized in that the beam source (28) emits a laser beam (32) that oscillates or rotates around the second beam space axis (44).
  5. The working combination (10) according to one of the preceding claims,
    characterized in that the first beam space axis (42) is parallel to the pitch axis (N1) of the source vehicle (12); and/or the second beam space axis (44) is located in, or parallel to, a plane spanned by the yaw axis (G1) and the roll axis (R1) of the source vehicle (12).
  6. The working combination (10) according to Claim 5,
    characterized in that the sensor axis (36) of at least one sensor arrangement (30) has, in a Cartesian vehicle coordinate system made up of a roll axis, a pitch axis, and a yaw axis, a greater extent component parallel to the plane spanned by the yaw axis (G2) and the roll axis (R2) of the target vehicle (14) than orthogonally thereto.
  7. The working combination (10) according to one of the preceding claims,
    characterized in that the source vehicle (12) and/or the target vehicle (14) comprises an actuator (52, 56) that is coupled motion-transferringly respectively to the beam source (28) and to the sensor arrangement (30), so that the beam source (28) and/or the at least one sensor arrangement (30) is or are received, on the respective vehicle (12, 14) carrying them, displaceably in actuator-based fashion relative to the respective vehicle body (12a, 14a), around an adjustment axis (50, 54) parallel to the first beam space axis (42).
  8. The working combination (10) according to one of the preceding claims,
    characterized in that the spacing monitoring device (26) comprises a control device (58. 70); and
    - the first and/or the further vehicle (12, 14) comprises a yaw angle detection apparatus (74, 78) that detects a yaw angle of the respective vehicle (12, 14), at least one yaw angle detection apparatus (74, 78) transferring to the control device (58, 70) a yaw angle signal that contains information regarding the yaw angle of at least one vehicle (12, 14); the control device (58, 70) generating the spacing signal in accordance with the detection state of the at least one sensor arrangement (30) and in accordance with the yaw angle signal of the at least one yaw angle detection apparatus (74, 78),
    and/or
    - the first and/or the further vehicle (12, 14) comprises a pitch angle detection apparatus (76, 80) that detects a pitch angle of the respective vehicle (12, 14), at least one pitch angle detection apparatus (76, 80) transferring to the control device (58, 70) a pitch angle signal that contains information regarding the pitch angle of at least one vehicle (12, 14); the control device (58, 70) generating the spacing signal in accordance with the detection state of the at least one sensor arrangement (30) and in accordance with the pitch angle signal of the at least one pitch angle detection apparatus (76, 80).
  9. The working combination (10) according to Claim 8,
    characterized in that the yaw angle signal contains information regarding the relative yaw angle between the source and the target vehicle (12, 14); and/or the pitch angle signal contains information regarding the relative pitch angle between the source and the target vehicle (12, 14).
  10. The working combination (10) according to one of the preceding claims,
    characterized in that the spacing signal contains operating information for operating a drive motor (62, 64) and/or a vehicle brake of at least one of the vehicles (12, 14).
  11. The working combination (10) according to one of the preceding claims,
    characterized in that the vehicles (12, 14) of the working combination (10) are in data communication with one another in at least one data transfer direction by way of a data communication connection.
  12. The working combination (10) according to one of the preceding claims,
    characterized in that one vehicle (12, 14) from among the source vehicle (12) and target vehicle (14), constituting a leader vehicle (12), defines a movement speed in the working direction (A); and the spacing signal is outputted to the respective other vehicle (14) from among the source vehicle (12) and target vehicle (14), constituting a follower vehicle (14).
  13. The working combination (10) according to Claim 12,
    characterized in that the follower vehicle (14) is embodied to indicate to the leader vehicle (12), during working operation as intended, that an operating parameter has exceeded a predetermined warning threshold and approached its limit parameter value, and/or has reached its limit parameter value.
  14. The working combination (10) according to Claim 12 or 13,
    characterized in that the first vehicle (12) is an earth working machine (12) that applies a material onto the substrate (U), and the further vehicle (14) is a supply vehicle (14) that transfers material intended for application to the earth working machine (12), the earth working machine (12) being the leader vehicle (12) and the supply vehicle (14) being the follower vehicle (14).
EP20157903.4A 2019-02-19 2020-02-18 Work train comprising a self-propelled soil working machine and at least one other self-propelled vehicle, with an automated distance monitoring Active EP3699357B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019104218.6A DE102019104218A1 (en) 2019-02-19 2019-02-19 Work train, comprising a tillage machine and another vehicle as well as an automated distance monitoring

Publications (2)

Publication Number Publication Date
EP3699357A1 EP3699357A1 (en) 2020-08-26
EP3699357B1 true EP3699357B1 (en) 2021-07-21

Family

ID=69701075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20157903.4A Active EP3699357B1 (en) 2019-02-19 2020-02-18 Work train comprising a self-propelled soil working machine and at least one other self-propelled vehicle, with an automated distance monitoring

Country Status (4)

Country Link
US (1) US11318941B2 (en)
EP (1) EP3699357B1 (en)
CN (2) CN212199940U (en)
DE (1) DE102019104218A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594409B1 (en) * 2018-07-13 2022-03-09 Joseph Vögele AG Construction machine with a conveyor belt installation with a weight sensor
DE102019104218A1 (en) * 2019-02-19 2020-08-20 Wirtgen Gmbh Work train, comprising a tillage machine and another vehicle as well as an automated distance monitoring
CN114403114B (en) * 2022-01-26 2022-11-08 安徽农业大学 High-ground-clearance plant protection locomotive body posture balance control system and method
CN114355952B (en) * 2022-03-17 2022-06-17 北京理工大学 Unmanned vehicle trafficability assessment method and system

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE155157C (en) 1904-11-01
US3608968A (en) 1969-04-03 1971-09-28 Christensen Diamond Prod Co Pavement cutting and water and cutting pickup apparatus
US4221434A (en) 1978-03-23 1980-09-09 Cmi Corporation Roadway breaker plate for a planar apparatus
US4376609A (en) 1980-03-31 1983-03-15 Sperry Corporation Automatic spout control for agricultural machines
DE3405473A1 (en) 1984-02-16 1985-10-03 Wirtgen, Reinhard, 5461 Windhagen COMPACT MILLING MACHINE FOR MILLING DAMAGED ROAD COVERINGS
JPS61257118A (en) 1985-05-10 1986-11-14 井関農機株式会社 Automatic controller of grain lift cylinder in combine
EP0245544A3 (en) 1986-03-11 1988-03-23 Cellutane Co Ltd Method and apparatus for continuously producing sheet-like products from waste plastics
DE3843480A1 (en) 1988-09-13 1990-03-22 Egon Unterbusch Mains-independent (grid-independent) sign
US4863009A (en) 1988-11-14 1989-09-05 Alberta Energy Company Ltd. Control system for an endless belt conveyor train
US5178253A (en) 1991-08-26 1993-01-12 Ingersoll-Rand Company Swing mechanism for a vehicular conveyor
DE4403893A1 (en) 1994-02-08 1995-08-10 Claas Ohg Device for the automatic filling of loading containers with a stream of material
DE19504495A1 (en) 1995-02-12 1996-08-22 Wirtgen Gmbh Road surface renewal machine
DE19531662A1 (en) 1995-08-29 1997-03-06 Claas Ohg Device for the automatic filling of loading containers
JPH0986672A (en) 1995-09-25 1997-03-31 San Eng:Kk Fixed weight loading device
DE19628420C2 (en) 1996-07-15 1999-07-29 Krupp Foerdertechnik Gmbh Process for material degradation using a bucket wheel excavator
JPH1150415A (en) 1997-08-04 1999-02-23 Sakai Heavy Ind Ltd Guidance system of carrying vehicle
AUPO853597A0 (en) 1997-08-12 1997-09-04 Bhp Coal Pty. Ltd. Control system for overburden discharge
DE19814053B4 (en) 1998-03-30 2007-07-26 Wirtgen Gmbh Apparatus for milling off floor surfaces, in particular roadways
WO1999052068A1 (en) 1998-04-03 1999-10-14 Koninklijke Philips Electronics N.V. Image processing method and system involving contour detection steps
DE19848127A1 (en) 1998-10-19 2000-04-20 Claas Selbstfahr Erntemasch Device for controlling a transfer device
US6682416B2 (en) 2000-12-23 2004-01-27 Claas Selbstfahrende Erntemaschinen Gmbh Automatic adjustment of a transfer device on an agricultural harvesting machine
DE10141702A1 (en) 2001-08-25 2003-03-06 Deere & Co Device for driving a discharge device of an agricultural harvesting machine
DE10203732A1 (en) 2002-01-30 2003-08-21 Wirtgen Gmbh Construction machinery
US6943824B2 (en) 2002-03-13 2005-09-13 Deere & Company Image processing spout control system
DE10223819B4 (en) 2002-05-28 2005-05-12 Wirtgen Gmbh Milling machine for processing soil surfaces, and method for disposing of generated during milling dust and vapors on a milling machine
DE10224939B4 (en) * 2002-05-31 2009-01-08 Deere & Company, Moline Driving-axle trailer
US7322745B2 (en) * 2002-07-23 2008-01-29 Rapiscan Security Products, Inc. Single boom cargo scanning system
DE10357074B3 (en) 2003-12-04 2005-05-19 Wirtgen Gmbh Self-propelled road surfacing machine with direct mechanical drive of working roller from drive take-off shaft of internal combustion engine
DE102004007716B3 (en) 2004-02-16 2005-06-16 Wirtgen Gmbh Road construction asphalt milling machine has dust suction unit located well away from rotating milling tool
DE102004011789A1 (en) 2004-03-09 2005-09-29 Claas Selbstfahrende Erntemaschinen Gmbh Device for detecting a loading wagon
US20060045621A1 (en) 2004-08-27 2006-03-02 Caterpillar Paving Products Inc. Asphalt-removing work machine having a storage bin
DE102004052298A1 (en) 2004-10-06 2006-06-08 Claas Selbstfahrende Erntemaschinen Gmbh Overcharge assistance system
JP3849124B1 (en) * 2004-12-03 2006-11-22 グリーンアーム株式会社 Method for continuously regenerating asphalt mixture layer on pavement on road and self-propelled vehicle system therefor
DE102005035480A1 (en) 2005-07-26 2007-02-01 Cft Gmbh Compact Filter Technic Milling machine for road coverings comprises a dust box arranged in front of a ventilator and assigned to a suction channel having an outlet for passing clean waste air directly into the atmosphere
FI120191B (en) 2005-10-03 2009-07-31 Sandvik Tamrock Oy A method for driving mining vehicles in a mine and a transportation system
DE102006020293B4 (en) 2006-04-27 2013-07-11 Wirtgen Gmbh Road construction machine, leveling device and method for controlling the cutting depth or milling inclination in a road construction machine
US8996172B2 (en) 2006-09-01 2015-03-31 Neato Robotics, Inc. Distance sensor system and method
US7976238B2 (en) 2006-12-01 2011-07-12 Hall David R End of a moldboard positioned proximate a milling drum
US20080153402A1 (en) 2006-12-20 2008-06-26 Christopher Arcona Roadway grinding/cutting apparatus and monitoring system
DE102006062129B4 (en) 2006-12-22 2010-08-05 Wirtgen Gmbh Road construction machine and method for measuring the cutting depth
US8465105B2 (en) 2007-01-18 2013-06-18 Cmi Terex Corporation Control system for cutter drum
DE102007007970B4 (en) 2007-02-17 2009-11-26 Wirtgen Gmbh Construction machine, in particular road construction machine
DE102007009666A1 (en) 2007-02-22 2008-08-28 Carl Zeiss Microimaging Gmbh Arrangement for filling a container with bulk material
US8408838B2 (en) 2007-03-20 2013-04-02 Volvo Construction Equipment Ab Milling machine with cutter drum speed control
DE102007016670A1 (en) 2007-04-04 2008-10-09 Claas Selbstfahrende Erntemaschinen Gmbh Self-propelled agricultural harvester with controllable transfer device
DE202007005756U1 (en) 2007-04-19 2008-08-28 Wirtgen Gmbh Self-propelled construction machine
EP2020174B1 (en) 2007-08-03 2012-02-29 AGROCOM GmbH & Co. Agrarsystem KG Agricultural working machine
DE102007038677B4 (en) 2007-08-15 2009-09-17 Wirtgen Gmbh Scraper device, as well as construction machine
EP2088196A1 (en) 2008-02-08 2009-08-12 Boehringer Ingelheim RCV GmbH & Co KG Methods and devices for producing biomolecules
DE102008008260B4 (en) 2008-02-08 2010-09-09 Wirtgen Gmbh Control of a mining machine and mining machine
DE102008014001A1 (en) 2008-03-13 2009-09-17 Claas Selbstfahrende Erntemaschinen Gmbh Agricultural harvester with a transfer device
DE102008015277A1 (en) * 2008-03-20 2009-09-24 Deere & Company, Moline Method and device for steering a second agricultural machine, which is steerable over a field relative to a first agricultural machine
DE102008021484B4 (en) 2008-04-29 2010-01-28 Wirtgen Gmbh Bendable conveyor belt for a construction machine, self-propelled construction machine and method for pivoting a conveyor belt
ATE550922T1 (en) 2008-06-25 2012-04-15 Claas Agrosystems Gmbh & Co Kg TRANSMISSION DEVICE AND AGRICULTURAL VEHICLE
US8180534B2 (en) 2008-09-18 2012-05-15 Deere & Company Multiple harvester unloading system
DE102009008884A1 (en) 2009-02-14 2010-08-26 Wirtgen Gmbh Stabilizer or recycler
PL2256246T3 (en) 2009-05-20 2018-11-30 Joseph Vögele AG Paving machines for applying a cover layer of a road surface
EP2301318B1 (en) 2009-09-07 2011-11-16 CLAAS Agrosystems GmbH & Co. KG A control system of an agricultural vehicle with a goods carrier, an agricultural vehicle and a method of controlling a goods carrier of the agricultural vehicle
PL2311307T3 (en) 2009-09-07 2012-09-28 Claas E Systems Gmbh A filling degree gauge, an agricultural vehicle comprising such gauge, and a method of controlling filling of a target area
DE102009041842A1 (en) 2009-09-18 2011-09-01 Wirtgen Gmbh Self-propelled road milling machine
US8251199B2 (en) 2009-12-03 2012-08-28 Flsmidth A/S Conveyor apparatus
US10537061B2 (en) 2010-02-26 2020-01-21 Cnh Industrial America Llc System and method for controlling harvest operations
US8380401B2 (en) 2010-06-09 2013-02-19 Cnh America Llc Automatic grain transfer control system based on real time modeling of a fill level profile for regions of the receiving container
WO2012016573A1 (en) 2010-08-03 2012-02-09 Marini S.P.A. Guiding system for milling machine mouldboard designed to leave the milled material in a high layer on the milled surface
DE102010050831A1 (en) 2010-11-09 2012-05-10 Bomag Gmbh Rotor hood for a milling device
DE102010043854B4 (en) 2010-11-12 2016-01-14 Deere & Company Control arrangement for controlling the transfer of agricultural crop from a harvester to a transport vehicle
DE102010051551A1 (en) 2010-11-18 2012-05-24 Wirtgen Gmbh Soil cultivation machine and method for milling floors or traffic areas
DE102011002071A1 (en) 2011-04-15 2012-10-18 Claas Selbstfahrende Erntemaschinen Gmbh System and method for controlling crop overload
DE102011082052B4 (en) 2011-09-02 2015-05-28 Deere & Company Arrangement and method for the automatic overloading of crop material from a harvester onto a transport vehicle
GB2508564A (en) 2011-09-13 2014-06-04 Osi Optoelectronics Inc Improved laser rangefinder sensor
DE102011114183A1 (en) 2011-09-22 2013-03-28 Bomag Gmbh Method for controlling a loading process of a transport vehicle with milled material, device for carrying out such a method and milling device
DE102011114185A1 (en) 2011-09-22 2013-03-28 Bomag Gmbh Work train with a milling device and a transport device with a sensor device for distance monitoring, milling device with a sensor device and method for distance monitoring in a work train
US9085381B2 (en) 2012-02-17 2015-07-21 S7 Ip Holdings, Llc Load fill sensor system for grain trailers
DE102012012395A1 (en) 2012-06-25 2014-01-02 Wirtgen Gmbh road milling machine
DE102012215005A1 (en) 2012-08-23 2014-02-27 Wirtgen Gmbh Self-propelled milling machine, as well as method for steering a self-propelled milling machine
DE102012215013A1 (en) 2012-08-23 2014-02-27 Wirtgen Gmbh Self-propelled milling machine, as well as method for unloading milled material
DE102012019016A1 (en) 2012-09-26 2014-04-10 Bomag Gmbh Material transfer device for a ground milling machine and ground milling machine, in particular road milling machine with such a material transfer device
DE102013009361B4 (en) 2013-06-04 2018-07-12 Bomag Gmbh Floor milling machine with an attached conveyor belt control, attached conveyor belt control for a ground milling machine and method for controlling a crop conveyor belt of a ground milling machine
DE102014208070A1 (en) * 2014-04-29 2015-12-17 Deere & Company The vehicle dynamics taking into account control system for position control of a device for an agricultural work vehicle
DE102014216713B4 (en) 2014-08-22 2018-09-06 Wirtgen Gmbh Self-propelled milling machine, as well as method for unloading milled material
DE102014216763B4 (en) 2014-08-22 2018-07-26 Wirtgen Gmbh Self-propelled milling machine, as well as method for unloading milled material
DE102014018533B4 (en) 2014-12-12 2023-09-28 Bomag Gmbh Method for controlling a work train
US9957675B2 (en) 2015-07-10 2018-05-01 Caterpillar Paving Products Inc. Cold planer loading and transport control system
US9879386B2 (en) 2015-12-10 2018-01-30 Caterpillar Paving Products Inc. System for coordinating milling and paving machines
CN108473260B (en) 2016-01-21 2022-08-12 维特根有限公司 System comprising a construction machine, a transport vehicle with a loading space and an image recording device, and method for displaying an image stream during loading or unloading of a transport vehicle
US20180142427A1 (en) 2016-11-18 2018-05-24 Roadtec, Inc. Method and apparatus for automatically controlling a material transfer vehicle during a paving operation
FR3061729B1 (en) * 2017-01-12 2019-10-18 Groupe Marais MOTORIZED ENGINE FOR RECYCLING AGGREGATES AND MOTORIZED ASSEMBLY FOR PRODUCING TRENCHES COMPRISING SUCH A MOTORIZED ENGINE.
DE102019104218A1 (en) * 2019-02-19 2020-08-20 Wirtgen Gmbh Work train, comprising a tillage machine and another vehicle as well as an automated distance monitoring

Also Published As

Publication number Publication date
CN111576139B (en) 2021-11-30
DE102019104218A1 (en) 2020-08-20
CN111576139A (en) 2020-08-25
CN212199940U (en) 2020-12-22
US11318941B2 (en) 2022-05-03
US20200262428A1 (en) 2020-08-20
EP3699357A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
EP3699357B1 (en) Work train comprising a self-propelled soil working machine and at least one other self-propelled vehicle, with an automated distance monitoring
EP3381281B1 (en) Method and device for controlling undesirable organisms in a field
EP3342932B1 (en) Self-propelled milling machine, and method for unloading milled goods
EP2155968B1 (en) Paving train for applying a cover layer made of concrete or asphalt material
EP2738309B1 (en) Street construction machine and method for measuring milling cutter depth
EP3255973B1 (en) Device for discharging liquids, and method for controlling the movement of at least two extension arms of an agricultural field sprayer
EP2944171B1 (en) Agricultural working machine
EP2987910B1 (en) Self-propelled milling machine, and method for unloading milled goods
EP2623677B1 (en) Assembly and method for manufacturing a slotted wall element
EP1843168B1 (en) Mobile reference station for producing differential corrections
EP1818747A1 (en) Dispensing control unit
WO2018224338A1 (en) Method for controlling a working platform, control device, and inclination angle measuring system for a working platform
DE19512681A1 (en) Safety device for collision avoidance of driverless vehicles
WO2018114669A1 (en) Measuring system for detecting the thickness of layers
WO2021001341A1 (en) Calibrating an active optical sensor system with the aid of a calibration target
WO2020135923A1 (en) Method for regulating the height of a side blade of a ground milling machine, and ground milling machine
DE19722292B4 (en) Method and arrangement for securing a mobile workstation on a roadway
EP2808224A1 (en) Installation for danger area monitoring of a railway machine
DE102019111317A1 (en) Autonomous agricultural work machine and method of operating it
WO2004019293A2 (en) Monitoring the environment of an object with adjustable monitoring criteria
DD248159A5 (en) METHOD AND DEVICE FOR THE REPAIR OR LAYING OF A RAILWAY RAIL
EP2101193B1 (en) Security system for contactless measurement of positions, paths and speeds
EP3670747B1 (en) Self-propelled construction machine and method for processing a floor lining
DE4013341A1 (en) METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN OBJECT RELATIVELY MOVING TO AN OBSTACLE
DE102020104329B4 (en) Method, calibration section and system for calibrating an environment sensor system of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200921

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 4/38 20180101ALI20201221BHEP

Ipc: G05D 1/02 20200101ALI20201221BHEP

Ipc: E01C 19/48 20060101ALI20201221BHEP

Ipc: H04W 4/46 20180101ALI20201221BHEP

Ipc: E01C 23/088 20060101ALI20201221BHEP

Ipc: E01C 19/00 20060101AFI20201221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANGE, HERBERT

Inventor name: PEES, MARC

Inventor name: FRITZ, MATTHIAS

Inventor name: KANIA, CARMEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000091

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1412733

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000091

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230216

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228