EP0409687B1 - Procédé de siliciuration de pièces métalliques par dépÔt chimique en phase gazeuse - Google Patents

Procédé de siliciuration de pièces métalliques par dépÔt chimique en phase gazeuse Download PDF

Info

Publication number
EP0409687B1
EP0409687B1 EP19900401931 EP90401931A EP0409687B1 EP 0409687 B1 EP0409687 B1 EP 0409687B1 EP 19900401931 EP19900401931 EP 19900401931 EP 90401931 A EP90401931 A EP 90401931A EP 0409687 B1 EP0409687 B1 EP 0409687B1
Authority
EP
European Patent Office
Prior art keywords
component
silicon
temperature
gas mixture
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900401931
Other languages
German (de)
English (en)
Other versions
EP0409687A1 (fr
Inventor
Pierre Jalby
Michel Gastiger
Thierry Jacquin
Eric Gosse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0409687A1 publication Critical patent/EP0409687A1/fr
Application granted granted Critical
Publication of EP0409687B1 publication Critical patent/EP0409687B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused

Definitions

  • the present invention relates to a method for improving the surface properties of metal parts by siliciding by means of chemical gas deposition.
  • the invention relates more particularly to a method of siliciding by chemical gas deposition for improving the surface properties, in particular the hardness and the corrosion resistance of steel parts.
  • the metal parts need a surface treatment to meet the technical and economic requirements of their environment of use.
  • Surface treatment makes it possible to improve the surface properties of metal parts, either by modifying the composition of a surface layer of these parts, or by depositing a layer of another material on the surface of these parts. .
  • the present invention relates more particularly to the chemical gas deposition method (sometimes called “Chemical Vapor Deposition” or CVD), in particular for the siliciding of steel parts.
  • CVD chemical gas deposition
  • the chemical gas deposition method for metal siliciding has many advantages. In particular, it makes it possible to obtain a uniform deposit layer on the surface of the parts to be treated with relatively low treatment temperatures, and does not require a high vacuum.
  • the other methods of siliciding known in the art have, on the contrary, a certain number of drawbacks, such as the high cost of production (ion implantation), the difficulties of implementation (electrolysis, ion implantation), the non-uniformity of the deposit ( ion implantation, plasma spraying) or too thick layers of deposition layers (plasma spraying, sintering), etc.
  • the object of the present invention is therefore to produce, under special conditions, a silicided layer of metals by chemical deposition in the gaseous phase of silane (Si n H 2n + 2 ) to improve the surface properties, in particular the mechanical properties of the parts. processed.
  • the method of the invention makes it possible in particular to improve the surface properties of steel parts, in particular for their surface hardness.
  • the invention relates to a method for improving the surface properties of a metal part, in particular its surface hardness, comprising the following steps: a) the part is prepared in the clean state; b) the part is heated in an oven under an inert atmosphere, which may optionally contain up to 20% by volume of hydrogen, to a predetermined temperature (T 0 ); then c) a gaseous mixture containing an inert gas and a silane of formula Si n H 2n + 2 is injected into the oven, the volume content of silane being less than 10%, said process being characterized in that the predetermined temperature (T 0 ) is between 800 ° C and 1100 ° C, that the total pressure of the gas mixture is less than 1000 Pa and that a diffusion layer containing 10 to 40% of silicon in atomic percentage is formed on the surface of the room.
  • the siliciding temperature T 0 is advantageously greater than 850 ° C.
  • the part after having been exposed to the temperature T 0 , the part is preferably cooled to around 850 ° C., then quenched for example in an oil at room temperature. We can then perform a tempering of the part at a temperature of on the order of 550 ° to 600 ° C for about 30 to 60 minutes.
  • the stages after siliciding can be modified according to the type of steel constituting the part to be treated.
  • the steel part is maintained at the siliciding temperature T 0 for a period of between 0.5 and 40 hours depending on the value of T 0 .
  • the flow rate of the gas mixture per unit volume of the oven can vary between 1 and 10.
  • the volume proportion of silane in the gas mixture is less than 10%, preferably between 10 ppm and 5%, and is strongly influenced by the siliciding temperature T 0 .
  • this proportion can be chosen between 0.1% and 5%.
  • the gaseous mixture injected, during the step of maintaining the temperature T 0 at which the siliciding of the part takes place preferably does not contain any other gaseous constituents than silane and argon.
  • Helium can also be used as the sole diluent for silane.
  • the furnace is filled with an inert gas, in particular argon. It is also possible to inject a small volume percentage of hydrogen of less than 20% in this inert gas.
  • the total gas pressure is preferably less than 1000 Pascals, but can also reach atmospheric pressure.
  • the process of the invention is particularly suitable for treating carbon steel parts having a carbon content of less than 0.5%.
  • the improvements concerning in particular the hardness and the corrosion resistance of the parts are particularly remarkable for this type of steel.
  • the pressure in the oven during the heating of the room can go up to atmospheric pressure.
  • this pressure is controlled below 1000 Pascals.
  • the total flow rate of the gas or gases per unit volume of the oven during the heating phase is preferably chosen between 1 and 10.
  • the part is maintained at the temperature T 0 and a gaseous mixture consisting of silane is injected having a volume proportion of between 100 ppm and 1%, preferably between 0.5 and 1%, diluted in an inert gas, for example argon.
  • the siliciding time at temperature T 0 can advantageously be controlled between 2 and 10 hours.
  • the quality of the silicon diffusion layer obtained on the surface of the part after siliciding essentially depends on the composition and the surface condition of the substrate, and on the kinetics of siliciding, the main parameters of which are the temperature of the part. and the amount of silane present on the surface of the part.
  • the hydrogen released during the decomposition of silane allows a reduction of the oxygen possibly present in the environment thus avoiding the possibility of formation of an oxide layer on the surface of the part to be treat during siliciding.
  • the total pressure of the gas mixture during siliciding is preferably kept below 500 Pascals.
  • monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used for siliciding according to the process of the invention.
  • a piece of carbon steel type 42 CD 4 (0.41% C; 0.31% Si; 0.64% Mn; 0.94% Cr, 0.21% Mo) is formed.
  • the surface of the part is degreased and deoxidized in an ultrasonic bath with acids and solvents.
  • the part is then placed in a horizontal oven with hot walls which is then heated to 1000 ° C in argon having a pressure of less than 1000 Pascals.
  • the silane (SiH 4 ) diluted in argon (Ar) is injected into the oven maintained at a pressure of approximately 300 Pascals and at a temperature of 1000 ° C.
  • the volume proportion of silane is approximately 0.5%.
  • the total flow rate of the silane / argon mixture is of the order of 0.4 dm 3 / minute.
  • the reaction is allowed to proceed for 2 hours, then the temperature is lowered to 850 ° C, maintained for about 30 minutes, the part is quenched and tempered at 550 ° C for 1 hour.
  • results obtained show a significant increase in surface hardness which varies from 330 HV (in VICKERS hardness) before treatment to around 500 HV after treatment, hardness tests being carried out with 200 g of filler.
  • CD 4 carbon steel samples are prepared in the form of pellets with a thickness of 2 mm and a diameter of 10 mm.
  • the samples are cleaned in a liquid medium under ultrasound using Branson (registered trademark) product, so as to degrease and deoxidize the surface of the samples.
  • Branson registered trademark
  • the samples are then placed in a tubular oven which is then heated to the siliciding temperature T 0 above 850 ° C., under argon at 500 Pascals.
  • T 0 the temperature above 850 ° C.
  • argon argon
  • the samples are maintained at this temperature while a gas mixture consisting of 2.5% K 2 , 0.5% SiH 4 , 9% He and 88% Ar is injected into the oven
  • the total flow and the total pressure of the gas mixture are respectively 1 dm 3 / minute and 300 Pascals.
  • the siliciding time is equal to 2 hours.
  • the temperature is then lowered to 850 °, then the samples are tempered at 550 ° for half an hour.
  • the samples thus treated are then analyzed using the usual observation devices, such as the scanning electron microscope, roughness meter, the X-ray analyzer, the AUGER spectroscope and the microdurometer.
  • the hardness decreases rapidly from the surface of the silicided layer to a depth of approximately 100 ⁇ m inside this layer. Then the hardness becomes almost constant when the analyzed depth exceeds 100 ⁇ m.
  • the hardness decreases relatively slowly from the surface of the layer to around 250 ⁇ m. Then the hardness decreases suddenly between 250 ⁇ m and 300 ⁇ m deep to reach a plateau from 300 ⁇ m deep.
  • the siliciding depth is greater when the siliciding temperature T 0 is greater, which can be interpreted by the increasing speed of diffusion of the species as a function of the temperature. It can be considered that the siliciding depth corresponds to the thickness of the silicon diffusion layer in the iron.
  • FIG. 2 shows the profile of the hardness at 25 ⁇ m in depth in the silicon diffusion layer as a function of the atomic percentage of silicon at this depth.
  • the concentration of silicon is greater than 40%, the silicon diffusion layer certainly has a very high hardness but becomes brittle and the layer cracks.
  • the method of the invention aims to obtain a percentage of silicon in the diffusion layer of between 10% and 40 atomic%. Preferably, this percentage varies between 15% and 30%.
  • the present invention is not limited to the only method of chemical deposition in the gas phase by low pressure thermal heating as described above.
  • Other heating means for example induction heating of the room, can be used.
  • chemical gas deposition by low pressure thermal heating is more easily adaptable for use on an industrial scale.
  • the process of the invention can undergo slight modifications to allow the improvement of other surface properties of metals, in particular their resistance to abrasion, the obtaining of a layer of high magnetic permeability, the creation of an interface. silicided on the metal allowing easy attachment of ceramic parts or deposits, obtaining an inert layer for certain chemical reactions.
  • the process could be further improved by multilayer deposits having complementary properties, such as for example an anti-corrosion silicide layer and a lubricating iron sulfide layer. It is also possible to produce, using the process of the invention, composite layers of silicide and iron nitride to increase the hardness or adapt the composition of the surface to promote ceramic-metal adhesion and for the case of silicon-based ceramics.
  • the metal parts obtained by the present process can be used in particular in the mechanical industries and the steel transformation industries for the improvement of surface properties with respect to corrosion, hardness, resistance to abrasion, passivation, adhesion, magnetism, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

  • La présente invention concerne un procédé d'amélioration des propriétés superficielles de pièces métalliques par siliciuration au moyen d'un dépôt chimique en phase gazeuse.
  • L'invention concerne, plus particulièrement, un procédé de siliciuration par dépôt chimique en phase gazeuse pour l'amélioration des propriétés superficielles, notamment de la dureté et de la résistance à la corrosion des pièces en acier.
  • D'une manière générale, après leur mise en forme, les pièces métalliques ont besoin d'un traitement de surface pour répondre à des impératifs techniques et économiques de leur environnement d'utilisation. Le traitement de surface permet d'améliorer les propriétés superficielles des pièces métalliques, soit par une modification de la composition d'une couche superficielle de ces pièces, soit par un dépôt d'une couche d'un autre matériau à la surface de ces pièces.
  • Parmi de nombreuses méthodes connues pour le traitement de surface, la présente invention s'intéresse plus particulièrement à la méthode de dépôt chimique en phase gazeuse (parfois désigné "Chemical Vapor Deposition" ou C.V.D.), notamment pour la siliciuration de pièces en acier.
  • Dans la littérature, on peut trouver plusieurs méthodes d'élaboration de couches superficielles siliciurées : l'implantation ionique, le frittage de poudres de silicium et du métal choisi, la projection de plasma, l'électrolyse en bain de sels fondus et le dépôt chimique en phase gazeuse.
  • La méthode de dépôt chimique en phase gazeuse pour la siliciuration de métaux présente de nombreux avantages. Elle permet en particulier d'obtenir une couche de dépôt uniforme à la surface des pièces à traiter avec des températures de traitement relativement basses, et ne nécessite pas un vide poussé. Les autres méthodes de siliciuration connues dans la technique présentent au contraire un certain nombre d'inconvénients, tels que le coût élevé de réalisation (implantation ionique), les difficultés de mise en oeuvre (électrolyse, implantation ionique), l'inhomogénéité du dépôt (implantation ionique, projection de plasma) ou des épaisseurs trop importantes de couches de dépôt (projection de plasma, frittage), etc.
  • On sait déjà réaliser une siliciuration à l'aide de SiCl4 par la méthode de dépôt chimique en phase gazeuse dans le but d'augmenter la perméabilité magnétique et de diminuer la magnétostriction, et surtout diminuer les pertes magnétiques, des tôles d'acier de transformateurs. Pendant la siliciuration, une couche de diffusion de silicium se forme à la surface des pièces en acier. Le chlorure volatil crée des porosités dans la couche siliciurée qui sont néfastes notamment aux propriétés d'anti-corrosion des pièces. L'ajout éventuel d'hydrogène au flux de SiCl4 a été envisagé pour éliminer la possibilité de formation de chlorure de fer. Mais des réactions chimiques produisent de l'acide chlorhydrique gazeux qui peut aussi attaquer la couche de diffusion de silicium en y formant des porosités.
  • On connaît également, par la demande de brevet EP 0 226 130 (AIR PRODUCTS), la siliciuration de métaux par dépôt chimique en phase gazeuse en utilisant du silane (SiH4) dans un flux d'hydrogène à des températures voisines de 600 à 700°C. Le document fait état d'un processus de diffusion de silicium dans le métal obtenu en faisant un prétraitement des substrats sous atmosphère d'hydrogène, en contrôlant et en minimisant le taux de la vapeur d'eau dans le four. La couche de diffusion de silicium obtenue améliore les propriétés d'anti-corrosion à haute température et inhibe la formation de coke lors d'opérations de cracking d'hydrocarbures.
  • D'autres travaux ont été menés pour l'obtention de couches passivantes de siliciure à la surface de pièces métalliques notamment en fer, en titane et en nickel, à l'aide du silane.
  • La demandresse a maintenant découvert, et cela constitue l'idée inventive à la base de la présente invention, qu'il était possible d'obtenir une modification sensible des propriétés mécaniques superficielles de pièces en acier en procédant à une siliciuration de ces pièces dans des conditions particulières.
  • L'objet de la présente invention est donc de réaliser, dans des conditions particulières, une couche siliciurée de métaux par dépôt chimique en phase gazeuse de silane (SinH2n+2) pour améliorer les propriétés superficielles, notamment les propriétés mécaniques des pièces traitées.
  • Le procédé de l'invention permet en particulier d'améliorer les propriétés superficielles de pièces en acier, notamment pour leur dureté superficielle.
  • L'invention concerne un procédé d'amélioration des propriétés superficielles d'une pièce métallique, notamment de sa dureté superficielle, comprenant les étapes suivantes: a) on prépare la pièce à l'état propre ; b) on chauffe la pièce dans un four sous atmosphère inerte, pouvant éventuellement contenir jusqu'à 20% en volume d'hydrogène, jusqu'à une température prédéterminée (T0) ; puis c) on injecte dans le four un mélange gazeux contenant un gaz inerte et un silane de formule SinH2n+2, la teneur volumique en silane étant inférieure à 10 %, ledit procédé étant caractérisé en ce que la température prédéterminée (T0) est comprise entre 800°C et 1100°C, que la pression totale du mélange gazeux est inférieure à 1000 Pa et qu'on forme une couche de diffusion contenant de 10 à 40 % de silicium en pourcentage atomique à la surface de la pièce.
  • La température de siliciuration T0 est avantageusement supérieure à 850°C. Dans ce cas, après avoir été exposée à la température T0, la pièce est de préférence refroidie à environ 850°C, puis trempée par exemple dans une huile à la température ambiante. On peut effectuer ensuite un revenu de la pièce à une température de l'ordre de 550° à 600°C pendant environ 30 à 60 minutes. Les étapes postérieures à la siliciuration peuvent être modifiées selon le type d'acier constituant la pièce à traiter.
  • De préférence, la pièce en acier est maintenue à la température T0 de siliciuration pendant une durée comprise entre 0,5 et 40 heures selon la valeur de T0. Le débit du mélange gazeux par unité de volume du four peut varier entre 1 et 10.
  • La proportion volumique de silane dans le mélange gazeux est inférieure à 10%, de préférence comprise entre 10 ppm et 5%, et est fortement influencée par la température T0 de siliciuration. Avantageusement, cette proportion peut être choisie entre 0,1% et 5%.
  • Le mélange gazeux injecté, pendant l'étape du maintien de la température T0 à laquelle a lieu la siliciuration de la pièce ne contient de préférence pas d'autres constituants gazeux que le silane et l'argon. Toutefois il peut être avantageux dans certains cas de rajouter au mélange gazeux de l'hydrogène dans des proportions volumiques inférieures à 20% et/ou d'hélium dans des proportions volumiques supérieures à 1%. L'hélium peut également être utilisé comme diluant unique du silane.
  • Pendant l'étape de chauffage de la pièce en acier, le four est rempli d'un gaz inerte, notamment de l'argon. On peut également injecter un faible pourcentage volumique d'hydrogène inférieur à 20% dans ce gaz inerte. La pression totale du gaz est de préférence inférieure à 1000 Pascals, mais peut également atteindre la pression atmosphérique.
  • Le procédé de l'invention est particulièrement adapté pour traiter des pièces en acier au carbone ayant une teneur en carbone inférieure à 0,5%. Les améliorations concernant notamment la dureté et la résistance à la corrosion des pièces sont particulièrement remarquables pour ce type d'acier.
  • La préparation à l'état propre de la pièce avant son introduction dans le four a une grande importance dans la mesure où la pièce sera chauffée sous atmosphère inerte, car la présence éventuelle d'oxydes à la surface de la pièce à traiter constitue une barrière à la diffusion et peuvent entraîner une mauvaise adhérence du dépôt avec le substrat. Des pièces en fer pur, en superalliage ou en acier inoxydable peuvent également être traitées par le procédé de l'invention.
  • L'ajout éventuel de faibles quantités d'hydrogène inférieures à 20% en volume dans le gaz inerte, pendant la phase de chauffage de la pièce, a pour effet de créer une atmosphère réductrice permettant de supprimer la couche d'oxyde qui pourrait subsister éventuellement après le nettoyage de la pièce par exemple dans un bain ultrasonique.
  • La pression dans le four pendant le chauffage de la pièce peut aller jusqu'à la pression atmosphérique. De manière avantageuse, cette pression est contrôlée en dessous de 1000 Pascals. Dans ces conditions, le débit total du ou des gaz par unité de volume du four pendant la phase de chauffage est préférentiellement choisi entre 1 et 10.
  • Pendant la phase de siliciuration, la pièce est maintenue à la température T0 et l'on injecte un mélange gazeux constitué de silane ayant une proportion volumique comprise entre 100 ppm et 1%, de préférence entre 0,5 et 1%, dilué dans un gaz inerte, par exemple de l'argon. Le temps de siliciuration à la température T0 peut être avantageusement contrôlé entre 2 et 10 heures.
  • La qualité de la couche de diffusion de silicium obtenue à la surface de la pièce après la siliciuration dépend essentiellement de la composition et de l'état de surface du substrat, et de la cinétique de siliciuration dont les paramètres principaux sont la température de la pièce et la quantité de silane présente à la surface de la pièce.
  • Pour réaliser en pratique la siliciuration de la pièce, maintenue à la température T0, on introduit donc le mélange gazeux contenant le silane à l'intérieur du four, de façon à entraîner le contact entre l'atmosphère gazeuse et la surface de la pièce en acier. On estime alors que les phénomènes suivants se produisent :
    • adsorption des espèces gazeuses y compris le silane, à la surface de la pièce;
    • réaction chimique à la surface de la pièce consistant en partie en la décomposition du silane en silicium et en hydrogène;
    • diffusion du silicium dans la pièce en acier formant une couche de diffusion de silicium;
    • désorption et diffusion des produits volatils formés.
  • Il est intéressant de remarquer que l'hydrogène dégagé lors de la décomposition de silane permet une réduction de l'oxygène éventuellement présent dans l'environnement en évitant ainsi la possibilité de formation d'une couche d'oxyde à la surface de la pièce à traiter pendant la siliciuration.
  • La pression totale du mélange gazeux pendant la siliciuration est de préférence maintenue en dessous de 500 Pascals. On utilise avantageusement le monosilane (SiH4) ou le disilane (Si2H6) pour la siliciuration selon le procédé de l'invention.
  • On peut effectuer une oxydation superficielle de la couche siliciurée de la pièce en introduisant un gaz riche en oxygène après la phase de siliciuration et avant d'effectuer la trempe éventuelle de la pièce qui peut être suivie d'un revenu.
  • L'invention sera mieux comprise à l'étude de la description détaillée de deux exemples de réalisation de l'invention pris à titre nullement limitatif et dont certains résultats sont illustrés par les dessins annexés, sur lesquels :
    • la figure 1 représente des profils de dureté des pièces siliciurées en fonction de la profondeur analysée; et
    • la figure 2 représente des profils de dureté en fonction du pourcentage atomique de silicium contenu dans la couche de diffusion analysée.
    EXEMPLE 1
  • On façonne une pièce en acier au carbone de type 42 CD 4 (0,41% C; 0,31% Si; 0,64% Mn; 0,94% Cr, 0,21% Mo). La surface de la pièce est dégraissée et désoxydée dans un bain ultrasonique aux acides et solvants. La pièce est ensuite placée dans un four horizontal à parois chaudes qui est alors chauffée jusqu'à 1000°C dans de l'argon ayant une pression inférieure à 1000 Pascals. Dès que le four a atteint cette température, le silane (SiH4) dilué dans l'argon (Ar) est injecté dans le four maintenu à une pression d'environ 300 Pascals et à une température de 1000°C. La proportion volumique de silane est d'environ 0,5%. Le débit total du mélange silane/argon est de l'ordre 0,4 dm3/minute. On laisse la réaction se dérouler pendant 2 heures, puis on abaisse la température à 850°C, on la maintient pendant environ 30 minutes, on trempe la pièce et on fait un revenu à 550°C pendant 1 heure.
  • Les résultats obtenus montrent une augmentation sensible de la dureté superficielle qui varie de 330 HV (en dureté VICKERS) avant le traitement à 500 HV environ après le traitement, les tests de dureté étant effectués avec 200 g de charge.
  • EXEMPLE 2
  • On prépare des échantillons en acier au carbone 42 CD 4 sous forme de pastilles d'épaisseur égale à 2 mm et de diamètre égal à 10 mm. Les échantillons sont nettoyés en milieu liquide sous ultrasons à l'aide de produit Branson (marque déposée), de façon à dégraisser et désoxyder la surface des échantillons.
  • Les échantillons sont ensuite placés dans un four tubulaire qui est alors chauffé à la température de siliciuration T0 au-dessus de 850°C, sous argon à 500 Pascals. Lorsque la température T0 est atteinte, on maintient les échantillons à cette température pendant que l'on injecte dans le four un mélange gazeux constitué de 2,5% K2, 0,5% SiH4, 9% He et 88% Ar. Le débit total et la pression totale du mélange gazeux sont respectivement 1 dm3/minute et 300 Pascals. Le temps de siliciuration est égal à 2 heures.
  • On abaisse ensuite la température à 850°, puis on fait un revenu des échantillons à 550° pendant une demi-heure. Les échantillons ainsi traités sont ensuite analysés à l'aide des dispositifs habituels d'observation, tels que le microscope électronique à balayage, rugosimètre, l'analyseur à rayons X, le spectroscope AUGER et le microduromètre.
  • Sur les figures 1 et 2 sont représentés des profils de dureté respectivement en fonction de la profondeur de la couche siliciurée de l'échantillon et du pourcentage atomique en silicium (% Si) contenu dans la couche. Seuls les profils de dureté obtenue selon l'exemple 2 et correspondant à deux températures de siliciuration T0 = 1000°C et T0 = 1100°C sont représentées sur les figures.
  • Comme illustré sur la figure 1, pour la température de siliciuration T0 égale à 1000°C, la dureté décroît rapidement depuis la surface de la couche siliciurée jusqu'à une profondeur d'environ 100µm à l'intérieur de cette couche. Puis la dureté devient presque constante lorsque la profondeur analysée dépasse 100 µm.
  • Dans le cas où la température de siliciuration T0 est égale à 1100°C, le profil de dureté diffère de celui obtenu pour T0 = 1000°C. Lorsque la profondeur analysée de la couche de diffusion de siliciure augmente, la dureté décroît relativement lentement depuis la surface de la couche jusqu'à environ 250 µm. Puis la dureté décroît brusquement entre 250 µm et 300 µm de profondeur pour atteindre un palier à partir de 300 µm de profondeur.
  • On constate que la profondeur de siliciuration est plus grande lorsque la température de siliciuration T0 est plus importante, ce qui peut être interprété par la vitesse croissante de diffusion des espèces en fonction de la température. On peut considérer que la profondeur de siliciuration correspond à l'épaisseur de la couche de diffusion du silicium dans le fer. Le profil de dureté en fonction de la profondeur montre que cette couche de diffusion du silicium a une épaisseur de l'ordre de 100 µm pour la température de siliciuration T0 = 1000°C, et de l'ordre de 250 µm pour la température de siliciuration T0 = 1100°C.
  • L'acier 42 CD 4 de départ présente une dureté moyenne de l'ordre de 330 HV (en dureté VICKERS). Après siliciuration, la dureté des échantillons peut atteindre de l'ordre de 475 HV pour T0 = 1000°C à 525 Hv pour T0 = 1100°C à la surface de la couche de diffusion du silicium obtenue selon l'exemple 2 de l'invention. On améliore ainsi de façon sensible la dureté de la surface des échantillons.
  • La figure 2 montre le profil de la dureté à 25 µm de profondeur dans la couche de diffusion de silicium en fonction du pourcentage atomique en silicium à cette profondeur. Sur les deux courbes représentées correspondant à des températures de siliciuration respectivement égales à 1000°C et 1100°C, on observe une dureté presque constante pour la teneur en silicium comprise entre 0% et 10% atomique. A partir de 10% de Silicium dans la couche siliciurée, la dureté croît très rapidement en fonction de la teneur en Silicium dans la couche. Les deux deux courbes sont pratiquement confondues pour la teneur en Silicium inférieure à 15%. Lorsque la teneur en Silicium va au-delà de 15% atomique, la courbe de dureté correspondant à T0 = 1000°C connaît une croissance moins marquée que la courbe correspondant à T0 = 1100°C. Sur la figure 2, une augmentation sensible de la dureté est observée pour un pourcentage en silicium supérieur à 10%. En comparant les deux courbes de dureté obtenues à T0 = 1000°C et T0 = 1100°C, on peut considérer, dans une première approximation, que la dureté pour une valeur de Silicium atomique inférieure à 15% est indépendante de la température de siliciuration T0.
  • Par ailleurs, on sait que lorsque la teneur en silicium dans la couche de diffusion atteint 10% atomique, on obtient une couche dense et passivante permettant une bonne protection contre la corrosion. Dans le cas présent, l'obtention d'une augmentation sensible de la dureté implique simultanément une teneur en Silicium dans la couche supérieure à 10% et permet donc d'améliorer les propriétés anti-corrosion de la surface d'acier.
  • On observe en outre que lorsque la concentration de silicium est supérieure à 40%, la couche de diffusion de silicium présente certes une dureté très élevée mais devient fragile et la couche se fissure.
  • D'une manière générale, le procédé de l'invention vise à obtenir un pourcentage en silicium dans la couche de diffusion compris entre 10% et 40% atomique. De préférence, ce pourcentage varie entre 15% et 30%.
  • On peut donc souligner l'importance du procédé de l'invention pour l'amélioration de la dureté superficielle ainsi que des propriétés anti-corrosion et anti-usure des pièces en acier.
  • Bien entendu la présente invention ne se limite pas à la seule méthode de dépôt chimique en phase gazeuse par chauffage thermique à basse pression comme décrit ci-dessus. D'autres moyens de chauffage, par exemple le chauffage par induction de la pièce, peuvent être utilisés. Toutefois, le dépôt chimique en phase gazeuse par chauffage thermique à basse pression est plus facilement adaptable à une utilisation à l'échelle industrielle.
  • Le procédé de l'invention peut subir de légères modifications pour permettre l'amélioration d'autres propriétés superficielles des métaux, notamment leur résistance à l'abrasion, l'obtention d'une couche de forte perméabilité magnétique, la création d'un interface siliciuré sur le métal permettant l'accrochage facile de pièces ou de dépôts en céramique, l'obtention d'une couche inerte pour certaines réactions chimiques.
  • Le procédé pourrait encore être améliore par des dépôts multicouches ayant des propriétés complémentaires, comme par exemple une couche de siliciure anti-corrosion et une couche de sulfure de fer lubrifiante. Il est également possible de réaliser, à l'aide du procédé de l'invention, des couches composites de siliciure et de nitrure de fer pour augmenter la dureté ou adapter la composition de la surface pour favoriser l'adhésion céramique-métal et pour le cas de céramiques à base de silicium.
  • Les pièces métalliques obtenues par le présent procédé peuvent être utilisées notamment dans les industries mécaniques et les industries de transformation des aciers pour l'amélioration des propriétés de surface vis-à-vis de la corrosion, de la dureté, de la résistance à l'abrasion, de la passivation, de l'adhésion, du magnétisme, etc.

Claims (14)

  1. Procédé d'amélioration des propriétés superficielles d'une pièce métallique, notamment de sa dureté superficielle, comprenant les étapes suivantes:
    a) on prépare la pièce à l'état propre ;
    b) on chauffe la pièce dans un four sous atmosphère inerte, pouvant éventuellement contenir jusqu'à 20 % en volume d'hydrogène jusqu'à une température prédéterminée (To) ; puis
    c) on injecte dans le four un mélange gazeux contenant un gaz inerte et un silane de formule SinH2n+2, la teneur volumique silane étant inférieure à 10 %, ledit procédé étant caractérisé en ce que la température prédéterminée (To) est comprise entre 800°C et 1100°C, que la pression totale du mélange gazeux est inférieure à 1000 Pa et qu'on forme une couche de diffusion contenant de 10 à 40 % de silicium en pourcentage atomique à la surface de la pièce.
  2. Procédé selon la revendication 1, caractérisé en ce que la pièce est maintenue à la température To pendant une durée comprise entre 0,5 et 40 heures.
  3. Procédé selon la revendication 2, caractérisé en ce que la pièce est maintenue à la température To pendant 2 à 10 heures.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le débit du mélange gazeux par unité de volume du four est compris entre 1 et 10.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur volumique du silane dans le mélange gazeux est supérieure à 0,1 %.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit mélange gazeux contient en outre de l'hydrogène en une teneur volumique inférieure à 20 %.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit mélange gazeux contient en outre de l'hélium en une teneur volumique supérieure à 1 %.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite pièce est en fer, en superalliage ou en acier.
  9. Procédé selon la revendication 8, caractérisé en ce que ladite pièce est en acier, de préférence en acier au carbone ayant une teneur en carbone inférieure à 0,5 %.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la température To est supérieure à 1000°C.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la pression totale du mélange gazeux est inférieure à 500 Pa, de préférence comprise entre 300 et 500 Pa.
  12. Procédé selon l'une des revendications 8 à 11, caractérisé en ce que la pièce est en acier contenant environ 0,4 % de carbone et que la température To est supérieure à 1000°C, de façon à former à la surface de la pièce une couche de diffusion de silicium d'épaisseur comprise entre 100 µm et 300 µm et de teneur en silicium variant entre 15 % et 30 % atomique.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en silicium dans ladite couche de diffusion varie entre 15 % et 30 % atomique.
  14. Utilisation du procédé selon l'une des revendications 1 à 14 pour former à la surface de ladite pièce une couche de diffusion de silicium d'épaisseur comprise entre 100 µm et 300 µm.
EP19900401931 1989-07-19 1990-07-04 Procédé de siliciuration de pièces métalliques par dépÔt chimique en phase gazeuse Expired - Lifetime EP0409687B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8909697A FR2649995B1 (fr) 1989-07-19 1989-07-19 Procede de siliciuration d'aciers par depot chimique en phase gazeuse
FR8909697 1989-07-19

Publications (2)

Publication Number Publication Date
EP0409687A1 EP0409687A1 (fr) 1991-01-23
EP0409687B1 true EP0409687B1 (fr) 1996-11-06

Family

ID=9383914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401931 Expired - Lifetime EP0409687B1 (fr) 1989-07-19 1990-07-04 Procédé de siliciuration de pièces métalliques par dépÔt chimique en phase gazeuse

Country Status (5)

Country Link
EP (1) EP0409687B1 (fr)
JP (1) JPH03138350A (fr)
CA (1) CA2021305A1 (fr)
DE (1) DE69029064T2 (fr)
FR (1) FR2649995B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132777A (ja) * 1991-04-17 1993-05-28 L'air Liquide 金属基板表面に化学的蒸着により珪素拡散層又は珪素オーバレーコーテイングを形成する方法
JP4560077B2 (ja) 2007-11-12 2010-10-13 トヨタ自動車株式会社 磁心用粉末および磁心用粉末の製造方法
DE102017110221A1 (de) * 2017-05-11 2018-11-15 Gottfried Wilhelm Leibniz Universität Hannover Verfahren zur Wärmebehandlung eines Bauteils sowie Anlage dafür

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1042076A (fr) * 1950-09-15 1953-10-28 Union Chimique Belge Sa Procédé pour rendre la surface de l'acier dure et résistant à la corrosion
FR1108158A (fr) * 1953-07-03 1956-01-10 Procédé pour <l'ennoblissement> de la surface de métaux, en particulier du fer etde l'acier
GB1072932A (en) * 1963-11-01 1967-06-21 Berghaus Elektrophysik Anst Method of and apparatus for surface hardening bodies by gaseous treatment
FR1463261A (fr) * 1964-12-31 1966-12-23 Allegheny Ludlum Steel Procédé de fabrication d'aciers au silicium forgés et aciers obtenus par ce procédé
FR2018029A1 (en) * 1968-09-13 1970-05-29 Allegheny Ludlum Steel Augmenting the silicon contact of steel by treat - ment with silicon tetrachloride in the gas phase
JPS58141376A (ja) * 1982-02-16 1983-08-22 Seiko Epson Corp プラズマセメンテ−シヨン
FR2587730A1 (fr) * 1985-09-23 1987-03-27 Rhone Poulenc Rech Procede de siliciuration d'un substrat metallique ferreux et substrat metallique ferreux silicie
US4714632A (en) * 1985-12-11 1987-12-22 Air Products And Chemicals, Inc. Method of producing silicon diffusion coatings on metal articles

Also Published As

Publication number Publication date
EP0409687A1 (fr) 1991-01-23
CA2021305A1 (fr) 1991-01-20
DE69029064T2 (de) 1997-06-05
DE69029064D1 (de) 1996-12-12
FR2649995B1 (fr) 1993-08-13
FR2649995A1 (fr) 1991-01-25
JPH03138350A (ja) 1991-06-12

Similar Documents

Publication Publication Date Title
US10731247B2 (en) Coated article
Cui et al. Characterization of the laser gas nitrided surface of NiTi shape memory alloy
LU86916A1 (fr) Carbone résistant à l&#39;oxidation et procédé pour sa fabrication.
EP0509875A1 (fr) Procédé pour le dépôt sur au moins une pièce, notamment une pièce métallique, d&#39;une couche dure à base de pseudo carbone diamant ainsi que pièce revêtue d&#39;une telle couche
FR2499592A1 (fr) Procede pour realiser des couches d&#39;oxydes protectrices
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
FR2620734A1 (fr) Alliage metallique refractaire multiphase, oxycarbure ou oxycarbonitrure, a variation progressive de durete a partir de la surface
JP2017512909A (ja) 複数層基板および製造方法
Man et al. Analysis of laser gas nitrided titanium by X-ray photoelectron spectroscopy
EP3049545B1 (fr) Procédé de dépôt d&#39;un revêtement protecteur contre la corrosion
EP0409687B1 (fr) Procédé de siliciuration de pièces métalliques par dépÔt chimique en phase gazeuse
Stoiber et al. Plasma-assisted pre-treatment for PACVD TiN coatings on tool steel
EP1226223A1 (fr) Reduction du cokage dans les reacteurs de craquage
US20160289824A1 (en) Article including a coating and process including an article with a coating
JPH0341199A (ja) フッ化塩素ガスによる炭素材料のクリーニング方法
EP0077703A1 (fr) Revêtement à base de chrome pour acier résistant à l&#39;usure et procédé de préparation
JP7460771B2 (ja) フッ化マグネシウム領域が形成させる金属体
EP0688889B1 (fr) Méthode de passivation de pièces métalliques en super-alliage à base de nickel et de fer
FR2678955A1 (fr) Substrat revetu d&#39;une couche mince a base de carbone et de silicium, sa preparation et son utilisation.
EP0889146B1 (fr) Acier réfractaire chromisé, son procédé d&#39;obtention et ses utilisations dans des applications anti-cokage
JPH05339731A (ja) 硬質低摩擦層を表面に有する材料の製造方法
Chu et al. Ion nitriding of titanium aluminides with 25–53 at.% Al II: Corrosion properties
Pohrelyuk et al. Forming carbonitride coatings on titanium by thermochemical treatment with CNO-containing media
JP5131078B2 (ja) 硬質非晶質炭素被覆部材およびその製造方法
JP2746505B2 (ja) セラミック被覆部材とその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR IT LI SE

17Q First examination report despatched

Effective date: 19930126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR IT LI SE

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69029064

Country of ref document: DE

Date of ref document: 19961212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

EUG Se: european patent has lapsed

Ref document number: 90401931.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050704