EP0399524B1 - Structure de réalisation de circuits et composants appliquée aux hyperfréquences - Google Patents

Structure de réalisation de circuits et composants appliquée aux hyperfréquences Download PDF

Info

Publication number
EP0399524B1
EP0399524B1 EP90109889A EP90109889A EP0399524B1 EP 0399524 B1 EP0399524 B1 EP 0399524B1 EP 90109889 A EP90109889 A EP 90109889A EP 90109889 A EP90109889 A EP 90109889A EP 0399524 B1 EP0399524 B1 EP 0399524B1
Authority
EP
European Patent Office
Prior art keywords
antenna structure
structure according
mechanical
dielectric
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90109889A
Other languages
German (de)
English (en)
Other versions
EP0399524A1 (fr
Inventor
Gérard Raguenet
Olivier Remondiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0399524A1 publication Critical patent/EP0399524A1/fr
Application granted granted Critical
Publication of EP0399524B1 publication Critical patent/EP0399524B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the invention relates to a structure for producing circuits and components applied to microwave frequencies.
  • the means used in one case as in the other are defined by the general radio-electric characteristics required: frequency bands, necessary powers, admissible loss levels, complexity levels of the connectors, mission in the broad sense of the term, as well as by a non-specifically radio set of other criteria involving parameters such as the mass, the volume of the circuits or even the admissible temperature range that the technologies used will have to withstand. All of these additional constraints are again governed by the "mission in the broad sense” aspect; the precise choice of a technology having to integrate radio criteria as well as mechanical, structural and thermal criteria.
  • radiant elements have appeared over the past ten years that are remarkable in terms of their simplicity of construction and their characteristics of lightness and ability to be shaped: These are printed antennas, the principle of which uses a resonant element. etched on a dielectric support, the assembly being located on a ground plane. Again, such concepts make it possible to offer very competitive solutions in terms of volume, compactness and mass.
  • the dielectric substrates must also have radioelectric performances whose values depend on the physical dimensions.
  • the region between the dielectric planes is filled either with air, or with a material having a dielectric constant close to that of air (honeycomb, plastic or rubber foam, etc.).
  • the mechanical parameters on the one hand, and radioelectric parameters on the other hand cannot be optimized separately and individually, because the rigidity and the dielectric losses depend on the materials used for the different layers, as well as on their physical dimensions and of their relative provision.
  • British patent application GB-A-2 194 101 in the name of MATSUSHITA describes a planar antenna the structure of which is produced by stacking successive planes comprising conductive patterns on dielectric substrate, including a supply network printed on a first dielectric substrate , which supplies by electromagnetic coupling the radiating elements of the "patch" type printed on a second dielectric substrate, these two planes being separated from a ground plane and separated from each other by perforated dielectric spacers.
  • this antenna is constituted by a plurality of dielectric layers, at least three of which are provided with conductive elements (ground plane, radiating elements, power supplies, etc.), and the dielectric layers are assembled by means of spacers.
  • the mechanical rigidity of the assembly comes only from the dielectric substrates, the spacers being preferably perforated and made of a foam material in order to obtain a dielectric constant as close to that of air as possible.
  • the dielectric spacers are perforated so as not to present a dielectric constant appreciable only in regions where the electric fields will be weak (far from resonators and radiating elements).
  • the dielectric substrates must also have radioelectric performances whose values depend on the physical dimensions.
  • the region between the dielectric planes is therefore filled either with air, or with a material having a dielectric constant close to that of air (honeycomb, plastic or rubber foam,. ..).
  • the mechanical parameters on the one hand, and radioelectric parameters on the other hand cannot be optimized separately and individually.
  • the object of the invention is to propose an embodiment of substrates with variable permittivity.
  • said insulating medium (27) is a dielectric material, which can for example be a solid or a gas.
  • said insulating medium (27) is a vacuum.
  • the advantage of the invention results from its versatility and its considerable weight gain compared to more conventional solutions. Its simplicity of making dielectrics with any constant and its low mass make this solution very attractive for space uses.
  • the main design problem is to maintain a conductive element 10 at a precise distance from a ground plane 11 (from two planes respectively massive).
  • the medium 12 thus delimited by the conductive element 10, the ground plane (s) 11 and a characteristic distance d chosen during the design as a function of its influence on the phenomena of interaction between the electromagnetic field and the matter contained in this medium, must present the electrical characteristics ⁇ r (dielectric constant) and tg ⁇ (loss factor) chosen by the designer.
  • each of these structures is formed for example of a "carbon skin sandwich 18-" honeycomb "made of aluminum 19-carbon skin 20, the carbon skin 20 located inwards being metallized 21.
  • the material dielectric 15 can be produced in "honeycomb", in organic foam or by dielectric spacers for example.
  • the dielectric material 15 is chosen for its radioelectric performance, which allows a great latitude of choice. We can finally obtain a powerful solution from a radioelectric point of view. On the other hand, the addition of mechanical elements (stiffening of the ground planes, maintenance of the central conductor and of the dielectric medium) leads to poor mechanical performance. This type of solution is therefore well suited for small devices (surfaces typically less than 0.5 m2) and / or for devices where the ground planes are used to provide additional mechanical functions (maintenance of radiating elements of type horns or propellers for example).
  • the invention relates to a structure in which the electrical and mechanical functions are globally integrated, but locally dissociated.
  • the structure according to the invention comprises a mechanical structure 26 forming an enclosure 33 in which can be disposed a block 27 of dielectric material.
  • a layer of dielectric material 28, (29) On either side of the assembly thus formed is disposed a layer of dielectric material 28, (29), the first 28 supporting the conductive element 30 disposed above the dielectric pad 27, the other 29 supporting the plane of mass 31 metallic.
  • a bonding layer 32 is disposed between the mechanical structure and each of the two dielectric layers.
  • the medium in the vicinity of the conductive element consists of a dielectric material whose selection criteria are mainly electrical ( ⁇ r , tg ⁇ ) and which does not participate in mechanical rigidity from the whole.
  • a mechanical structure makes it possible to contain the preceding dielectric material and to guarantee the overall mechanical performance of the device.
  • the most suitable materials are PTFE (polytetrafluoroethylene) matrices with glass reinforcement.
  • PTFE polytetrafluoroethylene
  • the epoxide and polyimide matrices although they make it possible to achieve superior mechanical properties, bring up the values of ⁇ r and tg ⁇ .
  • the dielectric material is chosen for its radioelectric properties only.
  • the material constituting the structure is mainly chosen for its mechanical characteristics.
  • the gain can therefore be a factor of 4 on the R.F. losses and a factor of around 2.5 on the mass.
  • the most suitable architectures are obtained by bonding a very aerated organic material (foam, honeycomb) between the substrates supporting the elements. radiant and the ground plane by means of glue films or layers of composite materials.

Landscapes

  • Waveguide Aerials (AREA)
  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Description

  • L'invention concerne une structure de réalisation de circuits et composants appliquée aux hyperfréquences.
  • Le développement croissant de l'utilisation des ondes électromagnétiques dans des domaines aussi divers que télécommunications, applications médicales, radar ... a conduit à varier les techniques mises en oeuvre afin, d'une part, de maîtriser leur propagation, d'autre part, d'en maîtriser leur rayonnement. Les moyens mis en oeuvre dans un cas comme dans l'autre sont définis par les caractéristiques générales radio-électriques requises : bandes de fréquence, puissances nécessaires, niveaux de pertes admissibles, niveaux de complexité de la connectique, mission au sens large du terme, ainsi que par un ensemble non spécifiquement radioélectrique d'autres critères mettant en jeu des paramètres comme la masse, le volume des circuits ou encore la plage de températures admissibles que devront supporter les technologies utilisées. L'ensemble de ces contraintes supplémentaires sont, là aussi, régies par l'aspect "mission au sens large" ; le choix précis d'une technologie devant aussi bien intégrer des critères d'ordre radioélectrique que des critères d'ordre mécanique, structural et thermique.
  • On comprend aisément que les données d'environnement et d'implantation soient différentes lorsqu'il s'agit de monter un équipement hyperfréquence sur un satellite, un avion, ou dans un sous-marin par exemple et que ceci ait un impact sur la définition et le choix de la technologie requise pour réaliser l'équipement.
  • Le moyen sans doute le plus connu pour véhiculer une onde électromagnétique est sans conteste le tube creux. Celui-ci peut revêtir des formes simples de section rectangulaire ou circulaire ou encore des formes plus élaborées par exemple section hexagonale. Son champ d'utilisation en fréquence est très large de quelques gigahertz à plusieurs centaines de gigahertz, c'est-à-dire du centimétrique ou sub-millimétrique. En deçà de quelques gigahertz, l'emploi du guide d'onde s'avère difficile en raison de son encombrement et de sa masse. D'autres types de propagation sont alors utilisées.
  • De façon non exhaustive on peut citer :
    • les lignes coaxiales et dérivées,
    • les lignes triplaques,
    • les lignes "microstrip" et dérivées,

    qui sont largement utilisées pour propager des signaux allant du continu jusqu'à quelques dizaines de gigahertz. De façon simple on peut dire que les propriétés radioélectriques (impédance, constante de propagation etc...) résultent du positionnement de deux conducteurs l'un par rapport à l'autre à l'aide d'un matériau support ou espaceur diélectrique. Dans la pratique on emploie couramment des matériaux dont les constantes diélectriques varient de 1 à 10, voire 40 pour certaines applications.
  • En ce qui concerne le rayonnement sont apparus depuis une dizaine d'années des éléments rayonnants remarquables quant à leur simplicité de réalisation et à leurs caractéristiques de légèreté et capacité à être conformés : Ce sont les antennes imprimées dont la réalisation de principe utilise un élément résonnant gravé sur un support diélectrique, l'ensemble étant implanté sur un plan de masse. Là encore, de tels concepts, permettent de proposer des solutions très compétitives en termes de volume, compacité et masse.
  • Ces deux pôles d'intérêts (réalisation de circuits et d'éléments rayonnants) ont conduits les fabricants à proposer une gamme de plus en plus vaste de matériaux diélectriques possédant des domaines d'application de plus en plus étendus.
  • Le brevet américain US-A-4 623 893 au nom de SABBAN décrit une antenne dont l'alimentation de signal est realisée en technologie microruban sur un premier substrat diélectrique, tandis que les éléments rayonnants sont de type "patch" imprimé sur un deuxième substrat diélectrique. Ainsi, cette antenne est constituée par une pluralité de couches diélectriques dont au moins deux qui sont dotées d'éléments conducteurs (plan de masse, élement rayonnant, résonateur,...), et les couches diélectriques sont assemblées moyennant des espaceurs. Dans l'antenne décrite, la rigidité mécanique de l'ensemble provient uniquement des substrats diélectriques, les espaceurs étant de préférence ponctuels et disposés dans des régions où les champs électriques seront faibles (éloignés des résonateurs et des éléments rayonnants). Or, les substrats diélectriques doivent avoir également des performances radioélectriques dont les valeurs dépendent des dimensions physiques. La région entre les plans diélectriques est remplie soit d'air, soit d'un matériau ayant un constant diélectrique proche de celui de l'air (nid d'abeille, mousse de plastique ou de caoutchouc, ...). Il en résulte que les paramètres mécaniques d'une part, et radioélectriques d'autre part, ne peuvent être optimisés séparément et individuellement, car la rigidité et les pertes diélectriques dépendent des matériaux utilisés pour les différentes couches, ainsi que de leurs dimensions physiques et de leur disposition relative.
  • La demande de brevet britannique GB-A-2 194 101 au nom de MATSUSHITA décrit une antenne plane dont la structure est réalisée par empilage de plans successifs comportant des motifs conducteur sur substrat diélectrique, dont un réseau d'alimentation imprimé sur un premier substrat diélectrique, qui alimente par couplage électromagnétique les éléments rayonnants de type "patch" imprimé sur un deuxième substrat diélectrique, ces deux plans étant séparés d'un plan de masse et séparés l'un de l'autre par des espaceurs diélectriques ajourés. Ainsi, cette antenne est constituée par une pluralité de couches diélectriques dont au moins trois qui sont dotées d'éléments conducteurs (plan de masse, éléments rayonnants, alimentations,...), et les couches diélectriques sont assemblées moyennant des espaceurs. Dans l'antenne décrite, la rigidité mécanique de l'ensemble provient uniquement des substrats diélectriques, les espaceurs étant de préférence ajourés et réalisés d'un matériau mousseux afin d'obtenir un constant diélectrique aussi voisin de celui de l'air que possible. Les espaceurs diélectriques sont ajourés de manière à ne présenter un constant diélectrique appréciable que dans des régions où les champs électriques seront faibles (éloignés des résonateurs et des éléments rayonnants). Or, les substrats diélectriques doivent avoir également des performances radioélectriques dont les valeurs dépendent des dimensions physiques. Comme dans le document précédent, la région entre les plans diélectriques est donc remplie soit d'air, soit d'un matériau ayant un constant diélectrique proche de celui de l'air (nid d'abeille, mousse de plastique ou de caoutchouc, ...). Comme dans le cas précédents, les paramètres mécaniques d'une part, et radioélectriques d'autre part, ne peuvent être optimisés séparément et individuellement.
  • Enfin, le brevet américain US-A-2 919 441 mentionne l'idée de la suppression d'une structure mécanique entre deux rubans conducteurs pour diminuer les pertes, mais l'antenne décrite dans ce brevet n'a rien à voir avec une antenne de type patch.
  • Les contraintes d'utilisation en environnement spatial sont bien connues et portent en général sur :
    • la masse des équipements,
    • les plages de température et les contraintes thermiques,
    • les niveaux de vibration,
    • la stabilité physique au vide (non dégazage).
  • L'invention a pour objet de proposer une réalisation de substrats à permittivité variable.
  • A cet effet, l'invention propose une structure d'antenne de type patch, dans laquelle les fonctions mécanique et électrique sont globalement intégrées, comprenant en outre
    • une structure mécanique (26) formant une pluralité d'enceintes,
    • une pluralité d'éléments conducteurs (30), et
    • un plan de masse (31) métallique,

    ladite structure mécanique (26) formant une pluralité d'enceintes se trouvant entre lesdits éléments conducteurs (30) et ledit plan de masse (31), caractérisée en ce que : un milieu isolant (27) est disposé dans chaque dite enceinte, ladite structure mécanique 26 étant située en dehors desdites enceintes ; et en ce que chaque élément conducteur (30) est disposé au dessus dudit milieu isolant (27), lesdites fonctions mécanique et électrique étant ainsi localement dissociées.
  • Selon une réalisation préférée de l'invention, ledit milieu isolant (27) est un matériau diélectrique, qui peut être par exemple un solide ou un gaz. Dans une variante, ledit milieu isolant (27) est un vide.
  • L'intérêt de l'invention résulte de sa versatilité et de son gain de masse considérable par rapport à des solutions plus conventionnelles. Sa simplicité de réaliser des diélectriques à constante quelconque et sa faible masse rendent cette solution très attractive pour des utilisations spatiales.
  • Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
    • les figures 1, 2 et 3 illustrent des réalisations de l'art connu ;
    • les figures 4 et 5 illustrent une vue en coupe et une vue de dessus, en partie éclatée, d'une structure de circuits et composants appliquée aux hyperfréquences selon l'invention.
  • Pour la réalisation d'une structure(respectivement de circuits de propagation) telle que représentée à la figure 1, le problème principal de conception est de maintenir un élément conducteur 10 à une distance précise d'un plan de masse 11 (respectivement de deux plans de masse).
  • Le milieu 12, ainsi délimité par l'élément conducteur 10, le (ou les) plan(s) de masse 11 et une distance caractéristique d choisie lors de la conception en fonction de son influence sur les phénomènes d'intéraction entre le champ électromagnétique et la matière contenue dans ce milieu, doit présenter les caractéristiques électriques εr (constante diélectrique) et tg δ (facteur de perte) choisies par le concepteur.
  • D'autre part, l'ensemble du dispositif doit présenter des performances compatibles avec son utilisation. Par exemple, pour une application spatiale, les performances principales seront :
    • légèreté,
    • rigidité,
    • tenue en température (typiquement 130°C),
    • faible dégazage,
    • stabilité dimensionnelle (faible coefficient de dilatation thermique, faible coefficient de dilatation par désorption d'humidité, conductivité thermique élevée).
  • Plusieurs solutions d'un point de vue radioélectrique sont habituellement retenues.
  • Ainsi, dans le domaine d'un circuit de propagation, on peut conférer, comme représenté sur la figure 2, une rigidité importante aux plans de masse 17 et il est ainsi possible de maintenir entre-eux le conducteur 15 et le matériau diélectrique 16. On a alors le conducteur central 15 disposé entre deux couches 16 de matériau diélectrique, deux structures 17 formant plan de masse étant situées de part et d'autre de cet ensemble. Chacune de ces structures est formée par exemple d'un "sandwich" peau de carbone 18-"nid d'abeille" en aluminium 19-peau de carbone 20, la peau de carbone 20 située vers l'intérieur étant métallisée 21. Le matériau diélectrique 15 peut être réalisé en "nid d'abeille", en mousse organique ou par des entretoises diélectriques par exemple.
  • Le matériau diélectrique 15 est choisi pour ses performances radioélectriques, ce qui permet une grande latitude de choix. On peut finalement obtenir une solution performante du point de vue radioélectrique. En revanche l'addition d'éléments mécaniques (rigidification des plans de masse, maintien du conducteur central et du milieu diélectrique) conduit à de faibles performances mécaniques. Ce type de solution est donc bien adapté pour des dispositifs de faibles dimensions (surfaces typiquement inférieures à 0,5 m²) et/ou pour des dispositifs où les plans de masse sont utilisés pour assurer des fonctions mécaniques supplémentaires (maintien d'éléments rayonnants de type cornets ou hélices par exemple).
  • Dans le cas où des performances mécaniques élevées sont demandées (cas de grandes antennes par exemple), des solutions radicalement opposées sont généralement retenues. Celles-ci consistent en effet en une intégration totale des fonctions mécanique et électrique. Ceci est obtenu, comme représenté sur la figure 3, en faisant participer le matériau diélectrique 22 à la rigidité mécanique de l'ensemble par collage notamment. On a alors le conducteur central métallique 25 disposé entre deux couches de diélectrique 22, et deux plans métalliques 23 formant des plans de masse, des couches de collage 24 étant situées entre chacun des plans au contact. L'intérêt est alors d'utiliser des matériaux à forte rigidité spécifique (matériaux composites par exemple) le plus loin possible de la fibre neutre du "sandwich" (surfaces inférieure et supérieure du panneau) et de coller entre ces faces un matériau ayant de bonnes propriétés de cisaillement et une faible masse volumique ("Nid-d'abeille", par exemple). Ce principe est bien adapté pour la réalisation de dispositifs de grandes dimensions où l'on cherche une masse surfacique très faible (antenne, répartiteur, 5 kg/m² typiquement). Les contraintes à prendre alors en compte pour le choix du matériau diélectrique sont très fortes, puisqu'il doit satisfaire les exigences radioélectriques, mécaniques et de tenue à l'environnement. On arrive généralement à un bon compromis, mais les performances électriques ne sont pas toujours suffisantes (facteur de perte trop élevé dû à la présence de films de colle) ou même les performances mécaniques peuvent se trouver détérioriées (si l'on veut par exemple utiliser un diélectrique à constante supérieure à 2 avec une épaisseur supérieure au millimètre).
  • L'invention concerne une structure dans laquelle les fonctions électrique et mécanique sont globalement intégrées, mais localement dissociées.
  • Comme représenté sur les figures 4 et 5, la structure selon l'invention comprend une structure mécanique 26 formant une enceinte 33 dans laquelle peut être disposé un pavé 27 de matériau diélectrique. De part et d'autre de l'ensemble ainsi formé est disposé une couche de matériau diélectrique 28, (29), la première 28 supportant l'élément conducteur 30 disposé au-dessus du pavé diélectrique 27, l'autre 29 supportant le plan de masse 31 métallique. Une couche de collage 32 est disposée entre la structure mécanique et chacune des deux couches diélectriques.
  • Ainsi, dans la structure suivant l'invention, le milieu au voisinage de l'élément conducteur est constitué d'un matériau diélectrique dont les critères de choix sont principalement électriques (εr, tg δ) et qui ne participe pas à la rigidité mécanique de l'ensemble. Au-delà de ce voisinage, une structure mécanique permet de contenir le matériau diélectrique précédent et de garantir les performances mécaniques globales du dispositif. Les critères de choix des matériaux constituant cette structure étant principalement mécaniques (E/ρ , E = module d'Young, ρ masse volumique), celle-ci peut être très efficace.
  • Les avantages de l'invention sont les suivants :
    • performances radioélectriques élevées et ajustables (εr) : un matériau diélectrique quelconque pouvant être utilisé, pourvu qu'il soit léger et résistant à l'environnement, de plus il n'est pas fait appel à un film de colle,
    • performances mécaniques élevées : la structure étant réalisées à l'aide du matériau le mieux adapté, voire même à l'aide d'un matériau conducteur (composite à renfort graphite par exemple) si cela est admissible du point de vue radioélectrique.
  • Dans un premier exemple de réalisation on peut réaliser, avec une hauteur h par exemple de 3 mm, une antenne imprimée sur diélectrique ayant les performances recherchées suivantes :
    • εr = 2,5
    • tg δ   aussi faible que possible
      E/ρ (rigidité spécifique) aussi élevée que possible.
  • Avec les dispositifs de l'art connu, où l'on intègre les fonctions mécanique et électrique, les matériaux les mieux adaptés sont des matrices PTFE (polytétrafluoréthylène) à renfort de verre. En effet, les matrices epoxyde et polyimide, bien qu'elles permettent d'atteindre des propriétés mécaniques supérieures, font remonter les valeurs de εr et tg δ.
  • On a ainsi le tableau suivant :
    Figure imgb0001

    d'où les performances suivantes :
    • Radiofréquence (RF)
         . tg δ = 9.10⁻⁴
    • Mécanique
      • . γ   = 6,99 kg/m² (masse surfacique brute : sans connecteur, contrôle thermique,...)
      • . f   = 13 Hz (première fréquence de résonance pour une plaque carrée de 0,5 m de côté, dont les bords sont simplement supportés).
  • Alors que dans le cas du dispositif de l'invention le matériau diélectrique est choisi pour ses propriétés radioélectriques uniquement. Par exemple, avec du feutre d'Alumine on obtient : ρ = 750 kg/m³ εr = 2,5 tg δ = 2.10⁻⁴ (en supposant une variation linéaire de εr et tg δ en fonction de la densité).
  • Le matériau constituant la structure est lui choisi principalement pour ses caractéristiques mécaniques.
  • Les performances obtenues dans cet exemple sont :
    • radiofréquence : tg   δ = 2.10⁻⁴
    • mécanique (avec une structure en Kevlar/epoxy, de largeur 2 mm) :
      • . f = 19,8 Hz
      • . γ = 2,83 kg/m²
  • Avec un dispositif suivant l'invention, le gain peut donc être d'un facteur 4 sur les pertes R.F. et d'un facteur environ 2,5 sur la masse.
  • Dans un second exemple de réalisation on peut réaliser une antenne imprimée sur diélectrique ayant une constante la plus proche possible de 1, avec une distance patch/plan de masse = 6 mm, les performances recherchées étant celles du premier exemple de réalisation avec εr ≃ 1.
  • Avec les dispositifs de l'art connu, où l'on intègre les fonctions mécanique et électrique, les architectures les mieux adaptées sont obtenues par collage d'un matériau organique très aéré (mousse, nid d'abeilles) entre les substrats supportant les éléments rayonnants et le plan de masse par l'intermédiaire de films de colle ou de couches de matériaux composites.
  • On obtient les performances suivantes :
    • radiofréquence :
      • . εr ≃ 1,04
      • . tg δ ≃ 6.10⁻⁴
    • mécanique :
      • . γ ≃ 0,928 kg/m2
      • . f ≃ 107 Hz
  • Par contre en utilisant le dispositif selon l'invention le volume sous l'élément rayonnant restant vide, on obtient les performances suivantes :
    • Radiofréquence. :
         εr = 1
         tg δ ≃ 0
    • mécanique (avec une structure en fibres de carbone) :

    . γ = 1,126 kg/m² (même fréquence de résonance f = 107 Hz)
  • Pour un accroissement de masse d'environ 20%, on réalise un élément rayonnant pour lequel les pertes sont pratiquement nulles.
  • Les composants de l'élément rayonnant selon l'invention peuvent être réalisés en utilisant de nombreux matériaux, ainsi :
       - la structure mécanique 26 peut être réalisée en matériaux composites à base, par exemple :
    • . de Kevlar ;
    • . de carbone ;
    • . de verre ;
    • . ou de tout autre renfort :
  • Le matériau diélectrique utilisé peut etre :
    • . de la céramique (εr > 1) ; (céramique aérée, ou fibre de céramique ou feutre de céramique)
    • . un matériau organique ou composite (εr > 1)

       - le volume peut être rempli :
    • . de gaz ;
    • . d'air ;
    • . de vide.

Claims (16)

  1. Structure d'antenne de type patch, dans laquelle les fonctions mécanique et électrique sont globalement intégrées, comprenant en outre
    - une structure mécanique (26) formant une pluralité d'enceintes,
    - une pluralité d'éléments conducteurs (30), et
    - un plan de masse (31) métallique,
       ladite structure mécanique (26) formant une pluralité d'enceintes se trouvant entre lesdits éléments conducteurs (30) et ledit plan de masse (31), caractérisée en ce que : un milieu isolant (27) est disposé dans chaque dite enceinte, ladite structure mécanique (26) étant située en dehors desdites enceintes ; et en ce que chaque élément conducteur (30) est disposé au dessus dudit milieu isolant (27), lesdites fonctions mécanique et électrique étant ainsi localement dissociées.
  2. Structure d'antenne selon la revendication 1, caractérisée en ce qu'une première couche de matériau diélectrique (28) supporte chaque élément conducteur (30) au-dessus dudit milieu isolant (27).
  3. Structure d'antenne selon l'une quelconque des revendications 1 ou 2, caractérisée en ce qu'une seconde couche diélectrique (29) supporte le plan de masse métallique (31).
  4. Structure d'antenne selon la revendication 3, caractérisée en ce qu'une couche de collage (32) est disposée entre la structure mécanique (26) et chacune de ces deux couches diélectriques (28 et 29).
  5. Structure d'antenne selon la revendication 1, caractérisée en ce que le volume disponible sous lesdits éléments conducteurs (30) présente les caractéristiques désirées du point de vue électrique.
  6. Structure d'antenne selon la revendication 1, caractérisée en ce que la structure mécanique est réalisée en matériau composite.
  7. Structure d'antenne selon la revendication 6, caractérisée en ce que le matériau composite utilisé est à base de fibre de Kevlar.
  8. Structure d'antenne selon la revendication 6, caractérisée en ce que le matériau composite utilisé est à base de carbone.
  9. Structure d'antenne selon la revendication 6, caractérisée en ce que le matériau composite utilisé est à base de verre.
  10. Structure d'antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit milieu isolant (27) est un matériau diélectrique.
  11. Structure d'antenne selon la revendication 1, caractérisée en ce que, pour obtenir la constante diélectrique voulue, l'enceinte (33) est remplie d'un gaz.
  12. Structure d'antenne selon la revendication 11, caractérisée en ce que le gaz a une pression très faible.
  13. Structure d'antenne selon la revendication 1, caractérisée en ce que ledit matériau isolant (27) est un vide.
  14. Structure d'antenne selon la revendication 10, caractérisée en ce que ledit matériau diélectrique utilisé comporte de la céramique.
  15. Structure d'antenne selon la revendication 14, caractérisée en ce que la céramique est aérée.
  16. Structure d'antenne selon l'une quelconque des revendications 10 à 12, caractérisée en ce que ledit matériau diélectrique utilisé comporte un matériau organique ou composite.
EP90109889A 1989-05-24 1990-05-23 Structure de réalisation de circuits et composants appliquée aux hyperfréquences Expired - Lifetime EP0399524B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8906783A FR2647599B1 (fr) 1989-05-24 1989-05-24 Structure de realisation de circuits et composants appliquee aux hyperfrequences
FR8906783 1989-05-24

Publications (2)

Publication Number Publication Date
EP0399524A1 EP0399524A1 (fr) 1990-11-28
EP0399524B1 true EP0399524B1 (fr) 1995-01-25

Family

ID=9381957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90109889A Expired - Lifetime EP0399524B1 (fr) 1989-05-24 1990-05-23 Structure de réalisation de circuits et composants appliquée aux hyperfréquences

Country Status (6)

Country Link
US (1) US5227749A (fr)
EP (1) EP0399524B1 (fr)
JP (1) JPH0329401A (fr)
CA (1) CA2017352A1 (fr)
DE (1) DE69016261D1 (fr)
FR (1) FR2647599B1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406235A (en) * 1990-12-26 1995-04-11 Tdk Corporation High frequency device
US5443278A (en) * 1992-12-22 1995-08-22 Berto; Joseph J. Snowmobile ski liner
JPH0750508A (ja) * 1993-08-06 1995-02-21 Fujitsu Ltd アンテナモジュール
FR2711845B1 (fr) * 1993-10-28 1995-11-24 France Telecom Antenne plane et procédé de réalisation d'une telle antenne.
US5559521A (en) * 1994-12-08 1996-09-24 Lucent Technologies Inc. Antennas with means for blocking current in ground planes
US5652595A (en) * 1995-05-04 1997-07-29 Motorola, Inc. Patch antenna including reactive loading
DE19615497A1 (de) * 1996-03-16 1997-09-18 Pates Tech Patentverwertung Planarer Strahler
US6271792B1 (en) * 1996-07-26 2001-08-07 The Whitaker Corp. Low cost reduced-loss printed patch planar array antenna
EP0922942A1 (fr) 1997-12-10 1999-06-16 Endress + Hauser GmbH + Co. Appareil de mesure à micro-ondes de niveau de remplissage avec un diélectrique inséré et processus pour la fabrication du diélectrique
US6185354B1 (en) * 1998-05-15 2001-02-06 Motorola, Inc. Printed circuit board having integral waveguide
US6131269A (en) * 1998-05-18 2000-10-17 Trw Inc. Circuit isolation technique for RF and millimeter-wave modules
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
US6409650B2 (en) 1999-08-25 2002-06-25 Terralog Technologies Usa, Inc. Method for biosolid disposal and methane generation
DE602005013229D1 (de) * 2005-09-28 2009-04-23 Siemens Milltronics Proc Instr Galvanische Trennungsvorrichtung für eine ebene Schaltung
US7804385B2 (en) * 2007-04-20 2010-09-28 Rs Microwave Company Composite resonator for use in tunable or fixed filters
EP2198479B1 (fr) * 2007-10-11 2016-11-30 Raytheon Company Antenne de correction
US8525729B1 (en) * 2009-01-09 2013-09-03 Lockheed Martin Corporation Antenna tiles with ground cavities integrated into support structure
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10601137B2 (en) 2015-10-28 2020-03-24 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US11876295B2 (en) 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
GB2575946B (en) 2017-06-07 2022-12-14 Rogers Corp Dielectric resonator antenna system
US10910722B2 (en) 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
KR20210095632A (ko) 2018-12-04 2021-08-02 로저스코포레이션 유전체 전자기 구조 및 이의 제조방법
US10700440B1 (en) 2019-01-25 2020-06-30 Corning Incorporated Antenna stack
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721312A (en) * 1951-06-30 1955-10-18 Itt Microwave cable
US2919441A (en) * 1955-04-15 1959-12-29 Chu Lan Jen Radio-frequency-energy transmission line and antenna
US3534299A (en) * 1968-11-22 1970-10-13 Bell Telephone Labor Inc Miniature microwave isolator for strip lines
US3696433A (en) * 1970-07-17 1972-10-03 Teledyne Ryan Aeronautical Co Resonant slot antenna structure
US3936864A (en) * 1973-05-18 1976-02-03 Raytheon Company Microwave transistor package
US3868594A (en) * 1974-01-07 1975-02-25 Raytheon Co Stripline solid state microwave oscillator with half wavelength capacitive resonator
US3908185A (en) * 1974-03-06 1975-09-23 Rca Corp High frequency semiconductor device having improved metallized patterns
JPS566502A (en) * 1979-06-29 1981-01-23 Nippon Telegr & Teleph Corp <Ntt> Microstrip line
US4623893A (en) * 1983-12-06 1986-11-18 State Of Israel, Ministry Of Defense, Rafael Armament & Development Authority Microstrip antenna and antenna array
US4651159A (en) * 1984-02-13 1987-03-17 University Of Queensland Microstrip antenna
US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna

Also Published As

Publication number Publication date
EP0399524A1 (fr) 1990-11-28
CA2017352A1 (fr) 1990-11-24
FR2647599A1 (fr) 1990-11-30
JPH0329401A (ja) 1991-02-07
DE69016261D1 (de) 1995-03-09
US5227749A (en) 1993-07-13
FR2647599B1 (fr) 1991-11-29

Similar Documents

Publication Publication Date Title
EP0399524B1 (fr) Structure de réalisation de circuits et composants appliquée aux hyperfréquences
EP3545587B1 (fr) Patch d&#39;antenne verticale dans une région de cavité
EP2808946B1 (fr) Dispositif de perturbation d&#39;une propagation d&#39;ondes électromagnétiques et son procédé de fabrication
KR102002161B1 (ko) 표면 산란 안테나
EP0961344B1 (fr) Dispositif de radiocommunication et antenne à fente en boucle
EP0108463B1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations orthogonales et antenne plane comprenant un réseau de tels éléments juxtaposés
US6396451B1 (en) Precision multi-layer grids fabrication technique
FR2763177A1 (fr) Filtre employant une surface a selectivite de frequence et antenne utilisant ce filtre
EP1902491A1 (fr) Systeme d&#39;antenne a diversite d&#39;ordre 2 et carte pour appareil de communication sans fil munie d&#39;un tel systeme
EP2571098B1 (fr) Cellule déphaseuse rayonnante reconfigurable basée sur des résonances fentes et microrubans complémentaires
Pavuluri et al. High efficiency wideband aperture-coupled stacked patch antennas assembled using millimeter thick micromachined polymer structures
EP3540853B1 (fr) Antenne à réseau transmetteur large bande
FR2800920A1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
KR101751638B1 (ko) 전자파 흡수기
Honari et al. Miniaturized-element frequency selective surface metamaterials: A solution to enhance radiation of RFICs
EP2174381A1 (fr) Module d&#39;antenne comportant un radome integre
Saenz et al. Highly efficient dipole antenna with planar meta-surface
Bijumon et al. On-chip silicon integrated cylindrical dielectric resonator antenna for millimeter wave applications
Gharsallah et al. Circularly polarized two‐layer conical DRA based on metamaterial
Lanang et al. Study on C-band electromagnetic wave absorber made of S-ring resonator
Ma et al. Design of band-stop frequency selective surface structure with large and stable reflection band
Mavridou et al. Novel tunable frequency selective meta-surfaces
FR2906937A1 (fr) Decouplage des reseaux d&#39;elements rayonnants d&#39;une antenne
Yekan et al. Integrated Solar-Panel Antenna Array for CubeSats (ISAAC)
NL2001238C2 (nl) Antenne-inrichting en werkwijze.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19910521

17Q First examination report despatched

Effective date: 19930809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950125

REF Corresponds to:

Ref document number: 69016261

Country of ref document: DE

Date of ref document: 19950309

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010412

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010507

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020523

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST