EP0386319A2 - Magnetischer Gleichstromwandler mit niedrigem Temperaturdrift - Google Patents

Magnetischer Gleichstromwandler mit niedrigem Temperaturdrift Download PDF

Info

Publication number
EP0386319A2
EP0386319A2 EP89119759A EP89119759A EP0386319A2 EP 0386319 A2 EP0386319 A2 EP 0386319A2 EP 89119759 A EP89119759 A EP 89119759A EP 89119759 A EP89119759 A EP 89119759A EP 0386319 A2 EP0386319 A2 EP 0386319A2
Authority
EP
European Patent Office
Prior art keywords
converter
hall
voltages
magnetic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89119759A
Other languages
English (en)
French (fr)
Other versions
EP0386319A3 (de
Inventor
Reinhold Dipl.-Ing. Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0386319A2 publication Critical patent/EP0386319A2/de
Publication of EP0386319A3 publication Critical patent/EP0386319A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/40Instruments transformers for dc

Definitions

  • the innovation relates to a magnetic direct current converter for detecting direct currents in a current conductor with a large cross section, through which a direct current with high values, in particular those that occur briefly and in a burst-like manner, flows.
  • the magnetic DC converter is heated up to 130 ° C. Compared to an assumed, for example, ambient temperature of approx. 25 ° C
  • the innovation is based on the object of specifying a magnetic direct current converter for detecting direct currents, the temporary and sudden increase to high values of which may result in considerable heating of the direct current converter.
  • the object is achieved with the DC converter specified in the protection claim.
  • the magnetic DC converter according to the invention consists of a magnetic core MK through which a current conductor SL with a large cross section is passed.
  • the current conductor SL is designed in the form of a rectilinear and rigid busbar carrying the direct current I L.
  • the magnetic core MK is not closed in a ring, son has an air gap LS.
  • at least two Hall generators HG1, HG2, which are arranged antiparallel to one another and are connected in a thermally conductive manner to the magnetic core MK, are inserted. Both Hall generators are supplied in a known manner from a supply voltage, not shown, via connecting lines, also not shown.
  • the Hall voltages U H (HG1), U H (HG2) of the two mall generators are fed to an evaluation circuit AS belonging to the DC converter.
  • This preferably forms the difference between the Hall voltages by means of a known differential amplifier circuit and makes this available as a measurement signal ⁇ U H at the output of the DC converter.
  • the two Hall generators HG1, HG2 are distinguished by the fact that their zero point offset voltages U N (T) HG1 , U N (T) HG2 , ie the voltages caused at the output of the generators without a magnetic field solely due to the supply voltages, have an identical temperature profile . Hall generators, the zero point offset voltages of which differ greatly from one another due to the usual specimen variations, are not suitable according to the innovation to be used antiparallel in the air gap of the magnetic core of the DC converter.
  • the new DC converter according to the invention has the particular advantage that, on the one hand, the level of the evaluable differential Hall voltage ⁇ U H at the output is twice as high due to the subtraction of the two signed different Hall voltages U H of the antiparallel generators than when using a single Hall generator.
  • This subtraction of the Hall voltages from an antiparallel Hall generator having an identical temperature profile for the zero point offset voltages has the further advantage that these temperature profiles are almost identical fully compensate. This is further explained with reference to FIG 2.
  • the two temperature profiles of the zero point offset voltages U N (T) HG1 , U N (T) HG2 of the two antiparallel mall generators entered in FIG. 2 differ only slightly from one another in accordance with the innovation. They therefore have gradients with identical signs and approximately the same values.
  • the zero point offset voltage U N (T0) HG2 of the Hall generator HG2 has the relatively large value lying between the minimum and maximum values U NMI , U NMA caused by the sample scatter.
  • the Hall voltages at the output of the anti-parallel generators are subtracted from each other, the zero point offset voltage in the converter output signal ⁇ U H is reduced to the almost vanishing, lying between the curves U N (T) HG1 and U N (T) HG2 at the temperature zero point T0 Value U N (T0) HG2 - HG1 .
  • Such a shift is possible in a known manner by means of circuitry measures in the evaluation circuit AS.
  • FIG 2 is the example of U * N (HG2) such a shifted temperature profile for the Hall generator HG2 is shown in broken lines.
  • the new DC converter according to the invention can be used particularly advantageously when the DC current I L through the current conductor SL can on the one hand take on very high values for a short time and suddenly, but on the other hand it should be possible to detect that the DC current I L falls below a very small threshold value.
  • a very small threshold value can occur, for example, in the supply of power to an electrical system in an aircraft.
  • the direct current I L corresponds to the current drawn from an on-board battery, this can, for example, briefly and when the aircraft engines are started suddenly assume a value of approx. 1,000 A. This leads to considerable heating of the current conductor SL and thus of the direct current converter.
  • the on-board electrical system feeds itself, in particular by means of generators driven by it. It is advantageous and sometimes necessary to detect this transition moment between battery and self-supply.
  • This transition moment can be defined, for example, by the fact that the direct current I L taken from the on-board battery has decreased from originally approx. 1000 A to less than 3 A. Due to the addition of the Hall voltages of the antiparallel Hall generators and the compensation of the temperature profile of the zero point offset voltage, the new DC converter according to the invention is particularly suitable, despite previous strong heating, to map such a low switching threshold of approx. 3 A in the output signal ⁇ U H with relatively high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Der Gleichstromwandler dient zur Erfassung von Gleichströmen (IL) in einem Stromleiter (SL) mit großem Querschnitt, welcher von einem Gleichstrom (IL) mit insbesondere kurzzeitig und stoßartig auftretenden hohen Werten durch flossen wird. Der magnetische Kern (MK) des Wandlers verfügt über einen Luftspalt (LS), in dem mindestens zwei Hallgeneratoren (HG1,HG2) antiparallel zueinander angeordnet sind. Die Nullpunktsoffsetspannungen der Hallgeneratoren (UN(T)HG1,UN(T)HG2) weisen einen möglichst identischen Temperaturverlauf auf. Eine Auswerteschaltung (AS) bildet aus der Differenz der Hallspannungen (UH(HG1),UH(HG2)) das Meßsignal (Δ UH) am Ausgang des Wandlers.

Description

  • Die Neuerung betrifft einen magnetischen Gleichstromwandler zur Erfassung von Gleichströmen in einem Stromleiter mit großem Querschnitt, welcher von einem Gleichstrom mit insbesondere kurzzeitig und storßartig auftretenden hohen Werten durchflossen wird.
  • Bei magnetischen Wandlern ist es insbesondere zur Erhöhung der Meßempfindlichkeit bekannt, d.h. zur Erhöhung der am Ausgang zur Verfügung stehenden, auswertbaren Meßspannung, den Strom­leiter des zu erfassenden Stromes nicht nur einmal, sondern in Form von mehreren um einen magnetischen Schenkel ge führten Windungen hindurchzuführen.
  • Bei einem Stromleiter mit einem großen Querschnitt, der einen Gleichstrom mit unter Umständen kurzzeitig und stoßartig auf­tretenden hohen Werten führen kann, ist eine derartige Wicklung um einen Schenkel des Wandlers dagegen in der Regel sehr auf­wendig bzw. nicht möglich. Vielfach werden derartige Stromleiter in Form von Schienen geradlinig durch den Wandler hindurchge­führt. Es ist somit praktisch nicht möglich, in der bekannten Weise eine Erhöhung des nutzbaren Signalpegels der Meßspannung am Ausgang des Wandlers zu erreichen.
  • Aufgrund der hohen Gleichstromtragfähigkeit derartiger Strom­leiter muß selbst bei nur kurzzeitig und stoßartig auftreten­den hohen Gleichstromwerten mit einer erheblichen Erwärmung des Stromleiters, und damit des zur Erfassung des hindurch­ließenden Gleichstromes dienenden magnetischen Wandlers ge­rechnet werden. In manchen Anwendungsfällen wird der magnetische Gleichstromwandler auf bis zu 130° C erwärmt. Gegenüber einem z.B. Umgebungstemperatur von ca. 25° C liegenden, angenomenen
  • Temperaturnullpunkt führt eine derartige Erwärmung in der Regel aber zu einer erheblichen temperaturdriftabhängigen Verfälschung der nutzbaren Meßspannung am Ausgang des Wandlers. Dabei wirkt sich besonders der Temperaturverlauf der Nullpunktsoffsetspan­nung aus. Bei den Gleichstromwandlern mit einem insbesondere gradlinig als Stromschiene hindurchgeführten Stromleiter großen Querschnitts besteht dabei das Problem, das die Amplitude der bei einer großen Erwärmung auftretenden Nullpunktsoffsetspannung größer sein kann als der Wert der ein Abbild des jeweils flie­ßenden Gleichstromes darstellenden Meßspannung am Wandleraus­gang.
  • Der Neuerung liegt die Aufgabe zugrunde, einen magnetischen Gleichstromwandler zur Erfassung von Gleichströmen anzugeben, deren unter Umständen vorübergehende und stoßartige Erhöhung auf hohe Werte eine erhebliche Erwärmung des Gleichstromwand­lers zur Folge hat.
  • Die Aufgabe wird gelöst mit dem im Schutzanspruch angegebenen Gleichstromwandler.
  • Die Neuerung wird anhand der nachfolgend kurz angeführten Figuren näher erläutert. Dabei zeigt:
    • FIG 1 eine vorteilhafte Ausführungsform des neuerungsgemäßen Gleichstromwandlers, und
    • FIG 2 beispielhaft den Temperaturverlauf der Nullpunktsoff set­spannung von zwei Hallgeneratoren.
  • Der neuerungsgemäße magnetische Gleichstromwandler besteht ge­mäß der Darstellung von FIG 1 aus einem magnetischen Kern MK, durch den ein Stromleiter SL mit großem Querschnitt hindurch­geführt ist. Bei dem in der FIG 1 dargestellten Ausführungs­beispiel ist der Stromleiter SL in Form einer geradlinigen und starren, den Gleichstrom IL führenden Stromschiene ausgeführt. Der magnetische Kern MK ist nicht ringförmig geschlossen, son­ dern verfügt über einen Luftspalt LS. In diesen sind neue­rungsgemäß mindestens zwei antiparallel zueinander angeordnete und thermisch leitend mit dem magnetischen Kern MK verbundene Hallgeneratoren HG1, HG2 eingelegt. Beide Hallgeneratoren werden in bekannter Weise von einer nicht dargestellten Versorgungs­spannung über ebenfalls nicht dargestellte Anschlußleitungen gespeist.
  • Gemäß der Darstellung von FIG 1 werden die Hallspannungen UH(HG1), UH(HG2) der beiden Mallgeneratoren einer zum Gleich­stromwandler gehörigen Auswerteschaltung AS zugeführt. Diese bildet bevorzugt mittels einer bekannten Differenzverstärker­schaltung die Differenz zwischen den Hallspannungen, und stellt diese als Meßsignal Δ UH am Ausgang des Gleichstrom­wandlers zur Verfügung. Die beiden Hallgeneratoren HG1, HG2 zeichnen sich dadurch aus, daß deren Nullpunktsoffsetspannun­gen UN(T)HG1, UN(T)HG2, d.h. die am Ausgang der Generatoren ohne Anliegen eines Magnetfeldes allein aufgrund der Versor­gungsspannungen hervorgerufenen Spannungen, einen möglichst identischen Temperaturverlauf aufweisen. Hallgeneratoren, deren Nullpunktsoffsetspannungen aufgrund von üblichen Exemplar­streuungen stark voneinander abweichende Temperaturverläufe aufweisen, sind nicht geeignet gemäß der Neuerung antiparal­lel im Luftspalt des magnetischen Kernes des Gleichstromwand­lers eingesetzt zu werden.
  • Der neuerungsgemäße Gleichstromwandler hat den besonderen Vor­teil, daß zum einen der Pegel der auswertbaren Differenzhall­spannung Δ UH am Ausgang aufgrund der Subtraktion der zwei Vor­zeichen unterschiedlichen Hallspannungen UH der antiparallelen Generatoren doppelt so hoch ist als bei Verwendung eines ein­zigen Hallgenerators. Diese Subtraktion der Hallspannungen von einen möglichst identischen Temperaturverlauf der Nullpunkts­offsetspannungen verfügenden antiparallelen Hallgenratoren hat den weiteren Vorteil, daß sich diese Temperaturverläufe nahezu vollständig kompensieren. Dies wird desweiteren anhand der FIG 2 näher erläutert.
  • Das Diagramm der FIG 2 zeigt aufgetragen über der bevorzugt in °C angegebenen Temperatur T den Verlauf der in Form von Geraden angenäherten Nullpunktsoffsetspannungen UN(T). Diese entsprechen den Hallspannungen UH (B=0) am Ausgang der Generatoren bei Fehlen eines Magnetfeldes B im Luftspalt LS. Die beiden in der FIG 2 eingetragenen Temperaturverläufe der Nullpunktsoffsetspannungen UN(T)HG1, UN(T)HG2 der beiden antiparallelen Mallgeneratoren weichen neuerungsgemäß nur geringfügig voneinander ab. Sie verfügen somit über Steigungen mit identischen Vorzeichen und annähernd gleichen Werten. In der FIG 2 sind zwei Temperatur­betriebspunkte bei Umgebungstemperatur T0 = 25° und T1 = 100° C beispielhaft eingetragen.
  • So hat beispielsweise in dem als Temperaturnullpunkt angenom­mene Betriebspunkt T0 = 25° die Nullpunktsoffsetspannung UN(T0)HG2 des Hallgenerators HG2 den relativ großen, zwischen den exemplarstreuungsbedingten Minimal- und Maximalwerten UNMI, UNMA liegenden Wert. Werden dagegen gemäß der Neuerung die Hallspannungen am Ausgang der antiparallelen Generatoren von­einander subtrahiert, so reduziert sich die Nullpunktsoffset­spannung im Wandlerausgangssignal Δ UH auf den nahezu ver­schwindenden, zwischen den Kurven UN(T)HG1 und UN(T)HG2 im Temperaturnullpunkt T0 liegenden Wert UN(T0)HG2 - HG1.
  • Ist die Temperatur des Gleichstromwandlers z.B. auf den Wert T1 = 100° C erhöht, so hat dies im Vergleich zum Temperaturnull­punkt bei T0 = 25° eine Erhöhung der Nullpunktsoffsetspannung UN(T)HG2 z.B. des zweiten Hallgenerators um den Wert Δ UN(T1) HG2 zur Folge. Beim neuerungsgemäßen Gleichstromwandler tritt dage­gen im Arbeitspunkt T1 = 100° C lediglich ein dem Abstand zwi­schen den Temperaturverläufen UN(T)HG1 und UN(T)HG2 entsprechen­der, erheblich kleinerer absoluter Wert der Nullpunktsoffset­spannung UN(T1)HG2 - HG1 auf.
  • Gemäß einer weiteren Ausführungsform ist es vorteilhaft, bevor­zugt im Temperaturnullpunkt T0 = 25° C die Nullpunktsoffset­spannung UN(T0)HG2 - HG1 bevorzugt durch Parallelverschiebung einer der beiden Temperaturverläufe UN(T)HG1 bzw. UN(T)HG2 nahe­zu vollständig zu beseitigen. Eine derartige Verschiebung ist durch schaltungstechnische Maßnahmen in der Auswerteschaltung AS auf bekannte Weise möglich. In der FIG 2 ist am Beispiel von U * N
    Figure imgb0001
    (HG2) ein derartiger, verschobener Temperaturverlauf für den Hallgenerator HG2 strichliert dargestellt. Dies hat zur Folge, daß der Schnittpunkt SP zwischen den Temperaturverläufen UN(T)HG1, UN(T)HG2 der Nullpunktsoffsetspannungen nun in einem vorgewählten Arbeitspunkt liegt, z.B. in dem angenommenen Tempe­raturnullpunkt T0 = 25° C. In diesem Arbeitspunkt tritt somit keine Nullpunktsoffsetspannung im Gleichstromwandlerausgangs­signal Δ UH mehr auf. Dementsprechend ist der bei einem anderen Arbeitspunkt, z.B. T1 = 100° C, auftretende Wert der Nullpunkts­offsetspannung UN(T1)HG2 - HG1 um den Betrag von UN(T0̸) HG2 - HG1 weiter reduziert.
  • In einer weiteren Ausführungsform ist es auch möglich, vier Hallgeneratoren im Luftspalt anzuordnen. Dabei sind jeweils zwei Generatoren paarweise parallel zueinander angeordnet, wäh­rend die Generatorpaare antiparallel zueinander angeordnet sind. Die Hallspannungen der Generatoren eines jeden Paares werden dabei addiert und die sich so ergebenden Summen substrahiert.
  • Der neuerungsgemäße Gleichstromwandler kann besonders vorteil­haft dann verwendet werden, wenn der Gleichstrom IL durch den Stromleiter SL zum einen unter Umständen kurzzeitig und stoß­artig sehr hohe Werte annehmen kann, zum anderen aber das Unterschreiten eines recht kleinen Schwellwertes durch den Gleichstrom IL detektierbar sein soll. Ein derartiger Fall kann z.B. bei der Stromversorgung eines Bordnetzes in einem Flugzeug auftreten. Entspricht in einem solchen Fall der Gleich­strom IL dem aus einer Bordbatterie gezogenen Strom, so kann dieser z.B. beim Anlassen der Flugzeugtriebwerke kurzzeitig und stoßartig einen Wert von ca. 1 000 A annehmen. Dies führt zu einer erheblichen Erwärmung des Stromleiters SL und somit des Gleichstromwandlers. Nach erfolgreichem Start der Triebwerke speist sich das Bordnetz insbesondere mittels davon angetrie­bener Generatoren im Eigenbetrieb selbst. Es ist vorteilhaft und manchmal notwendig, diesen Übergangsmoment zwischen Batterie- und Eigenspeisung zu detektieren. Dieser Übergangs­moment kann beispielsweise dadurch definiert sein, daß der aus der Bordbatterie entnommene Gleichstrom IL von ursprünglich ca. 1 000 A auf weniger als 3 A zurückgegangen ist. Der neue­rungsgemäße Gleichstromwandler ist aufgrund der Addition der Hallspannungen der antiparallelen Hallgeneratoren und der Kom­pensation des Temperaturverlaufes der Nullpunktsoffsetspannung besonders geeignet, trotz vorangegangener starker Erhitzung eine derart niedrige Schaltschwelle von ca. 3 A im Ausgangssignal Δ UH mit relativ hoher Genauigkeit abzubilden.

Claims (1)

  1. Magnetischer Gleichstromwandler zur Erfassung von Gleich­strömen (IL) in einem Stromleiter (SL) mit großem Querschnitt, welcher von einem Gleichstrom (IL) mit insbesondere kurzzeitig und stoßartig auftretenden hohen Werten durchflossen wird, mit
    a) einem magnetischen Kern (MK), durch dessen Öffnung der Stromleiter (SL) durchgeführt ist, und der über einen Luft­spalt (LS) verfügt,
    b) mindestens zwei antiparallel zueinander im Luftspalt (LS) angeordnete Hallgeneratoren (HG1,HG2), deren Nullpunktsoff­setspannungen (UN(T)HG1,UN(T)HG2) einen möglichst identi­schen Temperaturverlauf (UH(B=0)(T)) aufweisen, und
    c) einer Auswerteschaltung (AS), welche die Differenz der Span­nungen (UH(HG1),UH(HG2)) am Ausgang der Hallgeneratoren als Meßsignal (Δ UH) bildet.
EP19890119759 1989-03-09 1989-10-24 Magnetischer Gleichstromwandler mit niedrigem Temperaturdrift Withdrawn EP0386319A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8902904U 1989-03-09
DE8902904U DE8902904U1 (de) 1989-03-09 1989-03-09

Publications (2)

Publication Number Publication Date
EP0386319A2 true EP0386319A2 (de) 1990-09-12
EP0386319A3 EP0386319A3 (de) 1991-07-24

Family

ID=6836914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890119759 Withdrawn EP0386319A3 (de) 1989-03-09 1989-10-24 Magnetischer Gleichstromwandler mit niedrigem Temperaturdrift

Country Status (3)

Country Link
EP (1) EP0386319A3 (de)
DE (1) DE8902904U1 (de)
DK (1) DK58190A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692991A1 (fr) * 1992-06-26 1993-12-31 Renault Capteur de courant à compensation magnétique.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028216A (ja) * 1983-07-26 1985-02-13 Midori Anzen Kk 直流電流検出変流器
DE3347315C1 (de) * 1982-12-18 1985-02-14 Maag-Zahnräder & -Maschinen AG, Zürich Zahnmeßtaster

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935585U (de) * 1963-09-26 1966-03-31 Siemens Ag Stromwandler mit hallgeneratoren.
BE756784A (fr) * 1970-09-29 1971-03-01 Buyse Herve Transformateur de courant a compensation magnetique,
JP3020340B2 (ja) * 1992-03-10 2000-03-15 日本放送協会 光導波路型光デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3347315C1 (de) * 1982-12-18 1985-02-14 Maag-Zahnräder & -Maschinen AG, Zürich Zahnmeßtaster
JPS6028216A (ja) * 1983-07-26 1985-02-13 Midori Anzen Kk 直流電流検出変流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 147 (E-323)[1870], 21. Juni 1985; & JP-A-60 28 216 (MIDORI) 13-02-1985 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692991A1 (fr) * 1992-06-26 1993-12-31 Renault Capteur de courant à compensation magnétique.

Also Published As

Publication number Publication date
EP0386319A3 (de) 1991-07-24
DK58190A (da) 1990-09-10
DE8902904U1 (de) 1989-05-03
DK58190D0 (da) 1990-03-06

Similar Documents

Publication Publication Date Title
EP0691544B1 (de) Nach dem Kompensationsprinzip arbeitender Stromsensor
DE2542811C2 (de) Schaltungsanordnung zur Messung des Erdwiderstandes einer erdfreien Starkstromschaltung
EP0167544B2 (de) Magnetometer mit zeitverschlüsselung zur messung von magnetfeldern
EP0172402A1 (de) Schaltungsanordnung zur Kompensation von Schwankungen des Uebertragungsfaktors eines Magnetfeldsensors
EP2666023B1 (de) Strommessvorrichtung
EP0054626A1 (de) Magnetoresistiver Stromdetektor
DE19914772A1 (de) Strommeßaufnehmer
DE102012000557A1 (de) Überwachungseinrichtung und Verfahren zur Überwachung eines Leitungsabschnittes mit einer Überwachungseinrichtung
DE3322942C2 (de) Schaltung zur Messung der magnetischen Induktion mit einer Hall-Feldsonde
DE3040316C2 (de) Verfahren und Vorrichtung zur kontaktlosen Messung von Gleich- und Wechselströmen, insbesondere von Strom-Augenblickswerten
DE19549181A1 (de) Vorrichtung zur Messung eines in einem Leiter fließenden Stromes
DE2634425A1 (de) Verfahren und einrichtung zur messung der position einer magnetischen stange
EP0165258B1 (de) Magnetometer mit zeitverschlüsselung
DE102018128469B4 (de) Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite
WO1988003654A1 (en) Device for measurement of a magnetic field which is constant or varies over time
EP0386319A2 (de) Magnetischer Gleichstromwandler mit niedrigem Temperaturdrift
DE102019120666B3 (de) Sensorvorrichtung zur breitbandigen Messung von elektrischen Strömen durch einen Leiter und Verfahren zur breitbandigen Messung
DE102004056384A1 (de) Verfahren zur Offseteliminierung aus Signalen magnetoresistiver Sensoren
EP0137896B1 (de) Schaltungsanordnung zur Kompensation von Schwankungen des Uebertragungsfaktors eines linearen Magnetfeldsensors
DE1194971B (de) Magnetfeld-Messsonde mit Hallgenerator
EP0438637A1 (de) Verfahren und Anordnung zur Ermittlung eines Effektivwertes Ieff eines mit Hilfe eines Hallelementes und einer Verstärkeranordnung zu messenden Stromes
DE863109C (de) Quotientenmesser fuer Wechselstrom
DE2839123B1 (de) Spannungs-Frequenz-Wandler
DE102021201551A1 (de) Stromsensor
EP4113129A1 (de) Messverfahren zur bestimmung des stroms durch einen shunt-widerstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19901205

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920125