EP0387859B1 - Heating boiler - Google Patents

Heating boiler Download PDF

Info

Publication number
EP0387859B1
EP0387859B1 EP90104852A EP90104852A EP0387859B1 EP 0387859 B1 EP0387859 B1 EP 0387859B1 EP 90104852 A EP90104852 A EP 90104852A EP 90104852 A EP90104852 A EP 90104852A EP 0387859 B1 EP0387859 B1 EP 0387859B1
Authority
EP
European Patent Office
Prior art keywords
flue gas
chamber
combustion chamber
area
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90104852A
Other languages
German (de)
French (fr)
Other versions
EP0387859A3 (en
EP0387859A2 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PYROPAC AG
Original Assignee
Pyropac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pyropac AG filed Critical Pyropac AG
Publication of EP0387859A2 publication Critical patent/EP0387859A2/en
Publication of EP0387859A3 publication Critical patent/EP0387859A3/en
Application granted granted Critical
Publication of EP0387859B1 publication Critical patent/EP0387859B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/282Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with flue gas passages built-up by coaxial water mantles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/09062Tube-shaped baffles confining the flame

Definitions

  • the invention relates to a boiler with internal exhaust gas recirculation for the combustion of liquid or gaseous fuels with a burner arranged at the end, the flame of which is directed into a combustion chamber insert (7) which is open in the flow direction and which is surrounded by a water chamber (8) and downstream in a deflection space (4) opens, which is connected to a flue gas collecting space (19) via a flue gas duct formation (15), which, viewed from the deflection space (4), over a first section (16) of the duct length between the outer wall of the combustion chamber insert ( 7) and the inner wall (10) of a second area (9) of the water space (8) and then through an intermediate space (18) over a second section (17) of the channel length in multiple form through a first area (11) or on the outside thereof
  • the first area (11) of the water space (8) extends, from which intermediate space (18) a partial flue gas stream is branched off (40), which is fed to the combustion chamber (3) over the circumferential area of the burner tube (2) due
  • the main proportion of nitrogen oxides in furnaces is especially when using nitrogen-free or low-fuel fuels, such as gaseous fuels and heating oil EL, on thermal NO, which at temperatures above 1200 ° C in the flame by oxidation of the molecular nitrogen N2 carried by the air with which oxygen is created. It is known in principle to reduce the formation of thermal NO in particular by returning a partial exhaust gas flow to the combustion process.
  • nitrogen-free or low-fuel fuels such as gaseous fuels and heating oil EL
  • the exhaust gas has a relatively large specific heat capacity due to its content of carbon dioxide and water vapor.
  • An exhaust gas recirculation can basically be imagined in two ways, namely the external exhaust gas recirculation, i.e. the exhaust gas is removed somewhere outside the boiler on the way to the fireplace or the like and fed to the combustion process, for example by introducing it into the combustion air of a burner fan, on the other hand you can imagine recirculating part of the exhaust gas in the burner chamber itself so that the exhaust gas is returned to the flame root.
  • the external exhaust gas recirculation i.e. the exhaust gas is removed somewhere outside the boiler on the way to the fireplace or the like and fed to the combustion process, for example by introducing it into the combustion air of a burner fan, on the other hand you can imagine recirculating part of the exhaust gas in the burner chamber itself so that the exhaust gas is returned to the flame root.
  • the combustion chamber is limited in terms of its longitudinal extent to the first section of the flue gas duct formation, and the second section of which runs in the form of several individual trains radially outward of the first section and at the same axial height as this through the water space Reversal of the direction of flow in a flue gas collecting space, which is arranged on the end of the boiler facing away from the burner.
  • the partial flue gas stream branched off in the intermediate area between the sections reaches the exit area on the periphery of the burner tube along a short path along the end wall insulated from the combustion chamber.
  • the invention is intended to provide a boiler of this type, in which the part of the flue gas branched off from the end of the heat exchanger section between the flue gas duct formation and the water space is more comprehensive, i.e. is not only exploited by adding it to the flame.
  • the design of the boiler according to the invention means that the combustion chamber surrounded by the combustion chamber insert is designed to be comparatively longer and, in terms of its function, is adapted to different temperature conditions.
  • a hot burnout zone is defined in the area of the first section of the flue gas duct formation, and a more cooled zone is defined in the region of the flare formation, in which the corresponding combustion chamber insert area is surrounded by the partial flue gas flow, the duct cross section of which can be kept smaller in accordance with the partial quantity of the flue gas, which results in a relatively dense one Distance of the inner wall of the second area of the water space leads from the outer surface of the fireplace insert in this area.
  • a flue gas recirculation is carried out within the boiler, that is to say "inside the boiler".
  • the basic idea is that the fuel mixture flowing out of the combustion tube, which is ignited to the flame, passes into the combustion chamber at a certain speed and therefore generates a vacuum in the area in front of the mouth of the combustion tube (this is also referred to as the flame pulse, i.e. the directed one Size from the product of the mass and velocity of the gas in the direction from the nozzle orifice).
  • the exhaust gas passing out of the combustion chamber into the heat exchanger region located outside this gives off heat and suffers flow resistance losses, so that a pressure drop occurs.
  • the partial exhaust gas quantity that is recycled can basically take place anywhere in the area of the heat exchanger path outside the combustion chamber up to and including the collecting space connected to the chimney is. It is important in any case that a reliable pressure drop from the place where the partial exhaust gas is extracted to the negative pressure area in the area of origin of the flame is ensured.
  • the invention is preferably applied to a boiler which is particularly designed to have a low exhaust gas temperature at the exhaust gas outlet space, in which case there is a large area in the last area of the heat emission to the adjacent water jacket to be heated.
  • the exhaust gas is preferably tapped off before this last area-intensive heat transfer path, the exhaust gas there, for example, still has a temperature of approximately 400 ° C., ie is significantly cooler than the hot gases in the combustion area, which are responsible for the NO x formation.
  • the preferably tubular combustion chamber insert which surrounds the combustion chamber, is extended upwards towards the burner nozzle, in such a way that that the mouth of the burner tube engages in the interior (combustion chamber) enclosed by the combustion chamber insert.
  • the partial exhaust gas quantity to be supplied must be able to flow into the interior of the combustion chamber insert forming the combustion chamber, ie the combustion chamber insert is not subsequently pulled up to the cover, but instead held more or less spaced from it.
  • the mouth of the burner tube can at most be arranged in the opening plane of the combustion chamber defined thereby, but preferably it engages in the combustion chamber space encompassed by the combustion chamber insert.
  • a targeted gap is created between the combustion chamber insert and the inner wall of the water jacket holding it in the transition area from the first heat exchanger section to the one with the large heat exchanger surface of the final flow section of the exhaust gases.
  • this is done by means of a protruding rib, which is continuous or interrupted all around, on which the tubular combustion chamber insert is supported on the inner wall of the boiler via more or less rod-shaped or regionally small supporting projections.
  • the size of the gap formation in this support area provides a setting option for the order of magnitude of the partial flow of the tapped flue gas; the distance between the upper edge of the tubular combustion chamber insert and the cover, which is penetrated by the burner head, offers a further possibility for adjusting the flow resistance and thus the recirculated part of the flue gas.
  • the flue gas enters the combustion chamber in the negative pressure area, mixes with the flame and thereby reduces the temperature in this flame area accordingly due to the returned cool flue gas.
  • This "cooling" is due to the increased relative heat capacity of the partial flue gas.
  • Another effect is that the temperature peaks in the combustion area are reduced thereby, ie the temperature within the flame, which can be very different with regard to their distribution without such a measure, is evened out. In such temperature peak areas, the NO x formation would be favored accordingly. By reducing these peaks due to the high temperature differences to the flue gas temperature, these educational zones are restricted accordingly.
  • the "two-stage" design of the water chamber is designed as a one-piece casting, for example gray cast iron, so that the condensate formation which occurs in particular in the case of flue gases which have cooled down well can be mastered without problems.
  • the casting Due to the absorption of silicate, the casting forms a very corrosion-resistant casting skin, which is much more resistant to condensate than steel. The prerequisite for this, however, is that the cast skin remains uninjured. Cast skin injuries occur due to machining and also due to friction.
  • the wall of the water chamber is in a preferred embodiment one piece continuously and at least in the delimitation area of the flue gas duct unprocessed.
  • the water chamber preferably consists of a one-piece casting.
  • the lower front end of the boiler is formed by a floor insulating body that limits the deflection space downwards.
  • the heat exchanger surfaces of the water jacket preferably run at least essentially vertically in the area of the flue gas duct or ducts, so that condensate forming in the upper low-temperature region can flow downwards in the direction of higher flue gas temperature and thus evaporate.
  • Detailed explanations can be found in DE-OS 35 46 368.6-16.
  • the water chamber can be designed in the upper region of the flue gas duct in such a way that the flue gas duct surrounds it radially on the outside or through it.
  • an inner wall of the water chamber to be heated is therefore close to the preferably tubular combustion chamber insert. This means that cooling directed towards the upper area (flame formation area) of the combustion chamber takes place, which in particular has an influence on the recirculated marginal gas partial quantity if it is diverted upwards in this area between the inner wall of the water chamber and the combustion chamber insert.
  • the flue gas recirculation which is preferably provided here for a boiler with an internal water chamber in the upper region is fundamentally not limited to such a boiler design. It is only necessary to be able to split off the subsets of the to provide flue gas supplied to the flame. In the most primitive case, these could also be slots or bores which are provided in the upper annular area between the flue gas collection chamber with connection to the chimney and the burner head area. Instead of a hole, a continuous gap can also be provided between the upper edge of the inner vessel wall and the cover.
  • the preferred branching of the recirculated partial flow region of the exhaust gas from the transition region between the lower and the upper flue gas duct section can have the advantage that this recirculated exhaust gas quantity has not cooled down too far.
  • the combustion chamber 3 has a first zone arranged in connection with the upper end-side boundary of the combustion chamber 3, in which the flame forms and which is therefore called the flame formation zone 5 here.
  • This zone 5 is followed by a further zone, viewed downwards, over the rest of the combustion chamber 3, in which the flame burns out and is therefore referred to as the flame burnout zone 6.
  • the combustion chamber 3 and thus the flame formation zone 5 and the flame burnout zone 6 are delimited by a wall of a combustion chamber insert 7 which is designed as a steel tube.
  • the water space designated overall by 8 is divided into two water space areas, namely a first area 11 and a second area 9, which are connected to one another by a multi-part transition area 14 stand.
  • the second area 9, with its inner wall 10, forms a hollow cylindrical space at a distance from the combustion chamber insert 7 in the area of zone 6, while the first area 11 with its inner jacket wall 12 surrounds the fire area insert 7 in the area of zone 5.
  • a total of 15 designated flue gas duct extends from the lower deflection chamber 4 outside the combustion chamber 3 to a flue gas collecting space 19 formed in the upper end area of the boiler, which is connected via an outlet 20 to a chimney, not shown.
  • the flue gas duct 15 viewed in this flue gas flow direction, has a first section 16, which extends in the hollow cylindrical space between the combustion chamber insert 7 and the inner wall 10 of the second water space region 9, and propagates in a second section 17, which is here through a A plurality of through cavities 35 is formed, which are evenly distributed over the circumference and arranged in parallel so that they pass through the first water space region 11 at a distance from the inner wall 12 thereof.
  • the two sections 16 and 17 of the flue gas duct 15 are connected to one another via a flue gas space 18, as can be seen in FIG. 1.
  • the deflection space 4 is closed at the bottom by a floor insulating body 21, which is arranged on the second water space region 9, which is designed as a casting.
  • the upper end wall of the boiler 1 is formed by a cover 23, which has insulation toward the inside of the boiler and extends over the entire end face of the boiler.
  • the lid 23 can be opened or removed in a manner not shown, so that a through the opening Cleaning of the combustion chamber and the flue gas duct sections is made possible.
  • the two water space regions 9 and 11 are connected to one another by means of the transition region 14 which is interrupted in the circumferential direction from the flue gas transitions to the passage cavities 35.
  • the water introduced into the second water space region 9 via a water inlet 24 thus passes into the first water space region 11 and from there passes again via a water outlet 25 to the outside of the boiler.
  • the flame formation takes place in the first zone 5 of the combustion chamber 3, as seen from the burner 2, and releases great heat.
  • This zone 5 a relatively small radial distance is left between the combustion chamber insert 7 and the water-cooled inner wall 12 of the first water chamber region 11, so that heat is dissipated, thereby making an amount to reduce the formation of NOx.
  • the flame enters zone 6 of the combustion chamber, which is relatively hot due to the radially adjacent, larger-sized and the hot flue gas-absorbing first section 16 of the smoke duct 15, so that the flame burns out well, as a result of which pollutants such as carbon monoxide are formed , Hydrocarbons and soot is significantly reduced.
  • the flue gas passes through sections 16 and 17 of the flue gas channel and the multi-part flue gas intermediate space connecting them, whereby in the first section a large part of the heat of the flue gas passes through the inner wall 10, which is provided with ribs 28, to the water in the Water area 9 is released. Radiant heat prevails in the area of the flue gas space 18 a temperature from the upper area of zone 6 which prevents the accumulation of condensate. Thereafter, the flue gas is cooled via the flow path along the outer wall 13 of the first water area 11 and thus leaves the boiler via the flue gas collection space 19 and the outlet 20 with only a little heat.
  • the first water chamber region 11 has the task of cooling the surroundings of the zone 5 and the flue gas in the section 17 of the flue gas duct. In this way, a compact construction is achieved with a good burnout of the flame.
  • the walls encompassing the entire water space 8, ie including the transitions in the area of the flue gas duct 15 from its first section 16 to its second section 17 in the form of a plurality of parallel through-channels 35 as well as a receptacle formation for the floor insulating body 21 and one Partial enclosure of the flue gas duct 19 is formed as a one-piece casting, in particular a gray casting. It is therefore not necessary to machine the gray cast iron surfaces in the area of the flue gas duct, especially in the area that tends to form condensate. As can be seen in FIG.
  • ribs 28 projecting radially inwards are formed on the inner wall 10 of the second water space region 9, which serve to increase the heat exchanger surface in the first section 16 of the flue gas duct 15.
  • the size of the heat transfer surface in the area of the second section 17 of the flue gas duct 15 can be influenced by the number and / or shape of the through ducts 35.
  • the hollow cylindrical space 40 between the outer wall of the combustion chamber insert 7 in the area of the flame formation zone 5 and the inner wall 12 of the first water space area 11 is used as a channel for the conduction of a part of the flue gas branched off from the flue gas intermediate space 18 to the space between the cover 23 and the upper end edge of the firebox insert 7 passed.
  • the upper end edge of the combustion chamber insert 7 is spaced a distance 39 from the inner wall of the cover 23, so that the part of the flue gas can enter the upper end side of the combustion chamber insert 7 according to the arrow shown on the left, specifically over the area of the surface 41 something protrudes into the space encompassed by the tubular furnace insert 7. Due to the exit velocity of the fuels or fuel mixtures flowing out of the burner tube 2 and leading to the formation of a flame, a negative pressure is generated which draws in the branched-off part of the flue gas and feeds it to the flame in the formation area.
  • a rib 42 running through or interrupted in the circumferential direction is formed, protruding radially inward from the wall 12, on which projections 43 are supported, which are formed in the circumferential direction on the outer wall of the combustion chamber insert 7, for example welded on.
  • the dimensions are such that between the rib 42 and the projections 43 a more or less subdivided, but otherwise with respect to the overall cross-section to be dimensioned gap 44, which determines the amount of the branched flue gas part.

Abstract

Heating boiler with integrated waste gas recirculation for the combustion of liquid or gaseous fuel, having a furnace insert open in the direction of flow and a burner arranged on the front side, a part of the flue gas being recycled into the flame thereof for cooling the flame temperature and hence reducing the formation of NOx, in such a way that, in the interest of an overall optimised temperature characteristic, the flue gas fraction fed to the flame is tapped downstream of a first cooling section and passed into a region in the form of a cylindrical pipe around the flame formation zone.

Description

Die Erfindung bezieht sich auf einen Heizkessel mit interner Abgasrezirkulation für die Verbrennung von flüssigen oder gasförmigen Brennstoffen mit einem stirnseitig angeordneten Brenner, dessen Flamme in einen in Strömungsrichtung offenen Feuerraumeinsatz (7) geleitet ist, welcher von einem Wasserraum (8) umgeben ist und stromab in einen Umlenkraum (4) mündet, der mit einem Rauchgas-Sammelraum (19) über eine Rauchgaskanalausbildung (15) in Verbindung steht, die von dem Umlenkraum (4) aus gesehen über einen ersten Abschnitt (16) der Kanallänge zwischen der Außenwandung des Feuerraumeinsatzes (7) und der Innenwandung (10) eines zweiten Bereiches (9) des Wasserraumes (8) und anschließend durch einen Zwischenraum (18) über einen zweiten Abschnitt (17) der Kanallänge in mehrzügiger Form durch einen ersten Bereich (11) bzw. außenseitig dieses ersten Bereiches (11) des Wasserraumes (8) verläuft, von welchem Zwischenraum (18) ausgehend ein Rauchgasteilstrom abgezweigt (40) ist, der dem Feuerraum (3) über den Umfangsbereich des Brennerrohres (2) aufgrund der Injektorwirkung der dem Brennerrohr (2) entströmenden, zur Flammenbildung führenden Bernnstoffe oder Brennstoffgemische zugeführt wird.The invention relates to a boiler with internal exhaust gas recirculation for the combustion of liquid or gaseous fuels with a burner arranged at the end, the flame of which is directed into a combustion chamber insert (7) which is open in the flow direction and which is surrounded by a water chamber (8) and downstream in a deflection space (4) opens, which is connected to a flue gas collecting space (19) via a flue gas duct formation (15), which, viewed from the deflection space (4), over a first section (16) of the duct length between the outer wall of the combustion chamber insert ( 7) and the inner wall (10) of a second area (9) of the water space (8) and then through an intermediate space (18) over a second section (17) of the channel length in multiple form through a first area (11) or on the outside thereof The first area (11) of the water space (8) extends, from which intermediate space (18) a partial flue gas stream is branched off (40), which is fed to the combustion chamber (3) over the circumferential area of the burner tube (2) due to the injector action of the fuel or fuel mixture flowing out of the burner tube (2) and leading to flame formation.

Zur Erzielung einer guten Verbrennung unter geringerem Ausstoß an Schadstoffen, wie Stickoxiden, Kohlenmonoxiden, Kohlenwasserstoffen und Ruß ist beim Gegenstand der EP-Patentanmeldung 292 580 davon ausgegangen worden, den Feuerraum in einer ersten, an den Brenner anschließenden Zone durch unmittelbares Angrenzen eines Bereiches des Wassermantels zu kühlen und die anschließende verbleibende Zone des Feuerraumes verhältnismäßig heiß zu halten. Dabei wird eine gravierende Reduzierung von Stickoxiden NOx erreicht, wie sie bei der Verfeuerung von fossilen Brennstoffen neben anderen Verbrennungsprodukten entstehen. Die Stickoxide im Abgas (Rauchgas) bestehen zu etwa 95 % aus Stickstoffmonoxid NO und etwa 5 % aus Stickstoffdioxyd NO₂.In order to achieve good combustion with lower emissions of pollutants, such as nitrogen oxides, carbon monoxides, hydrocarbons and soot, the subject of EP patent application 292 580 assumed that the combustion chamber in a first zone adjoining the burner by directly bordering an area of the water jacket to cool and to keep the subsequent remaining zone of the combustion chamber relatively hot. This will be a serious one Reduction of nitrogen oxides NOx achieved, as they occur when fossil fuels are burned in addition to other combustion products. The nitrogen oxides in the exhaust gas (flue gas) consist of approximately 95% of nitrogen monoxide NO and approximately 5% of nitrogen dioxide NO₂.

Die Entstehungsmechanismen für NO sind allgemein bekannt und können durch die folgenden Vorgänge

  • thermische NO-Bildung
  • prompte NO-Bildung
    und
  • NO-Bildung durch die Oxidation des atomar im Brennstoff enthaltenen Stickstoffes, des sogenannten Brennstoff NO, beschrieben werden.
The mechanisms of formation for NO are generally known and can be carried out by the following processes
  • thermal NO formation
  • prompt NO formation
    and
  • NO formation can be described by the oxidation of the atomic nitrogen contained in the fuel, the so-called fuel NO.

Der Hauptanteil der Stickoxide bei Feuerungen ist insbesondere bei Verwendung von stickstoffreien bzw. -armen Brennstoffen, wie gasförmigen Brennstoffen und Heizöl EL, auf thermisches NO, das bei Temperaturen oberhalb von 1200° C in der Flamme durch Oxidation des von der Luft mitgeführten molekularen Stickstoffes N₂ mit dem Sauerstoff entsteht, zurückzuführen. Es ist grundsätzlich bekannt, durch Zurückführen eines Teilabgasstromes in den Verbrennungsprozeß insbesondere die Entstehung von thermischem NO zu reduzieren.The main proportion of nitrogen oxides in furnaces is especially when using nitrogen-free or low-fuel fuels, such as gaseous fuels and heating oil EL, on thermal NO, which at temperatures above 1200 ° C in the flame by oxidation of the molecular nitrogen N₂ carried by the air with which oxygen is created. It is known in principle to reduce the formation of thermal NO in particular by returning a partial exhaust gas flow to the combustion process.

Durch das Zurückführen von Abgasteilmengen in den Verbrennungsvorgang wird einerseits eine Reduktion der Flammentemperatur und andererseits eine Minderung des relativen Anteils des Sauerstoffes erzielt. Das Abgas weist aufgrund seines Gehaltes an Kohlendioxid und Wasserdampf eine verhältnismäßig große spezifische Wärmekapazität auf.By returning partial exhaust gas quantities to the combustion process, on the one hand a reduction in the flame temperature and on the other hand a reduction in the relative proportion of oxygen is achieved. The exhaust gas has a relatively large specific heat capacity due to its content of carbon dioxide and water vapor.

Eine Abgasrückführung kann man sich grundsätzlich auf zwei Arten vorstellen, nämlich die externe Abgasrückführung, d.h. das Abgas wird irgendwo außerhalb des Kessels auf dem Wege zum Kamin oder dergleichen entnommen und dem Verbrennungsprozeß zugeführt, beispielsweise durch Einführen in die Verbrennungsluft eines Brennergebläses, zum anderen kann man sich vorstellen, einen Teil des Abgases in der Brennerkammer selbst so zu rezirkulieren, daß das Abgas in die Flammenwurzel zurückgeführt wird.An exhaust gas recirculation can basically be imagined in two ways, namely the external exhaust gas recirculation, i.e. the exhaust gas is removed somewhere outside the boiler on the way to the fireplace or the like and fed to the combustion process, for example by introducing it into the combustion air of a burner fan, on the other hand you can imagine recirculating part of the exhaust gas in the burner chamber itself so that the exhaust gas is returned to the flame root.

Bei bekannten Heizkessel - DE-OS 36 01 000 - ist die Brennkammer hinsichtlich ihrer Längsausdehnung auf den ersten Abschnitt der Rauchgaskanalausbildung beschränkt, und deren zweiter Abschnitt verläuft in Form mehrerer Einzelzüge radial auswärts des ersten Abschnittes und in gleicher axialer Höhe wie dieser durch den Wasserraum unter Umkehrung der Strömungsrichtung in einen Rauchgas-Sammelraum, der auf der dem Brenner abgewandten Stirnseite des Heizkessels angeordnet ist. Der im Zwischenbereich zwischen den Abschnitten abgezweigte Rauchgasteilstrom gelangt auf kurzem Weg entlang der gegenüber dem Brennraum isolierten brennerseitigen Stirnwandung zu dem Ausgangsbereich an der Peripherie des Brennerrohres.In known boilers - DE-OS 36 01 000 - the combustion chamber is limited in terms of its longitudinal extent to the first section of the flue gas duct formation, and the second section of which runs in the form of several individual trains radially outward of the first section and at the same axial height as this through the water space Reversal of the direction of flow in a flue gas collecting space, which is arranged on the end of the boiler facing away from the burner. The partial flue gas stream branched off in the intermediate area between the sections reaches the exit area on the periphery of the burner tube along a short path along the end wall insulated from the combustion chamber.

Demgegenüber soll mit der Erfindung ein Heizkessel dieser Art zur Verfügung gestellt werden, bei welchem der Von dem Ende der Wärmetauscherstrecke zwischen Rauchgaskanalausbildung und Wasserraum abgezweigte Rauchgasteilstrom zur Kühlung der Flammenbildungszone umfassender, d.h. nicht nur durch die Beimischung zur Flamme ausgenutzt ist.In contrast, the invention is intended to provide a boiler of this type, in which the part of the flue gas branched off from the end of the heat exchanger section between the flue gas duct formation and the water space is more comprehensive, i.e. is not only exploited by adding it to the flame.

Die erfindungsgemäße Ausbildung des Heizkessels führt dazu, daß der von dem Feuerraumeinsatz umgebene Feuerraum vergleichsweise länger ausgebildet und hinsichtlich seiner Funktion unterteilt unterschiedlichen Temperaturverhältnissen angepaßt ist. Im Bereich des ersten Abschnittes der Rauchgaskanalausbildung wird eine heiße Ausbrandzone und im Bereich der Falmmenbildung eine stärker gekühlte Zone definiert, in der der entsprechende Feuerraumeinsatzbereich von dem Rauchgasteilstrom umgeben ist, dessen Kanalquerschnitt entsprechend der Teilmenge des Rauchgases kleiner gehalten werden kann, was zu einer verhältnismäßig dichten Beabstandung der Innenwandung des zweiten Bereiches des Wasserraumes von der Außenfläche des Feuerraumeinsatzes in diesem Bereich führt. Dadurch wird es möglich, nicht nur die Flamme selbst durch Zugabe des gekühlten Rauchgasteilstromes zu kühlen, sondern auch den Bereich der Flammenbildungszone des Feuerraumes von außerhalb des Feuerraumeinsatzes her durch den gekühlten Abgasteilstrom und die entsprechend nah dem Feuerraumeinsatz anzuordnende Innenwandung des Wasserraumes in diesem Bereich.The design of the boiler according to the invention means that the combustion chamber surrounded by the combustion chamber insert is designed to be comparatively longer and, in terms of its function, is adapted to different temperature conditions. A hot burnout zone is defined in the area of the first section of the flue gas duct formation, and a more cooled zone is defined in the region of the flare formation, in which the corresponding combustion chamber insert area is surrounded by the partial flue gas flow, the duct cross section of which can be kept smaller in accordance with the partial quantity of the flue gas, which results in a relatively dense one Distance of the inner wall of the second area of the water space leads from the outer surface of the fireplace insert in this area. This makes it possible not only to cool the flame itself by adding the cooled flue gas stream, but also the area of the flame formation zone of the combustion chamber from outside the combustion chamber insert through the cooled flue gas partial flow and the inner wall of the water chamber in this area, which is to be arranged close to the combustion chamber insert.

Ausgehend von einem Kessel der eingangs beschriebenen Art wird im Rahmen der Erfindung eine Rauchgasrückführung innerhalb des Kessels vorgenommen, also "kesselintern". Dabei wird von der Grundvorstellung ausgegangen, daß das dem Brennrohr entströmende Brennstoffgemisch, welches zur Flamme entzündet wird, mit einer bestimmten Geschwindigkeit in die Brennkammer übertritt und daher im Bereich vor der Mündung des Brennrohres einen Unterdruck erzeugt (man spricht auch vom Flammenimpuls, d.h. die gerichtete Größe aus dem Produkt von Masse und Geschwindigkeit des Gases in Richtung von der Düsenmündung fort). Das aus der Brennkammer in den außerhalb dieser gelegenen Wärmetauscherbereich übertretende Abgas gibt Wärme ab und erleidet Strömungswiderstandsverluste, so daß sich ein Druckgefälle einstellt. An einem Ort dieses Druckgefälles, bei dem der Druck stabil höher ist als der Unterdruck im Flammenbildungsbereich, wird ein Teil des Abgases entnommen und dem Flammenbildungsbereich aufgrund dieses Druckgefälles zugeführt, wodurch sich ein stabiler Strömungszustand einstellt. Die Abgasteilmenge, die zurückgeführt wird, kann grundsätzlich irgendwo im Bereich des Wärmetauscherweges außerhalb des Brennraumes bis einschließlich zum Sammelraum erfolgen, der an den Kamin angeschlossen ist. Wichtig ist in jedem Falle, daß ein zuverlässiges Druckgefälle vom Ort der Entnahme der Teilabgasmenge zum Unterdruckbereich im Entstehungsgebiet der Flamme sichergestellt ist. Es darf mit anderen Worten also keine Gefahr gegeben sein, daß die heißen Gase aus dem Verbrennungsraum über die Abgasrückführleitung in den Wärmetauscherraum des Abgases gelangen, dies würde - abgesehen von den umweltschädlichen Einflüssen, die damit verbunden sein könnten, einen "thermischen Kurzschluß" bedeuten.Starting from a boiler of the type described in the introduction, a flue gas recirculation is carried out within the boiler, that is to say "inside the boiler". The basic idea is that the fuel mixture flowing out of the combustion tube, which is ignited to the flame, passes into the combustion chamber at a certain speed and therefore generates a vacuum in the area in front of the mouth of the combustion tube (this is also referred to as the flame pulse, i.e. the directed one Size from the product of the mass and velocity of the gas in the direction from the nozzle orifice). The exhaust gas passing out of the combustion chamber into the heat exchanger region located outside this gives off heat and suffers flow resistance losses, so that a pressure drop occurs. At a location of this pressure drop where the pressure is stably higher than the negative pressure in the flame formation area, part of the exhaust gas is removed and fed to the flame formation area on account of this pressure drop, as a result of which a stable flow state is established. The partial exhaust gas quantity that is recycled can basically take place anywhere in the area of the heat exchanger path outside the combustion chamber up to and including the collecting space connected to the chimney is. It is important in any case that a reliable pressure drop from the place where the partial exhaust gas is extracted to the negative pressure area in the area of origin of the flame is ensured. In other words, there must be no danger that the hot gases from the combustion chamber get into the heat exchanger space of the exhaust gas via the exhaust gas recirculation line, which - apart from the environmentally harmful influences that could be associated with it - would mean a "thermal short circuit".

Die Erfindung wird bevorzugt bei einem Kessel angewandt, der besonders dafür ausgelegt ist, am Abgasausgangsraum eine niedrige Abgastemperatur aufzuweisen, bei dem also im letzten Bereich der Wärmeabgabe eine große Fläche zum angrenzenden aufzuheizenden Wassermantel gegeben ist. Vorzugsweise wird erfindungsgemäß das Abgas vor dieser letzten flächenintensiven Wärmeübergangsstrecke abgegriffen, das Abgas hat dort beispielsweise noch eine Temperatur von etwa 400° C, ist also deutlich kühler als die heißen Gase im Verbrennungsbereich, die für die NOx-Bildung verantwortlich sind.The invention is preferably applied to a boiler which is particularly designed to have a low exhaust gas temperature at the exhaust gas outlet space, in which case there is a large area in the last area of the heat emission to the adjacent water jacket to be heated. According to the invention, the exhaust gas is preferably tapped off before this last area-intensive heat transfer path, the exhaust gas there, for example, still has a temperature of approximately 400 ° C., ie is significantly cooler than the hot gases in the combustion area, which are responsible for the NO x formation.

Geht man von einem Heizkessel aus, wie er aus der EP-A-0 292 580 bekannt ist, so wird in besonders einfacher Ausführung der vorzugsweise rohrförmig ausgebildete Feuerraumeinsatz, der den Brennraum umgreift, nach oben hin zur Brennerdüse verlängert ausgebildet, und zwar derart, daß die Mündung des Brennerrohres in den von dem Feuerraumeinsatz umschlossenen Innenraum (Brennkammer) eingreift. Dabei muß natürlich die zuzuführende Abgasteilmenge in das innere des die Brennkammer bildenden Feuerraumeinsatzes einströmen können, d.h. der Feuerraumeinsatz wird nicht bis zum Deckel an diesen anschließend hochgezogen, sondern mehr oder weniger davon beabstandet endend gehalten. Die Mündung des Brennerrohres kann allenfalls in der Öffnungsebene der damit definierten Brennkammer angeordnet sein, vorzugsweise greift sie aber in den von dem Feuerraumeinsatz umgriffenen Brennkammerraum ein.If one starts from a boiler, as is known from EP-A-0 292 580, in a particularly simple embodiment the preferably tubular combustion chamber insert, which surrounds the combustion chamber, is extended upwards towards the burner nozzle, in such a way that that the mouth of the burner tube engages in the interior (combustion chamber) enclosed by the combustion chamber insert. Of course, the partial exhaust gas quantity to be supplied must be able to flow into the interior of the combustion chamber insert forming the combustion chamber, ie the combustion chamber insert is not subsequently pulled up to the cover, but instead held more or less spaced from it. The mouth of the burner tube can at most be arranged in the opening plane of the combustion chamber defined thereby, but preferably it engages in the combustion chamber space encompassed by the combustion chamber insert.

Bei der besonders bevorzugten Ausführung der Erfindung in Ausbildung eines solchen Kessels mit besonders niedriger Abgastemperatur wird im Übergangsbereich von der ersten Wärmetauscherstrecke zu derjenigen mit der großen Wärmetauscherfläche der Schlußströmungsstrecke der Abgase ein gezielter Spalt zwischen dem Feuerraumeinsatz und der diese haltenden Innenwandung des Wassermantels geschaffen. Im Ausführungsbeispiel geschieht dies durch eine vorstehende, ringsum durchgehend oder unterbrochen ausgebildete Rippe, an der über mehr oder weniger stabförmige oder bereichsweise klein bemessene Abstützvorsprünge der rohrförmige Feuerraumeinsatz an der inneren Heizkesselwandung abgestützt ist.In the particularly preferred embodiment of the invention in the form of such a boiler with a particularly low flue gas temperature, a targeted gap is created between the combustion chamber insert and the inner wall of the water jacket holding it in the transition area from the first heat exchanger section to the one with the large heat exchanger surface of the final flow section of the exhaust gases. In the exemplary embodiment, this is done by means of a protruding rib, which is continuous or interrupted all around, on which the tubular combustion chamber insert is supported on the inner wall of the boiler via more or less rod-shaped or regionally small supporting projections.

Über die Größe der Spaltbildung in diesem Abstützbereich ist eine Einstellmöglichkeit für die Größenordnung der Teilstrommenge des abgegriffenen Rauchgases gegeben; der Abstand zwischen der oberen Kante des rohrförmigen Feuerraumeinsatzes und dem Deckel, der von dem Brennerkopf durchgriffen wird, bietet eine weitere Einstellmöglichkeit des Strömungswiderstandes und damit der zurückgeführten Rauchgasteilmenge.The size of the gap formation in this support area provides a setting option for the order of magnitude of the partial flow of the tapped flue gas; the distance between the upper edge of the tubular combustion chamber insert and the cover, which is penetrated by the burner head, offers a further possibility for adjusting the flow resistance and thus the recirculated part of the flue gas.

Es ist des weiteren möglich, die nach innen hin gerichtete Wandung des Wassermantels im oberen Bereich von dem Deckel beabstandet zu halten, so daß eine Rauchgasteilmenge aufgrund der Sogwirkung der Flamme aus dem Ringkanal entnommen werden kann, der zu Ende der Wärmetauscherstrecke angeordnet ist und mit dem Kamin in Verbindung steht. Anstelle eines ringförmigen Spaltes können hier auch Bohrungen oder dergleichen vorgesehen werden, die den Abgasringkanal mit dem Unterdruckbereich zu Beginn der Flammenbildung verbinden.It is also possible to keep the inward wall of the water jacket spaced apart from the lid in the upper region, so that a partial amount of flue gas can be removed from the annular channel due to the suction effect of the flame, which end of the heat exchanger section is arranged and communicates with the fireplace. Instead of an annular gap, bores or the like can also be provided here, which connect the exhaust ring duct to the negative pressure region at the beginning of the flame formation.

Das Rauchgas gelangt im Unterdruckbereich in die Brennkammer, durchmischt sich mit der Flamme und setzt dadurch die Temperatur in diesem Flammenbereich aufgrund des zurückgeführten kühlen Rauchgases entsprechend herab. Diese "Abkühlung" liegt an der erhöhten relativen Wärmekapazität der Rauchgasteilmenge. Ein weiterer Effekt ist, daß die Temperaturspitzen im Verbrennungsbereich dadurch abgebaut werden, d.h. die Temperatur innerhalb der Flamme, die ohne eine solche Maßnahme hinsichtlich ihrer Verteilung sehr unterschiedlich sein kann, vergleichmäßigt wird. In solchen Temperaturspitzenbereichen würde die NOx-Bildung entsprechend begünstigt. Durch den Abbau dieser Spitzen aufgrund der hohen Temeraturdifferenzen zur Rauchgastemperatur werden diese Bildungszonen entsprechend eingeschränkt.The flue gas enters the combustion chamber in the negative pressure area, mixes with the flame and thereby reduces the temperature in this flame area accordingly due to the returned cool flue gas. This "cooling" is due to the increased relative heat capacity of the partial flue gas. Another effect is that the temperature peaks in the combustion area are reduced thereby, ie the temperature within the flame, which can be very different with regard to their distribution without such a measure, is evened out. In such temperature peak areas, the NO x formation would be favored accordingly. By reducing these peaks due to the high temperature differences to the flue gas temperature, these educational zones are restricted accordingly.

In besonders bevorzugter Ausführung ist die "zweistufige" Ausgestaltung der Wasserkammer als einteiliges Gußstück ausgebildet, beispielsweise Grauguß, so daß die insbesondere bei weit herabgekühlten Rauchgasen auftretenden Kondensatbildungen problemlos beherrscht werden. Das Gußstück bildet durch Aufnahme von Silikat eine sehr korrisionsbeständige Gußhaut, die wesentlich widerstandsfähiger gegen Kondensat ist als Stahl. Voraussetzung dafür ist allerdings, daß die Gußhaut unverletzt bleibt. Gußhautverletzungen treten durch Bearbeitung und auch durch Reibbelastung auf. Aus diesem Grunde ist in bevorzugter Ausführung die Wandung der Wasserkammer einstück durchgehend und zumindest im Begrenzungsbereich des Rauchgaskanales unbearbeitet ausgebildet. Vorzugsweise besteht die Wasserkammer insgesamt aus einem einstückigen Gußteil.In a particularly preferred embodiment, the "two-stage" design of the water chamber is designed as a one-piece casting, for example gray cast iron, so that the condensate formation which occurs in particular in the case of flue gases which have cooled down well can be mastered without problems. Due to the absorption of silicate, the casting forms a very corrosion-resistant casting skin, which is much more resistant to condensate than steel. The prerequisite for this, however, is that the cast skin remains uninjured. Cast skin injuries occur due to machining and also due to friction. For this reason, the wall of the water chamber is in a preferred embodiment one piece continuously and at least in the delimitation area of the flue gas duct unprocessed. The water chamber preferably consists of a one-piece casting.

Der untere stirnseitige Abschluß des Kessels wird durch einen Bodenisolierkörper gebildet, der den Umlenkraum nach unten hin begrenzt. Die Wärmetauscherflächen des Wassermantels verlaufen im Bereich des bzw. der Rauchgaskanäle vorzugsweise zumindest im wesentlichen vertikal, so daß sich im oben gelegenen Niedertemperaturbereich bildendes Kondensat nach unten hin in Richtung höherer Rauchgastemperatur abfließen und damit verdampfen kann. Eingehende Ausführungen dazu finden sich in der DE-OS 35 46 368.6-16.The lower front end of the boiler is formed by a floor insulating body that limits the deflection space downwards. The heat exchanger surfaces of the water jacket preferably run at least essentially vertically in the area of the flue gas duct or ducts, so that condensate forming in the upper low-temperature region can flow downwards in the direction of higher flue gas temperature and thus evaporate. Detailed explanations can be found in DE-OS 35 46 368.6-16.

Nach der EP-A-0 292 580 kann im oberen Bereich des Rauchgaskanals die Wasserkammer derart ausgebildet sein, daß sie von dem Rauchgaskanal radial außen umgriffen oder von diesem durchgriffen wird. In diesen Fällen liegt demnach eine aufzuheizende Innenwandung der Wasserkammer nahe dem vorzugsweise rohrförmig ausgebildeten Feuerraumeinsatz. Das bedeutet, daß hier eine zum oberen Bereich (Flammenbildungsbereich) der Brennkammer gerichtete Kühlung stattfindet, die insbesondere dann auf die rezirkulierte Randgasteilmenge Einfluß hat, wenn diese in diesem Bereich zwischen der Innenwandung der Wasserkammer und dem Feuerraumeinsatz nach oben hin abgezweigt gelenkt wird.According to EP-A-0 292 580, the water chamber can be designed in the upper region of the flue gas duct in such a way that the flue gas duct surrounds it radially on the outside or through it. In these cases, an inner wall of the water chamber to be heated is therefore close to the preferably tubular combustion chamber insert. This means that cooling directed towards the upper area (flame formation area) of the combustion chamber takes place, which in particular has an influence on the recirculated marginal gas partial quantity if it is diverted upwards in this area between the inner wall of the water chamber and the combustion chamber insert.

Die hier bevorzugt vorgesehene Rauchgasrückführung bei einem Kessel mit im oberen Bereich innengelegener Wasserkammer ist ganz grundsätzlich auf eine solche Kesselausbildung nicht beschränkt. Es ist nur erforderlich, eine Möglichkeit der Teilmengenabspaltung des der Flamme zugeführten Rauchgases vorzusehen. Im primitivsten Falle könnten das auch Schlitze oder Bohrungen sein, die im oberen Ringraumbereich zwischen der Rauchgassammelkammer mit Anschluß zum Kamin und dem Brennerkopfbereich vorgesehen werden. Anstelle einer Bohrung kann auch ein durchgehender Spalt zwischen der oberen Berandung der inneren Kesselwandung und dem Deckel vorgesehen sein. Die bevorzugte Abzweigung des rückgeführten Teilstrombereiches des Abgases aus dem Übergangsbereich zwischen dem unteren und dem oberen Rauchgaskanalabschnitt kann jedoch den Vorteil haben, daß diese rückgeführte Abgasmenge nicht zu weit abgekühlt ist.The flue gas recirculation which is preferably provided here for a boiler with an internal water chamber in the upper region is fundamentally not limited to such a boiler design. It is only necessary to be able to split off the subsets of the to provide flue gas supplied to the flame. In the most primitive case, these could also be slots or bores which are provided in the upper annular area between the flue gas collection chamber with connection to the chimney and the burner head area. Instead of a hole, a continuous gap can also be provided between the upper edge of the inner vessel wall and the cover. However, the preferred branching of the recirculated partial flow region of the exhaust gas from the transition region between the lower and the upper flue gas duct section can have the advantage that this recirculated exhaust gas quantity has not cooled down too far.

Bevorzugte Ausführungen der Erfindung sind in den Unteransprüchen erfaßt, insbesondere unter Bezugnahme auf das in der Zeichnung wiedergegebene Ausführungsbeispiel, dessen nachfolgende Beschreibung die Erfindung näher erläutert. Es zeigen:

Figur 1
einen Vertikalschnitt nach der Linie I - I in Figur 2 durch das Ausführungsbeispiel, bei welchem eine Abzweigung einer rückzuführenden Abgasteilmenge aus dem vertikalen Mittelbereich des Rauchgaskanales des stehend betriebenen Kessels erfolgt;
Figur 2
einen Schnitt nach der Linie II-II in Figur 1.
Preferred embodiments of the invention are covered in the subclaims, in particular with reference to the embodiment shown in the drawing, the following description of which explains the invention in more detail. Show it:
Figure 1
a vertical section along the line I - I in Figure 2 through the embodiment in which a return of a partial exhaust gas quantity to be recycled from the vertical central region of the flue gas duct of the boiler operated standing;
Figure 2
a section along the line II-II in Figure 1.

Das Ausführungsbeispiel zeigt einen stehend angeordneten Heizkessel 1, an dessen oberer Stirnseite ein Brenner als Sturzbrenner angeordnet ist; der Brenner ist in Figur 1 nur mit seinem Brennerrohr 2 angedeutet wiedergegeben. Der Heizkessel 1, der einen im wesentlichen kreisrunden Querschnitt aufweist, ist in seinem Zentrum mit einem Feuerraum 3 versehen, der sich nahe der Innenseite der oberen Stirnwand etwa von der Mündung des Brennerrohres 2 ausgehend bis in den Bodenbereich des Kessels erstreckt und dort offen in einem Umlenkraum 4 mündet. Die in dem Feuerraum 3 durch die Verbrennung entstehenden heißen Rauchgase strömen somit abwärts, werden in dem Raum 4 umgelenkt und seitlich des Feuerraumes in Gegenrichtung weitergeführt.The embodiment shows a standing boiler 1, on the upper end of which a burner is arranged as a burner; the burner is shown in FIG. 1 only with its burner tube 2. The boiler 1, which has an essentially circular cross-section, is provided in its center with a combustion chamber 3, which extends near the inside of the upper end wall approximately from the mouth of the burner tube 2 to the bottom area of the boiler and is open there in one Deflection room 4 opens. The hot flue gases resulting from the combustion in the combustion chamber 3 thus flow downwards, are deflected in the chamber 4 and are carried on to the side of the combustion chamber in the opposite direction.

Der Feuerraum 3 weist eine im Anschluß an die obere stirnseitige Begrenzung des Feuerraumes 3 angeordnete erste Zone auf, in der sich die Flamme bildet und die hier daher Flammenbildungszone 5 genannt wird. An diese Zone 5 schließt sich über den Rest des Feuerraumes 3 nach unten hin gesehen eine weitere Zone an, in der die Flamme ausbrennt und daher als Flammenausbrandzone 6 bezeichnet ist. Der Feuerraum 3 und damit die Flammenbildungszone 5 und die Flammenausbrandzone 6 wird von einer als Stahlrohr ausgebildeten Wandung eines Feuerraumeinsatzes 7 begrenzt. Der insgesamt mit 8 bezeichnete Wasserraum ist in zwei Wasserraumbereiche, nämlich einen ersten Bereich 11 und einen zweiten Bereich 9 unterteilt, die miteinander durch einen mehrteiligen Übergangsbereich 14 in Verbindung stehen. Der zweite Bereich 9 umfaßt mit seiner Innenwandung 10 unter Bildung eines hohlzylinderförmigen Raumes mit Abstand den Feuerraumeinsatz 7 im Bereich der Zone 6, während der erste Bereich 11 mit seiner Innenmantelwandung 12 den Feuerraumeinsatz 7 im Bereich der Zone 5 umgreift. Ein insgesamt mit 15 bezeichneter Rauchgaskanal erstreckt sich von der unten liegenden Umlenkkammer 4 außerhalb des Feuerraumes 3 bis in einen im oberen stirnseitigen Bereich des Kessels ausgebildeten Rauchgas-Sammelraum 19, der über einen Ausgang 20 an einen nicht weiter dargestellten Kamin angeschlossen ist. Der Rauchgaskanal 15 weist in dieser Rauchgas-Strömungsrichtung gesehen einen ersten Abschnitt 16 auf, der sich in dem hohlzylindrischen Raum zwischen dem Feuerraumeinsatz 7 und der Innenwandung 10 des zweiten Wasserraumbereiches 9 erstreckt, und pflanzt sich in einem zweiten Abschnitt 17 fort, der hier durch eine Vielzahl von Durchgangshohlräumen 35 gebildet ist, die über den Umfang gleichmäßig verteilt und parallel verlaufend so angeordnet sind, daß sie den ersten Wasserraumbereich 11 mit Abstand von dessen Innenwandung 12 durchgreifen. Die beiden Abschnitte 16 und 17 des Rauchgaskanales 15 stehen über einen Rauchgaszwischenraum 18 miteinander in Verbindung, wie dies Figur 1 erkennen lässt.The combustion chamber 3 has a first zone arranged in connection with the upper end-side boundary of the combustion chamber 3, in which the flame forms and which is therefore called the flame formation zone 5 here. This zone 5 is followed by a further zone, viewed downwards, over the rest of the combustion chamber 3, in which the flame burns out and is therefore referred to as the flame burnout zone 6. The combustion chamber 3 and thus the flame formation zone 5 and the flame burnout zone 6 are delimited by a wall of a combustion chamber insert 7 which is designed as a steel tube. The water space designated overall by 8 is divided into two water space areas, namely a first area 11 and a second area 9, which are connected to one another by a multi-part transition area 14 stand. The second area 9, with its inner wall 10, forms a hollow cylindrical space at a distance from the combustion chamber insert 7 in the area of zone 6, while the first area 11 with its inner jacket wall 12 surrounds the fire area insert 7 in the area of zone 5. A total of 15 designated flue gas duct extends from the lower deflection chamber 4 outside the combustion chamber 3 to a flue gas collecting space 19 formed in the upper end area of the boiler, which is connected via an outlet 20 to a chimney, not shown. The flue gas duct 15, viewed in this flue gas flow direction, has a first section 16, which extends in the hollow cylindrical space between the combustion chamber insert 7 and the inner wall 10 of the second water space region 9, and propagates in a second section 17, which is here through a A plurality of through cavities 35 is formed, which are evenly distributed over the circumference and arranged in parallel so that they pass through the first water space region 11 at a distance from the inner wall 12 thereof. The two sections 16 and 17 of the flue gas duct 15 are connected to one another via a flue gas space 18, as can be seen in FIG. 1.

Der Umlenkraum 4 ist nach unten hin durch einen Bodenisolierkörper 21 abgeschlossen, der an dem als Gußteil ausgebildeten zweiten Wasserraumbereich 9 angeordnet ist. Die obere Stirnwand des Heizkessels 1 ist durch einen Deckel 23 gebildet, der zum Kesselinneren hin eine Isolierung aufweist und sich über die gesamte Kesselstirnseite hinweg erstreckt. Der Deckel 23 ist in nicht näher dargestellter Weise aufklappbar bzw. abnehmbar, so daß durch die entstehende Öffnung eine Reinigung des Feuerraumes und der Rauchgaskanalabschnitte ermöglicht wird.The deflection space 4 is closed at the bottom by a floor insulating body 21, which is arranged on the second water space region 9, which is designed as a casting. The upper end wall of the boiler 1 is formed by a cover 23, which has insulation toward the inside of the boiler and extends over the entire end face of the boiler. The lid 23 can be opened or removed in a manner not shown, so that a through the opening Cleaning of the combustion chamber and the flue gas duct sections is made possible.

Die beiden Wasserraumbereiche 9 und 11 stehen mittels des in Umfangsrichtung von den Rauchgasübergängen zu den Durchgangshohlräumen 35 unterbrochenen Übergangsbereiches 14 miteinander in Verbindung. Das über einen Wassereinlaß 24 in den zweiten Wasserraumbereich 9 eingeführte Wasser tritt somit in den ersten Wasserraumbereich 11 über und gelangt von dort über einen Wasserauslaß 25 wieder nach außerhalb des Kessels.The two water space regions 9 and 11 are connected to one another by means of the transition region 14 which is interrupted in the circumferential direction from the flue gas transitions to the passage cavities 35. The water introduced into the second water space region 9 via a water inlet 24 thus passes into the first water space region 11 and from there passes again via a water outlet 25 to the outside of the boiler.

Die Flammenbildung findet in der vom Brenner 2 aus gesehen ersten Zone 5 des Feuerraumes 3 statt und entfaltet große Hitze. In dieser Zone 5 ist zwischen dem Feuerraumeinsatz 7 und der wassergekühlten Innenwandung 12 des ersten Wasserraumbereichs 11 ein verhältnismäßig kleiner radialer Abstand freigelassen, so daß Wärme abgeführt wird, wodurch ein Betrag zur Verringerung der Bildung von NOx geleistet wird. Die Flamme tritt in die Zone 6 des Feuerraums ein, die aufgrund des radial angrenzenden, größer bemessenen und das heiße Rauchgas aufnehmenden ersten Abschnittes 16 des Rauchkanals 15 verhältnismäßig heiß ist, so daß ein guter Ausbrand der Flamme erfolgt, wodurch die Bildung von Schadstoffen wie Kohlenmonoxid, Kohlenwasserstoffen und Ruß wesentlich reduziert wird.The flame formation takes place in the first zone 5 of the combustion chamber 3, as seen from the burner 2, and releases great heat. In this zone 5, a relatively small radial distance is left between the combustion chamber insert 7 and the water-cooled inner wall 12 of the first water chamber region 11, so that heat is dissipated, thereby making an amount to reduce the formation of NOx. The flame enters zone 6 of the combustion chamber, which is relatively hot due to the radially adjacent, larger-sized and the hot flue gas-absorbing first section 16 of the smoke duct 15, so that the flame burns out well, as a result of which pollutants such as carbon monoxide are formed , Hydrocarbons and soot is significantly reduced.

Das Rauchgas durchtritt ausgehend von dem Umlenkraum 4 nacheinander die Abschnitte 16 und 17 des Rauchgaskanales sowie den diese verbindenden mehrteiligen Rauchgaszwischenraum, wobei im ersten Abschnitt ein Großteil der Wärme des Rauchgases über die Innenwandung 10, die mit Rippen 28 versehen ist, an das Wasser in dem Wasserraumbereich 9 abgegeben wird. Im Bereich des Rauchgaszwischenraumes 18 herrscht durch Strahlungswärme aus dem oberen Bereich der Zone 6 eine Temperatur, die die Ansammlung von Kondensat behindert. Danach wird das Rauchgas über die Strömungsstrecke entlang der Außenwandung 13 des ersten Wasserraumbereiches 11 gekühlt und verläßt somit mit nur noch geringer Wärme den Kessel über den Rauchgassammelraum 19 und den Ausgang 20. Während der zweite Wasserraumbereich 9 ausschließlich der Aufheizung über das heiße Rauchgas und die von dem Feuerraumeinsatz 7 ausgehende Strahlungswärme dient, hat der erste Wasserraumbereich 11 die Aufgabe, die Umgebung der Zone 5 und das Rauchgas in dem Abschnitt 17 des Rauchgaskanals zu kühlen. Auf diese Weise wird eine gedrungene Bauweise bei gleichzeitig gutem Ausbrand der Flamme erreicht.Starting from the deflection chamber 4, the flue gas passes through sections 16 and 17 of the flue gas channel and the multi-part flue gas intermediate space connecting them, whereby in the first section a large part of the heat of the flue gas passes through the inner wall 10, which is provided with ribs 28, to the water in the Water area 9 is released. Radiant heat prevails in the area of the flue gas space 18 a temperature from the upper area of zone 6 which prevents the accumulation of condensate. Thereafter, the flue gas is cooled via the flow path along the outer wall 13 of the first water area 11 and thus leaves the boiler via the flue gas collection space 19 and the outlet 20 with only a little heat. While the second water space area 9 exclusively heats up via the hot flue gas and that of serves the radiant heat emanating from the combustion chamber insert 7, the first water chamber region 11 has the task of cooling the surroundings of the zone 5 and the flue gas in the section 17 of the flue gas duct. In this way, a compact construction is achieved with a good burnout of the flame.

Wie die Figur 1 erkennen lässt, sind die den gesamten Wasserraum 8 umfassenden Wandungen, d.h. einschließlich der Übergänge im Bereich des Rauchgaskanals 15 von dessen ersten Abschnitt 16 zu dessen zweiten Abschnitt 17 in Form mehrerer paralleler Durchführungskanäle 35 sowie einer Aufnahmeausbildung für den Bodenisolierkörper 21 und einer Teileinfassung des Rauchgaskanales 19 als einstückiges Gußteil, insbesondere Graugußteil, ausgebildet. Es bedarf daher keiner Bearbeitung der Graugußflächen im Bereich der Rauchgasführung vor allem in deren zur Kondensatbildung neigenden Bereich. Wie die Figur 1 erkennen lässt, sind an der Innenwandung 10 des zweiten Wasserraumbereiches 9 radial nach innen vorstehende Rippen 28 ausgebildet, die der Erhöhung der Wärmetauscherfläche im ersten Abschnitt 16 des Rauchgaskanals 15 dienen. Die Größe der Wärmeübergangsfläche im Bereich des zweiten Abschnittes 17 des Rauchgaskanals 15 läßt sich durch die Anzahl und/oder Formgebung der Durchgangskanäle 35 beeinflußen.As can be seen in FIG. 1, the walls encompassing the entire water space 8, ie including the transitions in the area of the flue gas duct 15 from its first section 16 to its second section 17 in the form of a plurality of parallel through-channels 35 as well as a receptacle formation for the floor insulating body 21 and one Partial enclosure of the flue gas duct 19 is formed as a one-piece casting, in particular a gray casting. It is therefore not necessary to machine the gray cast iron surfaces in the area of the flue gas duct, especially in the area that tends to form condensate. As can be seen in FIG. 1, ribs 28 projecting radially inwards are formed on the inner wall 10 of the second water space region 9, which serve to increase the heat exchanger surface in the first section 16 of the flue gas duct 15. The size of the heat transfer surface in the area of the second section 17 of the flue gas duct 15 can be influenced by the number and / or shape of the through ducts 35.

Beim Ausführungsbeispiel gemäß Figur 1 wird der hohlzylinderförmige Raum 40 zwischen der Außenwand des Feuerraumeinsatzes 7 im Bereich der Flammenbildungszone 5 und der Innenwandung 12 des ersten Wasserraumbereiches 11 als Kanal für die Leitung einer aus dem Rauchgaszwischenraum 18 abgezweigten Rauchgasteilmenge hin zum Raum zwischen dem Deckel 23 und der oberen Stirnkante des Feuerraumeinsatzes 7 geleitet. Die obere Stirnkante des Feuerraumeinsatzes 7 ist mit einem Abstand 39 von der Innenwandung des Deckels 23 beabstandet, so daß die Rauchgasteilmenge entsprechend dem links gezeigten Pfeil in die obere Stirnseite des Feuerraumeinsatzes 7 eintreten kann, und zwar über den Bereich der Fläche 41. Das Brennerrohr 2 ragt etwas in den von dem rohrförmigen Feuerraumeinsatz 7 umgriffenen Raum hinein. Durch die Austrittsgeschwindigkeit der dem Brennerrohr 2 entströmenden, zur Flammenbildung führenden Brennstoffe oder Brennstoffgemische wird ein Unterdruck erzeugt, der die abgezweigte Rauchgasteilmenge ansaugt und der Flamme im Bildungsbereich zuführt.In the exemplary embodiment according to FIG. 1, the hollow cylindrical space 40 between the outer wall of the combustion chamber insert 7 in the area of the flame formation zone 5 and the inner wall 12 of the first water space area 11 is used as a channel for the conduction of a part of the flue gas branched off from the flue gas intermediate space 18 to the space between the cover 23 and the upper end edge of the firebox insert 7 passed. The upper end edge of the combustion chamber insert 7 is spaced a distance 39 from the inner wall of the cover 23, so that the part of the flue gas can enter the upper end side of the combustion chamber insert 7 according to the arrow shown on the left, specifically over the area of the surface 41 something protrudes into the space encompassed by the tubular furnace insert 7. Due to the exit velocity of the fuels or fuel mixtures flowing out of the burner tube 2 and leading to the formation of a flame, a negative pressure is generated which draws in the branched-off part of the flue gas and feeds it to the flame in the formation area.

Oberhalb des Rauchgaszwischenraumes 18 ist von der Wandung 12 nach radial innen abstrebend eine in Umfangsrichtung durchlaufende oder unterbrochen ausgebildete Rippe 42 ausgeformt, an der Vorsprünge 43 abgestützt sind, die in Umfangsrichtung verteilt an der Außenwandung des Feuerraumeinsatzes 7 ausgebildet, beispielsweise angeschweißt, sind. Die Abmessungen sind derart getroffen, daß sich zwischen der Rippe 42 und den Vorsprüngen 43 ein mehr oder weniger unterteilter, im übrigen aber hinsichtlich des Gesamtquerschnittes entsprechend zu bemessener Spalt 44 bildet, der die Menge des abgezweigten Rauchgasteiles bestimmt. Von dem Rauchgaszwischenraum 18 ausgehend durchströmt die bereits entsprechend abgekühlte Rauchgasteilmenge den hohlzylinderförmigen Raum 40 und wird dabei durch das Entlangstreichen an der wassergekühlten Innenwandung 12 des ersten Wasserbereiches 11 gekühlt bzw. hinsichtlich der Aufheizung vom Feuerraumeinsatz 7 im Bereich der Zone 5 her gesehen begrenzt. Damit wird eine Kühlwirkung auf die Flammenbildungszone 5 des Feuerraumes 3 ausgeübt, die neben der Zuführung der Rauchgasteilmenge einer Bildung von NOx entgegenwirkt. Die Kühlwirkung dieser Rauchgasteilmenge kann durch einstückig an der Innenwandung 12 in den Ringraum 40 vorspringende Rippen noch erhöht werden.Above the flue gas intermediate space 18, a rib 42 running through or interrupted in the circumferential direction is formed, protruding radially inward from the wall 12, on which projections 43 are supported, which are formed in the circumferential direction on the outer wall of the combustion chamber insert 7, for example welded on. The dimensions are such that between the rib 42 and the projections 43 a more or less subdivided, but otherwise with respect to the overall cross-section to be dimensioned gap 44, which determines the amount of the branched flue gas part. Starting from the flue gas intermediate space 18, it flows through accordingly cooled partial flue gas the hollow cylindrical space 40 and is thereby cooled by sweeping along the water-cooled inner wall 12 of the first water area 11 or limited in terms of heating from the combustion chamber insert 7 in the area of zone 5. A cooling effect is thus exerted on the flame formation zone 5 of the combustion chamber 3, which counteracts the formation of NOx in addition to the supply of the partial flue gas. The cooling effect of this partial flue gas quantity can be increased further by ribs projecting in one piece on the inner wall 12 into the annular space 40.

Claims (10)

  1. Boiler with internal recycling of waste gas for the combustion of liquid or gaseous fuels, having a burner mounted at the end, the flame of which is guided into a combustion chamber insert (7) which is open in the direction of flow and which is surrounded by a water chamber (8) and opens downstream into a diversion chamber (4) connected to a flue gas collecting chamber (19) via a flue gas channel structure (15) which, viewed from the diversion chamber (4), extends over a first section (16) of the length of the channel between the outer wall of the combustion chamber insert (7) and the inner wall (10) of a second area (9) of the water chamber (8) and then through an intermediate chamber (18) along a second section (17) of the length of the channel, in divided form, through a first area (11) or outside this first area (11) of the water chamber (8), whilst starting from this intermediate chamber (18) a partial flue gas current (40) branches off and is supplied to the combustion chamber (3) via the circumferential area of the combustion tube (2) as a result of the injector effect of the fuels or fuel mixtures flowing out of the combustion tube (2) and leading to flame production, characterised in that the sections (16 - 18) of the flue gas channel structure (15) and hence the areas (9, 11) of the water chamber (8) are arranged one after the other in the axial direction of the combustion chamber insert (7) of corresponding length, viewed from the diversion chamber (4) to the flue gas collecting chamber (19) arranged in the end part of the combustion chamber insert (7) nearest the burner, and in that the partial flue gas current diverted from the intermediate chamber (18) between the first and second sections (16, 17) of the flue gas channel structure (15) is passed through an annular chamber (40) between the inner wall (12) of the first area (11) of the water chamber (8) and the outer wall of the combustion chamber insert (7), the radial spacing between the combustion chamber insert (7) and the water-cooled inner wall (12) of the first area of the water chamber (11) being smaller than the corresponding spacing of the second area (9) of the water chamber.
  2. Boiler according to claim 1, characterised in that a safety burner is provided, having flame propagation directed from top to bottom.
  3. Boiler according to claim 1 or 2, characterised in that the combustion chamber insert (7), arranged at the flame entry end at a spacing (39) of 20 to 50 mm, preferably 30 mm, from the inner wall of the boiler lid (23), forms a surface (41) between the lid (23) and the combustion chamber (3) by means of which a partial flue gas current is returned to the flame.
  4. Boiler according to claim 1, 2 or 3, characterised in that the combustion chamber insert (7), arranged at a spacing of 10 to 30 mm, preferably 15 mm, from the inner wall (12) of a first area (11) of the water chamber, surrounding the flame production zone of the combustion chamber (3), forms a hollow cylindrical channel (40) between an intermediate flue gas collecting chamber (18) and the area of transition, facing the combustion tube (2), of the partial flue gas current into the flame production zone (5) of the combustion chamber (3).
  5. Boiler according to one of claims 1 to 4, characterised in that, on the inner wall (12) of the first area (11) of the water chamber in the direction of flow of the flue gases, there is a radially inwardly directed rib (42) of continuous or subdivided construction extending in the circumferential direction, on which the combustion chamber insert (7) is supported via a plurality of projections (43) protruding radially therefrom.
  6. Boiler according to one of claims 1 to 5, characterised in that the combustion chamber insert (7) is formed in the region of the flue gas collecting chamber (19) at a spacing (39) from the boiler lid (23).
  7. Boiler according to one of claims 1 to 6, characterised in that the combustion chamber insert (7) is formed in a conical shape (45) with a larger diameter in the region of the exit of the flame from the combustion tube (2).
  8. Boiler according to one of claims 1 to 7, characterised in that the combustion tube (2) of the burner projects into the adjacent opening of the combustion chamber insert (7).
  9. Boiler according to one of claims 1 to 8, characterised in that the partial flue gas current supplied to the flame is diverted from a central area of the flue gas channel (15).
  10. Boiler according to one of claims 1 to 9, characterised in that the entire water chamber (8) is formed by a one-piece casting.
EP90104852A 1989-03-14 1990-03-14 Heating boiler Expired - Lifetime EP0387859B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3908296A DE3908296C2 (en) 1989-03-14 1989-03-14 boiler
DE3908296 1989-03-14

Publications (3)

Publication Number Publication Date
EP0387859A2 EP0387859A2 (en) 1990-09-19
EP0387859A3 EP0387859A3 (en) 1991-07-24
EP0387859B1 true EP0387859B1 (en) 1995-06-21

Family

ID=6376323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104852A Expired - Lifetime EP0387859B1 (en) 1989-03-14 1990-03-14 Heating boiler

Country Status (3)

Country Link
EP (1) EP0387859B1 (en)
AT (1) ATE124127T1 (en)
DE (2) DE3908296C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745805A2 (en) * 1995-05-31 1996-12-04 Pyropac AG Boiler
EP1004833A2 (en) 1998-11-27 2000-05-31 Max Weishaupt GmbH Heater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259951A1 (en) * 2002-12-20 2004-07-01 Robert Bosch Gmbh heat exchanger unit
FR2952165B1 (en) * 2009-10-30 2012-05-25 Dietrich Thermique BOILER WITH AERAULIC COMMUNICATION BETWEEN THE COMBUSTION CHAMBER AND THE EXCHANGER FOR AVOIDING THE RESONANCE OF THE BURNER
CN106352544A (en) * 2016-11-24 2017-01-25 胜利油田物华石油装备制造有限公司 Inclined smoke pipe heating furnace
CN111828969B (en) * 2020-07-13 2022-06-21 广州汤姆逊电气有限公司 High-temperature circulating type energy-saving environment-friendly combustion gun

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927193A1 (en) * 1979-07-05 1981-01-15 Koerting Hannover Ag Geyser type liquid heating equipment - recirculates part of combustion gases through combustion chamber again
DD158137A1 (en) * 1981-04-10 1982-12-29 Werner Penske DEVICE FOR IMPROVING THE EFFICIENCY OF A CHIPPED HEAT EXCHANGE
DE3601000A1 (en) * 1985-07-02 1987-06-19 Vaillant Joh Gmbh & Co Water-heating boiler
DE3546368A1 (en) * 1985-12-31 1987-07-02 Siegfried Dipl Ing Weishaupt Heating boiler
DE3628293A1 (en) * 1986-08-20 1988-02-25 Wolf Klimatechnik Gmbh Heating boiler for burning liquid and/or gaseous fuels
ATE58428T1 (en) * 1987-05-19 1990-11-15 Pc Patentconsult Ag BOILER.
DE3738622C1 (en) * 1987-11-11 1989-02-02 Wolf Klimatechnik Gmbh Heating furnace with equipment for recirculating flue gas
DE3905762A1 (en) * 1989-02-24 1990-08-30 Heim Hermann Masch METHOD AND COMBUSTION SYSTEM FOR REDUCING NITROGEN OXIDATION WHEN BURNING FOSSILER FUELS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745805A2 (en) * 1995-05-31 1996-12-04 Pyropac AG Boiler
EP1004833A2 (en) 1998-11-27 2000-05-31 Max Weishaupt GmbH Heater
DE19854910A1 (en) * 1998-11-27 2000-06-08 Weishaupt Max Gmbh boiler
DE19854910B4 (en) * 1998-11-27 2004-09-02 Max Weishaupt Gmbh boiler

Also Published As

Publication number Publication date
DE3908296C2 (en) 1994-04-14
DE3908296A1 (en) 1990-09-20
DE59009264D1 (en) 1995-07-27
EP0387859A3 (en) 1991-07-24
EP0387859A2 (en) 1990-09-19
ATE124127T1 (en) 1995-07-15

Similar Documents

Publication Publication Date Title
EP0164576B1 (en) Industrial burner for gaseous or liquid fuels
DE2637646A1 (en) WAREHOUSE
DE2158215C3 (en) Combustion chamber for gas turbine engines
EP0387859B1 (en) Heating boiler
EP0384277B1 (en) Method and combustion installation for the reduction of nitrogen oxide formation during the combustion of fossil fuels
DD154910A5 (en) INDUSTRIAL BURNER
DE3738623C2 (en) Boiler with flue gas recirculation
DE2745756C3 (en) Incinerator
EP0510783B1 (en) Device for the combustion of fluid or gaseous fuels
DE3602285A1 (en) WARM FURNACE FOR SOLID FUELS
DE60016106T2 (en) Burner with exhaust gas recirculation
DE3329777C2 (en)
EP0745805B1 (en) Boiler
EP0347797B1 (en) Process for reducing NOx in exhaust gases from furnaces, and furnace with means for reducing the NOx content in exhaust gases
EP0114219B1 (en) Furnace for straw or similar material
EP0602396A1 (en) Process heat generator
EP0199703A2 (en) Plant for heating steel material up to the hot-forming temperature
DE2534092A1 (en) Solid fuel-fired horizontal boiler for heating oil - with complete combustion and higher flame temperature due to less excess air
DE19854910A1 (en) boiler
DE10140422C1 (en) Thermal post-combustion device for cleaning waste gases comprises a burner having a second flame tube surrounding the end of a first flame tube with a greater radius to form an annular gap
CH678652A5 (en)
EP0272369B1 (en) Boiler for a low temperature heating system
EP0292580B1 (en) Boiler
DE2134634A1 (en) DEVICE FOR THERMAL AFTER-BURNING OF EXHAUST AIR FROM INDUSTRIAL PLANTS
DE4114490C2 (en) Firing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19920121

17Q First examination report despatched

Effective date: 19921009

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PYROPAC AG

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 124127

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59009264

Country of ref document: DE

Date of ref document: 19950727

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030311

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030313

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030331

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030401

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040314

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040314

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060314

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060327

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070314

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090330

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090429

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: *PYROPAC A.G.

Effective date: 20100314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100314