EP0412111B1 - Device for producing ice balls and application to the projection of such ice balls for surface treatments - Google Patents
Device for producing ice balls and application to the projection of such ice balls for surface treatments Download PDFInfo
- Publication number
- EP0412111B1 EP0412111B1 EP89905697A EP89905697A EP0412111B1 EP 0412111 B1 EP0412111 B1 EP 0412111B1 EP 89905697 A EP89905697 A EP 89905697A EP 89905697 A EP89905697 A EP 89905697A EP 0412111 B1 EP0412111 B1 EP 0412111B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exchange column
- cold gas
- ice
- ice balls
- receptacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004381 surface treatment Methods 0.000 title description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000000605 extraction Methods 0.000 claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000001228 spectrum Methods 0.000 claims abstract description 9
- 238000004140 cleaning Methods 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 19
- 239000000110 cooling liquid Substances 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 5
- 238000004581 coalescence Methods 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000000112 cooling gas Substances 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 claims 1
- 239000002826 coolant Substances 0.000 abstract description 21
- 238000011109 contamination Methods 0.000 abstract 1
- 238000011065 in-situ storage Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000007788 liquid Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000005202 decontamination Methods 0.000 description 3
- 230000003588 decontaminative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DKWHHTWSTXZKDW-UHFFFAOYSA-N 1-[2-[2-[2-(2-butoxyethoxy)ethoxymethoxy]ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCOCCOCCOCCCC DKWHHTWSTXZKDW-UHFFFAOYSA-N 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006388 chemical passivation reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- PXHVJJICTQNCMI-AKLPVKDBSA-N nickel-62 Chemical compound [62Ni] PXHVJJICTQNCMI-AKLPVKDBSA-N 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C7/00—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
- B24C7/0092—Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed by mechanical means, e.g. by screw conveyors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/003—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
Definitions
- the present invention relates to the surface treatment by impacts of solid particles projected under pressure onto a support to be treated. It relates in particular to a surface treatment using ice balls and the manufacture of these ice balls.
- a first method consists in projecting a jet of sand under strong pressure on the object to be treated.
- Other similar materials can be used such as: corundum, iron shot, polyethylene balls, or crushed peach kernel.
- a second method consists in projecting a jet of dry ice particles, that is to say of a carbon dioxide hybrid, called dry ice.
- a jet of dry ice particles that is to say of a carbon dioxide hybrid, called dry ice.
- two large masses are divided into fine particles by grinding, then sprayed under pressure on the part to be treated.
- a third method consists in projecting a multiphasic jet, that is to say liquid-solid, in which frozen particles are entrained in a stream of cold liquid and projected onto the object to be cleaned.
- a multiphasic jet that is to say liquid-solid, in which frozen particles are entrained in a stream of cold liquid and projected onto the object to be cleaned.
- the ice is obtained by grinding ice cubes and the liquid is water under pressure.
- the solid residue In the case of projection of particles of sand or other materials, the solid residue, more or less contaminated or polluted, occupies a significant volume which constitutes, jointly with the mass of the residue, a handicap for its evacuation.
- the process using dry ice involves handling considerable gas volumes generated by its change in physical state, from solid to gas.
- obtaining particles of dry ice or ice by grinding leads to the inevitable confection, by this system, of particles whose geometry is angular and does not allow to have a very fluid bed. In this case, it must be taken into account that some of them are sometimes the size of dust, and are then of reduced dynamic efficiency, often even non-existent.
- special care must be taken to avoid their dispersion when they are contaminated or polluted.
- Another main drawback of these methods is that one never ends up with a technological system where all of the operations are done in continuity, that is to say to manufacture, store and project the particles.
- the object of the present invention is therefore to provide a device for manufacturing and projecting ice balls, for cleaning or decontamination purposes, and this in a single technological system, where all of the operations are carried out in continuity.
- the document EP-A-0 225 081 describes a process and a device for producing microparticles (diameter from 30 ⁇ m to 30 ⁇ m) of frozen water or of aqueous solution used in the food, pharmaceutical and also industries. for surface treatments.
- the process is based on the atomization of water into fine droplets by pressure injection of a gas and water through a sprayer as can be seen in Figure 1 of this document. These fine droplets animated with a speed acquired during spraying are projected into a coolant. Below the surface of this liquid is injected a gas which agitates the latter to prevent the coalescence of the water droplets arriving in fine particles of ice which have formed. The particles are then extracted from the coolant.
- the gas used to maintain a movement in the cooling bath escapes on the surface of the latter, its temperature which must be around -20 ° C is not low enough to ensure the brutal cooling of the surface of the water droplets which must occur below -85 ° C, temperature below which there is no longer solid coalescence (for spheres of diameter from 0.5 mm to 1.5 mm), and so that at least 30 % of the volume of the drop of water is transformed into ice for good resistance to the thermal shock of frozen beads, upon arrival in the coolant at the bottom of the column.
- the size of the balls produced does not allow them to be used for pickling.
- document FR-A-2 393 251 describes an apparatus for freezing drops of liquid. Its application is intended to freeze blood, bacterial cultures, yeasts, drink concentrates to produce a granulated frozen product.
- the embodiment of the device provides that the walls of the column and of the receptacle are made up of two stainless steel walls, the space between the two walls being filled with polyurethane foam.
- Another object of the invention is a device for manufacturing and projecting ice balls using the device for manufacturing ice balls described above.
- the extraction screw is inclined and has a coolant recovery conduit to return it to the receptacle. It can be of the Archimedes screw type of pure form.
- the invention makes it possible to manufacture a frozen liquid material in solid form, which can then be transported and projected by a gas onto an object to be treated.
- the principle of the invention consists in obtaining, by a first phase, partially frozen ice balls, by dispersion of a spectrum of water droplets in an exchange column open at its top, by direct contact with a refrigerant gas headed against the tide.
- the second phase of cooling is the final solidification, which takes place in a coolant bath, placed below the exchange column.
- the obtaining of ice balls is carried out by means of the manufacturing device according to the invention, represented on the left of this figure.
- the device is supplied with water by a pipe 1, the flow rate of which is regulated by a flow meter 3.
- This pipe 1 leads to an injector 2, placed at the upper end of the device.
- This injector is provided with a large number of holes 4, through which the spectrum of droplets is formed intended to produce the balls of ice.
- the spectrum of the droplet diameter can be adjusted by the prior choice of the diameter for drilling the holes 4.
- the spectrum of sizes of water drops ranges from 0.5 mm to 2 mm. Diameter and number of injectors are calculated for a flow ranging from 40 to 60 l / hour without significantly altering the size of the beads.
- the water injection system consists of two plates 50 and 52.
- the upper plate 50 cylindrical, with a thickness of about 5 mm in PVC is pierced in its center with a hole in which a tube 54 arrives which serves as a water supply.
- the lower plate 52 is cylindrical, about 5 mm thick in PVC and is pierced with chamfered holes 56 on the inside. The whole of this face undergoes fine sandblasting to ensure capillarity which allows the water to regularly wet the entire surface.
- needles 58 are introduced which are the water injectors.
- a nickel foam plate 62 covers the entire face and acts as a capillary network balancing the water pressure on the injectors 58.
- a canvas of stainless steel wire 64 covers the entire surface distributing the flow ensuring the upper plate 50 over the entire surface of the foam plate nickel 62.
- the reservoir formed for the plates 50 and 52 is closed by a set of eight bolts placed at 45 ° from one another, the seal being ensured by a cylindrical seal.
- the upper part of the device is completed more precisely by an exchange column 6.
- This column open at its top, has a height of approximately 2 m, and has a cold air inlet, marked 7.
- the gas which arrives escapes from the top of the column and circulates in this column against the flow of falling water drops.
- the exchange column 6 is placed on a receptacle 8, extending the latter at its lower end.
- This receptacle 8 has a ramp 12 for bringing the coolant inside the device. Under this ramp 12, the bottom of the receptacle is formed by a cone 10 at the bottom of which is a bath 11 of coolant and where the already formed ice balls collect.
- the receptacle also has, at the bottom of this cone 10, an orifice 14 provided for discharging the ice balls.
- the injector 2 disperses at the top of the exchange column 6 a spectrum of water droplets, falling by gravity into the exchange column, and represented by arrows. In direct contact with cold gas flowing against the current, these droplets partially and surface freeze. They fall by gravity in the exchange column 6, and thus fall into the bath 11 of coolant located in the cone 10 of the receptacle 8, where they solidify completely and descend by gravity to the bottom of the cone 10.
- the invention provides for evacuating the ice balls by means of an extraction screw 16, a first end 17 of which is placed below the orifice 14 of the receptacle 8.
- the extraction screw is inclined, so as to raise the ice balls outside the manufacturing device, to a level at least higher than that of the coolant bath inside the receptacle 8.
- a recovery duct 22 is provided in the wall of the receptacle, connecting the upper part of the cavity in which the extraction screw 16 is located with the interior of the receptacle 8, for recovering the coolant by returning it to the bath 11 inside the receptacle 8.
- the recovery conduit 22 is provided a grid 23, made of a material of the same kind as the wall of the receptacle, and located at the end of said conduit 22 opening into the cavity, in which is the extraction screw 16.
- the grid 23 separates the coolant to recycle ice balls during extraction.
- the extraction screw is rotated by means of a motor 18, preferably placed at the upper end 19 of this extraction screw 16.
- the projection device according to the invention is completed with a cold gas inlet 20 at the second end 19 of the extraction screw 16, to push the ice balls into a first flexible conduit 24.
- the actual projection of the balls ice is produced by means of a spray nozzle 26, placed at the end of the first flexible duct 24.
- This spray nozzle 26 has a cold gas inlet 28, supplied by a second flexible duct 44, in order to carry out the spraying ice balls.
- the device according to the invention can be fitted with a storage tank 32 for the refrigerating body, namely nitrogen.
- the latter leaves this tank 32 in the liquid state, and is brought into an evaporator 34, to supply the cold gas under pressure necessary to supply the inlet 7 inside the exchange column 6 and the arrivals of cold gas 20, at the upper end 19 of the extraction screw 16, and at the inlet 28 of the nozzle 26.
- Gas cooling from the evaporator 34 is produced using a cooler 36 placed at the outlet of this evaporator 34. This cooler is supplied by the same body in the liquid state and coming directly from the storage tank 32. This the latter also directly feeds the ramp 12 inside the receptacle 8. It is possible to use a single distributor 30 of the cold gas to supply the inlet 20 to the upper end 19 of the extraction screw 16 and the inlet 28 of the projection nozzle 26.
- a condition for the proper functioning of the device according to the invention is that the gas flow rate, in this case nitrogen at the temperature of 133 ° K, must be greater than or equal to three hundred and fifty times the water flow rate ( V nitrogen at 133 ° K ⁇ 350 V water ).
- the water inlet pipe 1 can be produced by means of a copper tube fitted with a ball type GACHOT valve (a quarter turn).
- the flow meter 3 can be of the KHRONE float type measuring a flow range of 25 to 250 liters of water per hour.
- the injector 2 can be produced by a PVC (polyvinyl chloride) tank pierced with eighty holes 4 of 0.5 mm in diameter to obtain an average diameter spectrum of 1.5 mm. In general the diameter of the holes 4 will be chosen between 0.1 mm and 1 mm.
- the exchange column is a double-walled stainless steel cylinder 40, 41, with a height of 2 m, the inside diameter of which is around 400 mm and the outside diameter of 500 mm.
- the space between these two walls 40 and 41 is filled by injection of an insulating material 45, such as polyurethane foam. This therefore represents an insulation thickness greater than 50 mm.
- the receptacle 8 supporting this exchange column 6 is made of the same material. It also has a double wall 42, 43, maintaining the insulation, which is of the same type as that of column 6, and the thickness of which is also greater than 50 mm.
- the ramp 12 for supplying the coolant is preferably metallic and circular.
- the ice balls thus obtained are entrained by the extraction screw 16 which is preferably an Archimedes screw of pure form. At the upper end 19 of this extraction screw 16, the balls are sucked in by the venturi effect produced by the flow of nitrogen cooled to 130 ° K, under a pressure of 106Pa, arriving at 28.
- the extraction screw 16 which is preferably an Archimedes screw of pure form.
- the balls are sucked in by the venturi effect produced by the flow of nitrogen cooled to 130 ° K, under a pressure of 106Pa, arriving at 28.
- the nitrogen gas is cooled upstream in a cooler 34, which allows, from liquid nitrogen at 77 ° K, to obtain nitrogen gas at 133 ° K.
- the manufacture of the ice balls is carried out below the temperature of 193 ° K, this to avoid the phenomenon of coalescence of the ice balls.
- the height of approximately 2.50 m of the exchange column 6 allows the water droplets to solidify a sufficient crust, to have good mechanical strength, and a temperature of surface below this coalescing temperature.
- the use of an Archimedes 16 screw of pure shape, having no dead volume, allows a continuous flow of the bed of ice beads.
- the motor 18 for driving the screw 16 can be a CLER geared motor, with variable speed of rotation, so as to be able to vary the rate of extraction of the ice balls and reversible to eliminate accidental dams of the screw.
- the ice balls are sucked in and pushed by the venturi effect generated by the large flow of cold gas arriving at 28 in the nozzle 26, and pushed by the gas arriving at 20.
- the flexible tube 24 bringing the ice balls into the nozzle 26 may be a flexible Cryoflex 200 tube, distributed by Tift establishments, and thermally insulated. These are flexible hoses of the same type which can be used to convey cold gases to the inlet 20, to the end of the extraction ball 16 and to the inlet 28 of the projection nozzle 26.
- the nozzle itself even may be of the CAR 303 type, distributed by CARBORID establishments.
- the ice balls obtained by means of the invention can have a diameter of between 0.5 and 2 mm.
- the extraction screw 16 is preferably inclined at an angle of 45 °, and thus tangent to the wall of the cone 10. The thrust of the cold gas, then the vacuum produced in the spray nozzle 26 entrain the ice balls in the flow of cold gas from the first flexible conduit 24 and project them at a pressure of 7 ⁇ 105 Pa.
- One of the main advantages of the method and of the device according to the invention is that the latter leads to the design of an integral device.
- the device makes it possible to manufacture on the spot balls of ice and to project them against the objects to be treated.
- the beads may contain a chemical mixed with water before introduction into the device and before freezing.
- This chemical can be chosen so as to complete the mechanical attack by a chemical passivation treatment for example, or by a disinfection treatment in the case of bacteriological cleaning.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Carbon And Carbon Compounds (AREA)
- Cleaning In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Nozzles (AREA)
Abstract
Description
La présente invention concerne le traitement de surface par impacts de particules solides projetées sous pression sur un support à traiter. Elle concerne en particulier un traitement de surface à l'aide de billes de glace et la fabrication de ces billes de glace.The present invention relates to the surface treatment by impacts of solid particles projected under pressure onto a support to be treated. It relates in particular to a surface treatment using ice balls and the manufacture of these ice balls.
On connaît différentes méthodes de nettoyage de surfaces par projection de particules sur ces surfaces.Various methods of cleaning surfaces are known by spraying particles onto these surfaces.
Une première méthode consiste à projeter un jet de sable sous forte pression sur l'objet à traiter. D'autres matériaux similaires peuvent être utilisés tels que : le corindon, la grenaille de fer, les billes de polyéthylène, ou le noyau de pêche concassé.A first method consists in projecting a jet of sand under strong pressure on the object to be treated. Other similar materials can be used such as: corundum, iron shot, polyethylene balls, or crushed peach kernel.
Une deuxième méthode consiste à projeter un jet de particules de carboglace, c'est-à-dire d'un hybride carbonique, appelé glace sèche. Dans cette méthode, deux grandes masses sont divisées en fines particules par broyage, puis projetées sous pression sur la pièce à traiter.A second method consists in projecting a jet of dry ice particles, that is to say of a carbon dioxide hybrid, called dry ice. In this method, two large masses are divided into fine particles by grinding, then sprayed under pressure on the part to be treated.
Une troisième méthode consiste à projeter un jet multiphasique, c'est-à-dire liquide-solide, dans lequel des particules gelées sont entraînées dans un courant de liquide froid et projetées sur l'objet à nettoyer. Dans ce cas, la glace est obtenue par broyage de pains de glace et le liquide est de l'eau sous pression.A third method consists in projecting a multiphasic jet, that is to say liquid-solid, in which frozen particles are entrained in a stream of cold liquid and projected onto the object to be cleaned. In this case, the ice is obtained by grinding ice cubes and the liquid is water under pressure.
Ces méthodes ont de nombreux inconvénients qui sont les suivants.These methods have many disadvantages which are as follows.
Dans le cas de projection de particules de sable ou autres matériaux, le résidu solide, plus ou moins contaminé ou pollué, occupe un volume important qui constitue, conjointement à la masse du résidu, un handicap pour son évacuation. Le procédé utilisant le carboglace implique des manipulations de volumes gazeux considérables engendrés par son changement d'état physique, de solide en gaz. De plus, l'obtention de particules de carboglace ou de glace par broyage entraîne la confection inévitable, par ce système, de particules dont la géométrie est angulaire et ne permet pas d'avoir un lit très fluide. Dans ce cas, il faut prendre en compte le fait que certaines d'entre elles sont parfois de la taille de poussières, et sont alors d'une efficacité dynamique réduite, souvent même inexistante. De plus, il faut apporter un soin particulier pour éviter leur dispersion lorsqu'elles sont contaminées ou polluées. Un autre inconvénient principal de ces méthodes est que l'on ne débouche jamais sur un système technologique où la totalité des opérations se fait en continuité, c'est-à-dire fabriquer, stocker et projeter les particules.In the case of projection of particles of sand or other materials, the solid residue, more or less contaminated or polluted, occupies a significant volume which constitutes, jointly with the mass of the residue, a handicap for its evacuation. The process using dry ice involves handling considerable gas volumes generated by its change in physical state, from solid to gas. In addition, obtaining particles of dry ice or ice by grinding leads to the inevitable confection, by this system, of particles whose geometry is angular and does not allow to have a very fluid bed. In this case, it must be taken into account that some of them are sometimes the size of dust, and are then of reduced dynamic efficiency, often even non-existent. In addition, special care must be taken to avoid their dispersion when they are contaminated or polluted. Another main drawback of these methods is that one never ends up with a technological system where all of the operations are done in continuity, that is to say to manufacture, store and project the particles.
Toutefois, l'utilisation d'un liquide congelé sous forme de particules, comme substitut aux matériaux couramment utilisés dans les techniques de décapage ou de décontamination par jet sous pression, est séduisante. En effet, le volume résiduel solide obtenu, après filtration ou évaporation du liquide est sans commune mesure avec celui des procédés utilisant d'autres matériaux.However, the use of a frozen liquid in the form of particles, as a substitute for the materials commonly used in pickling techniques or decontamination by pressure jet, is attractive. Indeed, the solid residual volume obtained, after filtration or evaporation of the liquid is incommensurate with that of the processes using other materials.
Le but de la présente invention est donc de fournir un dispositif de fabrication et de projection de billes de glace, à des fins de nettoyage ou de décontamination, et ceci dans un seul système technologique, où la totalité des opérations se fait en continuité.The object of the present invention is therefore to provide a device for manufacturing and projecting ice balls, for cleaning or decontamination purposes, and this in a single technological system, where all of the operations are carried out in continuity.
D'autre part, le document EP-A-0 225 081 décrit un procédé et un dispositif de production de microparticules (diamètre de 30 µm à 30 µm) d'eau congelée ou de solution aqueuse utilisées dans les industries alimentaire, pharmaceutique et aussi pour les traitements de surface. Le procédé est basé sur l'atomisation de l'eau en fines gouttelettes par injection sous pression d'un gaz et de l'eau au travers d'un pulvérisateur comme on peut le voir sur la figure 1 de ce document. Ces fines gouttelettes animées d'une vitesse acquise lors de la pulvérisation sont projetées dans un liquide réfrigérant. Au-dessous de la surface de ce liquide est injecté un gaz qui agite cette dernière pour empêcher la coalescence des gouttelettes d'eau arrivant en fines particules de glace qui se sont formées. Les particules sont ensuite extraites du liquide réfrigérant.On the other hand, the document EP-A-0 225 081 describes a process and a device for producing microparticles (diameter from 30 μm to 30 μm) of frozen water or of aqueous solution used in the food, pharmaceutical and also industries. for surface treatments. The process is based on the atomization of water into fine droplets by pressure injection of a gas and water through a sprayer as can be seen in Figure 1 of this document. These fine droplets animated with a speed acquired during spraying are projected into a coolant. Below the surface of this liquid is injected a gas which agitates the latter to prevent the coalescence of the water droplets arriving in fine particles of ice which have formed. The particles are then extracted from the coolant.
Si le gaz utilisé pour entretenir un mouvement dans le bain réfrigérant s'échappe à la surface de ce dernier, sa température qui doit avoisiner -20°C n'est pas assez basse pour assurer le refroidissement brutal de la surface des gouttelettes d'eau qui doit se produire en dessous de -85°C, température en dessous de laquelle il n'y a plus coalescence solide (pour des sphères de diamètre de 0,5 mm à 1,5 mm), et pour qu'au moins 30 % du volume de la goutte d'eau soient transformés en glace pour une bonne résistance au choc thermique des billes gelées, lors de l'arrivée dans le liquide réfrigérant en bas de colonne. De plus, la taille des billes fabriquées ne leur permet pas d'être utilisées pour le décapage.If the gas used to maintain a movement in the cooling bath escapes on the surface of the latter, its temperature which must be around -20 ° C is not low enough to ensure the brutal cooling of the surface of the water droplets which must occur below -85 ° C, temperature below which there is no longer solid coalescence (for spheres of diameter from 0.5 mm to 1.5 mm), and so that at least 30 % of the volume of the drop of water is transformed into ice for good resistance to the thermal shock of frozen beads, upon arrival in the coolant at the bottom of the column. In addition, the size of the balls produced does not allow them to be used for pickling.
Par ailleurs, le document FR-A-2 393 251 décrit un appareil pour congeler des gouttes de liquide. Son application est prévue pour congeler du sang, des cultures bactériennes, des levures, des concentrés de boissons pour produire un produit congelé granulé.Furthermore, document FR-A-2 393 251 describes an apparatus for freezing drops of liquid. Its application is intended to freeze blood, bacterial cultures, yeasts, drink concentrates to produce a granulated frozen product.
L'objet principal de l'invention est un dispositif pour la fabrication de billes de glace en vue du nettoyage ou du décapage de surfaces, dans lequel on disperse par gravité des gouttelettes d'eau dans un courant de gaz réfrigérant de sens opposé où elles se solidifient partiellement à une température de surface inférieure à leur température de coalescence avant d'entrer en contact avec un bain de liquide réfrigérant où elles achèvent de se solidifier, le dispositif comprenant :
- une colonne d'échange alimentée en gaz très froid par une arrivée et sur une extrémité supérieure de laquelle est disposé :
- un injecteur d'eau utilisant un grand nombre de trous libérant un spectre de gouttelettes dans la colonne d'échange ; et
- un réceptacle supportant la colonne d'échange comportant une rampe pour amener le liquide réfrigérant, un cône de réception des billes de glace, et un orifice d'évacuation des billes de glace au fond du cône ,
- an exchange column supplied with very cold gas via an inlet and on an upper end of which is arranged:
- a water injector using a large number of holes releasing a spectrum of droplets in the exchange column; and
- a receptacle supporting the exchange column comprising a ramp for bringing the coolant, a cone for receiving the ice balls, and an orifice for discharging the ice balls at the bottom of the cone,
La réalisation du dispositif prévoit que les parois de la colonne et du réceptacle sont constituées de deux parois en acier inoxydable, l'espace entre les deux parois étant rempli d'une mousse de polyuréthane.The embodiment of the device provides that the walls of the column and of the receptacle are made up of two stainless steel walls, the space between the two walls being filled with polyurethane foam.
Il est également prévu d'utiliser un débitmètre pour régler le débit de l'eau dans l'injecteur d'eau.It is also planned to use a flow meter to adjust the flow of water in the water injector.
Un autre objet de l'invention est un dispositif de fabrication et de projection de billes de glace utilisant le dispositif de fabrication de billes de glace précédemment décrit.Another object of the invention is a device for manufacturing and projecting ice balls using the device for manufacturing ice balls described above.
Il comprend :
- une vis d'extraction, dont une première extrémité est placée en-dessous de l'orifice du réceptacle pour évacuer du réceptacle les billes de glace,
- une arrivée de gaz froid à une deuxième extrémité de la vis d'extraction, pour pousser les billes de glace dans un premier conduit flexible,
- une buse de projection des billes de glace placée au bout du premier conduit flexible, et possédant une arrivée de gaz froid pour projeter des billes de glace.
- an extraction screw, a first end of which is placed below the orifice of the receptacle for removing the ice balls from the receptacle,
- a cold gas inlet at a second end of the extraction screw, to push the ice balls into a first flexible conduit,
- an ice ball projection nozzle placed at the end of the first flexible duct, and having a cold gas inlet for projecting ice balls.
De préférence, la vis d'extraction est inclinée et a un conduit de récupération du liquide réfrigérant pour le renvoyer dans le réceptacle. Elle peut être du type vis d'Archimède de forme pure.Preferably, the extraction screw is inclined and has a coolant recovery conduit to return it to the receptacle. It can be of the Archimedes screw type of pure form.
Il est prévu que les deux amemées de gaz froid à l'extrémité supérieure de la vis d'extraction et à la buse de projection, soient fournies par un même distributeur.It is planned that the two cold gas streams at the upper end of the extraction screw and at the projection nozzle, are supplied by the same distributor.
Il est prévu également dans ce cas, d'utiliser une cuve de stockage du liquide réfrigérant reliée à un évaporateur pour fournir le gaz froid sous pression nécessaire à alimenter le distributeur, et reliée à la rampe d'amenée du liquide réfrigérant dans le réceptacle. Le refroidisseur de gaz est alors placé à la sortie de l'évaporateur.It is also planned in this case, to use a coolant storage tank connected to an evaporator to supply the cold gas under pressure necessary to supply the distributor, and connected to the coolant supply ramp in the receptacle. The gas cooler is then placed at the outlet of the evaporator.
L'invention et ses caractéristiques seront mieux comprises à la lecture de la description qui suit, illustrée des trois figures suivantes :
- la figure 1 représente un schéma des dispositifs selon l'invention,
- la figure 2 représente un schéma éclaté du type d'injecteur utilisé dans les dispositifs selon l'invention,
- la figure 3 représente un schéma des dispositifs selon l'invention équipés de moyens de production du liquide réfrigérant et du gaz froid.
- Figure 1 shows a diagram of devices according to the invention,
- FIG. 2 represents an exploded diagram of the type of injector used in the devices according to the invention,
- FIG. 3 represents a diagram of the devices according to the invention equipped with means for producing the coolant and the cold gas.
L'invention permet de fabriquer un matériau liquide gelé sous forme solide, qui puisse ensuite être véhiculé et projeté par un gaz sur un objet à traiter.The invention makes it possible to manufacture a frozen liquid material in solid form, which can then be transported and projected by a gas onto an object to be treated.
Le procédé et les dispositifs selon l'invention sont décrits simultanément.The method and the devices according to the invention are described simultaneously.
Le principe de l'invention consiste à obtenir, par une première phase, des billes de glace partiellement congelées, par dispersion d'un spectre de gouttelettes d'eau dans une colonne à échange ouverte à son sommet, par contact direct avec un gaz réfrigérant dirigé à contre-courant. La deuxième phase du refroidissement est la solidification définitive, qui s'effectue dans un bain de liquide réfrigérant, placé en-dessous de la colonne à échange.The principle of the invention consists in obtaining, by a first phase, partially frozen ice balls, by dispersion of a spectrum of water droplets in an exchange column open at its top, by direct contact with a refrigerant gas headed against the tide. The second phase of cooling is the final solidification, which takes place in a coolant bath, placed below the exchange column.
En référence à la figure 1, l'obtention de billes de glace s'effectue au moyen du dispositif de fabrication selon l'invention, représenté sur la gauche de cette figure. Le dispositif est alimenté en eau par un tuyau 1, dont le débit est réglé par un débitmètre 3. Ce tuyau 1 aboutit à un injecteur 2, placé à l'extrémité supérieure du dispositif. Cet injecteur est muni d'un grand nombre de trous 4, par lesquels se forme le spectre de gouttelettes destiné à produire les billes de glace. Le spectre du diamètre des gouttelettes peut être ajusté par le choix préalable du diamètre de perçage des trous 4. Dans le procédé le spectre de tailles de gouttes d'eau va de 0,5 mm à 2 mm. Le diamètre et le nombre d'injecteurs sont calculés pour un débit allant de 40 à 60 l/heure sans altérer notablement la taille des billes. En référence à la figure 2, le système d'injection d'eau est constitué par deux plaques 50 et 52. La plaque supérieure 50, cylindrique, d'une épaisseur d'environ 5 mm en PVC est percée en son centre d'un trou dans lequel arrive un tube 54 qui sert d'alimentation en eau. La plaque inférieure 52 est cylindrique, d'une épaisseur de environ 5 mm en PVC et est percée de trous 56 chanfreinés sur la face intérieure. La totalité de cette face subit un fin sablage pour assurer une capillarité qui permet à l'eau de mouiller régulièrement toute la surface. A l'intérieur des perçages, on introduit par forte des aiguilles 58 qui sont les injecteurs d'eau. A l'intérieur de la plaque inférieure 52, plaquée sur la face interne 60, une plaque de mousse de nickel 62 recouvre toute la face et fait office de réseau capillaire équilibrant la pression d'eau sur les injecteurs 58. A l'intérieur de la plaque inférieure 52 au-dessus de la plaque de mousse de nickel 62, une toile de fil d'acier inoxydable 64 recouvre la totalité de la surface répartissant le débit assurant de la plaque supérieure 50 sur toute la surface de la plaque de mousse de nickel 62. Le réservoir formé pour les plaques 50 et 52 est fermé par un ensemble de huit boulons placés à 45° les uns des autres, l'étanchéité étant assurée par un joint cylindrique.With reference to FIG. 1, the obtaining of ice balls is carried out by means of the manufacturing device according to the invention, represented on the left of this figure. The device is supplied with water by a pipe 1, the flow rate of which is regulated by a flow meter 3. This pipe 1 leads to an
La partie supérieure du dispositif est complétée plus précisément d'une colonne d'échange 6. Cette colonne, ouverte à son sommet, a une hauteur d'environ 2 m, et possède une arrivée d'air froid, repérée 7. Le gaz qui arrive s'échappe par le haut de la colonne et circule dans cette colonne à contre-courant des gouttes d'eau qui tombent.The upper part of the device is completed more precisely by an exchange column 6. This column, open at its top, has a height of approximately 2 m, and has a cold air inlet, marked 7. The gas which arrives escapes from the top of the column and circulates in this column against the flow of falling water drops.
La colonne d'échange 6 est placée sur un réceptacle 8, prolongeant celle-ci à son extrémité inférieure. Ce réceptacle 8 possède une rampe 12 pour amener le liquide réfrigérant à l'intérieur du dispositif. Sous cette rampe 12, le fond du réceptacle est formé d'un cône 10 au fond duquel se trouve un bain 11 de liquide réfrigérant et où se rassemblent les billes de glace déjà formées. Le réceptacle possède en outre, au fond de ce cône 10, un orifice 14 prévu pour évacuer les billes de glace.The exchange column 6 is placed on a
Le fonctionnement de ce dispositif de fabrication de billes de glace est le suivant. L'injecteur 2 disperse en haut de la colonne d'échange 6 un spectre de gouttelettes d'eau, tombant par gravité dans la colonne d'échange, et représenté par des flèches. Au contact direct du gaz froid circulant à contre-courant, ces gouttelettes se congèlent partiellement et superficiellement. Elles chutent par gravité dans la colonne d'échange 6, et tombent ainsi dans le bain 11 de liquide réfrigérant se trouvant dans le cône 10 du réceptacle 8, où elles se solidifient complètement et descendent par gravité en bas du cône 10.The operation of this device for manufacturing ice balls is as follows. The
Dans le but d'exploiter ces billes de glace, l'invention prévoit d'évacuer les billes de glace au moyen d'une vis d'extraction 16, dont une première extrémité 17 est placée au-dessous de l'orifice 14 du réceptacle 8. De manière préférentielle, la vis d'extraction est inclinée, de façon à remonter les billes de glace à l'extérieur du dispositif de fabrication, à un niveau au moins supérieur à celui du bain de liquide réfrigérant à l'intérieur du réceptacle 8. Conjointement à cette inclinaison de la vis d'extraction 16, il est prévu un conduit de récupération 22 dans la paroi du réceptacle, reliant la partie supérieure de la cavité dans laquelle se trouve la vis d'extraction 16 avec l'intérieur du réceptacle 8, pour récupérer le liquide réfrigérant en le renvoyant dans le bain 11 à l'intérieur du réceptacle 8. Le conduit de récupération 22 est muni d'une grille 23, en un matériau de même nature que la paroi du réceptacle, et située à l'extrémité dudit conduit 22 débouchant dans la cavité, dans laquelle se trouve la vis d'extraction 16. La grille 23 sépare le liquide réfrigérant à recycler des billes de glace en cours d'extraction. La rotation de la vis d'extraction est assurée au moyen d'un moteur 18, placée de préférence à l'extrémité supérieure 19 de cette vis d'extraction 16.In order to use these ice balls, the invention provides for evacuating the ice balls by means of an
Le dispositif de projection selon l'invention se complète d'une arrivée de gaz froid 20 à la deuxième extrémité 19 de la vis d'extraction 16, pour pousser les billes de glace dans un premier conduit flexible 24. La projection proprement dite des billes de glace est réalisée au moyen d'une buse de projection 26, placée au bout du premier conduit flexible 24. Cette buse de projection 26 possède une arrivée de gaz froid 28, alimentée par un deuxième conduit flexible 44, afin d'effectuer la projection des billes de glace.The projection device according to the invention is completed with a
Il est préférable d'utiliser le même corps, par exemple de l'azote, pour constituer à la fois le gaz froid et le liquide réfrigérant. Dans ce but, et en référence à la figure 3, on peut équiper le dispositif selon l'invention d'une cuve de stockage 32 du corps réfrigérant, à savoir de l'azote. Ce dernier sort de cette cuve 32 à l'état liquide, et est amené dans un évaporateur 34, pour fournir le gaz froid sous pression nécessaire à alimenter l'entrée 7 à l'intérieur de la colonne d'échange 6 et les arrivées de gaz froid 20, à l'extrémité supérieure 19 de la vis d'extraction 16, et à l'entrée 28 de la buse 26. Le refroidissement du gaz issu de l'évaporateur 34 est réalisé à l'aide d'un refroidisseur 36 placé à la sortie de cet évaporateur 34. Ce refroidisseur est alimenté par le même corps à l'état liquide et issu directement de la cuve de stockage 32. Cette dernière alimente également directement la rampe 12 à l'intérieur du réceptacle 8. Il est possible d'utiliser un unique distributeur 30 du gaz froid pour alimenter l'arrivée 20 à l'extrémité supérieure 19 de la vis d'extraction 16 et l'arrivée 28 de la buse de projection 26.It is preferable to use the same body, for example nitrogen, to constitute both the cold gas and the coolant. For this purpose, and with reference to FIG. 3, the device according to the invention can be fitted with a
La suite de la description est consacrée à des précisions concernant le procédé selon l'invention et à des détails de réalisation des dispositifs de fabrication et projection de billes selon l'invention.The remainder of the description is devoted to details concerning the method according to the invention and to details of embodiment of the devices for manufacturing and projecting balls according to the invention.
Une condition du bon fonctionnement du dispositif selon l'invention est que le débit de gaz, en l'occurrence de l'azote à la température de 133°K, doit être supérieur ou égal à trois cent cinquante fois le débit d'eau (Vazote à 133°K≧350 Veau).A condition for the proper functioning of the device according to the invention is that the gas flow rate, in this case nitrogen at the temperature of 133 ° K, must be greater than or equal to three hundred and fifty times the water flow rate ( V nitrogen at 133 ° K ≧ 350 V water ).
Le tuyau d'arrivée d'eau 1 peut être réalisé au moyen d'un tube de cuivre équipé d'une vanne de type GACHOT à boule (un quart de tour). Le débitmètre 3 peut être du type à flotteur KHRONE mesurant une plage de débits de 25 à 250 litres d'eau par heure. L'injecteur 2 peut être réalisé par un réservoir en PVC (polychlorure de vinyle) percé de quatre-vingts trous 4 de 0,5 mm de diamètre pour obtenir un spectre de diamètre moyen de 1,5 mm. En général le diamètre des trous 4 sera choisi entre 0,1 mm et 1 mm.The water inlet pipe 1 can be produced by means of a copper tube fitted with a ball type GACHOT valve (a quarter turn). The flow meter 3 can be of the KHRONE float type measuring a flow range of 25 to 250 liters of water per hour. The
La colonne d'échange est un cylindre en acier inoxydable à double paroi 40, 41, d'une hauteur de 2 m, dont le diamètre intérieur est de l'ordre de 400 mm et le diamètre extérieur de 500 mm. L'espace entre ces deux parois 40 et 41 est rempli par injection d'un matériau isolant 45, tel que la mousse de polyuréthane. Ceci représente donc une épaisseur d'isolation supérieure à 50 mm.The exchange column is a double-walled
Le réceptacle 8 supportant cette colonne d'échange 6 est fabriqué dans le même matériau. Il possède également une double paroi 42, 43, maintenant l'isolation, qui est du même type que celle de la colonne 6, et dont l'épaisseur est également supérieure à 50 mm. La rampe 12 d'amenée du liquide réfrigérant est de préférence métallique et circulaire.The
Après une chute de 2,50 m environ, les gouttelettes d'eau ne sont pas totalement solidifiées. Elles tombent dans le bain 11 de liquide réfrigérant en cours de solidification. Un grand nombre d'entre elles se scindent alors en deux demi-sphères pendant la fin de leur solidification. Ce phénomène s'explique par l'expansion volumique résultant du changement d'état physique de l'eau en glace.After a drop of around 2.50 m, the water droplets are not completely solidified. They fall into the bath 11 of cooling liquid during solidification. A large number of them then split into two half-spheres during the end of their solidification. This phenomenon is explained by the volume expansion resulting from the change of physical state of the water in ice.
Les billes de glace ainsi obtenues sont entraînées par la vis d'extraction 16 qui est de préférence une vis d'Archimède de forme pure. A l'extrémité supérieure 19 de cette vis d'extraction 16, les billes sont aspirées par l'effet venturi produit par le débit d'azote refroidi à 130°K, sous une pression de 10⁶Pa, arrivant en 28.The ice balls thus obtained are entrained by the
En référence à la figure 3, l'azote gazeux est refroidi en amont dans un refroidisseur 34, qui permet, à partir de l'azote liquide à 77°K, d'obtenir de l'azote gazeux à 133°K. La fabrication des billes de glace s'effectue en-dessous de la température de 193°K, ceci pour éviter le phénomène de coalescence des billes de glace.Referring to Figure 3, the nitrogen gas is cooled upstream in a cooler 34, which allows, from liquid nitrogen at 77 ° K, to obtain nitrogen gas at 133 ° K. The manufacture of the ice balls is carried out below the temperature of 193 ° K, this to avoid the phenomenon of coalescence of the ice balls.
La hauteur de 2,50 m environ de la colonne d'échange 6 permet aux gouttelettes d'eau la solidification d'une croûte suffisante, pour avoir une bonne résistance mécanique, et une température de surface inférieure à cette température de coalescence.The height of approximately 2.50 m of the exchange column 6 allows the water droplets to solidify a sufficient crust, to have good mechanical strength, and a temperature of surface below this coalescing temperature.
L'utilisation d'une vis d'Archimède 16 de forme pure, ne possédant pas de volume mort, permet un écoulement continu du lit de billes de glace. Le moteur 18 d'entraînement de la vis 16 peut être un motoréducteur à engrenage CLER, à vitesse de rotation variable, afin de pouvoir faire varier le débit d'extraction des billes de glace et inversable pour supprimer les barrages accidentels de la vis. A l'extrémité supérieure 19 de la vis d'extraction 16, les billes de glace sont aspirées et poussées par l'effet venturi généré par le grand débit de gaz froid arrivant en 28 dans la buse 26, et poussées par le gaz arrivant en 20.The use of an
Le tube flexible 24 amenant les billes de glace dans la buse 26 peut être un tube flexible Cryoflex 200, distribué par les établissements Tift, et isolé thermiquement. Ce sont des flexibles du même type qui peuvent être utilisés pour véhiculer les gaz froids à l'entrée 20, à l'extrémité de la bille d'extraction 16 et à l'entrée 28 de la buse de projection 26. La buse elle-même peut être du type CAR 303, distribuée par les établissements CARBORID.The
Les billes de glace obtenues au moyen de l'invention peuvent avoir un diamètre compris entre 0,5 et 2 mm. La vis d'extraction 16 est de préférence inclinée à un angle de 45°, et ainsi tangente à la paroi du cône 10. La poussée du gaz froid, puis la dépression produite dans la buse de projection 26 entraînent les billes de glace dans le courant de gaz froid du premier conduit flexible 24 et les projettent à une pression de 7x10⁵ Pa.The ice balls obtained by means of the invention can have a diameter of between 0.5 and 2 mm. The
Un des principaux avantages du procédé et du dispositif selon l'invention est que cette dernière débouche sur la conception d'un appareil intégral. En effet, l'appareil permet de fabriquer sur place des billes de glace et de les projeter contre les objets à traiter.One of the main advantages of the method and of the device according to the invention is that the latter leads to the design of an integral device. In Indeed, the device makes it possible to manufacture on the spot balls of ice and to project them against the objects to be treated.
Les très basses températures mises en jeu permettent d'utiliser des liquides ou des solutions différentes, suivant le domaine de traitement à effectuer, pourvu que ceux-là aient un point de cristallisation supérieur à la température de liquéfaction de liquide réfrigérant. De plus, les masses de résidus que l'on dégage de l'utilisation de ce procédé, après fusion de la glace et filtration, sont négligeables par rapport à un procédé tel que le sablage.The very low temperatures involved make it possible to use different liquids or solutions, depending on the field of treatment to be carried out, provided that these have a crystallization point higher than the liquefaction temperature of coolant. In addition, the masses of residue that emerge from the use of this process, after melting the ice and filtration, are negligible compared to a process such as sandblasting.
L'invention s'applique au nettoyage ou à la décontamination par projection de matériaux. De plus, les billes peuvent contenir un produit chimique mélangé à l'eau avant introduction dans l'appareil et avant congélation. Ce produit chimique peut être choisi de façon à compléter l'attaque mécanique par un traitement chimique de passivation par exemple, ou par un traitement de désinfection dans le cas d'un nettoyage bactériologique.The invention applies to cleaning or decontamination by spraying materials. In addition, the beads may contain a chemical mixed with water before introduction into the device and before freezing. This chemical can be chosen so as to complete the mechanical attack by a chemical passivation treatment for example, or by a disinfection treatment in the case of bacteriological cleaning.
Claims (9)
- Apparatus for producing ice balls for the purpose of cleaning surfaces, in which by gravity dispersion takes place of water droplets in a cooling gas flow travelling in the opposite direction, where they partly solidify at a surface temperature below their coalescence temperature before coming into contact with a cooling liquid bath (11) where they complete the solidification process, the apparatus comprising an exchange column (6) supplied with a very cold gas by an intake (7) and on an upper end of which is provided a water injector (2) using a large number of holes (4) giving a droplet spectrum in the exchange column (6) and a receptacle (8) supporting the exchange column (6) having a ramp (12) for supplying the cooling liquid, an ice ball reception cone (10) and an ice ball discharge orifice (14) at the bottom of the cone (10), characterized in that the exchange column (6) has a height of approximately two metres and an opening provided at its upper end around the water injector (2) and in that the very cold gas intake (7) is thus located above the cooling liquid supply ramp (12), but at the bottom of the exchange column (6), so as to ensure over the complete exchange column (6) height an effective contact between the droplets and the gas.
- Apparatus according to claim 1, characterized in that the exchange column (6) and the receptacle (8) are in each case constituted by two stainless steel walls (40,41,42,43) between which is inserted an insulating material (45), such as polyurethane.
- Apparatus according to claim 1, characterized in that it comprises a flowmeter (3) placed upstream of an injector (2), in order to regulate the water droplet formation rate.
- Apparatus for the production and projection of ice balls using a production apparatus according to claim 1, characterized in that it comprises an extraction screw (16), whereof a first end (17) is placed below the orifice (14) of receptacle (8) for discharging from the latter the ice balls, a cold gas intake (20) located at a second end (19) of extraction screw (16), in order to force the ice balls into a first flexible pipe (24) and a nozzle (26) for projecting the ice balls positioned at the end of the first flexible pipe (24) and having a cold gas intake (28) for the projection of the ice balls.
- Apparatus according to claim 4, characterized in that the extraction screw (16) is inclined with respect to the horizontal and in that the receptacle (18) is pierced by a cooling liquid recovery pipe (22) in order to supply said cooling liquid to the bath (11) of receptacle (8).
- Apparatus according to claims 4 or 5, characterized in that the extraction screw is a pure Archimedean screw.
- Apparatus according to claim 4, characterized in that it comprises a cooling liquid storage tank (32) connected to an evaporator (34) for supplying the pressurized cold gas necessary for the supply of the distributor (30) and the cold gas intake (7) in the exchange column (6).
- Apparatus according to claim 7, characterized in that it comprises a cooler (36) for the cold gas located at the outlet of evaporator (34).
- Apparatus according to claim 8, characterized in that it comprises a distributor (30) supplied by cooler (36) and supplying the pressurized cold gas to an intake (20) located at the second end (19) of the extraction screw (16) and to the intake (28) of nozzle (26).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8805692A FR2630668B1 (en) | 1988-04-28 | 1988-04-28 | METHOD AND DEVICE FOR MANUFACTURING ICE BALLS AND APPLICATION TO SPRAYING THESE ICE BALLS FOR SURFACE TREATMENTS |
FR8805692 | 1988-04-28 | ||
PCT/FR1989/000204 WO1989010522A1 (en) | 1988-04-28 | 1989-04-27 | Method and device for producing ice balls and application to the projection of such ice balls for surface treatments |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0412111A1 EP0412111A1 (en) | 1991-02-13 |
EP0412111B1 true EP0412111B1 (en) | 1994-04-13 |
Family
ID=9365788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89905697A Expired - Lifetime EP0412111B1 (en) | 1988-04-28 | 1989-04-27 | Device for producing ice balls and application to the projection of such ice balls for surface treatments |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0412111B1 (en) |
KR (1) | KR900700833A (en) |
CA (1) | CA1331698C (en) |
DE (1) | DE68914657T2 (en) |
ES (1) | ES2011566A6 (en) |
FR (1) | FR2630668B1 (en) |
WO (1) | WO1989010522A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT411233B (en) * | 1999-05-07 | 2003-11-25 | Berndorf Band Ges M B H | DEVICE WITH AT LEAST ONE ENDLESS STEEL TAPE AND METHOD FOR THERMALLY PUTTING PLASTIC MEASURES |
EP4397437A1 (en) * | 2023-01-03 | 2024-07-10 | Freymatic AG | Blasting machine, dosing device for blasting machine, and use of blasting machine |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5365699A (en) * | 1990-09-27 | 1994-11-22 | Jay Armstrong | Blast cleaning system |
DE4120448A1 (en) * | 1991-06-20 | 1992-12-24 | Linde Ag | Prodn. of solid radiation medium from liquid substance led through outlet openings - feeding liquid substance through outlet opening for separation of drops which are then frozen with size of drop controlled by electric field |
FR2690369B1 (en) * | 1992-04-24 | 1994-10-14 | Gardella Coating Sa | Method and device for pickling surfaces by spraying water or dry ice. |
GB2286657A (en) * | 1994-02-14 | 1995-08-23 | Boc Group Plc | Immersion freezer |
DE4419010C1 (en) * | 1994-05-31 | 1995-04-27 | Buse Gase Gmbh & Co | Process and apparatus for granulating granulable and/or pelletable materials |
FR2730174B1 (en) * | 1995-02-03 | 1997-05-16 | Linde Gaz Ind | PROCESS AND DEVICE FOR MANUFACTURING AND SEPARATING SOLID PARTICLES CONTAINED IN A BATH OF REFRIGERANT LIQUID OF WHICH THE VOLUME MASSES OF TWO LIQUID AND SOLID PHASES ARE CLOSE VALUES |
ATE193853T1 (en) * | 1995-10-30 | 2000-06-15 | Birgit Papcke | METHOD FOR SURFACE TREATMENT, IN PARTICULAR CLEANING OF SURFACES WITH CO2 DRY ICE GRANULES AND A DEVICE FOR CARRYING OUT THIS METHOD |
CZ291660B6 (en) * | 1996-07-20 | 2003-04-16 | Max Bögl Bauunternehmung GmbH & Co. KG | Process for producing freshly mixed concrete with concrete mixture and ice particles and apparatus for making the same |
AUPQ158399A0 (en) * | 1999-07-12 | 1999-08-05 | Swinburne Limited | Method and apparatus for machining and processing of materials |
CH694158A5 (en) * | 2000-07-17 | 2004-08-13 | Cold Clean S A R L | Blasting machine. |
WO2003022525A2 (en) * | 2001-09-11 | 2003-03-20 | Jens Werner Kipp | Blasting method and device |
DE102007032778A1 (en) | 2007-07-13 | 2009-01-15 | Linde Ag | Apparatus and method for prilling |
EP2065671A1 (en) * | 2007-11-29 | 2009-06-03 | Ugo Nevi | Machine shooting bullets of ice |
DE102009011521A1 (en) * | 2009-03-06 | 2010-09-16 | Wolfgang Folger | Apparatus and method for producing ice-beads from an aqueous mixture |
DE102020000018A1 (en) | 2020-01-02 | 2021-07-08 | Jürgen von der Ohe | Method and device for manufacturing a cryogenically-acting blasting agent, as well as method and device for cleaning components with the cryogenically-mechanically acting blasting agent |
DE202023002024U1 (en) | 2023-04-18 | 2024-01-04 | Jürgen von der Ohe | Device for producing a solid cryogenic-mechanical blasting agent from water using the countercurrent process |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3162019A (en) * | 1962-11-16 | 1964-12-22 | Bethlehem Steel Corp | Method and apparatus for freezing liquids to be used in a freeze-drying process |
US3266193A (en) * | 1964-06-11 | 1966-08-16 | Schlumberger Well Surv Corp | Sand supply container |
FR2342472A1 (en) * | 1976-02-25 | 1977-09-23 | Stef | Freezing sprayed edible fluid e.g. milk, eggs, fruit juice - as fine powder ready for packaging and subsequent reconstitution |
DK60677A (en) * | 1977-02-11 | 1978-08-12 | Hansen S Labatorium C | FREEZER |
GB2042399B (en) * | 1979-01-15 | 1982-09-22 | Boc Ltd | Method and apparatus for penetrating a body of material or treating a surface |
FR2475425A1 (en) * | 1980-02-08 | 1981-08-14 | Reel Sa | Cleaner for external aircraft surfaces - combines compressed air with water and coolant to produce stream of ice particles |
US4655047A (en) * | 1985-03-25 | 1987-04-07 | I.Q.F. Inc. | Process for freezing or chilling |
US4704873A (en) * | 1985-11-14 | 1987-11-10 | Taiyo Sanso Co., Ltd. | Method and apparatus for producing microfine frozen particles |
-
1988
- 1988-04-28 FR FR8805692A patent/FR2630668B1/en not_active Expired - Lifetime
-
1989
- 1989-04-26 CA CA000597895A patent/CA1331698C/en not_active Expired - Fee Related
- 1989-04-27 EP EP89905697A patent/EP0412111B1/en not_active Expired - Lifetime
- 1989-04-27 KR KR1019890702439A patent/KR900700833A/en not_active Application Discontinuation
- 1989-04-27 WO PCT/FR1989/000204 patent/WO1989010522A1/en active IP Right Grant
- 1989-04-27 DE DE68914657T patent/DE68914657T2/en not_active Expired - Fee Related
- 1989-04-28 ES ES8901496A patent/ES2011566A6/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT411233B (en) * | 1999-05-07 | 2003-11-25 | Berndorf Band Ges M B H | DEVICE WITH AT LEAST ONE ENDLESS STEEL TAPE AND METHOD FOR THERMALLY PUTTING PLASTIC MEASURES |
EP4397437A1 (en) * | 2023-01-03 | 2024-07-10 | Freymatic AG | Blasting machine, dosing device for blasting machine, and use of blasting machine |
Also Published As
Publication number | Publication date |
---|---|
KR900700833A (en) | 1990-08-17 |
EP0412111A1 (en) | 1991-02-13 |
DE68914657D1 (en) | 1994-05-19 |
FR2630668B1 (en) | 1990-11-16 |
FR2630668A1 (en) | 1989-11-03 |
DE68914657T2 (en) | 1994-10-13 |
CA1331698C (en) | 1994-08-30 |
WO1989010522A1 (en) | 1989-11-02 |
ES2011566A6 (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0412111B1 (en) | Device for producing ice balls and application to the projection of such ice balls for surface treatments | |
EP0521794B1 (en) | Apparatus for storing and conveying ice-balls, without sticking to each other, from their place of production to their place of use, where they are propelled against a target | |
JP2977896B2 (en) | Cryogenic equipment | |
JP4346037B2 (en) | Method and apparatus for producing slush nitrogen, cooling method using slush nitrogen, and apparatus therefor | |
BE1006591A6 (en) | Distribution system fluid spray jets. | |
FR2552004A1 (en) | CLEANING METHOD AND APPARATUS | |
WO1987001913A1 (en) | Method and tunnel for the surface cooling of food products | |
WO1996026400A1 (en) | Device for freezing fluid substances using a fluid refrigerant | |
EP0807232B1 (en) | Method and device for producing and separating solid particles | |
FR2705261A1 (en) | Method and apparatus for producing granules of a reactive metal | |
EP0318352B1 (en) | Carbon dioxide lance for metallurgy | |
US5154064A (en) | Food freezing and cool water and slush ice producer | |
WO2011027064A1 (en) | Insulating pipes of a facility for working by means of cryogenic fluid jets | |
FR2472433A1 (en) | PROCESS AND APPARATUS FOR THE PREPARATION, ESPECIALLY COOLING AND MIXING OF MOLDING SAND | |
FR2604182A1 (en) | PROCESS FOR TREATING CELLS USING FROZEN PARTICLES OF A SUSPENSION CONTAINING CELLS | |
WO2005068040A1 (en) | Continuous method for partially crystallising a solution and a device for carrying out said method | |
FR2568452A1 (en) | Moulding and freezing liq. confections as iced lollies etc. | |
FR1321519A (en) | Method and apparatus for granulating fertilizer compositions | |
JPH03102152A (en) | Ice grain manufacturing device | |
RU2583682C1 (en) | Method of producing granulated ice | |
JPH0781763B2 (en) | Frozen grain production equipment | |
FR2911809A1 (en) | Dry abrasive powder diffusing device for pneumatic cleaning tool, has stage level including mixing zone to mix abrasive powder and compressed air, and to supply mixture to pneumatic cleaning tool via outlet duct | |
JPH0757471B2 (en) | Frozen particle injection device | |
BE655216A (en) | ||
BE410179A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901004 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19910418 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 68914657 Country of ref document: DE Date of ref document: 19940519 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940627 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000425 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000428 Year of fee payment: 12 Ref country code: FR Payment date: 20000428 Year of fee payment: 12 Ref country code: BE Payment date: 20000428 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000517 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20010430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010427 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20011101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050427 |