EP0406612A1 - Verfahren und Vorrichtung zur Herstellung von verstärkten Betonrohren - Google Patents

Verfahren und Vorrichtung zur Herstellung von verstärkten Betonrohren Download PDF

Info

Publication number
EP0406612A1
EP0406612A1 EP90111506A EP90111506A EP0406612A1 EP 0406612 A1 EP0406612 A1 EP 0406612A1 EP 90111506 A EP90111506 A EP 90111506A EP 90111506 A EP90111506 A EP 90111506A EP 0406612 A1 EP0406612 A1 EP 0406612A1
Authority
EP
European Patent Office
Prior art keywords
nucleus
head
vibrating
mold
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90111506A
Other languages
English (en)
French (fr)
Other versions
EP0406612B1 (de
Inventor
Croci Piero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Croci Mario & Figli Srl
Original Assignee
Croci Mario & Figli Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Croci Mario & Figli Srl filed Critical Croci Mario & Figli Srl
Publication of EP0406612A1 publication Critical patent/EP0406612A1/de
Application granted granted Critical
Publication of EP0406612B1 publication Critical patent/EP0406612B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/14Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means vibrating, e.g. the surface of the material
    • B28B21/16Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means vibrating, e.g. the surface of the material one or more mould elements

Definitions

  • the object of the present invention is a process and relative equipment for realizing pipes in concrete reinforced with preas­sembled cages, used particularly in sewage mains.
  • Pipes of this type are at present realized with different systems, all of which have different kinds of drawbacks.
  • a first system consists in setting a horizontally positioned mold in fast rotation, inside of which the pipe is formed by centrifugation. This system allows concrete pipes to be realized with or without reinforcement; it is, however, very expensive and also has the drawback of segregation of the components of the mixture.
  • Another system consists in realizing the pipe vertically, by means of a rotating mandrel provided with fins, shaped like the portions of a propeller. These fins compress the ccncrete introduced into the mold, generating an upward thrust of the mandrel until the pipe is completely formed. With this system it is not possible to insert a reinforcement in the pipe, since the fins of the mandrel would interfere with it.
  • a variation of this process is the "Packerhead” system, which uses a rotating mandrel provided with rollers tangential to the internal diameter of the pipe, which cast and distribute the ccncrete beyond the reinforcement and then compress it, thanks to their high rotation speed.
  • the disadvantages of this method are the high power required, severe wear on the mandrel components and the torsion to which the reinforcement is subjected. This torsion occurs in spite of the use of several series of overlapping, counter-rotating rollers and of hydraulic cylinders positioned on several horizontal planes, intended to enter the reinforcement and counteract its rotation.
  • Another system of manufacture, to which the present invention relates, is that using pressure-vibration. This consists of locating a vibrating nucleus inside a mold, which is gradually filled with concrete which is compacted by the vibrating nucleus.
  • DE-C- 882 667 and FR-A-1 246 242 describe devices for manufacturing pressure-vibrated concrete pipes, which are not reinforced and in which the whole head of the nucleus, positioned axially inside a mold, is vibrated.
  • the aim of the present invention is to realize a process and relevant equipment for manufacturing in particular pressure-­vibrated reinforced concrete pipes which will prevent the generation of tangential forces, which cause the rotation of the concrete and, consequently, the deformation of the reinforcements.
  • rigid reinforcements consisting of preas­sembled metallic cages, composed of longitudinal rods and circum­ferential rods joined together by welding or binding.
  • This aim is achieved with the process according to the invention, which foresees a relative feed motion of a nucleus in an external mold, into which the concrete is gradually fed and distributed, being compacted gradually, as it is fed, by means of a vibrating part of the head of the nucleus.
  • This vibrating part has a first truncated-­conical length provided with radial separators, suitable for preventing the rotation of the vibrated concrete and therefore of the reinforcement, if any, which is inserted into the mold, and a perfectly cylindrical band which gauges and smooths off the internal wall of the pipe during formation.
  • the remainder of the nucleus is not vibrated, including the frontal part of the head, consisting of a conical body on which rotating blades are located which distribute the concrete in the annular chamber which is formed between the vibrating part of the head of the nucleus and the mold.
  • 1 indicates a cylindrical body or nucleus, positioned vertically on axis with an external mold 2, into which it can be inserted.
  • the mold 2 is located on a base ring 3, on which a rigid metallic reinforcement 4 also rests, housed inside the mold.
  • the reinforcement 4 comprises circumferential rods 5, connected to each other by longitudinal rods 6.
  • a vibrating part 7 is foreseen on the head of the nucleus 1, insulated resiliently from it by means of dampening devices 8, shown with shading in figure 2.
  • the vibrating part 7, which is set in vibration by known means positioned inside it, has a first truncated-conical length 9, on which radial separators 10 are positioned, joined together by a cylindrical band 11, whose diameter is substantially equal to that of the body of the nucleus 1.
  • the end part or top of the head of the nucleus consists of a conical body 12, which does not vibrate either, on which the blades 13 rotate.
  • Concrete 14 is fed, for example by being dropped from a conveyor belt 15, into the mold 2, prearranged as in figure 1.
  • the concrete drops onto the head of the nucleus 1 and is distributed by the rotating blades 13, with the aid of the conveyor cone 12, in the annular space which is formed between the mold 2 and the vibrating part 7 of the head, burying the reinforcement 4.
  • relative feed motion is foreseen of the nucleus 1 in the mold 2. This relative feed motion can be obtained by providing the nucleus 1 with a rising motion, or by providing the mold 2 with a downward motion, or by moving the nucleus 1 and the mold 2 jointly.
  • the concrete 14 is gradually compacted by the vibrating part 7 of the head. While it is being compacted, the separators 10, foreseen on the truncated-­conical length 9 of the vibrating part, prevent the rotation of the vibrated concrete, and therefore the torsion of the reinforcement 4, which is kept perfectly in a rectilinear vertical position.
  • the cylindrical band 11 which follows the truncated-conical length 9 of the vibrating part 7 gauges and smoothes the internal wall of the pipe 16 being formed.
  • the compacting of the wall of the pipe 16 is therefore due to the truncated-conical length 9 of the vibrating part 7, through the action of centrifugal force generated by the vibrator positioned in it.
  • the specific shape of the vibrating part 7 and the feed motion of the nucleus 1 in the mold 2, generate forces whose components - both radial and vertical (the latter directed upwards) - act on the cement mixture, which surrounds the reinforcement 4 without leaving empty spaces.
  • the finish of the upper part of the pipe 16 is obtained as usual, by means of a smoothing ring (not shown), provided with rotary motion and vertical pressure, from top to bottom.
  • the finished pipe is then slid out of the mold 2 and transported to the drying area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
EP90111506A 1989-07-03 1990-06-19 Verfahren und Vorrichtung zur Herstellung von verstärkten Betonrohren Expired - Lifetime EP0406612B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2107489 1989-07-03
IT8921074A IT1230976B (it) 1989-07-03 1989-07-03 Procedimento ed apparecchiatura per la realizzazione di tubi in calcestruzzo armato.

Publications (2)

Publication Number Publication Date
EP0406612A1 true EP0406612A1 (de) 1991-01-09
EP0406612B1 EP0406612B1 (de) 1993-10-20

Family

ID=11176350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90111506A Expired - Lifetime EP0406612B1 (de) 1989-07-03 1990-06-19 Verfahren und Vorrichtung zur Herstellung von verstärkten Betonrohren

Country Status (4)

Country Link
EP (1) EP0406612B1 (de)
DE (1) DE69004015T2 (de)
ES (1) ES2047761T3 (de)
IT (1) IT1230976B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018307A1 (en) * 1991-04-19 1992-10-29 Pedershaab A/S A machine for casting hollow objects, in particular concrete pipes, and comprising two mutually axially movable mould parts
WO1992018308A1 (en) * 1991-04-19 1992-10-29 Pedershaab A/S A machine for casting hollow bodies, in particular concrete pipes, and comprising two mutually axially movable slip-form mould parts
GB2297939A (en) * 1995-02-17 1996-08-21 Bredero Price Services Pipe Coating Apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181680A (zh) * 2019-05-22 2019-08-30 上海市政工程设计研究总院(集团)有限公司 一种预制大直径防腐钢筋混凝土复合管道制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882667C (de) * 1951-07-01 1953-07-09 Ludwig Dipl-Ing Boelkow Vorrichtung zum Formen zylindrischer Hohlkoerper
FR1365724A (fr) * 1963-08-01 1964-07-03 Procédé pour la fabrication de tuyaux en béton, en particulier en béton de ciment et appareillage pour sa mise en oeuvre
EP0329856A2 (de) * 1988-02-24 1989-08-30 Georg Prinzing GmbH & Co. KG Betonformen- und Maschinenfabrik Einrichtung zum Herstellen von Betonteilen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882667C (de) * 1951-07-01 1953-07-09 Ludwig Dipl-Ing Boelkow Vorrichtung zum Formen zylindrischer Hohlkoerper
FR1365724A (fr) * 1963-08-01 1964-07-03 Procédé pour la fabrication de tuyaux en béton, en particulier en béton de ciment et appareillage pour sa mise en oeuvre
EP0329856A2 (de) * 1988-02-24 1989-08-30 Georg Prinzing GmbH & Co. KG Betonformen- und Maschinenfabrik Einrichtung zum Herstellen von Betonteilen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED, week B38, 31st October 1979, abstract no. J1123B/38, Derwent Publications Ltd, London, GB; & SU-A-638 473 (UKR. DNEPR. CONS. PROD.) 28-12-1978 *
SOVIET INVENTIONS ILLUSTRATED, week C34, 1st October 1980, abstract no. H3350C/34, Derwent Publications Ltd, London, GB; & SU-A-707 806 (EAST REFRAC IND.) 08-01-1980 *
SOVIET INVENTIONS ILLUSTRATED, week D33, 23rd September 1981, abstract no. H6355D/33, Derwent Publications Ltd, London, GB; & SU-A-781 068 (ASSEMBLED FERROCONC.) 25-11-1980 *
SOVIET INVENTIONS ILLUSTRATED, week E16, 2nd June 1982, abstract no. E6222E/16, Derwent Publications Ltd, London, GB; & SU-A-844 318 (GOSSTROI BUILD. CONS) 03-08-1981 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018307A1 (en) * 1991-04-19 1992-10-29 Pedershaab A/S A machine for casting hollow objects, in particular concrete pipes, and comprising two mutually axially movable mould parts
WO1992018308A1 (en) * 1991-04-19 1992-10-29 Pedershaab A/S A machine for casting hollow bodies, in particular concrete pipes, and comprising two mutually axially movable slip-form mould parts
GB2297939A (en) * 1995-02-17 1996-08-21 Bredero Price Services Pipe Coating Apparatus

Also Published As

Publication number Publication date
IT1230976B (it) 1991-11-08
IT8921074A0 (it) 1989-07-03
EP0406612B1 (de) 1993-10-20
DE69004015D1 (de) 1993-11-25
DE69004015T2 (de) 1994-05-05
ES2047761T3 (es) 1994-03-01

Similar Documents

Publication Publication Date Title
US2614312A (en) Method of molding tubular concrete articles
EP0406612B1 (de) Verfahren und Vorrichtung zur Herstellung von verstärkten Betonrohren
US5040968A (en) Device for manufacturing concrete parts
US3383208A (en) Compacting method and means
US2091385A (en) Apparatus for forming concrete pipe
US4140744A (en) Method of molding products from moist materials and apparatus realizing same
US4723900A (en) Extruder for casting concrete slabs
US4600548A (en) Method of forming the primary core of a prestressed concrete pipe
US5364578A (en) Combination counter rotating packerhead and vibrator assembly and method of operation thereof
US2966714A (en) Apparatus for casting concrete
US4039642A (en) Method of making concrete pipe
US3955606A (en) Loading containers with powder
KR920001985B1 (ko) 원심성형기의 성형프레임구조
US4067679A (en) Machine for making concrete pipes in upright position
US4041118A (en) Method and apparatus for making concrete pipe
JPH0433540B2 (de)
US5456590A (en) Counter-rotating compaction head for manufacturing concrete pipes
EP0089420A1 (de) Verfahren, Vorrichtung und Form zur Herstellung von Betonrohren
DE3517881A1 (de) Verfahren und vorrichtung zum bilden einer zwischenschicht in einem ofen oder einem anderen behaelter
RU2111116C1 (ru) Способ формования железобетонных изделий, например труб, и устройство для его реализации
US4001984A (en) Method for finishing parts
EP0990497B1 (de) Verfahren zum vertikal Giessen von Röhren aus Beton oder ähnlichem Material in einer Formanlage mit einer Verteilerscheibe
US3711587A (en) Method of vibrating a mold case
SU1079458A1 (ru) Устройство дл формовани цилиндрических изделий из порошковых материалов
USRE33101E (en) Method of forming the primary core of a prestressed concrete pipe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB

17P Request for examination filed

Effective date: 19901228

17Q First examination report despatched

Effective date: 19920330

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931020

Ref country code: DK

Effective date: 19931020

REF Corresponds to:

Ref document number: 69004015

Country of ref document: DE

Date of ref document: 19931125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2047761

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970814

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503