EP0389979A2 - Transmission de puissance équilibrée et pouvant être dirigée du type en "Z" - Google Patents

Transmission de puissance équilibrée et pouvant être dirigée du type en "Z" Download PDF

Info

Publication number
EP0389979A2
EP0389979A2 EP90105526A EP90105526A EP0389979A2 EP 0389979 A2 EP0389979 A2 EP 0389979A2 EP 90105526 A EP90105526 A EP 90105526A EP 90105526 A EP90105526 A EP 90105526A EP 0389979 A2 EP0389979 A2 EP 0389979A2
Authority
EP
European Patent Office
Prior art keywords
shaft
counter
differential
transmission according
active member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90105526A
Other languages
German (de)
English (en)
Other versions
EP0389979B1 (fr
EP0389979A3 (en
Inventor
Cesare Crispo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0389979A2 publication Critical patent/EP0389979A2/fr
Publication of EP0389979A3 publication Critical patent/EP0389979A3/fr
Application granted granted Critical
Publication of EP0389979B1 publication Critical patent/EP0389979B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element
    • B63H20/16Transmission between propulsion power unit and propulsion element allowing movement of the propulsion element in a horizontal plane only, e.g. for steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element
    • B63H20/20Transmission between propulsion power unit and propulsion element with provision for reverse drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/04Transmitting power from propulsion power plant to propulsive elements with mechanical gearing the main transmitting element, e.g. shaft, being substantially vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/10Means enabling trim or tilt, or lifting of the propulsion element when an obstruction is hit; Control of trim or tilt
    • B63H20/106Means enabling lifting of the propulsion element in a substantially vertical, linearly sliding movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/12Means enabling steering

Definitions

  • the present invention relates to a "Z" type power transmission used in particular, but not exclusively, in the field of naval propulsion. It is associated with a motor located inside the hull and transmits power to the horizontal propeller shaft which is placed in a position such that the propeller does not interfere with the boundary or wake layer.
  • the most used type of transmission is the one that comes out of the stern mirror and, in nautical jargon, it is called “interior transmission - outboard" or "rear leg”.
  • Power transmissions of the "Z" type with transmission outside the hull guide the boat by means of the orientation of the axis of the propeller relative to to the longitudinal axis of the boat with the disadvantage that this orientation has a maximum angle of 30 ° to the right and 30 ° to the left and that the reversal of the direction of travel is achieved by reversing the direction of rotation of the 'propeller.
  • These conventional transmissions also have the disadvantage that the lifting of the foot in a vertical plane is limited by the presence on the transmission of a double universal joint and this lifting can reach a maximum value of approximately 50 °.
  • Torsion balancing systems are described in the following patents: US 2,755,765, US 3,094,967, GB 975,436, DE 1,165,442, US 3,486,478, US 3,750,616, US 3,851,614, and US 4,619,158.
  • the object of the present invention is to provide a power transmission in "Z" of the type mentioned above with a device shaped so as to allow variations in azimuthal orientation of 360 ° from the axis of the propeller or propellers. and that, of course, keeping the power transmission running.
  • Another object of the invention consists in shaping this transmission so as to allow lifting in a vertical plane, by rotation of the body which constitutes the foot, which can reach 180 ° with respect to the normal position while maintaining, in this case also , the power transmission on.
  • the drive shaft of the energy is coaxial and opposite a second shaft representative of the torque or moment of torsion applied to the means for the rotation of the first body.
  • This mechanism the operation of which ensures the guiding of the boat or of the ship, must withstand the reaction to the torque or moment of torsion transmitted by the inner shaft 3, a reaction which passes through the casing in the section under consideration.
  • the "Z" conformation of the transmission is defined by the drive shaft 10, the vertical shaft 3 and the propeller shaft 11.
  • FIG. 3 relates to the case where, along each of the two counter-rotating shafts 8 and 9, freewheel seals 12 and 13 are interposed.
  • the foot 1 maintains its position stably, unless a moment or torque tending to rotate it occurs.
  • the value of this moment must be equal to or greater than that transmitted, at this time, by one of the shafts: this moment is transmitted to foot 1 through the gear train 14, 15, 16 and 17 and the corresponding shafts among which, it should be observed, the tree 18 input representative of this moment and which is also that of guiding.
  • the gear 17 is integral with the foot 1.
  • the interposition of a friction clutch on the motor shaft 10 is suitable and it is advisable to use an auxiliary rudder for small variations in the route.
  • the operation of the foot in this case, should preferably occur when the motor transmits powers of modest value.
  • FIG. 4 relates to the case where, along each of the two counter-rotating shafts 8 and 9, a friction clutch 19 and 20 is interposed, respectively.
  • the clutches 19 and 20 are actuated, one at a time, automatically, before each control tending to rotate the foot 1, by a mechanism integrated in the guide system which is composed of the gears 14, 15, 16, 17 and by their trees.
  • the controlled clutch that is to say disconnected, is that concerning the shaft which, for this rotation, is requested to slide.
  • An auxiliary device not shown in this diagram, makes it possible to control the simultaneous detachment of the two clutches.
  • Figures 5 and 7 relate to the case where, between the drive shaft 10 and the two counter-rotating shafts 8, 9 of the foot, there is interposition of a differential 21 followed by two gear trains 22 with 23 and 24 with 25 with equal ratio, the gears 23 and 25 being respectively associated with the shafts 8 and 9.
  • the particular arrangement of the members as a whole makes it possible to eliminate this inverter and to carry out a lifting of the foot in a vertical plane in addition, naturally, to the orientation of the axis of the propeller in a horizontal plane.
  • the differential can be mounted near the propeller according to the diagrams in FIGS. 8, 9 and 10, the upper parts of which are as in FIG. 6.
  • the same function can have a differential connected to the outer shaft and the arrangements of the gears in the box of foot 1 can be different.
  • the torsional moment transmitted by the differential 29 arranged near the propeller is half that transmitted by the differential 21 provided in the upper part or box 2 of the diagrams in FIGS. 5 and 7.
  • the differential 31 is disposed between the final bevel gears 32, 33 and the shaft 11 of the propeller at a cross member 34 which carries the satellites 31 'of the differential 31.
  • the differential 35 is placed between the two horizontal coaxial shafts 36, rotating in the same direction, and the propeller 30.
  • the studs or trunnions 37 on which the satellites rotate are integral with the hub 30 'of the propeller.
  • FIG. 6 relates to the case where, in the box 38 of foot 1, each of the counter-rotating shafts 8, 9 transmits, through a bevel gear train, its torsional moment to its own individual propeller shaft 11 'and 11 "which necessarily in the diagram are offset. This is how the foot 1 is free to rotate and that the current system of gears transmits to it the command for its rotation.
  • a condition is imposed as regards concerns the considerations expressed previously, it is that the moments of torsion transmitted by the two counter-rotating shafts 8 and 9 are equal so that the reaction to these moments existing on the foot 1 is zero. condition, the more the difference between the powers absorbed by the two propellers tends to zero.
  • Figures 12 and 15 show two mechanisms which transmit the movement to two coaxial propellers 30, adjacent and rotating in the same direction.
  • the hydrodynamic characteristics of this pair of propellers, although predictable, are not known.
  • FIGS. 13 and 14 the propellers are arranged as in FIG. 6, but they are coaxial: in FIG. 13 they are counter-rotating, while in FIG. 14 they rotate in the same direction.
  • the invention in all of these embodiments can also be applied to other sectors, such as the wind and / or aeronautical sector.
  • FIGS. 18 and 19 The production of a transmission according to the diagram in FIG. 5 is illustrated by FIGS. 18 and 19.
  • the drive shaft 41 after a friction clutch and an elastic seal 42, leaves the stern mirror 43 and enters the box 44 where, by means of a bevel torque 45, 46, it drives the shaft 47 (which in practice corresponds to the motor shaft 10 shown diagrammatically in FIGS. 3-15) which carries, in orthogonal arrangement, the four studs or trunnions 48 on which are mounted four conical satellites 49 engaged all together with two bevel planetary gears 50: this coupling constitutes the differential (indicated at 21 in FIG. 5).
  • the bevel gears 50 are integral with each of the gears 51 and 52 which transmit the movement, with an identical ratio, to the counter-rotating vertical shafts 53 and 54 by means of their couples or bevel gears 55 and 56.
  • the control member is constituted by the transmission comprising the shaft 59 '(corresponding to the pipe shaft shown diagrammatically at 19 in FIGS. 3-15) and the gears 59, 60, 61 and 62, the final gear 62 being integral, via the hollow shaft 63, of the foot 64 containing the propeller shafts.
  • a hydraulic cylinder 65 by rotating the part 66, and therefore also the foot 64 around the sockets 67 and 68 coaxial with the shaft 47 and the shaft 59 ', determines the angle of lifting of the axes of the propellers in the vertical plane.
  • a simple device 69 prevents the lifting of the foot 64 when the propulsion thrust is directed towards the stern while it does not obstruct it when, as in the case of an impact impact, the foot is pushed to lift .
  • FIG. 20 The embodiment of a transmission according to the diagram in FIG. 7 is illustrated in FIG. 20, where the lower part is identical to that of FIGS. 18 and 19.
  • the driving energy arrives at the bell 72 by means of a bevel gear 73 integral with the latter.
  • the bell 72 carries studs or journals 74 on which the satellites 75 rotate which are simultaneously engaged with the sun gear 76 secured to the shaft 77 and with the sun gear 78 forming a single block with the bevel gear 79.
  • the shaft 77 transmits the movement of the planet wheel to the bevel gear 80.
  • the motive power arrives split, through the differential, to the counter-rotating vertical shafts 81 inside and 82 outside.
  • FIG. 21 The embodiment of a transmission according to the diagram in FIG. 11 is illustrated in FIG. 21 applied to a hull (planing) prepared for the application of two motors and two transmissions in "Z" according to the diagram in FIG. 22 which represents said shell seen from above.
  • the engine torque or moment of torque arrives at the shaft 88 ′ and therefore at the bevel gear 88 through a friction clutch 89 and an elastic seal 90 and is distributed through the gears 91 and 92, to the counter-rotating coaxial shafts 93 and 94.
  • These transmit the movement intended for the counter-rotating propellers 95 and 96 located in the foot 97 (which is shown here rotated 90 ° relative to the direction normal), each for its own account, by means of two bevel gear trains 98 and 99, with two coaxial shafts 100 inside and 101 outside corresponding respectively to 11 'and 11 "of the diagram in FIG. 11.
  • the propeller 96 is of variable pitch (conventional) with adjustment from the outside so as to be able to make the torsional moments transmitted by the two vertical counter-rotating shafts identical.
  • the whole assembly rotates around the axis of the motor shaft by means of the sockets 102 and 103 so as to vary the attitude or to raise the foot by means of the cable 104 and, as in all in the aforementioned cases, there is coaxiality between the drive shaft 88 'and the shaft 105 representative of the torque or torque of driving.
  • the control of the pipe is transmitted, by means of the chain pinion 106 and the aforesaid shaft 105, to the internal gears, as described for FIG. 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)
  • Gear Transmission (AREA)

Abstract

Il s'agit d'une transmission de puissance du type en "Z" comprenant un premier corps (1) associé à un organe actif (30), un second corps (2) associé à une premier arbre de transmission d'énergie à l'organe actif, un couple d'arbres coaxiaux et contra-rotatifs (8,9) interposés entre les premier et second corps, et des moyens (14-18) contenus dans le second corps pour la rotation du premier corps autour d'un axe vertical confondu avec celui du couple d'arbres coaxiaux. Cette transmission comprend en outre des moyens (12,13) interposés entre le premier arbre et l'organe actif, aptes à permettre la rotation relative entre les premier et second corps en maintenant la transmission en marche.

Description

  • La présente invention concerne une transmission de puissance du type en"Z" utilisée en particulier, mais non exclusivement, dans le domaine de la propulsion navale. Elle est associée à un moteur situé à l'interieur de la coque et transmet la puissance à l'arbre horizontal de l'hélice qui est placé en une position telle que l'hélice n'interfére pas avec la couche limite ou de sillage. Le type de transmission le plus utilisé est celui qui sort du miroir de poupe et, dans le jargon nautique, elle est appelée "transmission intérieure - hors-bord" ou encore "pied arrière".
  • Les transmissions de puissance du type en "Z" avec transmission à l'extérieur de la coque, commercialisées jusqu'à ce jour, réalisent le guidage de l'embarcation au moyen de l'orientation de l'axe de l'hélice par rapport à l'axe longitudinal de l'embarcation avec l'inconvénient que cette orientation présente un angle maximal de 30° à droite et 30° à gauche et que l'inversion du sens de la marche est réalisée en inversant le sens de rotation de l'hélice. Ces transmissions conventionelles présentent, en outre, l'inconvénient que le soulévement du pied dans un plan vertical est limité par la présence sur la transmission d'un double joint de cardan et ce soulévement peut atteindre une valeur maximale de 50° environ.
  • Comme il est connu, pour la manoeuvre en d'eaux limités, on ressent la nécessité de pouvoir orienter l'hélice dans une direction azimutale quelconque, de façon à permettre l'exploitation maximale des capacités de manoeuvre de l'embarcation. On ressent, en outre, la nécessité de pouvoir soulever complétement le pied arriére dans un plan vertical pour des inspection et/ou de régler ce soulévement en fonction de l'orientation désirée de la poussée, qui se traduit, pour les coques planantes, par une variation de l'assiette.
  • L'objectif de pouvoir diriger la poussée propulsive dans une direction quelconque du plan horizontal,indépendamment du soulévement, pour ce que l'on sait à la lecture de brevets publiés, a été atteint jusqu'à maintenant par des mécanismes compliqués en partant d'un système d'équilibrage du moment de torsion ou bien par une transmission normale en "Z" et par des mécanismes de guidage servo-assistés, lents et rigoureusement irréversibles.
  • Des systémes à équilibrage du moment de torsion sont décrits dans les brevets suivants : US 2 755 765, US 3 094 967, GB 975 436, DE 1 165 442, US 3 486 478, US 3 750 616, US 3 851 614, et US 4 619 158.
  • Des systèmes avec mécanisme de conduite servo-assisté sont décrits dans les brevets suivants : US 2 499 339, US 2 532 470, US 3 217 688, US 3 452 703, US 3 554 155, US 3 707 939, US 3 769 930, US 3 795 219, US 4 074 652, US 4 516 940 et US 4 634 389.
  • Le soulèvement total du pied a été traité dans le brevet US 4 516 940 et le caractère démontable dans le brevet US 4 634 389. Cependant, dans ces cas, le pied est séparé et la transmission de puissance interronpue.
  • Le but de la présente invention consiste à doter une transmission de puissance en "Z" du type évoqué cidessus d'un dispositif conformé de façon à permettre des variations d'orientation azimutale de 360° de l'axe de l'hélice ou des hélices et cela, naturellement, en maintenant la transmission de puissance en marche.
  • Un autre but de l'invention consiste à conformer cette transmission de façon à permettre un soulèvement dans un plan vertical, par une rotation du corps qui constitue le pied, pouvant atteindre 180° par rapport à la position normale en maintenant, dans ce cas aussi, la transmission de puissance en marche.
  • Ces buts, ainsi que d'autres buts de l'invention résulteront de la lecture de la description et des revendications qui suivent, en attirant l'attention sur le fait que la présente transmission de puissance trouve, en particulier, une utilisation valable dans le domaine nautique, mais que celle-ci peut aussi trouver une utilisation valable dans d'autres domaines comme, par exemple, le domaine aéronautique ou le domaine de l'exploitation de l'énergie éolienne.
  • La transmission de puissance, selon l'invention, est du type comprenant :
    • un premier corps associé à un organe actif,
    • un second corps associé à un premier arbre de transmission d'énergie audit organe actif,
    • un couple d'arbres coaxiaux et contra-rotatifs interposés entre les premier et second corps,
    • des moyens contenus dans le second corps pour la rotation du premier corps autour d'un axe vertical confondu avec celui du couple d'arbres coaxiaux et contra-rotatifs, et elle est essentiellement caractérisée par le fait qu'elle comprend en outre :
    • des moyens interposés entre le premier arbre et l'organe actif aptes à permettre la rotation relative entre le premier corps et le second corps en maintenant la transmission de puissance en marche.
  • Selon un autre caractéristique, l'arbre de transmission de l'énegie est coaxial et opposé à un second arbre représentatif du couple ou moment de torsion appliqué aux moyens pour la rotation du premier corps.
  • L'invention est illustrée, à titre d'exemple non limitatif, par les figures ci-annexées où :
    • la figure 1 illustre schématiquement une transmission conventionelle de puissance du type en "Z" appliquée à un propulseur nautique à l'exclusion du système de guidage,
    • la figure 2 illustre schématiquement une transmission de puissance de type en "Z" supposée appliquée à un propulseur nautique,
    • la figure 3 illustre schématiquement une transmission de puissance du type en "Z", avec un système de guidage, appliquée à un propulseur nautique selon une forme d'exécution de l'invention,
    • les figures 4 à 15 illustrent chacune schématiquement une autre forme d'exécution selon l'invention de la transmission de puissance du type en "Z", avec systeme de guidage,
    • la figure 16 illustre de manière indicative l'application d'une transmission de puissance selon les figures 3-15 au domaine de l'exploitation de l'énergie éolienne,
    • la figure 17 illustre de manière indicative l'application d'une transmission de puissance selon les figures 3-15 au domaine aéronautique,
    • la figure 18 représente une réalisation pratique de la transmission de puissance conforme au schéma de la figure 5 selon la section G-G de la figure 19,
    • la figure 19 est une section selon H-H de la figure 18,
    • la figure 20 représente, en section, une réalisation pratique d'une transmission de puissance conforme au schéma de la figure 7,
    • la figure 21 représente, en section, une réalisation pratique d'une transmission de puissance conforme au schéma de la figure 11,
    • la figure 22 représente schématiquement comment deux transmission de puissance selon la figure 21 sont appliquées à une coque du type planant.
  • Si l'on considère la transmission traditionelle en "Z", en excluant le système de conduite, le schéma est celui de la figure 1.
  • Pour donner à l'axe de l'hélice la possibilité de s'orienter totalement, il est nécessaire de sectionner le carter contenant l'arbre de transmission vertical, selon un plan indiqué sur la figure 1 en A-A et de recourir à un mécanisme qui donne la possibilité de commander la rotation du pied 1 par rapport à la partie ou boîte supérieure 2.
  • Ce mécanisme, dont la manoeuvre assure le guidage de l'embarcation ou du navire, doit supporter la réaction au couple ou moment de torsion transmis par l'arbre intérieur 3, réaction qui passe à travers le carter dans la section considérée.
  • Le principe que l'on adopte consiste à annuler la réaction ci-dessus pour faire en sorte que la mécanisme en question puisse être actionné par des forces de valeur modest. Parce que dans ce cas, bien qu'en sectionnant le carter, la réaction manquant dans celui-ci,le pied 1 reste stable avec la transmission de puissance en marche. En transmettant le mouvement, à travers la section A-A de la figure 1, au moyen de deux arbres coaxiaux contra-rotatifs avec des couples ou moments de torsion égaux et opposés, la réaction qui résulte, absorbée par le carter, est nulle. Cette condition est réalisée avec le schéma de la figure 2 où les engrenages coniques 4 et 5 sont identiques tout comme les engrenages 6 et 7.
  • En considérant arrêté ce type de transmission, on remarque qu'il n'est pas possible de faire tourner le pied 1 autour de l'axe commun, par rapport à la partie supérieure 2 parce que, vu qu'une rotation relative des arbres contra-rotatifs 8 intérieur et 9 extérieur doit se réaliser, la disposition des arbres et des engrenages unis entre eux l'empêche.
  • Pour clarifier, en se rapportant par simplicité à la figure 1, la conformation en "Z" de la transmission est définie par l'arbre moteur 10, l'arbre vertical 3 et l'arbre de l'hélice 11.
  • La présente invention, toujours en partant du schéma de la figure 2 (arbres contra-rotatifs, donc annulation de la réaction), on considère quatre façons fondamentales de faire tourner le pied 1, non seulement selon l'axe vertical mais aussi et simultanément, si désiré, selon un axe horizontal supérieur de rotation autour duquel on veut réaliser le soulèvement dans un plan vertical de l'ensemble composé par le pied 1 et par la partie ou boîte supérieure 2. Chacune de ces quatre façons est représentée schématiquement dans les figures 3, 4, 5 et 6 ainsi que quelques variantes de la façon de la figure 5 dans les figures 7-10 et certaines variantes de la façon de la figure 6 dans les figures 11-15.
  • Comme il est possible de remarquer, tous ces schémas ont en commun, comme principe fondamental et exclusif qui sera mieux compris par la suite, le fait que le couple ou moment de torsion de guidage entre dans la boîte supérieure 2 au moyen d'un arbre coaxial et opposé à celui qui transmet l'énergie de propulsion, de sorte que, en permettant à la boîte 2 de tourner autour dudit axe horizontal, les deux transmission en entrée sont maintenues avec continuité à l'intérieur de la boîte supérieure meme. Par conséquent, tous les mécanismes intérieurs sont aptes à respecter ces conditions.
  • La figure 3 concerne le cas où, le long de chacun des deux arbres contra-rotatifs 8 et 9, des joints à roue libre 12 et 13 sont interposés.
  • En procédant ainsi, avec la transmission de puissance en marche, le pied 1 conserve sa position de manière stable, à moins qu'un moment ou couple tendant à le faire tourner n'intervienne. La valeur de ce moment doit être égale ou supérieure à celle transmise, à ce moment-là, par un des arbres : ce moment est transmis au pied 1 à travers le train d'engrenages 14, 15, 16 et 17 et les arbres correspondants parmi lesquels, il faut l'observer, l'arbre 18 d'entrée représentatif de ce moment et qui est aussi celui de guidage. L'engrenage 17 est solidaire du pied 1. Dans cette solution, l'interposition d'un embrayage à friction sur l'arbre moteur 10 est convenable et il est conseillé d'utiliser un gouvernail auxiliaire pour les petites variations de route. La manoeuvre du pied, dans ce cas, doit se produire de préférence quand le moteur transmet des puissances de valeur modeste.
  • Le choix de ce type de transmission est prévu, en principe, pour des navires de grandeur moyenne comme les ferry-boats et les remorqueurs et pour les embarcations à voile avec moteur auxiliaire.
  • La figure 4 concerne le cas où, le long de chacun des deux arbres contra-rotatifs 8 et 9, un embrayage à friction 19 et 20 est interposé, respectivement.
  • Ce cas est considéré, d'après, la connaissance de l'inventeur, dans les brevets: GB 975 436, DE 1 165 442 et US 3 486 478.
  • Cependant, il n'y a apparemment par eu de commercialisation correspondante, sans doute en raison de la difficulté de l'exécution pratique du dispositif automatique de commande des deux embrayages.
  • Les embrayages 19 et 20 sont actionnés, un à la fois, de manière automatique, avant chaque commande tendant à faire tourner le pied 1, par un mécanisme intégré dans le système de guidage qui est composé des engrenages 14, 15, 16, 17 et par leurs arbres. L'embrayage commandé, c'est-à-dire débranché, est celui concernant l'arbre qui, pour cette rotation, est sollicité à glisser.
  • Un dispositif auxiliaire, non représenté dans ce schéma, permet de commander le détachement simultané des deux embrayages.
  • Il est conseillé d'utiliser un gouvernail auxiliaire pour les petites variations de route.
  • Le choix de ce type de transmission est prévu en ligne de principe pour les ferry-boats et les remorqueurs ainsi que pour les embarcations à voile avec moteur auxiliaire.
  • Les figures 5 et 7 (la partie inférieure de la figure 7 est comme sur la figure 5) concernent le cas où, entre l'arbre moteur 10 et les deux arbres contra-rotatifs 8, 9 du pied, il y a interposition d'un différentiel 21 suivi de deux trains d'engrenages 22 avec 23 et 24 avec 25 à rapport égal, les engrenages 23 et 25 étant respectivement associés aux arbres 8 et 9.
  • De cette façon le couple moteur est distribué dans la même mesure, par la présence du differentiel 21,sur les deux arbres contra-rotatifs 8, 9 en mouvement, même si un de ceux-ci réalise une rotation supérieure à celle de l'autre. Les conditions pour la rotation libre du pied avec la transmission de puissance en marche sont ainsi réalisées.
  • La présence du differential et considérée dans le brevet US 3 094 967 dejà cité où cependant, pour qu'il puisse exécuter sa fonction, il est nécessaire d'interposer un inverseur entre le différentiel et le pied, indiqué par 22-25 sur la figure 1 de ce brevet.
  • Selon la présente invention, au contraire, la disposition particuliére des organes dans l'ensemble permet d'éliminer cet inverseur et de réaliser un soulèvement du pied dans un plan vertical en plus, naturellement, de l'orientation de l'axe de l'hélice dans un plan horizontal.
  • Sur la figure 5, le mouvement est transmis aux satellites du différentiel au moyen d'un croisillon 26 solidaire de l'arbre 10 tandis que sur la figure 7 le mouvement est transmis au moyen d'une cloche 27 et dans les deux cas les planétaires 28 sont solidaires chacun d'un engrenage conique qui transmet le mouvement, chacun au moyen de son correspondant, aux arbres coaxiaux verticaux 8,9.
  • Le mécanisme de la figure 5 est plus compact, tandis que celui de la figure 7 est plus simple dans sa construction.
  • En plus des mécanismes schématisés sur les figures 5 et 7, le différentiel peut être monté à promixité de l'hélice selon les schémas des figures 8, 9 et 10, dont les parties supérieures sont comme sur la figure 6.
  • Sur la figure 8, le mouvement des deux arbres coaxiaux 8, 9 est transmis par chacun, dédoublé, sur deux hélices 30 contra-rotatives opposées et l'un des deux (l'arbre central 8 dans le cas de la figure 8) le transmet à travers un différentiel 29.
  • La même fonction peut avoir un différentiel raccordé à l'arbre extérieur et les dispositions des engrenages dans la boîte du pied 1 peuvent être différentes.
  • Dans le cas de la figure 8, le moment de torsion transmis par le différentiel 29 disposé à proximité de l'hélice est la moitié de celui transmis par le différentiel 21 prévu dans la partie ou boîte supérieure 2 des schémas des figures 5 et 7.
  • Sur la figure 9 le différentiel 31 est disposé entre les engrenages coniques finaux 32, 33 et l'arbre 11 de l'hélice à un croisillon 34 qui porte les satellites 31' du différentiel 31.
  • Sur la figure 10 le différentiel 35 est placé entre les deux arbres horizontaux coaxiaux 36, tournant dans le même sens, et l'hélice 30. Les goujons ou tourillons 37 sur lesquels tournent les satellites sont solidaires du moyeu 30' de l'hélice.
  • Pour tous ces cas de figures 5, 7, 8, 9 et 10, l'interposition d'un embrayage à friction aprés le moteur est nécessaire.
  • La figure 6 concerne le cas où, dans la boîte 38 du pied 1, chacun des arbres contra-rotatifs 8, 9 transmet, à travers un train d'engrenages coniques, son moment de torsion à un propre arbre individuel porte hélice 11' et 11" qui nécessairement dans le schéma sont désaxés. C'est ainsi que le pied 1 est libre de tourner et que le système courant d'engrenages lui transmet la commande pour sa rotation. Dans ce cas, une condition s'impose en ce qui concerne les considérations exprimées auparavant, c'est que les moments de torsion transmis par les deux arbres contra-rotatifs 8 et 9 soient égaux de sorte que la réaction à ces moments existant sur le pied 1 soit nulle. Plus on s'approche de cette condition, plus la différence entre les puissances absorbées par les deux hélices tend vers zéro.
  • Les figures 11, 12, 13, 14 et 15 dont les parties supérieures sont identiques à celle de la figure 6, schématisent des mécanismes basés sur le même principe que la figure 6.
  • Sur la figure 11 le mouvement parvient à deux hélices 30 coaxiales, adjacentes et contra-rotatives qui sont largement adoptées depuis longtemps.
  • Les figures 12 et 15 représentent deux mécanismes qui transmettent le mouvement à deux hélices 30 coaxiales, adjacentes et tournant dans le même sens. Les caractéristiques hydrodynamiques de ce couple d'hélices, bien que prévisibles, ne sont pas connues.
  • Sur les figures 13 et 14 les hélices sont disposées comme à la figure 6, mais elles sont coaxiales : sur la figure 13 elles sont contra-rotatives, tandis que sur la figure 14 elles tournent dans le même sens.
  • Pour tous ces mécanismes schématisée dans les cas des figures 6, 11, 12, 13, 14 et 15, qui sont relativement simples, l'interposition d'un embrayage à friction aprés le moteur est nécessaire.
  • Pour les types de transmission schématisés sur les figures 5 à 15, on prévoit la généralisation de l'usage.
  • En plus des application à caractère marin, l'invention dans toutes ces formes de réalisation est susceptible d'application aussi à d'autres secteurs, tels que le secteur éolien et/ou aéronautique.
  • Dans le secteur de l'exploitation de l'énergie éolienne, si l'on doit raccorder une hélice mue par le vent à un générateur électrique ou à une autre machine d'utilisation fixe (figure 16) et si l'on doit orienter l'axe de l'hélice 39 dans la direction du vent, en appliquant un des mécanismes schématisés ci-dessus à la transmission de puissance, on a la possibilité de commander l'orientation de l'hélice seulement avec la force de la pale 40 orientée par le vent même ou par une commande automatique de petite puissance.
  • En aéronautique, dans les aéronefs convertibles (figure 17), on a besoin de modifier, avec moteur fixe et avec transmission de puissance en marche, l'orientation de l'axe de l'hélice (ou des hélices) de la position verticale de décollage à celle de vol horizontal. En appliquant une des transmissions citées ci-dessus, on obtient le résultat demandé avec une commande de petite puissance.
  • L'invention est décrite ci-dessous à l'aide de trois exemples de réalisation qui concernent respectivement les cas des figures 5, 7 et 11.
  • La réalisation d'une transmission selon le schéma de la figure 5 est illustrée par les figures 18 et 19.
  • L'arbre moteur 41, après un embrayage à friction et un joint élastique 42, sort du miroir de poupe 43 et entre dans la boîte 44 où, au moyen d'un couple conique 45, 46, il entraîne l'arbre 47 (qui en pratique correspond à l'arbre moteur 10 schématisé sur les figures 3-15) qui porte, en disposition orthogonale, les quatre goujons ou tourillons 48 sur lesquels sont montés quatre satellites coniques 49 en prise tous ensemble avec deux engrenages planétaires coniques 50 : cet accouplement constitue le différentiel ( indiqué en 21 sur la figure 5).
  • Les engrenages coniques 50 sont solidaires chacun des engrenages 51 et 52 qui transmettent le mouvement, avec un rapport identique, aux arbres verticaux contra-rotatifs 53 et 54 au moyen de leurs couples ou pignons coniques 55 et 56.
  • Un mécanisme courant de renvoi aux hélices contra-rotatives 57 et 58, dont le fonctionnement est de compréhension immédiate, complète la transmission de puissance.
  • L'organe de commande est constitué par la transmission comprenant l'arbre 59' (correspondant à l'arbre de conduite schématisé en 19 sur les figures 3-15) et les engrenages 59, 60, 61 et 62, l'engrenage final 62 étant solidaire, par l'intermédiaire de l'arbre creux 63, du pied 64 contenant les arbres porte-hélices.
  • Un vérin hydraulique 65, en faisant tourner la partie 66, et par conséquent aussi le pied 64 autour des douilles 67 et 68 coaxiales à l'arbre 47 et à l'arbre 59', détermine l'angle de soulèvement des axes des hélices dans le plan vertical.
  • Un dispositif simple 69 empêche le soulévement du pied 64 quand la poussée de propulsion est dirigée vers la poupe tandis qu'il ne l'entrave pas quand, comme dans le cas d'un choc contre un obstacle, le pied est poussé à se soulever.
  • Au moyen de la traction d'un câble en acier 70, qui coopère avec une roue à gorge 71, il est possible de réaliser le soulèvement total de l'ensemble 64, 66, par exemple pour l'inspection et/ou le nettoyage de l'hélice.
  • La réalisation d'une transmission selon le schéma de la figure 7 est illustrée sur la figure 20, où la partie inférieure est identique à celle des figures 18 et 19.
  • L'énergie motrice arrive à la cloche 72 au moyen d'un engrenage conique 73 solidaire de celle-ci. La cloche 72 porte des goujons ou tourillons 74 sur lesquels tournent les satellites 75 qui sont simultanément en prise avec le planétaire 76 solidaire de l'arbre 77 et avec le planétaire 78 formant un seul bloc avec l'engrenage conique 79.
  • L'arbre 77 transmet le mouvement du planétaire à l'engrenage conique 80. Ainsi la puissance motrice arrive dédoublée, à travers le différentiel, aux arbres verticaux contra-rotatifs 81 intérieur et 82 extérieur.
  • Le restant du mécanisme est identique à celui illustré sur les figures précédentes 18 et 19.
  • Il est clair que, dans ce cas aussi, il y a coaxialité entre les arbres moteur 77 et entraîné 59' et donc la possibilité aussi de rotation de l'ensemble entier autour de leur axe commun pour le soulèvement de l'ensemble.
  • La réalisation d'une transmission selon le schéma de la figure 11 est illustrée sur la figure 21 appliquée à une coque (planante) préparée pour l'application de deux moteurs et de deux transmissions en "Z" selon le schéma de la figure 22 qui représente ladite coque vue d'en haut.
  • On remarque la forme particulière de la poupe pour permettre la sortie à l'extérieur des transmissions à travers les parois longitudinales verticales 83 et 84 (celle de droite 84 est aussi indiquée sur la figure 21). Les commandes de la conduite, réunises sous le tableau 85, passent à travers les parois transversales verticales 86, 87.
  • En nous rapportant en particulier à la figure 21, le couple ou moment de torsion moteur arrive à l'arbre 88' et donc à l'engrenage conique 88 à travers un embrayage à friction 89 et un joint élastique 90 et se répartit, à travers les engrenages 91 et 92, aux arbres coaxiaux contra-rotatifs 93 et 94. Ceux-ci transmettent le mouvement destiné aux hélices contra-rotatives 95 et 96 situées dans le pied 97 (qui est ici représenté tourné de 90° par rapport à la direction normale), chacun pour son compte, au moyen de deux trains d'engrenages coniques 98 et 99, à deux arbres coaxiaux 100 intérieur et 101 extérieur correspondant respectivement à 11' et à 11" du schéma de la figure 11.
  • L'hélice 96 est à pas variable (conventionnel) avec réglage de l'extérieur de maniére à pouvoir rendre identiques les moments de torsion transmis par les deux arbres contra-rotatifs verticaux.
  • Dans ce cas aussi, l'ensemble entier tourne autour de l'axe de l'arbre moteur au moyen des douilles 102 et 103 de façon à faire varier l'assiette ou à soulever le pied au moyen du câble 104 et, comme dans tous les cas susmentionnés, il y a coaxialité entre l'arbre moteur 88' et l'arbre 105 représentatif du couple ou moment de torsion de conduite. La commande de la conduite est transmise, au moyen du pignon pour chaîne 106 et du susdit arbre 105, aux engrenages intérieurs, comme décrit pour la figure 18.

Claims (11)

  1. Transmission de puissance du type en "Z" comprenant:
    - un premier corps (1) associé à un organe actif (30);
    - un second corps (2) associé à un premier arbre (10) de transmission d'énergie audit organe actif (30);
    - un couple d'arbres coaxiaux et contra-rotatifs (8,9) interposés entre lesdits premier (1) et second corps (2);
    - des moyens (14,15,16,17,18) contenus dans ledit second corps (2) pour la rotation dudit premier corps (1) autour d'un axe vertical confondu avec celui du couple d'arbres coaxiaux et contra-rotatifs;
    caractérisée par le fait qu'elle comprend en outre des moyens (12,13,19,20,21,29,31,35) interposés entre ledit premier arbre (10) et ledit organe actif (30), aptes à permettre la rotation relative entre ledit premier corps (1) et ledit second corps (2) en maintenant la transmission de puissance en marche.
  2. Transmission selon la revendication 1, caractérisée par le fait que ledit arbre (10) de transmission d'énergie est coaxial et opposé à un second arbre (18) représentatif du moment de torsion appliqué aux susdits moyens (14-18) pour la rotation du susdit premier corps (1).
  3. Transmission selon la revendication 1, caractérisée par le fait que lesdits moyens interposés entre ledit premier arbre (10) et ledit organe actif (30) sont composés de joints à roue libre (12,13) associés chacun respectivement à l'un des deux susdits arbres coaxiaux contra-rotatifs.
  4. Transmission selon la revendication 1, caractérisée par le fait que lesdits moyens interposés entre ledit premier arbre (10) et ledit organe actif (30) sont composés d'un système différentiel à engrenages (21) comprenant un croisillon porte-satellites (26) raccordé au susdit premier arbre (10), les planétaires (28) du différentiel étant librement rotatifs autour dudit premier arbre et transmettant chacun son mouvement, à travers un train d'engrenages (22,23-24,25), à un des deux arbres contra-rotatifs verticaux (8,9).
  5. Transmission selon la revendication 1, caractérisée par le fait que lesdits moyens interposés entre ledit premier arbre (10) et ledit organe actif (30) sont composés d'un système différentiel à engrenages (21) comprenant : une cloche (27) portant les satellites et raccordée au susdit premier arbre (10), un arbre central (27') pivoté à ladite cloche (27) portant un premier planétaire (28) relié, par l'intermédiaire dudit arbre central (27') et d'un engrenage (22), à un engrenage (23) entraînant dans un sens ledit arbre intérieur (8) et un second planétaire (28) du susdit différentiel étant relié, par l'intermédiaire d'un engrenage (24) solidaire de lui-même, à un engrenage (25) entraînant dans un autre sens ledit arbre extérieur (9).
  6. Transmission selon la revendication 1, caractérisée par le fait qu'un desdits arbres contra-rotatifs (8,9) transmet son mouvement simultanément à deux organes actifs (30) opposés et contra-rotatifs, tandis que l'autre arbre le transmet aux mêmes organes actifs (30) à travers un différentiel (29).
  7. Transmission selon la revendication 1, caractérisée par le fait que les arbres contra-rotatifs (8,9) transmettent leur mouvement à l'organe actif (30) à travers un différentiel (31), l'axe (11) dudit organe actif (30) portant un croisillon (34) sur lequel les satellites (31') dudit différentiel tournent.
  8. Transmission selon la revendication 1, caractérisée par le fait que les arbres contra-rotatifs (8,9) transmettent leur mouvement chacun à deux arbres (36) coaxiaux à l'axe de l'organe actif (30), chacun desdits arbres (36), du côté d'un moyeu (30'), étant solidaire d'un planétaire d'un différentiel (35) dont les pivots (37) des satellites sont solidaires dudit moyeu (30').
  9. Transmission selon la revendication 1, caractérisée par le fait que chacun des deux arbres contra-rotatifs (8,9) actionne son organe actif (30) tant adjacent qu'opposé, tant contra-rotatif que tournant dans le même sens.
  10. Transmission selon l'une quelconque des précédentes revendications, caractérisée par le fait qu'elle est employée dans le domaine aéronautique, notamment pour des appareils convertibles.
  11. Transmission selon l'une quelconque des précédentes revendications, caractérisée par le fait qu'elle est employée dans le domaine de l'exploitation de l'énergie éolienne.
EP90105526A 1989-03-29 1990-03-23 Transmission de puissance équilibrée et pouvant être dirigée du type en "Z" Expired - Lifetime EP0389979B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT8919929A IT1228764B (it) 1989-03-29 1989-03-29 Trasmissione di potenza bilanciata e guidabile del tipo a "z"
IT1992989 1989-03-29

Publications (3)

Publication Number Publication Date
EP0389979A2 true EP0389979A2 (fr) 1990-10-03
EP0389979A3 EP0389979A3 (en) 1990-11-28
EP0389979B1 EP0389979B1 (fr) 1994-07-06

Family

ID=11162430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90105526A Expired - Lifetime EP0389979B1 (fr) 1989-03-29 1990-03-23 Transmission de puissance équilibrée et pouvant être dirigée du type en "Z"

Country Status (6)

Country Link
US (1) US5024639A (fr)
EP (1) EP0389979B1 (fr)
DE (1) DE69010363T2 (fr)
FR (1) FR2645232B1 (fr)
GB (1) GB2231546B (fr)
IT (1) IT1228764B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505179A1 (de) * 1995-02-16 1996-08-22 Herbert Dipl Ing Luelsdorf Antriebseinrichtung für ein Wasserfahrzeug
WO1997041029A1 (fr) * 1996-04-29 1997-11-06 Angel Romero Lago Queue de propulsion pour embarcations
WO2006131107A3 (fr) * 2005-06-09 2007-04-19 Schottel Gmbh & Co Kg Propulsion navale et procede de propulsion navale
EP1873373A1 (fr) * 2006-06-30 2008-01-02 Honda Motor Co., Ltd Machine à propulsion marine comportant un arbre de transmission

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012417B2 (ja) * 1992-01-10 2000-02-21 文夫 笠原 動力伝達装置
US6186922B1 (en) * 1997-03-27 2001-02-13 Synkinetics, Inc. In-line transmission with counter-rotating outputs
US20050159054A1 (en) * 2002-09-16 2005-07-21 Doen Marine Pty Ltd Marine jet propulsion arrangement
WO2004106777A1 (fr) * 2003-05-28 2004-12-09 Fumio Kasahara Dispositif de transmission de puissance
PL363829A1 (en) * 2003-12-02 2005-06-13 Centrum Techniki Okrętowej S.A. Power transmission mechanism for watercrafts, particularly watercrafts with azimuth drive
CA2598035C (fr) 2005-02-18 2010-12-21 Michael Alan Beachy Head Unite d'entrainement marine
US7347797B2 (en) * 2005-11-21 2008-03-25 Gm Global Technology Operations, Inc. Electro-mechanical transmission with six speed ratios and a method of redesigning a transmission
DE102008042599A1 (de) * 2008-10-02 2010-04-08 Zf Friedrichshafen Ag Steuereinrichtung für einen Schiffsantrieb
CN101745230A (zh) * 2008-12-02 2010-06-23 鸿富锦精密工业(深圳)有限公司 仿真眼睛
DE102009000992A1 (de) * 2009-02-18 2010-08-19 Zf Friedrichshafen Ag Schiffsantrieb mit Nebenantrieben
CN102414444A (zh) * 2009-04-06 2012-04-11 彼得·V·比塔尔 同轴风力涡轮机
JP2012061938A (ja) * 2010-09-15 2012-03-29 Mitsubishi Heavy Ind Ltd 舶用推進装置
CN102774487B (zh) * 2012-07-31 2016-03-02 房克聚 复合式间接轴系传动系统
KR101595845B1 (ko) * 2013-01-28 2016-02-19 윤은석 감속기
RU2584634C1 (ru) * 2014-12-25 2016-05-20 Акционерное общество "Центр судоремонта "Звездочка" (АО "ЦС "Звездочка") Движительно-рулевая колонка
FR3042009B1 (fr) * 2015-10-05 2018-07-13 Safran Aircraft Engines Turbo moteur a soufflantes deportees avec un systeme differentiel
RU2613135C1 (ru) * 2016-03-01 2017-03-15 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) Движительно-рулевая колонка
RU169378U1 (ru) * 2016-09-21 2017-03-16 Акционерное общество "Научно-исследовательское проектно-технологическое бюро "Онега" Движительно-рулевая колонка с гибким валом
RU169385U1 (ru) * 2016-10-03 2017-03-16 Акционерное общество "Научно-исследовательское проектно-технологическое бюро "Онега" Движительно-рулевая колонка с шарнирным валом
US10077100B1 (en) * 2016-12-15 2018-09-18 Thomas J. Costello Propeller driving assembly
RU181406U1 (ru) * 2018-03-16 2018-07-12 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" Движительно-рулевая колонка с винтом регулируемого шага
RU181153U1 (ru) * 2018-03-16 2018-07-05 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" Движительно-рулевая колонка с винтом регулируемого шага
US10800502B1 (en) 2018-10-26 2020-10-13 Brunswick Corporation Outboard motors having steerable lower gearcase
CN110015436A (zh) * 2019-04-07 2019-07-16 罗灿 共轴反转周向推进器
CN111268114B (zh) * 2020-02-27 2024-03-01 西安工业大学 锥齿轮共轴对转双旋翼传动机构
CN112303190A (zh) * 2020-11-24 2021-02-02 王怡科 一种锥形齿轮错齿减速机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE332841C (de) * 1919-06-21 1921-02-10 H Baer Dr Ing Umsteuerung von Aussenbordmotoren
US2372247A (en) * 1941-08-21 1945-03-27 Billing Noel Pemberton Propeller drive for marine vessels
DE1185942B (de) * 1962-05-23 1965-01-21 Inst Schiffbau Steuereinrichtung fuer einen Z-foermigen Schiffsantrieb
GB993905A (en) * 1961-12-12 1965-06-02 Gen Electric Improvements in steerable torque-balanced marine propulsion drive
US4619158A (en) * 1980-05-27 1986-10-28 Nelson Donald F Balanced steerable transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB551481A (en) * 1941-08-21 1943-02-24 Noel Pemberton Billing Improvements in or relating to propeller drive for marine vessels
GB822204A (en) * 1957-01-31 1959-10-21 Schiffbau Projekt U Konstrukti Steering control for marine craft
US3021725A (en) * 1958-06-02 1962-02-20 Waste King Corp Right angle drive steerable propeller
DE1165442B (de) * 1962-05-24 1964-03-12 Inst Schiffbau Steuereinrichtung fuer einen Z-foermigen Schiffsantrieb
GB975436A (en) * 1962-06-29 1964-11-18 Inst Schiffbau Steering means for ships
US3486478A (en) * 1966-11-15 1969-12-30 Gerald H Halliday Steerable marine drive
DE1303087B (fr) * 1967-11-10 1971-08-12 Schottel Werft Becker J Kg
US4932907A (en) * 1988-10-04 1990-06-12 Brunswick Corporation Chain driven marine propulsion system with steerable gearcase and dual counterrotating propellers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE332841C (de) * 1919-06-21 1921-02-10 H Baer Dr Ing Umsteuerung von Aussenbordmotoren
US2372247A (en) * 1941-08-21 1945-03-27 Billing Noel Pemberton Propeller drive for marine vessels
GB993905A (en) * 1961-12-12 1965-06-02 Gen Electric Improvements in steerable torque-balanced marine propulsion drive
DE1185942B (de) * 1962-05-23 1965-01-21 Inst Schiffbau Steuereinrichtung fuer einen Z-foermigen Schiffsantrieb
US4619158A (en) * 1980-05-27 1986-10-28 Nelson Donald F Balanced steerable transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505179A1 (de) * 1995-02-16 1996-08-22 Herbert Dipl Ing Luelsdorf Antriebseinrichtung für ein Wasserfahrzeug
WO1997041029A1 (fr) * 1996-04-29 1997-11-06 Angel Romero Lago Queue de propulsion pour embarcations
ES2134097A1 (es) * 1996-04-29 1999-09-16 Lago Angel Romero Cola prpulsora para embarcaciones.
WO2006131107A3 (fr) * 2005-06-09 2007-04-19 Schottel Gmbh & Co Kg Propulsion navale et procede de propulsion navale
EP1873373A1 (fr) * 2006-06-30 2008-01-02 Honda Motor Co., Ltd Machine à propulsion marine comportant un arbre de transmission

Also Published As

Publication number Publication date
GB2231546B (en) 1993-04-21
GB9005383D0 (en) 1990-05-02
IT8919929A0 (it) 1989-03-29
DE69010363D1 (de) 1994-08-11
GB2231546A (en) 1990-11-21
EP0389979B1 (fr) 1994-07-06
US5024639A (en) 1991-06-18
FR2645232A1 (fr) 1990-10-05
DE69010363T2 (de) 1995-05-11
IT1228764B (it) 1991-07-03
EP0389979A3 (en) 1990-11-28
FR2645232B1 (fr) 1995-02-24

Similar Documents

Publication Publication Date Title
EP0389979A2 (fr) Transmission de puissance équilibrée et pouvant être dirigée du type en "Z"
WO2014067563A1 (fr) Plate-forme mobile telecommandee apte a evoluer dans un milieu tel que l'eau et l'air
FR2974760A1 (fr) Plate-forme mobile telecommandee apte a evoluer dans un milieu tel que l'eau et l'air
EP0024998A1 (fr) Système perfectionné pour la propulsion d'embarcations à l'aide des vents et des courants et la récupération éventuelle d'énergie
EP0385827A1 (fr) Dispositif de propulsion pour véhicule sous-marin
FR2542692A1 (fr) Systeme de commande de propulsion pour un bateau
EP3212498B1 (fr) Perfectionnements aux machines tournantes à rotor fluidique à pales orientables
FR2725953A1 (fr) Dispositif de manoeuvre pour navires independant de la comma ande principale
FR2973330A1 (fr) Navire pour embarquement-debarquement de charges, du type catamaran a propulsion hybride
FR2550734A1 (fr) Pedalo amphibie a voile
FR2742120A1 (fr) Vehicule sous-marin a propulseurs orientables et escamotables
EP0708017A1 (fr) Helice semi-immergee pour bateau
US20120302113A1 (en) Marine Propulsion Assembly
EP0104122A1 (fr) Perfectionnement aux bateaux automobiles pour assurer le poussage et la gouverne de tout train de barges avec une économie optimale
EP0554241A1 (fr) Dispositif d'orientation des pales d'un rotor dans un flux transversal de fluide et application de celui-ci
FR2591182A1 (fr) Dispositif de commande d'un objet submerge remorque.
KR101444116B1 (ko) 선박의 프로펠러 동력 전달장치
RU2263605C1 (ru) Движитель
Crispo et al. Z" type steerable balanced power transmission
FR2720368A1 (fr) Bateau multicoque à flotteurs orientables.
CA3187069A1 (fr) Dispositif d'entrainement en battement d'un plan porteur
FR3114075A3 (fr) Dispositif de pilotage automatique d’une voilure de traction
BE475628A (fr)
SU1143646A1 (ru) Движительно-рулевой комплекс плавникового движител
FR2613687A1 (fr) Dispositif mobile de transmission de puissance a turbine, ou helice, et moteur hydraulique immerges ou semi-immerges pour navires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES SE

RHK1 Main classification (correction)

Ipc: B63H 5/13

17P Request for examination filed

Effective date: 19910201

K1C3 Correction of patent application (complete document) published

Effective date: 19901003

17Q First examination report despatched

Effective date: 19921009

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940706

REF Corresponds to:

Ref document number: 69010363

Country of ref document: DE

Date of ref document: 19940811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950530

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203