EP0384870B1 - Machine à tirer des noyaux de fonderie - Google Patents

Machine à tirer des noyaux de fonderie Download PDF

Info

Publication number
EP0384870B1
EP0384870B1 EP90440018A EP90440018A EP0384870B1 EP 0384870 B1 EP0384870 B1 EP 0384870B1 EP 90440018 A EP90440018 A EP 90440018A EP 90440018 A EP90440018 A EP 90440018A EP 0384870 B1 EP0384870 B1 EP 0384870B1
Authority
EP
European Patent Office
Prior art keywords
shooting
machine
firing
common
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90440018A
Other languages
German (de)
English (en)
Other versions
EP0384870A1 (fr
Inventor
André Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuhn SAS
Original Assignee
Kuhn SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuhn SAS filed Critical Kuhn SAS
Priority to AT90440018T priority Critical patent/ATE89204T1/de
Publication of EP0384870A1 publication Critical patent/EP0384870A1/fr
Application granted granted Critical
Publication of EP0384870B1 publication Critical patent/EP0384870B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C11/00Moulding machines characterised by the relative arrangement of the parts of same
    • B22C11/02Machines in which the moulds are moved during a cycle of successive operations
    • B22C11/04Machines in which the moulds are moved during a cycle of successive operations by a horizontal rotary table or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines

Definitions

  • this machine can be used to produce cores either in large series or in reduced series.
  • the machine can thus be adapted exactly to the series of cores to be manufactured, which makes it possible to obtain, in each case, the lowest possible costs and production times. Indeed, in the case of mass production, it is possible to equip all the workstations of the machine with identical core boxes. The machine will thus manufacture the same core all the time. In the case of reduced series, it is possible to equip each work station of the machine with a different box. The machine will thus simultaneously manufacture several different cores, but in a smaller quantity. Any intermediate case, situated between these two extreme cases, is of course conceivable. Thus, in the case of medium series, only a few machine stations will be fitted with identical boxes. The machine is therefore, as has just been demonstrated, very flexible in use.
  • the object of the present invention is to make the use of this known machine or of a similar machine comprising a means for supporting core boxes provided with support members which can receive several core boxes simultaneously, and of organs of 'drive intended to bring said core boxes successively into the firing zone in particular, even more flexible, without making the construction thereof more complex and while limiting its increase in cost.
  • the machine according to the present invention is characterized in that the firing device comprises several firing heads which can be used interchangeably during the same production cycle and each having its own metering device, while a unit firing is common to at least some of said firing heads, and that the sand supply means also comprises several individual sand supplies intended for supplying sand to said metering devices.
  • each firing head comprises an individual metering device and that a firing unit is common to at least some of said firing heads, it is possible to obtain a relatively simple construction. Given the fact that the firing unit represents the noble element of a firing head, this also makes it possible to limit the increased cost of the machine generated by the arrangement of several firing heads.
  • DE-C-31 48 461 there is described a machine for drawing foundry cores which in particular comprises a means for supporting core boxes provided with a support member having two fixings each intended to receive a single core box.
  • This core box support member is capable of being pivoted about a horizontal axis.
  • This known machine is moreover provided with a firing device provided with two firing tanks capable of being pivoted jointly around an axis. vertical.
  • This known machine is finally still provided with a single sand supply. Thanks to this arrangement, it is possible to change the tooling and prepare the corresponding firing head without requiring the machine to stop.
  • the adjuster dismantles the tool that was used during the previous production and assembles the new tool intended to be operational for the production following that in progress .
  • the operator prepares the non-operational firing tank for the production of cores according to that in progress.
  • the operator pivots the support member around the horizontal axis provided for this purpose, which has the effect of moving away from the work area the tooling just used and to set up the tools that will be used.
  • the operator pivots the fire tanks around the vertical axis which links them to the machine frame. In doing so, it moves the firing tank that has just been used and sets up the one that will be used. After that, the machine is again ready for operation, while the tools and the firing tank which have just been used, can be replaced, respectively prepared for the next production.
  • the support means for core boxes comprises support members which can receive several core boxes intended to be brought successively into the firing zone during the same production cycle. Besides, it It is also not expected that this machine has multiple sand supplies. Finally, it is also not explained whether the two firing tanks of this machine each have an individual metering device and that a firing unit is common to these two firing tanks.
  • CH-A-647 433 a machine for drawing foundry cores comprising a means for supporting core boxes provided with support members capable of receiving several core boxes used simultaneously during the same production cycle.
  • This known machine also furthermore comprises a device for firing cores as well as a sand supply means intended to supply sand to said firing device.
  • the firing device comprises two firing heads, each intended to supply a corresponding core box.
  • the two firing heads each have their own firing unit.
  • the metering device is common to the two firing heads.
  • This common metering device is mounted on a carriage which can, thanks to a driving device, be moved in one direction or the other along the horizontal slides. In this way, the metering device can be brought under the firing unit corresponding to the core box to be pulled, as well as under a single supply of sand.
  • the various metering devices are brought opposite the common firing unit by displacement in an at least substantially horizontal plane.
  • this displacement is a translation
  • the metering devices corresponding to a common firing unit, move together when the operating device brings one of these metering devices facing the common firing unit.
  • a single operating device can control the movement of all of the metering devices corresponding to the same firing unit.
  • At least some of said metering devices corresponding to the same firing unit, move jointly with the firing head which is operational, when the latter is moved towards or away from the core box located in the shooting area. This also greatly simplifies the construction of the machine.
  • At least some of said metering devices extend, in the position of non-use, under a supply of sand.
  • the metering device which must be brought opposite the firing unit by the operating device, is already in place for filling before being brought opposite the firing unit. Unnecessary trips and wasted time are thus avoided.
  • the sand supplies intended to supply the metering devices, extend around the common firing unit.
  • the core pulling machine (1) of the invention comprises a support means (2) for core boxes (3; 4; 5; 6).
  • This support means (2) comprises support members which are, in the example shown, formed by a table (7) on the upper face (700) of which the core boxes (3; 4; 5; 6).
  • This table (7) is substantially horizontal and can rotate around an axis of rotation (8) which extends substantially vertically.
  • the machine (1) also comprises a gantry (9) which supports a firing device (10).
  • This shooting device (10) can move at least substantially vertically to be approached and distant from the table (7).
  • the machine (1) also further includes a bracket (11) which supports a gassing head (12).
  • This gassing head (12) can also move at least substantially vertically to be approached and away from the table (7).
  • the support means (2), the gantry (9), as well as the bracket (11) are linked to a base (13) which makes it possible to seal the machine (1) on the floor of a core shop.
  • the gantry (9) also supports two hoppers (198; 199) in each of which there is a core sand reserve.
  • the hoppers (198; 199) can be fed from the central reserve of the core shop.
  • the base of each hopper (198; 199) is provided with a hatch (200), the opening and closing of which are maneuvered by a corresponding jack (201).
  • the firing device (10) firstly comprises a firing unit (202) as well as two metering devices (203; 204) which can each be brought under the firing unit (202). Each assembly (203-202; 204-202) thus forms a firing head, so that the machine shown has two firing heads.
  • the firing unit (202), as well as the metering devices (203; 204) are known (FOMES brand for example) and are therefore within the reach of ordinary skill in the art, so that they will not be described in detail.
  • the only special feature of the metering devices (203; 204) is that they each have a removable outlet nozzle (205; 206). In this way, it is possible to mount on each metering device (203; 204) outlet nozzles (205; 206) having an outlet orifice (207; 208) of different shape.
  • outlet nozzle (205) equipping the metering device (203) has an outlet orifice (207) having a cross shape
  • outlet nozzle (206) equipping the dispensing device metering (204) has an outlet (208) having a substantially circular shape.
  • the two metering devices (203; 204) are mounted on two slides (209) extending under the firing unit (202) in a plane at least substantially horizontal and parallel to each other.
  • the two metering devices (203; 204) are additionally linked to each other by means of a connecting member (210) so that they move together along said slides (209).
  • the translation of the metering devices (203; 204) along the slides (209) is achieved by an actuating cylinder (211) which is connected on the one hand to one (204) of said metering devices (203; 204 ) And on the other hand to a carriage (32) which supports the firing device (10) and which will be described in detail below.
  • said carriage (32) is provided with a console (212) on which is fixed the cylinder of the actuating cylinder (211).
  • the actuating cylinder (211) has translated the metering devices (203; 204) so that it is the metering device (203) which extends in its operational position under the unit of shot (202) and the metering device (204) extends under the corresponding hopper (199).
  • the gassing head (12) is shown in more detail in Figures 3, 4 and 5.
  • This gassing head (12) consists of a plate (20), which has on its underside (21 ) a cavity (22).
  • a counter plate (24) is fixed on the outer edge (23) of the lower face (21) of the plate (20), which delimits the cavity (22), a counter plate (24) is fixed.
  • This counter plate (24) is provided with a number of holes (25) which pass through the counter plate (24) right through and which open into the cavity (22).
  • the counter plate (24) also has on its lower face (26) a seal (27).
  • This seal (27) has holes (25 ') which correspond to the holes (25) of the counter plate (24) and which pass through the seal (27) right through.
  • a threaded hole (28) which passes through the plate (20) right through and which opens into the cavity (22).
  • the threaded hole (28) is screwed the end piece (29) of a gas supply pipe (30) which is thus fixed on the upper face (31) of the plate (20).
  • the firing device (10) can be approached from the table (7) by automatically adapting to the size of the core boxes (3; 4; 5; 6). To this end, the firing device (10) is mounted on the carriage (32).
  • the carriage (32) appears in detail in Figures 1, 2 and 6. It consists of two beams (33; 34) which are connected to each other at their upper part by two crosspieces (35; 36). Each beam (33; 34) is provided at each of its ends with a roller (37; 38). The axes of rotation (39; 40) of these rollers (37; 38) extend substantially horizontally and are contained in a plane substantially parallel to the plane (41) of the carriage (32).
  • Each beam (33; 34) is provided with two other rollers (42; 43; 44; 45) which extend, as visible in FIG. 6, between the rollers (37; 38).
  • the axes of rotation (46; 47; 48; 49) of the rollers (42; 43; 44; 45) also extend substantially horizontally, but are substantially perpendicular to the plane (41) of the carriage (32).
  • the two beams (50; 51) are linked together by a crosspiece (52).
  • the two beams (50; 51) and the cross-member (52) serve to fix the firing unit (202) on the carriage (32), so that the axis (53) of the firing unit (202 ) extends at least substantially vertically.
  • the two beams (33; 34) of the carriage (32) are also provided with a frame (213) comprising in particular two beams (54; 55) which extend substantially parallel to the beams (50; 51).
  • These two beams (54; 55) support the two slides (209) of the metering devices (203; 204) of the firing device (10), which slides (209) extend substantially parallel to the plane (41) of the carriage (32).
  • the carriage (32) which has just been described, is guided in translation in the gantry (9) thanks to the rollers (37; 38) and the rollers (42; 43; 44; 45).
  • the gantry (9) has two substantially vertical uprights (56; 57) which are linked together at their upper end by a crosspiece (58).
  • the gantry (9) thus formed is fixed on the base (13).
  • the two uprights (56; 57) of the gantry (9) are constituted by U-shaped profiles, the open part of which is directed towards the interior of the gantry (9). These two U-shaped uprights (56; 57) serve as a guide track for the rollers (37; 38) when the carriage (32) is moved in the gantry (9).
  • the rollers (42; 43; 44; 45) meanwhile roll on the rear wing (59) of the U-shaped uprights (56; 57) and serve to guide the carriage laterally (32).
  • the guide tracks of the rollers (37; 38) and (42; 43; 44; 45) can advantageously be equipped with a piece of hardened steel to prevent wear.
  • the uprights (56; 57) of the gantry (9) also have holes (60) blocked by removable covers (61). These holes (60) allow the assembly and disassembly of the rollers (37; 38) and therefore the assembly and disassembly of the carriage (32) of the gantry (9).
  • a jack (62) which is advantageously a hydraulic jack.
  • This jack (62) extends substantially in the plane (41) of the carriage (32) and is fixed on the one hand to the base (13) by means of a yoke (63) and on the other hand to the lower cross member (36) of the carriage (32) by means of another yoke (64).
  • This jack (62) is carried out by a hydraulic circuit (620) which is shown in FIG. 7.
  • This circuit is supplied by a pump (65) driven by a motor (66).
  • the pressure of the oil delivered by the pump (65) is limited by a pressure relief valve (67).
  • the circuit then comprises a distributor (68) with its four terminals (69; 70; 71; 72), its drawer with three compartments (73; 74; 75) and its two pushers (76; 77).
  • the terminal (72) of the distributor (68) is linked to the chamber (78) of the jack (62) on the rod side of the jack by a pipe (79) comprising a piloted non-return valve (80) and a pressure switch (81).
  • the terminal (71) of the distributor (68) is in turn linked to the other chamber (82) of the jack (62) by a line (83) comprising a piloted non-return valve (84) and a flow regulator ( 85).
  • the circuit which has just been described operates in the following manner.
  • the pusher (76) of the distributor (68) is excited, which brings the compartment (73) at the terminals (69; 70; 71; 72 ).
  • the oil supplied by the pump (65) then enters via the terminal (69), exits through the terminal (72), passes through the valve (80) and enters the chamber (78) on the rod side of the jack (62).
  • the oil contained in the chamber (82) is discharged when the pressure of the line (79) has opened the piloted valve (84).
  • This oil discharged from the chamber (82) of the jack (62) passes through the flow regulator (85) which regulates the speed of retraction of the jack rod (62), that is to say the speed of descent of the carriage (32) and the firing device (10).
  • the firing head (203-202; 204-202) comes into contact with the upper face (300; 400; 500; 600) of the core box (3; 4; 5; 6) to be fired, its descent is stopped as well as the retraction of the cylinder rod (62) in the cylinder of said cylinder (62).
  • the line (79) continues to be supplied, the oil contained in it increases in pressure until it reaches the setting pressure of the pressure switch (81).
  • the pressure switch (81) de-energizes the pusher (76), which has the effect of bringing the compartment (74) back to the terminals (69; 70; 71; 72).
  • the oil contained in the chambers (78; 82) of the jack (62) can no longer circulate because it is blocked by the valves (80 and 84) and the jack (62), that is to say the carriage (32) and the firing device (10) are locked.
  • the firing device (10) After firing the core, the firing device (10) must be raised, that is to say that the rod of the jack (62) must come out of the cylinder. To do this, the pusher (77) is excited, which has the effect of bringing the compartment (75) to the level of the terminals (69; 70; 71; 72).
  • the oil supplied by the pump (65) enters through the terminal (69), exits through the terminal (71), passes through the valve (84) and through the non-return valve (87) which short-circuits in this direction the flow regulator (85) to enter the chamber (82) of the jack (62), as soon as the pressure in the line (83) has piloted the opening of the valve (80) of the line (79) so that the oil contained in the chamber (78) of the jack (62) can return to the reservoir (86).
  • the firing device (10) can automatically adapt to core boxes (3; 4; 5; 6) of very different dimensions, since it is the core box itself which triggers the stopping of the descent of the firing device (10). It is also the core box which automatically locks the firing device (10) during the firing of the core. This is very important because it allows the machine to absorb the shock generated when firing the core.
  • the gassing head (12) can also be approached from the table (7) by automatically adapting to the size of the core boxes (3; 4; 5; 6). To this end, the gassing head (12) is fixed to the free end of the rod (88) of a jack (89) which is advantageously a pneumatic jack. The cylinder (90) of the jack (89) is fixed to the bracket (11). The connection between the free end of the rod (88) of the jack (89) and the gassing head (12) appears in more detail in FIGS. 3, 4 and 5.
  • the second part (98) of the screw rod (95) is threaded so that the screws (95) can be screwed into threaded holes (100) arranged in the upper face (31) of the plate (20), up to 'so that the shoulder (99) abuts on the upper face (31) of the plate (20).
  • the head (96) of the screws (95) is thus at a certain distance from the upper face (31) of the plate (20).
  • the diameter of the holes (94) of the flange (92) of the flange (91) is somewhat larger than the diameter of the first part (97) of the screws (95).
  • the thickness of the flange (92) is less than the distance which separates the lower face of the heads (96) from the screws (95) and the upper face (31) of the plate (20).
  • the plate (20) is provided with a guide (104) fixed on the plate (20) and which passes through a guide hole made in the stem (11).
  • the longitudinal axis of the guide (104) is substantially parallel to the longitudinal axis of the rod (88) of the jack (89), that is to say substantially vertical.
  • the gassing head (12) and its adaptation means which allow the gassing head (12) to automatically adapt to the size of the core boxes (3; 4; 5; 6) operate in the following manner.
  • a core box (3; 4; 5; 6) is in the gassing position (the core box (6) for example in FIGS. 1 and 2), the jack (89) is supplied, which causes the lowering of the gassing head (12) towards the core box.
  • the seal (27) comes into contact with the upper face (300; 400; 500; 600) of the core box, the descent of the plate (20) stops.
  • the cylinder (89) on the other hand continues to push on the flange (91) until the lower face (103) of the flange (92) of the flange (91) comes into contact with the upper face (31) of the plate (20).
  • the thrust of the jack (89) on the upper face (31) of the plate (20) then compresses the seal (27) between the lower face (26) of the counter plate (24) and the upper face (300; 400 ; 500; 600) of the core box to prevent gas leakage.
  • the seal (27) is correctly compressed, the descent of the rod (88) of the jack (89) stops and the pressure is maintained in the jack (89) so that the seal (27) remains properly compressed throughout the gassing operation. This gassing operation only begins when the gassing head (12) is in place.
  • this detector (101) detects the upper face (31) of the plate (20) when the lower face (103) of the flange (92) of the flange (91) comes substantially close to the upper face (31) of the plate (20) (position shown in Figure 5 which shows the gassing position). Given the possible relative movement between the flange (92) of the flange (91) and the plate (20), this is effectively achieved only when the gassing head (12) is in contact with the upper face (300; 400; 500; 600) of the core box. During the approach phase, on the other hand, the detection of the upper face (31) of the plate (20) cannot take place since the upper face (31) of the plate (20) is too far from the lower face (102 ) of the detector (101) (position shown in Figure 3).
  • the gas is brought through the supply line (30) into the cavity (22) from where it is then distributed through the holes (25) of the counterplate (24) and the holes (25 ') of the seal (27) in the gas core box.
  • the gassing head (12) is raised after the gassing operation, the duration of which is programmed as a function of the size of the core. This programming is done on a computer (197) which will be discussed later.
  • the gassing head (12) as previously the firing device (10), can automatically adapt to core boxes (3; 4; 5; 6) of very large size. different since it is the core box itself which triggers the stop of the descent of the gassing head (12) and the triggering of the gassing operation.
  • the support means (2) is shown in Figures 1, 2, 8, 9, 10 and 11, and comprises as said above a table (7).
  • This table (7) is preferably circular and as said above extends substantially in a horizontal plane and can rotate around a substantially vertical axis (8).
  • the table (7) has for this purpose substantially at its center, a pivot (105) which extends downwards and whose longitudinal axis coincides with the axis of rotation (8).
  • the pivot (105) engages in a bearing (106) which is fixed on the base (13).
  • the pivot (105) in the bearing (106) is guided in rotation by means of a bearing (107) which extends to the upper part (108) of the bearing (106), and to the using a rolling stop (109) extending to the lower part (110) of said bearing (106).
  • the rolling stop (109) also maintains the pivot (105) axially downward.
  • the bearing (106) does not extend to the lower face (111) of the table (7), so that between the upper part (108) of the bearing (106) and the lower face (111) of the table (7), the pivot (105) can rotationally support a lever (112).
  • the lever (112) is guided on the pivot (105) by two bearings (113; 114) housed in a hub (115) which includes the lever (112). A certain distance is maintained between the lever (112) and the bearing (106) by a spacer (116).
  • the lever (112) has two arms (117; 118), one of which (117) extends on one side of the hub (115) and the other (118) of which extends on the other side of said hub (115).
  • the arm (117) of the lever (112) is linked to the rod (120) of a jack (121) by means of an axis (122).
  • the cylinder (123) of the jack (121) is in turn linked in an articulated manner using a pin (124) to an upright (125) integral with the base (13).
  • the arm (118) supports on its free end (126) a jack (127) whose cylinder (128) is fixed on the arm (118).
  • the free end of the rod (129) of the jack (127) is integral with a V-shaped part (130) whose V is open towards the outside.
  • the V-shaped part (130) collaborates with an index (131) secured to the table (7).
  • This index (131) is constituted by a cylindrical stud which, when it collaborates with the V-shaped part (130), extends between the wings of said V.
  • the table (7) has four indexes (131).
  • the number of indexes (131) that the table (7) comprises corresponds to the number of core boxes (3; 4; 5; 6) intended to be supported simultaneously by the table (7).
  • the table (7) can simultaneously support four core boxes.
  • the disassembly the extraction of the drawn and gassed cores and the reassembly of the core boxes are carried out.
  • (133) corresponds to an intermediate position.
  • the core is fired and in (135) the core is gassed.
  • Another cylinder (136) is also provided to collaborate with an index (131) of the table (7).
  • the cylinder (137) of this jack (136) is fixed on an upright (138) integral with the base (13).
  • the free end of the rod (139) of said cylinder (136) also includes a V-shaped part (140) similar to the V-shaped part (130) of the cylinder (127).
  • the jack (127) collaborates with an index (131) to rotate the table (7) around the axis of rotation (8) while the jack (136) collaborates with an index (131) during work to block the rotation of the table (7).
  • the drive cylinder (127) is actuated so that the V-shaped drive piece (130) is brought together with an index (131) of the table (7).
  • the blocking cylinder (136) which is actuated to separate the V-shaped blocking part (140) from the index (131) with which it collaborated.
  • the actuator (121) which is actuated so as to bring out its rod (120). In doing so, the rod (120) pushes on the arm (117) of the lever (112) causing the rotation of the latter around the axis (8).
  • FIGS. 9, 10 and 11 it can be seen that the table (7) still rests on supports (141) at least one of which extends in the zone (134) of the firing device (10) substantially in the axis (53) of the firing unit (202).
  • This support (141) allows the table (7) to absorb the shock generated during the firing of the core. (In Figure 1, the supports (141) have not been shown so as not to clutter the figure).
  • the supports (141) are three in number and are located equidistant from each other. They consist of rollers (142) which are fixed to the upper part of uprights (143) integral with the base (13), as shown in FIGS. 10 and 11.
  • the rollers (142) rotate around axes ( 144) substantially horizontal and substantially cutting the axis of rotation (8) of the table (7).
  • the uprights (143) are formed by U-shaped profiles.
  • Each upright (143) is provided at its upper part with a roller-bearing arm (145) which extends between the two wings (146; 147) of the U-shaped profile.
  • the roller support arm (145) rotatably supports the roller (142).
  • the roller support arm (145) is provided with an oblong hole (148) which is crossed by a bolt (149). This bolt (149) also also passes through a hole (150) in the core (151) of the upright (143). At its lower end, the roller arm (145) is in contact with a screw adjustment (152) which is screwed into a nut (153) integral with the upright (143).
  • each roller (142) can be adjusted relative to the table (7).
  • loosen the bolt (149) then push on the lower end of the roller support arm (145) by means of the adjustment screw (152) , which will cause the roller arm (145) to slide in the upright (143).
  • This sliding is possible, since the hole (148) provided in the roller support arm (145) and which is crossed by the bolt (149) is an oblong hole.
  • FIG. 12 and 13 show an embodiment of holding means (154) of the core boxes (3; 4; 5; 6). These holding means (154) hold the core boxes during work. Since they are identical, we will only describe one of them. (In FIG. 12, for the sake of clarity of the figure, only the holding devices (154) of the stations (181 and 183) are shown).
  • the holding means (154) comprises a jaw holder (155) which is provided with two jaws (156; 157).
  • Each jaw holder (155) comprises a bearing (158) integral with two wings (159; 160) so that, when viewed from above, the two wings (159; 160) form a U open towards the outside.
  • the bearing (158) is open so as to form a clamp (161) which can be tightened by a bolt (162).
  • the bearing (158) of the jaw holder (155) is slid over a peg (163) fixed on the upper face of the table (7).
  • the jaw holder (155) also comprises above the bearing (158) an actuating cylinder (164) which is fixed on top of the bearing (158) of the jaw holder (155).
  • the operating cylinder (164) is closed at its upper part (165).
  • This closed upper part (165) is crossed by an operating screw (166) which is screwed into a threaded hole (167) arranged in the longitudinal axis of the stud (163).
  • the operating screw (166) is linked in translation to the operating cylinder (164) and on its part which protrudes from the operating cylinder (164), an operating handwheel (168) is fixed.
  • the device which has just been described makes it possible to adjust the position of the jaw holder (155) and consequently of the jaws (156; 157) relative to the dimension of the core box which they must maintain. To do this, simply loosen the bolt (162) to open the clamp (161), then turn the operating screw (166) using the handwheel (168) to enter or exit the operating screw (166) of the piton (163). When the jaws (156; 157) have reached the correct position relative to the core box, it will suffice to tighten the clamp (161) by blocking the bolt (162).
  • One (169) of the slides has a number of holes (174), into which two pins (175) can be threaded on either side of one (156) of the jaws and which will be used to link in translation one (156) of the jaws to one (169) of the slides.
  • the core box intended for this holding means (154) will always be substantially in the same place on the table (7), that is to say advantageously centered relative to the firing head (203 - 202; 204 - 202) and at the gassing head (12).
  • the jaws (156; 157) are closed by operating the jack (171) so as to bring its rod (173) into its cylinder (172). This will move the jaw (157) which can slide freely on the slides (169; 170) until it comes into contact with the core box to be maintained. Maintaining the core box is achieved by maintaining, for example, the pressure in the cylinder (171).
  • the jaw (157) comprises a swiveling clamping plate (176).
  • the jaw (157) comprises a yoke (177) fixed on its connecting part (178) to the slides (169; 170).
  • the clamping plate (176) is linked the clamping plate (176) by means of a ball joint (179).
  • the swiveling clamping plate (176) can well be positioned relative to the core box if the latter does not have parallel faces. This guarantees optimal maintenance of the core box.
  • each station (180; 181; 182; 183) is provided with an index (184; 185; 186; 187) which is fixed on the table (7).
  • These indexes (184; 185; 186; 187) are arranged on circles (188; 189; 190; 191) of different radius and are centered on the axis of rotation (8) of the table (7).
  • These indexes (184; 185; 186; 187) pass during the rotation of the table (7) which is always done in the same direction (192), above sensors (193; 194; 195; 196) which are fixed on the base (13) and which therefore do not rotate with the table (7).
  • Each sensor (193; 194; 195; 196) is located at a distance from the axis of rotation (8) of the table (7) equal to the radius of the circle (188; 189; 190; 191) on which the corresponding index (184; 185; 186; 187).
  • the computer (197) controls the jack (211) which brings, under the firing unit (202), the metering device (203; 204) intended to supply said core box (3; 4; 5; 6) and which will have been previously supplied with sand by the hopper (198; 199) corresponding.
  • the nozzles (205; 206) of the metering devices (203; 204) have outlet orifices (207; 208) of different shape. It will however be understood that in the invention, these outlet orifices (207; 208) can be of the same shape.
  • the hoppers (198; 199) may contain different sands.
  • the machine is equipped to support a number of core boxes other than four.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)
  • Mold Materials And Core Materials (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Discharge Of Articles From Conveyors (AREA)
  • Chutes (AREA)
  • Feeding Of Workpieces (AREA)
  • Magnetic Heads (AREA)

Description

  • La présente invention concerne une machine à tirer des noyaux de fonderie comportant notamment :
    • un dispositif de tir destiné au tir des noyaux,
    • un moyen d'alimentation en sable destiné à fournir du sable audit dispositif de tir, et
    • un moyen de support de boîtes à noyau muni d'organes de support qui peuvent recevoir simultanément plusieurs boîtes à noyau, et d'organes d'entraînement destinés notamment à amener lesdites boîtes à noyau successivement dans la zone de tir en regard du dispositif de tir.
  • Une telle machine à tirer des noyaux de fonderie est décrite dans le EP-A-0 238 428. Cette machine connue est particulièrement polyvalente et permet de rendre la fabrication des noyaux relativement souple.
  • En effet, il y a d'abord lieu de noter qu'elle permet de produire simultanément différents noyaux, de sorte que si une pièce à mouler comporte plusieurs noyaux, la coulée des pièces peut débuter sensiblement en même temps que la fabrication des noyaux, tout en n'utilisant qu'une seule machine.
  • En sus, cette machine peut servir à produire des noyaux indifféremment en grandes séries ou en séries réduites. La machine peut ainsi être adaptée exactement aux séries de noyaux à fabriquer, ce qui permet d'obtenir, dans chaque cas, les coûts et les temps de production les plus faibles possible. En effet, dans le cas de production en grande série, il est possible d'équiper tous les postes de travail de la machine avec des boîtes à noyau identiques. La machine fabriquera ainsi tout le temps le même noyau. Dans le cas de séries réduites, il est possible d'équiper chaque poste de travail de la machine avec une boîte différente. La machine fabriquera ainsi simultanément plusieurs noyaux différents, mais en quantité plus réduite. Tout cas intermédiaire, situé entre ces deux cas extrêmes, est bien entendu envisageable. Ainsi, en cas de séries moyennes, on n'équipera que quelques postes de la machine avec des boîtes identiques. La machine est donc, tel que cela vient d'être démontré, d'une grande souplesse d'utilisation.
  • La présente invention a pour objectif de rendre l'utilisation de cette machine connue ou d'une machine similaire comportant un moyen de support de boîtes à noyau muni d'organes de support qui peuvent recevoir simultanément plusieurs boîtes à noyau, et d'organes d'entraînement destinés à amener lesdites boîtes à noyau successivement dans la zone de tir notamment, encore plus flexible, sans pour autant complexifier la construction de celle-ci et tout en limitant son renchérissement.
  • A cet effet, la machine selon la présente invention est caractérisée par le fait que le dispositif de tir comporte plusieurs têtes de tir pouvant être utilisées indifféremment durant le même cycle de production et possédant chacune un dispositif de dosage propre, tandis qu'une'unité de tir est commune à quelques unes au moins desdites têtes de tir, et que le moyen d'alimentation en sable comporte également plusieurs alimentations en sable individuelles destinées à l'approvisionnement en sable desdits dispositifs de dosage.
  • Grâce à cette caractéristique, il est possible, durant le même cycle de production, de tirer des noyaux avec des sables différents et/ou de tirer des noyaux de formes très différentes nécessitant des buses de sortie du sable du dispositif de dosage des têtes de tir de formes différentes.
  • Le fait de pouvoir tirer des noyaux avec des sables différents est extrêmement intéressant. En effet, dans la machine de l'art antérieur, un changement de sable nécessite un arrêt de la machine et un nettoyage du moyen d'alimentation en sable, ainsi que du dispositif de dosage du dispositif de tir, ce qui entraîne un temps d'installation relativement long. Dans la machine selon la présente invention, par contre, il suffit simplement d'alimenter chaque boîte à noyau avec la tête de tir adéquate.
  • Comme il est par ailleurs prévu que chaque tête de tir comporte un dispositif de dosage individuel et qu'une unité de tir soit commune à quelques unes au moins desdites têtes de tir, il est possible d'obtenir une construction relativement simple. Compte tenu du fait que l'unité de tir représente l'élément noble d'une tête de tir, ceci permet également de limiter le renchérissement de la machine engendré par l'agencement de plusieurs têtes de tir.
  • Dans le DE-C-31 48 461 est décrite une machine à tirer des noyaux de fonderie qui comporte notamment un moyen de support de boîtes à noyau muni d'un organe de support présentant deux fixations destinées chacune à recevoir une seule boîte à noyau. Cet organe de support de boîtes à noyau est susceptible d'être pivoté autour d'un axe horizontal. Cette machine connue est par ailleurs dotée d'un dispositif de tir muni de deux réservoirs de tir susceptibles, eux, d'être pivotés conjointement autour d'un axe vertical. Cette machine connue est enfin encore munie d'une seule alimentation en sable. Grâce à cet agencement, il est possible de procéder à un changement de l'outillage et à la préparation de la tête de tir correspondante sans que cela nécessite un arrêt de la machine. En effet, pendant que la machine produit des noyaux avec un outillage et la tête de tir respective, le régleur démonte l'outillage qui a servi lors de la production précédente et monte le nouvel outillage destiné à être opérationnel pour la production suivant celle en cours. De même, tout en continuant la production en cours, l'opérateur apprête le réservoir de tir non opérationnel pour la production de noyaux suivant celle en cours. Ainsi, lorsque la production en cours est achevée, l'opérateur pivote l'organe de support autour de l'axe horizontal prévu à cet effet, ce qui a pour conséquence d'éloigner de la zone de travail l'outillage venant de servir et de mettre en place l'outillage qui va servir. De même, l'opérateur pivote les réservoirs de tir autour de l'axe vertical qui lie ceux-ci au bâti de la machine. Ce faisant, il éloigne le réservoir de tir qui vient de servir et met en place celui qui va servir. Après cela, la machine est à nouveau prête à fonctionner, tandis que l'outillage et le réservoir de tir qui viennent d'être utilisés, peuvent être remplacés, respectivement apprêtés pour la production suivante.
  • Ainsi, dans cette machine connue, il n'est pas prévu que le moyen de support de boîtes à noyau comporte des organes de support qui peuvent recevoir plusieurs boîtes à noyau destinées à être amenées successivement dans la zone de tir durant le même cycle de production. Du reste, il n'est pas non plus prévu que cette machine comporte plusieurs alimentations en sable. Il n'est enfin pas non plus expliqué si les deux réservoirs de tir de cette machine comportent chacun un dispositif de dosage individuel et qu'une unité de tir est commune à ces deux réservoirs de tir.
  • Dans la CH-A-647 433 est décrite une machine à tirer des noyaux de fonderie comportant un moyen de support de boîtes à noyau muni d'organes de support pouvant recevoir plusieurs boîtes à noyau utilisées simultanément durant le même cycle de production. Cette machine connue comporte par ailleurs également un dispositif de tir des noyaux ainsi qu'un moyen d'alimentation en sable destiné à fournir du sable audit dispositif de tir. Le dispositif de tir comporte deux têtes de tir, chacune destinée à alimenter une boîte à noyau correspondante. Les deux têtes de tir comportent chacune une unité de tir propre. Le dispositif de dosage, par contre, est commun aux deux têtes de tir. Ce dispositif de dosage commun est monté sur un chariot pouvant, grâce à un dispositif d'entraînement, être déplacé dans un sens ou dans l'autre le long des glissières horizontales. De cette sorte, le dispositif de dosage peut être amené sous l'unité de tir correspondant à la boîte à noyau à tirer, ainsi que sous une alimentation de sable unique.
  • Une réalisation extrêmement simple d'une machine à tirer des noyaux de fonderie selon l'invention est obtenue lorsque l'unité de tir commune est fixe et que le dispositif de dosage, adapté à la boîte à noyau à tirer, est amené en regard de ladite unité de tir commune par un dispositif de manoeuvre. Grâce à cette caractéristique, il est extrêmement aisé d'agencer les différentes alimentations en sable des têtes de tir.
  • Avantageusement, les différents dispositifs de dosage sont amenés en regard de l'unité de tir commune par déplacement dans un plan au moins sensiblement horizontal.
  • Selon une réalisation préférentielle, ce déplacement est une translation.
  • Selon une autre caractéristique supplémentaire de l'invention, les dispositifs de dosage, correspondant à une unité de tir commune, se déplacent conjointement lorsque le dispositif de manoeuvre amène l'un de ces dispositifs de dosage en regard de l'unité de tir commune. Dans ce cas, un seul dispositif de manoeuvre peut commander le déplacement de l'ensemble des dispositifs de dosage correspondant à une même unité de tir.
  • Selon une autre caractéristique supplémentaire de l'invention, quelques uns au moins desdits dispositifs de dosage, correspondant à une même unité de tir, se déplacent conjointement avec la tête de tir qui est opérationnelle, lorsque celle-ci est déplacée vers ou éloignée de la boîte à noyau qui se trouve dans la zone de tir. Ceci simplifie également grandement la construction de la machine.
  • Selon une autre caractéristique supplémentaire de l'invention, quelques uns au moins desdits dispositifs dosage,s'étendent, dans la position de non-utilisation, sous une alimentation de sable. Ainsi, le dispositif de dosage qui doit être amené en regard de l'unité de tir par le dispositif de manoeuvre, est déjà en place pour le remplissage avant d'être amené en regard de l'unité de tir. Des déplacements inutiles et des pertes de temps sont ainsi évités.
  • Dans une construction particulièrement intéressante, les alimentations de sable, destinées à alimenter les dispositifs de dosage, s'étendent autour de l'unité de tir commune.
  • L'invention sera mieux comprise à la lecture de la description suivante d'un exemple de réalisation non limitatif faite à la lumière du dessin annexé sur lequel :
    • la figure 1 représente une vue de face schématique d'une machine à tirer des noyaux selon l'invention ;
    • la figure 2 représente une vue suivant la flèche II (figure 1), partiellement en coupe, de la machine de la figure 1 ;
    • la figure 3 représente une vue de face en coupe suivant III (figure 4) de la tête de gazage ;
    • la figure 4 représente une vue de dessus de la tête de gazage de la figure 3, partiellement en coupe ;
    • la figure 5 représente une vue de face de la tête de gazage des figures 3 et 4, en position de gazage ;
    • la figure 6 représente une vue suivant la flèche VI (figure 2) du portique et du chariot du dispositif de tir ;
    • la figure 7 représente le schéma du circuit hydraulique du vérin de descente et de montée du dispositif de tir ;
    • la figure 8 représente une vue de face en coupe suivant VIII (figure 9) du moyen de support ;
    • la figure 9 représente une vue de dessus partiellement en coupe suivant IX (figure 8) du moyen de support représenté sur la figure 8 ;
    • la figure 10 représente une vue en coupe suivant X (figure 11) d'un appui de la table du moyen de support ;
    • la figure 11 représente une vue suivant la flèche XI (figure 10) de l'appui représenté sur la figure 10 ;
    • la figure 12 représente une vue partielle suivant XII (figure 13) partiellement en coupe des moyens de maintien des boîtes à noyau sur la table du moyen de support ;
    • la figure 13 représente une vue de dessus partiellement en coupe suivant XIII (figure 12) des moyens de maintien de la figure 12 et de la table du moyen de support ;
    • la figure 14 représente une vue en coupe suivant XIV (figure 1) du dispositif de tir ; et
    • la figure 15 représente une vue de face partielle du dispositif de tir dans laquelle les dispositifs de dosage des têtes de tir ont été translatés.
  • La machine à tirer des noyaux (1) de l'invention comporte un moyen de support (2) de boîtes à noyau (3 ; 4 ; 5 ; 6). Ce moyen de support (2) comporte des organes de support qui sont, dans l'exemple représenté, formés par une table (7) sur la face supérieure (700) de laquelle sont posées les boîtes à noyau (3 ; 4 ; 5 ; 6). Cette table (7) est sensiblement horizontale et peut tourner autour d'un axe de rotation (8) qui s'étend sensiblement verticalement.
  • La machine (1) comporte par ailleurs un portique (9) qui supporte un dispositif de tir (10). Ce dispositif de tir (10) peut se déplacer au moins sensiblement verticalement pour être approché et éloigné de la table (7).
  • La machine (1) comporte par ailleurs également une potence (11) qui supporte une tête de gazage (12). Cette tête de gazage (12) peut également se déplacer au moins sensiblement verticalement pour être approchée et éloignée de la table (7).
  • Le moyen de support (2), le portique (9), ainsi que la potence (11) sont liés à un socle (13) qui permet de sceller la machine (1) sur le sol d'un atelier de noyautage.
  • Sur la figure 1, on voit encore que le portique (9) supporte aussi deux trémies (198 ; 199) dans chacune desquelles se trouve une réserve de sable à noyau. Les trémies (198 ; 199) peuvent être alimentées par la réserve centrale de l'atelier de noyautage. La base de chaque trémie (198 ; 199) est munie d'une trappe (200) dont l'ouverture et la fermeture sont manoeuvrées par un vérin (201) correspondant.
  • Le dispositif de tir (10) comporte tout d'abord une unité de tir (202) ainsi que deux dispositifs de dosage (203 ; 204) qui peuvent chacun être amenés sous l'unité de tir (202). Chaque ensemble (203-202 ; 204-202) forme ainsi une tête de tir, de sorte que la machine représentée comporte deux têtes de tir. L'unité de tir (202), ainsi que les dispositifs de dosage (203 ; 204) sont connus (de marque FOMES par exemple) et sont par conséquent à la portée de l'homme de l'art, de sorte qu'ils ne seront pas décrits dans le détail. La seule particularité des dispositifs de dosage (203 ; 204) réside dans le fait qu'ils comportent chacun une buse de sortie (205 ; 206) amovible. De cette sorte, il est possible de monter sur chaque dispositif de dosage (203 ; 204) des buses de sortie (205 ; 206) présentant un orifice de sortie (207 ; 208) de forme différente. Sur la figure 14, on voit que la buse de sortie (205) équipant le dispositif de dosage (203) possède un orifice de sortie (207) ayant une forme en croix, alors que la buse de sortie (206) équipant le dispositif de dosage (204) possède un orifice de sortie (208) ayant une forme essentiellement circulaire.
  • Les deux dispositifs de dosage (203 ; 204) sont montés sur deux glissières (209) s'étendant sous l'unité de tir (202) dans un plan au moins sensiblement horizontal et parallèlement l'une à l'autre. Les deux dispositifs de dosage (203 ; 204) sont en sus liés entre eux au moyen d'un organe de liaison (210) de telle sorte qu'ils se déplacent conjointement le long desdites glissières (209). La translation des dispositifs de dosage (203 ; 204) le long des glissières (209) est réalisé par un vérin de manoeuvre (211) qui est lié d'une part à l'un (204) desdits dispositifs de dosage (203 ; 204) et d'autre part à un chariot (32) qui supporte le dispositif de tir (10) et qui sera décrit en détail plus loin. A cet effet, ledit chariot (32) est muni d'une console (212) sur laquelle est fixé le cylindre du vérin de manoeuvre (211).
  • Sur la figure 1, il apparaît très clairement que les deux trémies (198 ; 199) entourent l'unité de tir (202) ou plus précisément s'étendent de part et d'autre de ladite unité de tir (202). Il apparaît également, lorsque l'un des dispositifs de dosage (203 ; 204) s'étend dans sa position opérationnelle sous l'unité de tir (202), que l'autre desdits dispositifs de dosage (203 ; 204) s'étend sous la trémie (198 ; 199) correspondante. Sur la figure 1, on a représenté le dispositif de dosage (204) en position opérationnelle sous l'unité de tir (202) et le dispositif de dosage (203) en position de non-utilisation sous la trémie (198) correspondante. Sur la figure 15 par contre le vérin de manoeuvre (211) a translaté les dispositifs de dosage (203 ; 204) de telle sorte que ce soit le dispositif de dosage (203) qui s'étende dans sa position opérationnelle sous l'unité de tir (202) et que le dispositif de dosage (204) s'étende sous la trémie (199) correspondante.
  • La tête de gazage (12) quant à elle, est représentée plus en détail sur les figures 3, 4 et 5. Cette tête de gazage (12) se compose d'une plaque (20), laquelle comporte à sa face inférieure (21) une cavité (22). Sur le bord extérieur (23) de la face inférieure (21) de la plaque (20), qui délimite la cavité (22), est fixée une contre-plaque (24). Cette contre-plaque (24) est munie d'un certain nombre de trous (25) qui traversent la contre-plaque (24) de part en part et qui débouchent dans la cavité (22). La contre-plaque (24) comporte également sur sa face inférieure (26) un joint (27). Ce joint (27) comporte des trous (25') qui correspondent aux trous (25) de la contre-plaque (24) et qui traversent le joint (27) de part en part. Dans la plaque (20) est par ailleurs aménagé un trou fileté (28) qui traverse la plaque (20) de part en part et qui débouche dans la cavité (22). Dans le trou fileté (28) est vissé l'embout (29) d'une conduite (30) d'amenée de gaz qui est ainsi fixée sur la face supérieure (31) de la plaque (20).
  • Comme dit plus haut, le dispositif de tir (10) peut être approché de la table (7) en s'adaptant automatiquement à la dimension des boîtes à noyau (3 ; 4 ; 5 ; 6). A cet effet, le dispositif de tir (10) est monté sur le chariot (32).
  • Le chariot (32) apparaît en détail sur les figures 1, 2 et 6. Il se compose de deux longerons (33 ; 34) qui sont liés entre eux à leur partie supérieure par deux traverses (35 ; 36). Chaque longeron (33 ; 34) est muni à chacune de ses extrémités d'un galet (37 ; 38). Les axes de rotation (39 ; 40) de ces galets (37 ; 38) s'étendent sensiblement horizontalement et sont contenus dans un plan sensiblement parallèle au plan (41) du chariot (32).
  • Chaque longeron (33 ; 34) est muni de deux autres galets (42 ; 43 ; 44 ; 45) qui s'étendent, comme visible sur la figure 6, entre les galets (37 ; 38). Les axes de rotation (46 ; 47 ; 48 ; 49) des galets (42 ; 43 ; 44 ; 45) s'étendent également sensiblement horizontalement, mais sont sensiblement perpendiculaires au plan (41) du chariot (32).
  • Sur la traverse inférieure (36) du chariot (32) sont fixées deux poutres (50 ; 51) sensiblement horizontales et dont l'axe longitudinal s'étend sensiblement perpendiculairement au plan (41) du chariot (32). A leur extrémité éloignée de la traverse (36), les deux poutres (50 ; 51) sont liées entre elles par une traverse (52). Les deux poutres (50 ; 51) et la traverse (52) servent à fixer l'unité de tir (202) sur le chariot (32), de telle sorte que l'axe (53) de l'unité de tir (202) s'étende au moins sensiblement verticalement.
  • Les deux longerons (33 ; 34) du chariot (32) sont également munis d'un cadre (213) comportant notamment deux poutrelles (54 ; 55) qui s'étendent sensiblement parallèlement aux poutres (50 ; 51). Ces deux poutrelles (54 ; 55) supportent les deux glissières (209) des dispositifs de dosage (203 ; 204) du dispositif de tir (10), lesquelles glissières (209) s'étendent sensiblement parallèlement au plan (41) du chariot (32).
  • Le chariot (32) qui vient d'être décrit, est guidé en translation dans le portique (9) grâce aux galets (37 ; 38) et aux galets (42 ; 43 ; 44 ; 45). A cet effet, le portique (9) comporte deux montants (56 ; 57) sensiblement verticaux qui sont liés entre eux à leur extrémité supérieure par une traverse (58). Le portique (9) ainsi formé est fixé sur le socle (13).
  • Les deux montants (56 ; 57) du portique (9) sont constitués par des profilés en U dont la partie ouverte est dirigée vers l'intérieur du portique (9). Ces deux montants (56 ; 57) en U servent de piste de guidage aux galets (37 ; 38) lorsque le chariot (32) est déplacé dans le portique (9). Les galets (42 ; 43 ; 44 ; 45) quant à eux roulent sur l'aile arrière (59) des montants en U (56 ; 57) et servent à guider latéralement le chariot (32). Les pistes de guidage des galets (37 ; 38) et (42 ; 43 ; 44 ; 45) peuvent avantageusement être équipées d'une pièce en acier trempé pour éviter l'usure.
  • Les montants (56 ; 57) du portique (9) comportent encore des trous (60) bouchés par des couvercles démontables (61). Ces trous (60) permettent le montage et le démontage des galets (37 ; 38) et de ce fait le montage et le démontage du chariot (32) du portique (9).
  • Le déplacement du chariot (32) avec le dispositif de tir (10) dans le portique (9) est effectué par un vérin (62) qui est avantageusement un vérin hydraulique. Ce vérin (62) s'étend sensiblement dans le plan (41) du chariot (32) et est fixé d'une part au socle (13) au moyen d'une chape (63) et d'autre part à la traverse inférieure (36) du chariot (32) au moyen d'une autre chape (64).
  • L'alimentation de ce vérin (62) est effectuée par un circuit hydraulique (620) qui est représenté sur la figure 7.
  • Ce circuit est alimenté par une pompe (65) entraînée par un moteur (66). La pression de l'huile débitée par la pompe (65) est limitée par un limiteur de pression (67). Le circuit comporte ensuite un distributeur (68) avec ses quatre bornes (69 ; 70 ; 71 ; 72), son tiroir à trois compartiments (73 ; 74 ; 75) et ses deux poussoirs (76 ; 77). La borne (72) du distributeur (68) est liée à la chambre (78) du vérin (62) côté tige du vérin par une conduite (79) comportant un clapet anti-retour piloté (80) et un pressostat (81). La borne (71) du distributeur (68) est quant à elle liée à l'autre chambre (82) du vérin (62) par une conduite (83) comportant un clapet anti-retour piloté (84) et un régulateur de débit (85).
  • Le circuit qui vient d'être décrit fonctionne de la manière suivante. Pour approcher le dispositif de tir (10) de la boîte à noyau à tirer, on excite le poussoir (76) du distributeur (68), ce qui amène le compartiment (73) au niveau des bornes (69 ; 70 ; 71 ; 72). L'huile débitée par la pompe (65) entre alors par la borne (69), sort par la borne (72), traverse le clapet (80) et entre dans la chambre (78) côté tige du vérin (62). L'huile contenue dans la chambre (82) est refoulée lorsque la pression de la conduite (79) a ouvert le clapet piloté (84). Cette huile refoulée de la chambre (82) du vérin (62) traverse le régulateur de débit (85) qui règle la vitesse de rentrée de la tige du vérin (62), c'est-à-dire la vitesse de descente du chariot (32) et du dispositif de tir (10).
  • Lorsque la tête de tir (203-202 ; 204-202) arrive en contact avec la face supérieure (300 ; 400 ; 500 ; 600) de la boîte à noyau (3 ; 4 ; 5 ; 6) à tirer, sa descente est arrêtée de même que la rentrée de la tige du vérin (62) dans le cylindre dudit vérin (62). Comme on continue d'alimenter la conduite (79), l'huile contenue dans celle-ci monte en pression jusqu'à atteindre la pression de tarage du pressostat (81). A cet instant, le pressostat (81) désexcite le poussoir (76), ce qui a pour effet de ramener le compartiment (74) au niveau des bornes (69 ; 70 ; 71 ; 72). Ce faisant, l'huile contenue dans les chambres (78 ; 82) du vérin (62) ne peut plus circuler car elle est bloquée par les clapets (80 et 84) et le vérin (62), c'est-à-dire le chariot (32) et le dispositif de tir (10) sont verrouillés. L'huile que la pompe (65) continue de débiter, retourne directement au réservoir (86).
  • Après le tir du noyau, il faut faire remonter le dispositif de tir (10), c'est-à-dire que la tige du vérin (62) doit ressortir du cylindre. Pour ce faire, on excite le poussoir (77), ce qui a pour effet d'amener le compartiment (75) au niveau des bornes (69 ; 70 ; 71 ; 72). L'huile débitée par la pompe (65) entre par la borne (69), sort par la borne (71), passe par le clapet (84) et par le clapet anti-retour (87) qui court-circuite dans ce sens le régulateur de débit (85) pour entrer dans la chambre (82) du vérin (62), dès que la pression dans la conduite (83) aura piloté l'ouverture du clapet (80) de la conduite (79) pour que l'huile contenue dans la chambre (78) du vérin (62) puisse retourner au réservoir (86).
  • Grâce à cet agencement, on voit donc que le dispositif de tir (10) peut s'adapter automatiquement à des boîtes à noyau (3 ; 4 ; 5 ; 6) de dimension très différente, étant donné que c'est la boîte à noyau elle-même qui déclenche l'arrêt de la descente du dispositif de tir (10). C'est également la boîte à noyau qui verrouille automatiquement le dispositif de tir (10) pendant le tir du noyau. Ceci est très important car cela permet à la machine de bien encaisser le choc généré lors du tir du noyau.
  • On voit par ailleurs que l'agencement de ce circuit permet également le déverrouillage automatique du dispositif de tir (10) avant la remontée dudit dispositif de tir (10).
  • La tête de gazage (12) peut également être approchée de la table (7) en s'adaptant automatiquement à la dimension des boîtes à noyau (3 ; 4 ; 5 ; 6). A cet effet, la tête de gazage (12) est fixée à l'extrémité libre de la tige (88) d'un vérin (89) qui est avantageusement un vérin pneumatique. Le cylindre (90) du vérin (89) est fixé sur la potence (11). La liaison entre l'extrémité libre de la tige (88) du vérin (89) et la tête de gazage (12) apparaît plus en détail sur les figures 3, 4 et 5. Sur ces figures, on voit que l'extrémité libre de la tige (88) du vérin (89) est vissée dans une bride (91) dont le flasque (92) s'étend sensiblement perpendiculairement à l'axe longitudinal (93) de la tige (88). Ce flasque (92) est muni de quatre trous (94) qui sont traversés par des vis (95). Ces vis (95) sont de forme spéciale. En effet, sous leur tête (96), la tige desdites vis (95) comporte une première partie (97) d'un certain diamètre et d'une certaine longueur, à laquelle se raccorde ensuite une deuxième partie (98) d'un diamètre plus petit que le diamètre de la première partie (97), de sorte qu'entre ces deux parties (97 ; 98) il y ait un épaulement (99). La deuxième partie (98) de la tige des vis (95) est filetée de manière que les vis (95) puissent être vissées dans des trous filetés (100) aménagés dans la face supérieure (31) de la plaque (20), jusqu'à ce que l'épaulement (99) vienne en butée sur la face supérieure (31) de la plaque (20). Après blocage des vis (95), la tête (96) des vis (95) se trouve ainsi à une certaine distance de la face supérieure (31) de la plaque (20). Sur la figure 3, on voit encore que le diamètre des trous (94) du flasque (92) de la bride (91) est quelque peu plus grand que le diamètre de la première partie (97) des vis (95). On voit également que l'épaisseur du flasque (92) est plus faible que la distance qui sépare la face inférieure des têtes (96) des vis (95) et la face supérieure (31) de la plaque (20).
  • Par ailleurs, sur le flasque (92) de la bride (91) est fixé un détecteur de fin de course connu (101), de sorte que la face inférieure (102) dudit détecteur de fin de course (101) soit légèrement en retrait par rapport à la face inférieure (103) du flasque (92) située en regard de la face supérieure (31) de la plaque (20).
  • Afin d'éviter que la tête de gazage (12) ne puisse tourner par rapport à la tige (88) du vérin (89), la plaque (20) est munie d'un guide (104) fixé sur la plaque (20) et qui traverse un trou de guidage pratiqué dans la potence (11). L'axe longitudinal du guide (104) est sensiblement parallèle à l'axe longitudinal de la tige (88) du vérin (89), c'est-à-dire sensiblement vertical.
  • La tête de gazage (12) et ses moyens d'adaptation qui permettent à la tête de gazage (12) de s'adapter automatiquement à la dimension des boîtes à noyau (3 ; 4 ; 5 ; 6) fonctionnent de la manière suivante. Lorsqu'une boîte à noyau (3 ; 4 ; 5 ; 6) est en position de gazage (la boîte à noyau (6) par exemple sur les figures 1 et 2), le vérin (89) est alimenté, ce qui provoque la descente de la tête de gazage (12) vers la boîte à noyau. Lorsque le joint (27) arrive en contact avec la face supérieure (300 ; 400 ; 500 ; 600) de la boîte à noyau, la descente de la plaque (20) s'arrête. Le vérin (89) par contre continue de pousser sur la bride (91) jusqu'à ce que la face inférieure (103) du flasque (92) de la bride (91) arrive en contact avec la face supérieure (31) de la plaque (20). La poussée du vérin (89) sur la face supérieure (31) de la plaque (20) comprime alors le joint (27) entre la face inférieure (26) de la contre-plaque (24) et la face supérieure (300 ; 400 ; 500 ; 600) de la boîte à noyau pour éviter des fuites de gaz. Lorsque le joint (27) est correctement comprimé, la descente de la tige (88) du vérin (89) s'arrête et on maintient la pression dans le vérin (89) pour que le joint (27) reste correctement comprimé pendant toute l'opération de gazage. Cette opération de gazage ne commence que lorsque la tête de gazage (12) est en place. Le déclenchement de celle-ci s'opère par le détecteur de fin de course (101). En effet, ce détecteur (101) détecte la face supérieure (31) de la plaque (20) lorsque la face inférieure (103) du flasque (92) de la bride (91) arrive sensiblement à proximité de la face supérieure (31) de la plaque (20) (position représentée sur la figure 5 qui représente la position de gazage). Etant donné le mouvement relatif possible entre le flasque (92) de la bride (91) et la plaque (20), ceci n'est effectivement réalisé que lorsque la tête de gazage (12) est en contact avec la face supérieure (300 ; 400 ; 500 ; 600) de la boîte à noyau. Pendant la phase d'approche par contre, la détection de la face supérieure (31) de la plaque (20) ne peut avoir lieu puisque la face supérieure (31) de la plaque (20) est trop éloignée de la face inférieure (102) du détecteur (101) (position représentée sur la figure 3).
  • Lors du gazage, le gaz est amené par la conduite d'amenée (30) jusque dans la cavité (22) d'où il est alors distribué par les trous (25) de la contre-plaque (24) et les trous (25') du joint (27) dans la boîte à noyau à gazer.
  • La remontée de la tête de gazage (12) se fera après l'opération de gazage dont la durée est programmée en fonction de la dimension du noyau. Cette programmation est faite sur un calculateur (197) qui sera évoqué plus loin.
  • Grâce à cet agencement, on voit donc que la tête de gazage (12), tout comme précédemment le dispositif de tir (10), peut s'adapter automatiquement à des boîtes à noyau (3 ; 4 ; 5 ; 6) de dimension très différente puisque c'est la boîte à noyau elle-même qui déclenche l'arrêt de la descente de la tête de gazage (12) et le déclenchement de l'opération de gazage.
  • Le moyen de support (2) est représenté sur les figures 1, 2, 8, 9, 10 et 11, et comporte comme dit plus haut une table (7). Cette table (7) est de préférence circulaire et comme dit plus haut s'étend sensiblement dans un plan horizontal et peut tourner autour d'un axe sensiblement vertical (8). La table (7) comporte à cet effet sensiblement en son centre, un pivot (105) qui s'étend vers le bas et dont l'axe longitudinal est confondu avec l'axe de rotation (8). Le pivot (105) s'engage dans un palier (106) qui est fixé sur le socle (13). Le guidage en rotation du pivot (105) dans le palier (106) s'effectue à l'aide d'un roulement (107) qui s'étend à la partie supérieure (108) du palier (106), et à l'aide d'une butée à roulement (109) s'étendant à la partie inférieure (110) dudit palier (106). La butée à roulement (109) maintient également le pivot (105) axialement vers le bas. Le palier (106) ne s'étend pas jusqu'à la face inférieure (111) de la table (7), de sorte qu'entre la partie supérieure (108) du palier (106) et la face inférieure (111) de la table (7), le pivot (105) peut supporter à rotation un levier (112). Le guidage du levier (112) sur le pivot (105) est effectué par deux roulements (113 ; 114) logés dans un moyeu (115) que comporte le levier (112). Une certaine distance est maintenue entre le levier (112) et le palier (106) par une entretoise (116). Le levier (112) comporte deux bras (117 ; 118) dont l'un (117) s'étend d'un côté du moyeu (115) et dont l'autre (118) s'étend de l'autre côté dudit moyeu (115).
  • A son extrémité libre (119), le bras (117) du levier (112) est lié à la tige (120) d'un vérin (121) au moyen d'un axe (122). Le cylindre (123) du vérin (121) est quant à lui lié de manière articulée à l'aide d'un axe (124) à un montant (125) solidaire du socle (13).
  • Le bras (118) quant à lui supporte à son extrémité libre (126) un vérin (127) dont le cylindre (128) est fixé sur le bras (118). L'extrémité libre de la tige (129) du vérin (127) est solidaire d'une pièce en forme de V (130) dont le V est ouvert vers l'extérieur. Lorsque la tige (129) du vérin (127) est sortie, la pièce en forme de V (130) collabore avec un index (131) solidaire de la table (7). Cet index (131) est constitué par un plot cylindrique qui, lorsqu'il collabore avec la pièce en forme de V (130), s'étend entre les ailes dudit V. Sur la figure 9, on voit que la table (7) comporte quatre index (131). On notera que le nombre d'index (131) que comporte la table (7), correspond au nombre de boîtes à noyau (3 ; 4 ; 5 ; 6) prévues pour être supportées simultanément par la table (7). Dans l'exemple représenté, la table (7) peut supporter simultanément quatre boîtes à noyau. En (132) se font le démontage, l'extraction des noyaux tirés et gazés et le remontage des boîtes à noyau. (133) correspond à une position intermédiaire. En (134) se fait le tir du noyau et en (135) se fait le gazage du noyau.
  • Un autre vérin (136) est également prévu pour collaborer avec un index (131) de la table (7). Le cylindre (137) de ce vérin (136) est fixé sur un montant (138) solidaire du socle (13). L'extrémité libre de la tige (139) dudit vérin (136) comporte également une pièce en forme de V (140) analogue à la pièce en forme de V (130) du vérin (127).
  • Le vérin (127) collabore avec un index (131) pour faire tourner la table (7) autour de l'axe de rotation (8) tandis que le vérin (136) collabore avec un index (131) pendant le travail pour bloquer la rotation de la table (7).
  • Le mécanisme qui vient d'être décrit et servant à faire tourner la table (7) (par quart de tour dans l'exemple de réalisation) et à bloquer la table (7) pendant le travail, fonctionne de la manière suivante. Le vérin (127) d'entraînement est actionné de sorte que la pièce d'entraînement en forme de V (130) soit amenée en collaboration avec un index (131) de la table (7). C'est ensuite le vérin (136) de blocage qui est actionné pour désolidariser la pièce de blocage en forme de V (140) de l'index (131) avec lequel elle collaborait. Puis c'est le vérin (121) moteur qui est actionné de manière à faire sortir sa tige (120). Ce faisant, la tige (120) pousse sur le bras (117) du levier (112) provoquant la rotation de celui-ci autour de l'axe (8). Comme la pièce d'entraînement en forme de V (130) du vérin (127) d'entraînement collabore avec un index (131) de la table (7), la rotation du levier (112) entraînera également la rotation de la table (7) autour de l'axe (8). La course du vérin moteur (121) est telle que la table (7) effectue dans l'exemple décrit un quart de tour. Lorsque le vérin moteur (121) est en bout de course d'allongement, le levier (112) se trouve en position (112') représentée en traits mixtes sur la figure 9. A ce moment, on actionne à nouveau le vérin de blocage (136) pour faire sortir sa tige (139) de sorte que la pièce de blocage en forme de V (140) dudit vérin (136) puisse se solidariser avec l'index (131) qui a été amené en face d'elle lors de la rotation de la table (7). On actionne ensuite le vérin d'entrainement (127) pour le désolidariser de l'index (131) avec lequel il collaborait pendant la rotation de la table (7). On actionne enfin le vérin moteur (121) de sorte que sa tige (120) rentre à nouveau dans le cylindre (123). Ce faisant, la tige (120) tire sur le levier (112). Lorsque le vérin moteur (121) est en bout de course de rétractation (position en traits forts sur la figure 9), le mécanisme est à nouveau prêt pour une rotation suivante de la table (7).
  • Sur les figures 9, 10 et 11, on voit que la table (7) repose encore sur des appuis (141) dont l'un au moins s'étend dans la zone (134) du dispositif de tir (10) sensiblement dans l'axe (53) de l'unité de tir (202). Cet appui (141) permet à la table (7) de bien encaisser le choc généré lors du tir du noyau. (Sur la figure 1, les appuis (141) n'ont pas été représentés pour ne pas encombrer la figure).
  • Dans l'exemple de réalisation décrit, les appuis (141) sont au nombre de trois et sont situés à équidistance l'un de l'autre. Ils sont constitués par des galets (142) qui sont fixés à la partie supérieure de montants (143) solidaires du socle (13), tel que cela apparaît sur les figures 10 et 11. Les galets (142) tournent autour d'axes (144) sensiblement horizontaux et coupant sensiblement l'axe de rotation (8) de la table (7). Dans l'exemple, les montants (143) sont constitués par des profilés en U. Chaque montant (143) est muni à sa partie supérieure d'un bras porte-galet (145) qui s'étend entre les deux ailes (146 ; 147) du profilé en U. A son extrémité supérieure, le bras porte-galet (145) supporte à rotation le galet (142). Entre ses deux extrémités, le bras porte-galet (145) est muni d'un trou oblong (148) qui est traversé par un boulon (149). Ce boulon (149) traverse par ailleurs également un trou (150) aménagé dans l'âme (151) du montant (143). A son extrémité inférieure, le bras porte-galet (145) est en contact avec une vis de réglage (152) qui est vissée dans un écrou (153) solidaire du montant (143).
  • Grâce à cet agencement, la position de chaque galet (142) peut être réglée par rapport à la table (7). Pour amener le galet (142) en contact avec la table (7), on desserre le boulon (149), puis on pousse sur l'extrémité inférieure du bras porte-galet (145) au moyen de la vis de réglage (152), ce qui provoquera le glissement du bras porte-galet (145) dans le montant (143). Ce glissement est possible, étant donné que le trou (148) aménagé dans le bras porte-galet (145) et qui est traversé par le boulon (149) est un trou oblong. Lorsque le galet (142) est en contact avec la table (7), il suffira alors de resserrer le boulon (149) pour lier rigidement le bras porte-galet (145) à son montant (143).
  • Les figures 12 et 13 montrent un exemple de réalisation de moyens de maintien (154) des boîtes à noyau (3 ; 4 ; 5 ; 6). Ces moyens de maintien (154) maintiennent les boîtes à noyau pendant le travail. Etant donné qu'ils sont identiques, on se contentera d'en décrire un seul d'entre eux. (Sur la figure 12, on n'a, pour une question de clarté de la figure, représenté que les dispositifs de maintien (154) des postes (181 et 183)).
  • Le moyen de maintien (154) comporte un porte-mors (155) qui est muni de deux mors (156 ; 157). Chaque porte-mors (155) comporte un palier (158) solidaire de deux ailes (159 ; 160) de sorte qu'en vue de dessus les deux ailes (159 ; 160) forment un U ouvert vers l'extérieur. A l'arrière, le palier (158) est ouvert de manière à former une pince (161) qui peut être serrée par un boulon (162). Le palier (158) du porte-mors (155) est glissé sur un piton (163) fixé sur la face supérieure de la table (7). Le porte-mors (155) comporte par ailleurs au-dessus du palier (158) un cylindre de manoeuvre (164) qui est fixé sur le dessus du palier (158) du porte-mors (155). Le cylindre de manoeuvre (164) est obturé à sa partie supérieure (165). Cette partie supérieure obturée (165) est traversée par une vis de manoeuvre (166) qui est vissée dans un trou fileté (167) agencé dans l'axe longitudinal du piton (163). La vis de manoeuvre (166) est liée en translation au cylindre de manoeuvre (164) et sur sa partie qui dépasse du cylindre de manoeuvre (164), est fixé un volant de manoeuvre (168).
  • Le dispositif qui vient d'être décrit permet de régler la position du porte-mors (155) et par conséquent des mors (156 ; 157) par rapport à la dimension de la boîte à noyau qu'ils doivent maintenir. Pour ce faire, il suffit de desserrer le boulon (162) pour ouvrir la pince (161), puis de faire tourner la vis de manoeuvre (166) à l'aide du volant (168) pour faire entrer ou sortir la vis de manoeuvre (166) du piton (163). Lorsque les mors (156 ; 157) ont atteint la bonne position par rapport à la boîte à noyau, il suffira de resserrer la pince (161) en bloquant le boulon (162).
  • Entre les deux ailes en U (159 ; 160) s'étendent deux glissières (169 ; 170) sur lesquelles peuvent glisser les mors (156 ; 157). Entre les deux glissières (169 ; 170) s'étend un vérin (171) dont le cylindre (172) est fixé sur l'un (156) des mors et dont la tige (173) est fixée sur l'autre mors (157).
  • L'une (169) des glissières comporte un certain nombre de trous (174), dans lesquels peuvent être enfilées deux broches (175) de part et d'autre de l'un (156) des mors et qui serviront à lier en translation l'un (156) des mors à l'une (169) des glissières. De cette sorte, la boîte à noyau destinée à ce moyen de maintien (154), sera toujours sensiblement à la même place sur la table (7), c'est-à-dire avantageusement centrée par rapport à la tête de tir (203 - 202 ; 204 - 202) et à la tête de gazage (12).
  • La fermeture des mors (156 ; 157) s'opère en manoeuvrant le vérin (171) de sorte à faire rentrer sa tige (173) dans son cylindre (172). Ceci déplacera le mors (157) qui peut glisser librement sur les glissières (169 ; 170) jusqu'à ce que celui-ci arrive en contact avec la boîte à noyau à maintenir. Le maintien de la boîte à noyau est obtenu en maintenant par exemple la pression dans le vérin (171).
  • Sur la figure 13, on voit encore que les deux mors (156 ; 157) sont différents l'un de l'autre. En effet, le mors (157) comporte une plaque de serrage (176) rotulante. A cet effet, le mors (157) comporte une chape (177) fixée sur sa partie de liaison (178) aux glissières (169 ; 170). A l'extrémité de cette chape (177) est liée la plaque de serrage (176) au moyen d'une rotule (179). De cette sorte, la plaque de serrage rotulante (176) peut bien se positionner par rapport à la boîte à noyau si celle-ci ne comporte pas des faces parallèles. Ceci garantit un maintien optimal de la boîte à noyau.
  • Sur la figure 13, on voit encore que chaque poste (180 ; 181 ; 182 ; 183) est muni d'un index (184 ; 185 ; 186 ; 187) qui est fixé sur la table (7). Ces index (184 ; 185 ; 186 ; 187) sont agencés sur des cercles (188 ; 189 ; 190 ; 191) de rayon différent et sont centrés sur l'axe de rotation (8) de la table (7). Ces index (184 ; 185 ; 186 ; 187) passent au cours de la rotation de la table (7) qui se fait toujours dans le même sens (192), au-dessus de capteurs (193 ; 194 ; 195 ; 196) qui sont fixés sur le socle (13) et qui ne tournent par conséquent pas avec la table (7). Chaque capteur (193 ; 194 ; 195 ; 196) est situé à une distance de l'axe de rotation (8) de la table (7) égale au rayon du cercle (188 ; 189 ; 190 ; 191) sur lequel tourne l'index (184 ; 185 ; 186 ; 187) correspondant.
  • Le passage d'un index (184 ; 185 ; 186 ; 187) sur son capteur (193 ; 194 ; 195 ; 196) est transmis à un calculateur programmable (197) et indiquera par exemple audit calculateur (197) le début du cycle effectué par chaque boîte à noyau (3 ; 4 ; 5 ; 6) pour laquelle on aura programmé sur le calculateur (197) la tête de tir (203-202 ; 204-202) à utiliser, le nombre de tirs ainsi que la durée de gazage nécessaires.
  • Ainsi lorsqu'une boîte à noyau (3 ; 4 ; 5 ; 6) est dans la zone (134) où se fait l'opération de tir, le calculateur (197) commande le vérin (211) qui amène, sous l'unité de tir (202), le dispositif de dosage (203 ; 204) destiné à alimenter ladite boîte à noyau (3 ; 4 ; 5 ; 6) et qui aura été préalablement approvisionné en sable par la trémie (198 ; 199) correspondante.
  • Dans l'exemple représenté, les buses (205 ; 206) des dispositifs de dosage (203 ; 204) ont des orifices de sortie (207 ; 208) de forme différente. On comprendra toutefois que dans l'invention, ces orifices de sortie (207 ; 208) peuvent être de même forme.
  • Du reste, les trémies (198 ; 199) peuvent contenir des sables différents.
  • Ces différentes caractéristiques renforcent le caractère de fléxibilité de la machine. En effet, si l'utilisateur a à fabriquer simultanément plusieurs noyaux de forme très différente nécessitant des buses de sortie (205 ; 206) avec orifice de sortie (207 ; 208) différent, et de surcroît devant être réalisés à l'aide de sables différents, il approvisionnera les deux trémies (198 ; 199) avec des sables différents et montera sur chacun des dispositifs de dosage (203 ; 204) la buse de sortie adéquate. Si l'utilisateur a par contre à fabriquer simultanément plusieurs noyaux de forme très différente, mais dans le même sable, il montera sur chacun des dispositifs de dosage (203 ; 204) la buse de sortie (205 ; 206) adéquate et approvisionnera les deux trémies (198 ; 199) avec le même sable. Si enfin l'utilisateur a à fabriquer simultanément des noyaux de forme semblable, mais dans des sables différents, il montera les mêmes buses de sortie (205 ; 206) sur les dispositifs de dosage (203 ; 204) et approvisionnera les trémies (198 ; 199) avec des sables différents.
  • Il est également possible d'avoir plus de deux têtes de tir (203-202 ; 204-202).
  • Il est enfin tout à fait possible que la machine soit équipée pour supporter un nombre de boîtes à noyaux différent de quatre.

Claims (8)

  1. Machine à tirer des noyaux de fonderie (1) comportant notamment :
    - un dispositif de tir (10) destiné au tir des noyaux,
    - un moyen d'alimentation en sable (198, 200, 201, 199, 200, 201) destiné à fournir du sable audit dispositif de tir (10), et
    - un moyen de support (2) de boîtes à noyau (3 ; 4 ; 5 ; 6) muni d'organes de support (7) qui peuvent recevoir simultanément plusieurs boîtes à noyau (3 ; 4 ; 5 ; 6), et d'organes d'entraînement (112, 121, 127, 130) destinés notamment à amener lesdites boîtes à noyau (3 ; 4 ; 5 ; 6) successivement dans la zone de tir (134) en regard du dispositif de tir (10),
    caractérisée par le fait que le dispositif de tir (10) comporte plusieurs têtes de tir (203-202 ; 204-202) pouvant être utilisées indifféremment durant le même cycle de production et possédant chacune un dispositif de dosage (203 ; 204) propre, tandis qu'une unité de tir (202) est commune à quelques unes au moins desdites têtes de tir (203-202 ; 204-202), et que le moyen d'alimentation (198, 200, 201, 199, 200, 201) en sable comporte également plusieurs alimentations en sable (198, 200, 201 ; 199, 200, 201) individuelles destinées à l'approvisionnement en sable desdits dispositifs de dosage (203 ; 204).
  2. Machine à tirer des noyaux de fonderie, selon la revendication 1, caractérisée par le fait que l'unité de tir (202) commune est fixe et que le dispositif de dosage (203 ; 204), adapté à la boîte à noyau (3 ; 4 ; 5 ; 6) à tirer, est amené en regard de ladite unité de tir (202) commune par un dispositif de manoeuvre (211).
  3. Machine à tirer des noyaux de fonderie selon la revendication 2, caractérisée par le fait que les dispositifs de dosage (203 ; 204) sont amenés en regard de ladite unité de tir (202) commune par déplacement dans un plan au moins sensiblement horizontal.
  4. Machine à tirer des noyaux de fonderie selon la revendication 3, caractérisée par le fait que les dispositifs de dosage (203 ; 204) sont amenés en regard de ladite unité de tir (202) commune par translation dans ledit plan au moins sensiblement horizontal.
  5. Machine à tirer des noyaux de fonderie selon l'une au moins des revendications 2 à 4, caractérisée par le fait que les dispositifs de dosage (203 ; 204), correspondant à une unité de tir (202) commune, se déplacent conjointement lorsque le dispositif de manoeuvre (211) amène l'un de ces dispositifs de dosage (203 ; 204) en regard de ladite unité de tir (202) commune.
  6. Machine à tirer des noyaux de fonderie selon l'une au moins des revendications 1 à 5, caractérisée par le fait que quelques uns au moins desdits dispositifs de dosage (203 ; 204), correspondant à une unité de tir (202) commune, se déplacent conjointement avec la tête de tir (203-202 ; 204-202) qui est opérationnelle, lorsque celle-ci est déplacée vers ou éloignée de la boîte à noyau (3 ; 4 ; 5 ; 6) qui se trouve dans la zone de tir (134).
  7. Machine à tirer des noyaux de fonderie selon l'une au moins des revendications 1 à 6, caractérisée par le fait que dans la position de non-utilisation, quelques uns au moins desdits dispositifs de dosage (203, 204) s'étendent sous une alimentation de sable (198 ; 199).
  8. Machine à tirer des noyaux de fonderie, selon l'une au moins des revendications 1 à 7, caractérisée par le fait que les alimentations de sable (198 ; 199) s'étendent autour de l'unité de tir (202) commune.
EP90440018A 1989-02-24 1990-02-23 Machine à tirer des noyaux de fonderie Expired - Lifetime EP0384870B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90440018T ATE89204T1 (de) 1989-02-24 1990-02-23 Kernschiessmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8902633 1989-02-24
FR8902633A FR2643579B1 (fr) 1989-02-24 1989-02-24 Machine a tirer des noyaux de fonderie

Publications (2)

Publication Number Publication Date
EP0384870A1 EP0384870A1 (fr) 1990-08-29
EP0384870B1 true EP0384870B1 (fr) 1993-05-12

Family

ID=9379237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90440018A Expired - Lifetime EP0384870B1 (fr) 1989-02-24 1990-02-23 Machine à tirer des noyaux de fonderie

Country Status (7)

Country Link
US (1) US5014766A (fr)
EP (1) EP0384870B1 (fr)
JP (1) JPH02247043A (fr)
AT (1) ATE89204T1 (fr)
DE (1) DE69001566T2 (fr)
ES (1) ES2041167T3 (fr)
FR (1) FR2643579B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414492A (zh) * 2016-01-07 2016-03-23 苏州明志科技有限公司 一种双工位热芯机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033887C2 (de) * 1990-10-25 1994-07-28 Hottinger Adolf Masch Vorrichtung und Verfahren zur Herstellung von Formteilen für Gießereizwecke
ES2105875T3 (es) * 1993-12-03 1997-10-16 Hottinger Adolf Masch Dispositivo y procedimiento para la fabricacion de matrices o paquetes de machos listos para fundir.
EP0907438A1 (fr) * 1996-05-30 1999-04-14 Adolf Hottinger Maschinenbau GmbH Procede pour la preparation de masques ou de paquets de noyaux prets a la coulee
EP0951370B1 (fr) * 1996-11-04 2001-02-07 Hottinger Maschinenbau GmbH Dispositif et procede de fabrication de masques de coulee ou de paquets de noyaux de coulee
DE19823134C1 (de) * 1998-05-23 1999-12-02 Joachim Laempe Verfahren und Vorrichtung zur Herstellung von Formteilen für Gießereizwecke aus Sand
CN104439111A (zh) * 2014-12-19 2015-03-25 济南万兴农用机械科技有限公司 立式双工位射芯机
CN105478684B (zh) * 2016-01-07 2017-07-04 济南标美精密机械有限公司 全自动射芯机
EP3272441B1 (fr) * 2016-07-19 2020-10-21 Loramendi, S.COOP. Machine de fabrication de noyaux en sable

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3059294A (en) * 1959-05-04 1962-10-23 Gen Motors Corp Apparatus for making foundry cores and molds
US3620293A (en) * 1969-04-07 1971-11-16 Ernst Otto Kruse Press molding machine with adjustable feed device
US4079776A (en) * 1976-04-23 1978-03-21 Acme-Cleveland Corporation Mold making machine
US4190097A (en) * 1977-11-23 1980-02-26 Grede Foundries Inc. Apparatus for making foundry cores
DE2953635C1 (de) * 1979-04-13 1984-04-05 Vsesojuznyj naučno-issledovatel'skij institut litejnogo mašinostroenija, litejnoj technologii i avtomatizacii litejnogo proizvodstva, Moskva Anlage zur Herstellung von Giessformen und Formkernen aus fliessfaehigen Formstoffen
DE3148461C1 (de) * 1981-12-08 1983-04-14 Adolf Hottinger, Gießerei und Maschinenbau GmbH, 6800 Mannheim Kern- und Maskenschießmaschine
FR2594363B1 (fr) * 1986-02-19 1988-06-17 Kuhn Sa Machine a trier des noyaux de fonderie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414492A (zh) * 2016-01-07 2016-03-23 苏州明志科技有限公司 一种双工位热芯机

Also Published As

Publication number Publication date
ES2041167T3 (es) 1993-11-01
ATE89204T1 (de) 1993-05-15
DE69001566T2 (de) 1993-12-02
FR2643579A1 (fr) 1990-08-31
US5014766A (en) 1991-05-14
FR2643579B1 (fr) 1993-12-31
JPH02247043A (ja) 1990-10-02
EP0384870A1 (fr) 1990-08-29
DE69001566D1 (de) 1993-06-17

Similar Documents

Publication Publication Date Title
EP0006575B2 (fr) Dispositif pour la préparation de produits alimentaires à base de céréales cuites et expansées
EP0384870B1 (fr) Machine à tirer des noyaux de fonderie
FR2540471A1 (fr) Chargeur de boites refractaires, appareil transporteur et procede
FR2702999A1 (fr) Appareil d'enregistrement par jet d'encre et son dispositif d'alimentation en encre.
FR2500274A1 (fr) Dispositif de fourniture automatique de bobines
FR2458382A1 (fr) Machine de moulage par injection de pieces composites
EP0102301A2 (fr) Machine pour la fabrication de sacs en matière plastique pouvant être ouverts ou fermés par un curseur, appareil de positionnement de curseurs, équipant un telle machine; son mode de fonctionnement
HUE026330T2 (en) Guiding unit for filling angled feed channels with bulky rod-like products
EP0071518A1 (fr) Mecanisme d'avance de barre
EP0808109B1 (fr) Machine pour la fabrication automatique de barbe a papa
CH659627A5 (fr) Procede pour commander le remplissage d'un recipient et dispositif pour sa mise en oeuvre.
EP0238428B1 (fr) Machine à tirer des noyaux de fonderie
FR2522284A1 (fr) Installation automatique pour peindre les interieurs de vehicules automobiles
FR2658587A1 (fr) Installation pour la manutention de chapeaux de bouteilles a gaz, avant et apres le remplissage de ces bouteilles.
FR2845302A1 (fr) Appareil pour le vissage d'elements de fixation
WO1999064204A1 (fr) Dispositif de ravitaillement d'une machine-outil en barres a usiner
EP0241972A2 (fr) Procédé et dispositif de préparation de produits alimentaires à base de céréales cuites et expansées
CH634214A5 (en) Automatic machine for the rapid preparation of hot drinks, in particular expresso coffee
EP0097859B1 (fr) Dispositif d'entraînement d'une goulotte oscillante
EP0337906A1 (fr) Procédé de positionnement dans une orientation déterminée d'articles allongés hétérogènes et mécanismes destinés à sa mise en oeuvre
EP0322269A1 (fr) Distributeur automatique de sachets
CH672446A5 (en) Machine-tool bar-feed mechanism - has tube rear part movable sideways for reloading of front part
FR2654377A1 (fr) Manipulateur pour la depose d'elements au sein d'un moule dans une presse a injecter et procede de commande.
EP0319888A1 (fr) Dispositif de pliage de rabat d'enveloppes
FR2491897A1 (fr) Module de mise en circulation de palettes porte-pieces pour atelier flexible d'usinage ou d'assemblage et atelier flexible comprenant de tels modules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901226

17Q First examination report despatched

Effective date: 19920513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930512

Ref country code: AT

Effective date: 19930512

Ref country code: NL

Effective date: 19930512

Ref country code: DK

Effective date: 19930512

REF Corresponds to:

Ref document number: 89204

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69001566

Country of ref document: DE

Date of ref document: 19930617

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930809

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041167

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

BERE Be: lapsed

Owner name: S.A. KUHN

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 90440018.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990126

Year of fee payment: 10

Ref country code: SE

Payment date: 19990126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990225

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000224

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000224

EUG Se: european patent has lapsed

Ref document number: 90440018.1

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT