EP0379980A1 - Structural supporting sandwich facade member - Google Patents

Structural supporting sandwich facade member Download PDF

Info

Publication number
EP0379980A1
EP0379980A1 EP90101046A EP90101046A EP0379980A1 EP 0379980 A1 EP0379980 A1 EP 0379980A1 EP 90101046 A EP90101046 A EP 90101046A EP 90101046 A EP90101046 A EP 90101046A EP 0379980 A1 EP0379980 A1 EP 0379980A1
Authority
EP
European Patent Office
Prior art keywords
layers
facade element
layer
fiber
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90101046A
Other languages
German (de)
French (fr)
Other versions
EP0379980B1 (en
Inventor
Helfried Dr. Hähne
Johann-Dietrich Dr. Wörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0379980A1 publication Critical patent/EP0379980A1/en
Application granted granted Critical
Publication of EP0379980B1 publication Critical patent/EP0379980B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material

Definitions

  • the present invention relates to a self-supporting facade element in sandwich construction consisting of at least two self-supporting layers and at least one intermediate insulation layer, which is essentially metal-free and therefore has good thermal insulation and, if appropriate, sound insulation and electromagnetic waves, e.g. Radar beams, not reflected.
  • the present invention also relates to a method for producing these facade elements and their use for the erection and cladding of structures which emit electromagnetic waves, e.g. Radar rays, not or only slightly reflect.
  • electromagnetic waves e.g. Radar rays
  • a sandwich composite panel (for the construction sector) is known, consisting of 2 thin-walled outer shells, which are firmly connected to stainless composite anchors and whose cavity between the outer shells is filled with insulating material, which has parallel and mutually offset recesses.
  • the two outer shells (1) are thinner than 1.5 cm, the insulating material firmly embedded between the outer shells can have any thickness.
  • the outer shells are made of fine concrete with reinforcement made of rust-free fibers or fiber fabrics.
  • Such composite panels have strength values which are usually for a self-supporting facade construction within the meaning of this invention, i.e. without stabilization by a metallic support structure, not sufficient. Even with fiber reinforcement of an outer shell, these panels can therefore only be used to a limited extent.
  • the present invention provides such a facade element.
  • the self-supporting facade element according to the invention has a multilayer structure (sandwich construction) from at least two self-supporting layers and at least one insulating layer between them and is characterized in that it is essentially, preferably completely, metal-free, that the self-supporting layers consist of fiber-reinforced concrete and the layers are positively fixed to one another by essentially, preferably completely, metal-free fastening means.
  • the term concrete also includes lightweight concrete.
  • the function of the support layer of the facade element according to the invention is to give the element a high mechanical strength, in particular to impart such a high bending tensile strength that the element can be assembled with the same or different types of components to form stable, self-supporting building walls.
  • the facade element according to the invention requires only one base layer, but it can be expedient for particularly high demands on the stability or if special constructions are to be managed statically, to provide two or more base layers, between each of which there are insulation layers.
  • the base layer or the base layers can be considerably increased by known shaping measures, for example by reinforcing ribs. As a rule, a base layer is sufficient to give the facade element according to the invention the required stability.
  • Facade elements with a base layer i.e. with a three-layer structure are therefore preferred.
  • the function of the facing layer is predominantly a protective function for the underlying structure.
  • the facing layer must therefore have the highest possible shrink resistance, weather resistance and frost resistance.
  • This function can also be supported by shaping measures, e.g. in that the edge parts are shaped in such a way that the facing shells of adjacent and superimposed facade elements according to the invention engage in a scale-like manner one above the other or in one another.
  • composition of the fiber-reinforced concrete from which these layers are made is of decisive importance for the strength of the self-supporting layers, ie the base layer and the facing layer.
  • the properties corresponding to the above-mentioned functions of these layers are essentially determined by the composition of the fiber-reinforced concrete from which these layers are made. In principle, all known compositions that meet the specified specifications come into consideration as the concrete matrix for the facing and the supporting shell.
  • compositions are known to consist of an inorganic or organic binder, additives such as gravel, sand, split, fly ash and optionally additives such as flow agents, pore formers, etc.
  • additives such as gravel, sand, split, fly ash and optionally additives such as flow agents, pore formers, etc.
  • the various inorganic cement types are primarily considered, but also gypsum or Sulfur, as organic Binding agents are essentially epoxy resins, polyester resins or PCC resins. Binders and aggregates are expediently present in the concrete in a ratio of 1: 3 to 1: 8.
  • the additives are usually added to the concrete in a proportion of up to 5% by weight of the concrete mixture.
  • composition of the concrete mixture is selected in a manner known per se in accordance with the required specifications.
  • the properties of the concrete mix are largely determined by the fiber content contained therein.
  • the fibers can be contained in the fiber-reinforced concrete both as individual filaments, either continuously or cut, in staple lengths of 2 to 60 mm, preferably 6 to 12 mm, and homogeneously or inhomogeneously, preferably with a specific inhomogeneity, or they can be in the form of continuous or fiber yarns of strands or rods or in the form of textile fabrics such as woven fabrics, knitted fabrics or nonwovens, etc.
  • the easiest way to achieve a homogeneous distribution of the fiber materials over the thickness of the self-supporting layers made of the fiber concrete is with continuous or staple fibers, which are added to the concrete mixture and mixed in evenly.
  • continuous or staple fibers which are added to the concrete mixture and mixed in evenly.
  • Such targeted inhomogeneity using individual fibers can be produced, for example, by producing two concrete mixtures with different fiber content and layering them in the desired manner and allowing them to harden.
  • fiber products in the form of yarns, skeins, rods, woven fabrics, knitted fabrics or nonwovens these materials can of course be introduced in a targeted manner in the areas of the self-supporting components that are to be reinforced particularly preferably.
  • fiber strands or rods can be cast in a horizontal, parallel arrangement or in a crossed arrangement in the vicinity of the two surfaces of the self-supporting components.
  • fiber materials can also be used to reinforce the more neutral interior areas of the component.
  • the fiber content in the fiber-reinforced concrete of the facade elements according to the invention is on average 0.1 to 10, preferably 0.3 to 2, in particular 0.5 to 1% by volume. Because of the different mechanical loads on the facing layer and the supporting layer of the facade element, the additional amounts of the fiber material can be adjusted within the above limits. For example, only 0.3 to 0.6% by volume of fiber material is preferably used in the facing shell, but preferably 1 to 2% by volume of fiber material in the carrier shell.
  • the chemical nature of the fiber material is also of particular importance for the static properties of the facade element according to the invention.
  • the fibers used should be resistant to chemicals, in particular acid and alkali, resistant to elevated temperatures and corrosion-resistant; they should have a good bond behavior in the matrix and should not pose any health risks.
  • synthetic fibers such as Fiber materials made from polyacrylonitrile, polypropylene, polyester, polyamide, aramid and carbon fibers.
  • Polyacrylonitrile fibers, but also polyester fibers, expediently from end group-capped polyesters, are preferably used for alkaline concrete mixtures.
  • polyacrylonitrile fibers and polyester fibers are also preferred.
  • Fiber materials of the type mentioned are commercially available in numerous types and it is advisable to use high-strength types to reinforce the concrete mixtures.
  • high-strength, homopolymeric, so-called technical, polyacrylonitrile fibers, such as (R) dolanite can be used universally and are therefore particularly preferred in the production of the facade elements according to the invention.
  • Technical fibers of this type have, depending on the titer, 2 to 3 times as high initial moduli and final strengths as corresponding textile fibers and therefore have far superior reinforcement properties.
  • the porous insulation layer of the facade elements according to the invention can be produced from all known porous insulation materials.
  • Both soft, flexible and dimensionally stable, hard materials can be used.
  • fiber mats come into consideration, in particular those made of inorganic fibers such as rock wool or glass fiber mats, preferably those that are solidified by the addition of a binder or also foams, such as soft foam made of latex materials, but preferably hard foams, such as polystyrene foam, glass foams or polyurethane foams.
  • Hard foam panels, which are themselves fiber-reinforced, are particularly preferred, in particular those that have high mechanical stability due to the incorporation of three-dimensional fiber frameworks.
  • the facade elements according to the invention preferably have a three-layer structure comprising a base layer, an insulation layer and a facing layer.
  • the thickness of the individual layers is chosen according to their functions specified above.
  • the thickness of the base layer is therefore adapted to the requirements of statics, taking into account the strength properties of the fiber-reinforced concrete, the thickness of the facing layer and the insulation layer is selected in accordance with the required protection and insulation properties.
  • the individual layers of the facade element according to the invention are positively connected to one another.
  • the connection of the layers must be so tight that they can withstand all shear and delamination forces that occur during production, processing and later use resists.
  • the positive connection must absorb in particular the inherent weight of the facing layer and the wind suction forces acting thereon. All known means which give the required strength can be used as connecting means for the layers.
  • the three layers can be glued. Regardless of the mechanical property of the insulation layer and therefore preferred is the positive connection of the individual layers of the facade element according to the invention by essentially or preferably completely metal-free anchors which penetrate all layers of the facade element and are firmly anchored in the fiber concrete layers.
  • a fiber-reinforced plastic with high tensile, bending tensile and shear strength is expediently used as the material for these preferably metal-free anchors.
  • the anchor has at least one change in its shape, for example a bend or a change in its diameter, in areas in which it lies in the fiber concrete layer.
  • Other options for fixing the anchors in the fiber concrete layers of the facade element according to the invention are also possible. For example, anchors that penetrate all layers of the facade element can be spread and thus fixed in the areas of the fiber concrete layers. Gluing the anchors in the area of the fiber concrete layers using appropriate high-strength adhesives can also be used to fix the anchors in the concrete layers.
  • the anchors are evenly distributed over the surface of the facade element according to the invention, so that all anchors are approximately uniformly loaded by the forces to be transmitted.
  • the number of anchors naturally depends on the size of the forces to be transmitted and the stability of the Anchor elements.
  • the facing layer and the adjacent supporting layer offset in height from each other, have horizontal brackets projecting into the space between the two layers, which lie one above the other in such a way that the dead weight of the facing layer differs from that Console is transferred via the material of the insulation layer to the console of the base layer.
  • this construction requires an appropriate load-bearing capacity of the insulation material.
  • the facing layer and the adjacent base layer can also have a plurality of horizontally spaced horizontal brackets which are assigned to one another in a force-transmitting manner.
  • the projection of the consoles is chosen so that they correspond to approximately 2/3 to 3/4 of the thickness of the insulation layer.
  • brackets for transferring the weight of the facing layer.
  • the cross-section of the brackets can in principle be chosen arbitrarily, for example rectangular or triangular, but its strength must be sufficient to transmit the forces that arise.
  • a triangular or trapezoidal cross-section has the advantage that the area in which the insulation layer is thinner can be kept relatively small.
  • FIGS. 1 and 2 serve to illustrate preferred embodiments of the present invention.
  • FIG. 1 schematically shows an oblique plan view of a facade element according to the invention with partially removed individual layers, which consists of a base layer (1), a facing layer (2) and an insulating layer (3 ) exists and has the anchor (4) for the positive connection of the layers.
  • Figure 2 shows schematically an oblique view of a facade element according to the invention with partially removed individual layers, which consists of a support layer (1), a facing layer (2) and an insulation layer (3) and the anchor (4) and horizontal brackets (5) has positive connection of the layers.
  • a self-supporting facade element according to the invention is particularly preferred consisting of a base layer, a facing layer and an intervening insulation layer, which is characterized in that it is completely metal-free, that the base and facing layer consist of fiber-reinforced concrete, in particular cement concrete, with the reinforcing fibers as staple fibers have a stack length of 2 to 60 mm and consist of polyacrylonitrile, and that the three layers are positively connected to each other by plastic anchors.
  • the facade element according to the invention is produced by positively connecting at least 2 self-supporting surface elements made of fiber-reinforced concrete with intermediate layers made of porous insulating material.
  • the prefabricated individual layers can be connected to each other in a form-fitting manner by gluing.
  • Another possibility for producing the facade elements according to the invention is to position the prefabricated layers in the desired manner, to perforate the still loose sandwich at several locations distributed over the surface and to insert plastic anchors into the perforation holes, which can be fixed in the area of the fiber-reinforced concrete layers .
  • the fixation can be done either by spreading or by gluing the plastic anchors. This manufacturing method is independent of the mechanical stability of the insulation layer.
  • the facade element according to the invention is used with particular advantage for the construction of structures in areas in which radar guidance systems work, e.g. in the area of airfields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Finishing Walls (AREA)
  • Laminated Bodies (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Panels For Use In Building Construction (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

Structural supporting sandwich facade member comprising at least two structural supporting layers and at least one intermediate insulating layer, characterised in that it is metal-free, the structural supporting layers are composed of fibre-reinforced concrete and the layers are positively fixed to one another by non-metallic fastening means (preferably plastic anchors). <IMAGE>

Description

Die vorliegende Erfindung betrifft ein selbsttragendes Fassadenelement in Sandwichbauweise aus mindestens zwei selbsttragenden Schichten und mindestens einer dazwischenliegenden Dämmschicht, das im wesentlichen metallfrei ist und daher eine gute Wärmedämmung und gegebenenfalls Schalldämmung aufweist und elektromagnetische Wellen, z.B. Radarstrahlen, nicht reflektiert.The present invention relates to a self-supporting facade element in sandwich construction consisting of at least two self-supporting layers and at least one intermediate insulation layer, which is essentially metal-free and therefore has good thermal insulation and, if appropriate, sound insulation and electromagnetic waves, e.g. Radar beams, not reflected.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung dieser Fassadenelemente sowie ihre Verwendung zur Errichtung und Verkleidung von Bauwerken die elektromagnetische Wellen, z.B. Radarstrahlen, nicht oder nur geringfügig reflektieren dürfen.The present invention also relates to a method for producing these facade elements and their use for the erection and cladding of structures which emit electromagnetic waves, e.g. Radar rays, not or only slightly reflect.

Insbesondere in Gebieten, in denen Radarleitsysteme installiert sind, ist es häufig wünschenswert, nur solche Gebäude zu errichten, die keine Radarstrahlen reflektieren. Es ist bereits bekannt, diese Aufgabe dadurch zu lösen, daß man übliche Stahlbetonkonstruktionen mit dicken Auflagen radarabsorbierender Materialien belegt und - sofern diese Materialien nicht selbst witterungsbeständig sind - noch eine zusätzliche witterungsbeständige Verkleidung außen aufbringt.Especially in areas where radar guidance systems are installed, it is often desirable to build only those buildings that do not reflect radar beams. It is already known to solve this problem by covering conventional reinforced concrete constructions with thick layers of radar-absorbing materials and - if these materials are not weather-resistant themselves - applying an additional weather-resistant covering on the outside.

Aus der DE-OS 29 39 877 ist eine Sandwich-Verbundplatte (für den Bausektor) bekannt, bestehend aus 2 dünnwandigen Außenschalen, die mit nichtrostenden Verbundankern im festen Zusammenhang stehen und deren Hohlraum zwischen den Außenschalen mit Isoliermaterial ausgefüllt ist, welches parallel verlaufende und gegenseitig versetzt angeordnete Ausnehmungen aufweist.From DE-OS 29 39 877 a sandwich composite panel (for the construction sector) is known, consisting of 2 thin-walled outer shells, which are firmly connected to stainless composite anchors and whose cavity between the outer shells is filled with insulating material, which has parallel and mutually offset recesses.

Die beiden Außenschalen (1) sind dünner als 1,5 cm, das zwischen den Außenschalen fest eingebettete Isoliermaterial kann eine beliebige Stärken aufweisen.The two outer shells (1) are thinner than 1.5 cm, the insulating material firmly embedded between the outer shells can have any thickness.

In einer bevorzugten Ausführungsform bestehen die Außenschalen aus Feinbeton mit Armierung aus nichtrostenden Fasern oder Fasergeweben.In a preferred embodiment, the outer shells are made of fine concrete with reinforcement made of rust-free fibers or fiber fabrics.

Derartige Verbundplatten weisen aber Festigkeitswerte auf, die in der Regel für eine selbsttragende Fassadenbauweise im Sinne dieser Erfindung, d.h. ohne Stabilisierung durch ein matallisches Stützgerüst, nicht ausreichen. Selbst bei Faserverstärkung einer Außenschale sind diese Platten daher nur beschränkt einsatzfähig.Such composite panels, however, have strength values which are usually for a self-supporting facade construction within the meaning of this invention, i.e. without stabilization by a metallic support structure, not sufficient. Even with fiber reinforcement of an outer shell, these panels can therefore only be used to a limited extent.

Die Notwendigkeit des zusätzlichen Einsatzes metallischer Baustoffe, z.B. auch metallischer Verbundanker, führen dazu, daß derartige Platten ungeeignet sind zur Errichtung von Bauwerken, die elektromagnetische Wellen nicht reflektieren.The need for additional use of metallic building materials, e.g. Metallic composite anchors, too, lead to the fact that such panels are unsuitable for the construction of structures that do not reflect electromagnetic waves.

Diese bisher bekannten Lösungen sind daher entweder technisch nur aufwendig zu realisieren und stellen daher einen hohen Kostenfaktor dar oder sie können die Aufgabe prinzipiell nicht erfüllen. Es bestand daher ein dringendes Bedürfnis nach einem selbsttragenden Fassadenelement, das relativ einfach hergestellt und bequem verarbeitet werden kann, und das gleichzeitig allen Anforderungen bezüglich mechanischer Festigkeit, Witterungsbeständigkeit, Wärme- und Schallisolation sowie Reflexfreiheit für elektromagnetische Wellen erfüllt.These previously known solutions are therefore either technically difficult to implement and therefore represent a high cost factor or, in principle, they cannot perform the task. There was therefore an urgent need for a self-supporting façade element that was relatively easy to manufacture and easy to process, and which at the same time met all requirements with regard to mechanical strength, weather resistance, heat and sound insulation as well as no reflection for electromagnetic waves.

Die vorliegende Erfindung stellt ein derartiges Fassadenelement zur Verfügung.The present invention provides such a facade element.

Das erfindungsgemäße selbsttragende Fassadenelement hat einen mehrschichtigen Aufbau (Sandwichbauweise) aus mindestens zwei selbsttragenden Schichten und mindestens einer zwischen ihnen liegenden Dämmschicht und ist dadurch gekennzeichnet, daß es im wesentlichen, vorzugsweise vollständig, metallfrei ist, daß die selbsttragenden Schichten aus faserverstärktem Beton bestehen und die Schichten durch im wesentlichen, vorzugsweise vollständig, metallfreie Befestigungsmittel formschlüssig aneinander fixiert sind. Der Begriff Beton umfaßt im Sinne der vorliegenden Erfindung auch Leichtbeton.The self-supporting facade element according to the invention has a multilayer structure (sandwich construction) from at least two self-supporting layers and at least one insulating layer between them and is characterized in that it is essentially, preferably completely, metal-free, that the self-supporting layers consist of fiber-reinforced concrete and the layers are positively fixed to one another by essentially, preferably completely, metal-free fastening means. For the purposes of the present invention, the term concrete also includes lightweight concrete.

Die Funktion der Tragschicht des erfindungsgemäßen Fassadenelementes besteht darin, dem Element eine hohe mechanische Festigkeit zu verleihen, insbesondere ihm eine so hohe Biegezugfestigkeit zu vermitteln, daß das Element mit gleichen oder verschiedenartigen Bauelementen zu stabilen, selbsttragenden Gebäudewänden zusammengesetzt werden kann. Im Prinzip benötigt das erfindungsgemäße Fassadenelement nur eine Tragschicht, es kann jedoch für besonders hohe Anforderungen an die Stabilität oder wenn besondere Konstruktionen statisch zu bewältigen sind zweckmäßig sein, zwei oder mehrere Tragschichten vorzusehen, zwischen denen jeweils Dämmschichten liegen. Solche mehrschichtigen Aufbauten zeigen neben der erhöhten statischen Festigkeit besondere Vorzüge im Hinblick auf die Schall- und Wärmedämmung. Zur weiteren Verbesserung der statischen Eigenschaften des erfindungsgemäßen Fassadenelementes kann die Tragschicht bzw. die Tragschichten durch bekannte Formgebungsmaßnahmen z.B. durch Verstärkungsrippen noch erheblich gesteigert werden. In der Regel genügt eine Tragschicht, dem erfindungsgemäßen Fassadenelement die erforderliche Stabilität zu verleihen.The function of the support layer of the facade element according to the invention is to give the element a high mechanical strength, in particular to impart such a high bending tensile strength that the element can be assembled with the same or different types of components to form stable, self-supporting building walls. In principle, the facade element according to the invention requires only one base layer, but it can be expedient for particularly high demands on the stability or if special constructions are to be managed statically, to provide two or more base layers, between each of which there are insulation layers. In addition to the increased static strength, such multi-layer structures have particular advantages with regard to sound and heat insulation. To further improve the static properties of the facade element according to the invention, the base layer or the base layers can be considerably increased by known shaping measures, for example by reinforcing ribs. As a rule, a base layer is sufficient to give the facade element according to the invention the required stability.

Fassadenelemente mit einer Tragschicht, d.h. mit einem dreischichtigen Aufbau, sind daher bevorzugt.Facade elements with a base layer, i.e. with a three-layer structure are therefore preferred.

Die Funktion der Vorsatzschicht ist überwiegend eine Schutzfunktion für die darunterliegende Konstruktion. Die Vorsatzschicht muß daher eine möglichst hohe Schwindrißunempfindlichkeit, Wetterbeständigkeit und Frostbeständigkeit aufweisen. Auch diese Funktion kann durch Formgebungsmaßnahmen zusätzlich unterstützt werden, z.B. dadurch, daß man die Randpartien so ausformt, daß die Vorsatzschalen benachbarter und übereinander liegender erfindungsgemäßener Fassadenelemente schuppenartig übereinander oder ineinander greifen.The function of the facing layer is predominantly a protective function for the underlying structure. The facing layer must therefore have the highest possible shrink resistance, weather resistance and frost resistance. This function can also be supported by shaping measures, e.g. in that the edge parts are shaped in such a way that the facing shells of adjacent and superimposed facade elements according to the invention engage in a scale-like manner one above the other or in one another.

Von ausschlaggebender Bedeutung für die Festigkeit der selbsttragenden Schichten, d.h. der Tragschicht und der Vorsatzschicht, ist die Zusammensetzung des faserverstärkten Betons, aus dem diese Schichten gefertigt sind. Die den oben genannten Funktionen dieser Schichten (auch als Schalen bezeichnet) entsprechenden Eigenschaften, wie Wetterbeständigkeit, Frostbeständigkeit und Schwindrißunempfindlichkeit für die Vorsatzschicht und Tragfähigkeit und Schwindrißunempfindlichkeit für die Tragschicht sind wesentlich durch die Zusammensetzung des faserverstärkten Betons bestimmt, aus den diese Schichten bestehen. Als Betonmatrix kommen für die Vorsatz- und die Tragschale im Prinzip alle bekannten Zusammensetzungen in Betracht, die die genannten Spezifikationen erfüllen. Solche Zusammensetzungen bestehen bekanntlich aus einem anorganischen oder organischen Bindemittel, Zuschlagstoffen, wie z.B. Kies, Sand, Split, Flugasche und gegebenenfalls Zusatzstoffen wie z.B. Fließmitteln, Porenbildnern usw.. Als anorganische Bindemittel kommen in erster Linie die verschiedenen Zementsorten in Betracht aber auch z.B. Gips oder Schwefel, als organische Bindemittel kommen im wesentlichen Epoxidharze, Polyesterharze oder PCC-Harze in Betracht. Bindemittel und Zuschlagstoffe sind in dem Beton zweckmäßigerweise im Verhältnis von 1:3 bis 1:8 vorhanden. Die Zusatzstoffe werden dem Beton in der Regel in einem Anteil bis zu 5 Gew.-% der Betonmischung zugefügt. Detaillierte Angaben zur Herstellung geeigneter Betonmischungen unter Verwendung anorganischer oder organischer Bindemittel finden sich beispielsweise in:
Lueger, Lexikon der Technik, Deutsche Verlagsanstalt Stuttgart, (1966) Bd. 10, S. 180 ff.; Bd. 11, S. 739 ff., Meyers Handbuch über die Technik, Bibliographisches Institut, Mannheim/Wien/Zürich (1971), Seite 136 ff., Ullmann's Encyclopedia of Industrial Chemistry, Vol. 15, Seiten 516 - 533,
Polymers in Concrete, American Concrete Society, Detroit 1978, Spec. Publ. SP 58.
The composition of the fiber-reinforced concrete from which these layers are made is of decisive importance for the strength of the self-supporting layers, ie the base layer and the facing layer. The properties corresponding to the above-mentioned functions of these layers (also referred to as shells), such as weather resistance, frost resistance and resistance to shrinkage for the facing layer and load-bearing capacity and insensitivity to shrinkage for the base layer, are essentially determined by the composition of the fiber-reinforced concrete from which these layers are made. In principle, all known compositions that meet the specified specifications come into consideration as the concrete matrix for the facing and the supporting shell. Such compositions are known to consist of an inorganic or organic binder, additives such as gravel, sand, split, fly ash and optionally additives such as flow agents, pore formers, etc. The various inorganic cement types are primarily considered, but also gypsum or Sulfur, as organic Binding agents are essentially epoxy resins, polyester resins or PCC resins. Binders and aggregates are expediently present in the concrete in a ratio of 1: 3 to 1: 8. The additives are usually added to the concrete in a proportion of up to 5% by weight of the concrete mixture. Detailed information on the production of suitable concrete mixes using inorganic or organic binders can be found, for example, in:
Lueger, Lexikon der Technik, Deutsche Verlagsanstalt Stuttgart, (1966) Vol. 10, pp. 180 ff .; Vol. 11, pp. 739 ff., Meyers Handbuch über die Technik, Bibliographisches Institut, Mannheim / Vienna / Zurich (1971), page 136 ff., Ullmann's Encyclopedia of Industrial Chemistry, Vol. 15, pp. 516 - 533,
Polymers in Concrete, American Concrete Society, Detroit 1978, Spec. Publ. SP 58.

Innerhalb der oben angegebenen Grenzen wird die Zusammensetzung der Betonmischung in an sich bekannter Weise entsprechend den erforderlichen Spezifikationen gewählt.Within the limits specified above, the composition of the concrete mixture is selected in a manner known per se in accordance with the required specifications.

Die Eigenschaften der Betonmischung werden in erheblichem Ausmaße durch den darin enthaltenen Faseranteil mitbestimmt.The properties of the concrete mix are largely determined by the fiber content contained therein.

Die Fasern können in dem faserverstärkten Beton sowohl als Einzelfilamente endlos oder geschnitten in Stapellängen von 2 bis 60 mm, vorzugsweise 6 bis 12 mm enthalten und homogen oder inhomogen, vorzugsweise mit einer gezielten Inhomogenität verteilt sein, oder sie können in Form von Endlos- oder Fasergarnen von Strängen oder Stäben oder in Form von textilen Flächengebilden wie Geweben, Gewirken oder Vliesen usw. vorliegen.The fibers can be contained in the fiber-reinforced concrete both as individual filaments, either continuously or cut, in staple lengths of 2 to 60 mm, preferably 6 to 12 mm, and homogeneously or inhomogeneously, preferably with a specific inhomogeneity, or they can be in the form of continuous or fiber yarns of strands or rods or in the form of textile fabrics such as woven fabrics, knitted fabrics or nonwovens, etc.

Eine homogene Verteilung der Fasermaterialien über die Dicke der aus dem Faserbeton gefertigten selbsttragenden Schichten ist am einfachsten zu realisieren mit Endlos- oder Stapelfasern, die der Betonmischung zugesetzt und gleichmäßig untergemischt werden. Für dickere Schichten, insbesondere für die Tragschicht kann es zweckmäßig sein, in der Nähe der Oberflächen dieser Schichten den Faseranteil zu verstärken, weil dort bei einer Biegebeanspruchung die höchsten Kräfte auftreten. Eine solche gezielte Inhomogenität unter Einsatz von Einzelfasern, kann man beispielsweise dadurch erzeugen, daß man zwei Betonmischungen mit unterschiedlichem Faseranteil herstellt und diese in der gewünschten Weise übereinander schichtet und aushärten läßt. Beim Einsatz von Fasererzeugnissen in Form von Garnen, Strängen, Stäben, Geweben, Gewirken oder Vliesen, können diese Materialien natürlich gezielt in den besonders bevorzugt zu verstärkenden Bereichen der selbsttragenden Bauteile eingebracht werden. So können beispielsweise Faserstränge oder -stäbe in horizontaler, paralleler Anordnung oder auch in gekreuzter Anordnung in der Nähe der beiden Oberflächen der selbsttragenden Bauelemente eingegossen werden. Selbstverständlich kann zusätzlich auch eine Verstärkung der neutraleren Innenbereiche des Bauelementes durch Fasermaterialien erfolgen.The easiest way to achieve a homogeneous distribution of the fiber materials over the thickness of the self-supporting layers made of the fiber concrete is with continuous or staple fibers, which are added to the concrete mixture and mixed in evenly. For thicker layers, in particular for the base layer, it may be expedient to reinforce the fiber portion in the vicinity of the surfaces of these layers, because the greatest forces occur there under bending stress. Such targeted inhomogeneity using individual fibers can be produced, for example, by producing two concrete mixtures with different fiber content and layering them in the desired manner and allowing them to harden. When using fiber products in the form of yarns, skeins, rods, woven fabrics, knitted fabrics or nonwovens, these materials can of course be introduced in a targeted manner in the areas of the self-supporting components that are to be reinforced particularly preferably. For example, fiber strands or rods can be cast in a horizontal, parallel arrangement or in a crossed arrangement in the vicinity of the two surfaces of the self-supporting components. Of course, fiber materials can also be used to reinforce the more neutral interior areas of the component.

Der Faseranteil in dem faserverstärkten Beton der erfindungsgemäßen Fassadenelemente beträgt im Mittel 0,1 bis 10, vorzugsweise 0,3 bis 2, insbesondere 0,5 bis 1 Vol.-%. Wegen der unterschiedlichen mechanischen Beanspruchung der Vorsatzschicht und der Tragschicht des Fassadenelementes können die Zusatzmengen des Fasermaterials im Rahmen der obigen Grenzen angepaßt werden. So verwendet man in der Vorsatzschale vorzugsweise nur 0,3 bis 0,6 Vol.-% Fasermaterial, in der Tragschale dagegen vorzugsweise 1 bis 2 Vol.-% Fasermaterial.The fiber content in the fiber-reinforced concrete of the facade elements according to the invention is on average 0.1 to 10, preferably 0.3 to 2, in particular 0.5 to 1% by volume. Because of the different mechanical loads on the facing layer and the supporting layer of the facade element, the additional amounts of the fiber material can be adjusted within the above limits. For example, only 0.3 to 0.6% by volume of fiber material is preferably used in the facing shell, but preferably 1 to 2% by volume of fiber material in the carrier shell.

Von besonderer Bedeutung für die statischen Eigenschaften des erfindungsgemäßen Fassadenelementes ist auch die chemische Natur des Fasermaterials. Die eingesetzten Fasern sollen chemikalienbeständig, insbesondere säure- und alkalibeständig, beständig gegen erhöhte Temperaturen und korrosionsfest sein; sie sollen ein gutes Verbundverhalten in der Matrix aufweisen und keine Gesundheitsgefährdungen mit sich bringen. Diese Spezifikationen werden am besten erfüllt durch Synthesefasern, wie z.B. Fasermaterialien aus Polyacrylnitril, Polypropylen, Polyester, Polyamid, Aramid und Kohlenstofffasern. Für alkalische Betonmischungen werden bevorzugt Polyacrylnitrilfasern aber auch Polyesterfasern, zweckmäßigerweise aus endgruppenverkappten Polyestern, eingesetzt. Für PCC-Beton kommen vorzugsweise ebenfalls Polyacrylnitrilfasern und Polyesterfasern in Betracht.The chemical nature of the fiber material is also of particular importance for the static properties of the facade element according to the invention. The fibers used should be resistant to chemicals, in particular acid and alkali, resistant to elevated temperatures and corrosion-resistant; they should have a good bond behavior in the matrix and should not pose any health risks. These specifications are best met by synthetic fibers such as Fiber materials made from polyacrylonitrile, polypropylene, polyester, polyamide, aramid and carbon fibers. Polyacrylonitrile fibers, but also polyester fibers, expediently from end group-capped polyesters, are preferably used for alkaline concrete mixtures. For PCC concrete, polyacrylonitrile fibers and polyester fibers are also preferred.

Fasermaterialien der genannten Art sind in zahlreichen Typen im Handel und es ist zweckmäßig zur Verstärkung der Betonmischungen hochfeste Typen einzusetzen. Universell einsetzbar sind insbesondere hochfeste, homopolymere, sogenannte technische, Polyacrylnitrilfasern, wie z.B. (R)Dolanit, die daher bei der Herstellung der erfindungsgemäßen Fassadenelemente besonders bevorzugt werden. Solche technischen Fasern haben, je nach Titer 2 bis 3mal so hohe Anfangsmoduli und Endfestigkeiten wie entsprechende textile Fasern und weisen daher weit überlegene Armierungseigenschaften auf.Fiber materials of the type mentioned are commercially available in numerous types and it is advisable to use high-strength types to reinforce the concrete mixtures. In particular, high-strength, homopolymeric, so-called technical, polyacrylonitrile fibers, such as (R) dolanite, can be used universally and are therefore particularly preferred in the production of the facade elements according to the invention. Technical fibers of this type have, depending on the titer, 2 to 3 times as high initial moduli and final strengths as corresponding textile fibers and therefore have far superior reinforcement properties.

Die poröse Dämmschicht der erfindungsgemäßen Fassadenelemente kann im Prinzip aus allen bekannten porösen Dämmstoffen hergestellt werden. Sowohl weiche, flexible als auch formstabile, harte Materialien können eingesetzt werden. So kommen beispielsweise in Betracht Fasermatten insbesondere solche aus anorganischen Fasern wie Steinwoll- oder Glasfasermatten, vorzugsweise solche, die durch Zusatz eines Bindemittels verfestigt sind oder auch Schäume, wie z.B. Weichschaum aus Latexmaterialien, vorzugsweise aber Hartschäume, wie z.B. Polystyrolschaum, Glasschäume oder Polyurethanschäume. Besonders bevorzugt sind auch Hartschaumplatten, die ihrerseits faserverstärkt sind, insbesondere solche, die durch Einbau dreidimensionaler Fasergerüste eine hohe mechanische Stabilität aufweisen.In principle, the porous insulation layer of the facade elements according to the invention can be produced from all known porous insulation materials. Both soft, flexible and dimensionally stable, hard materials can be used. For example, fiber mats come into consideration, in particular those made of inorganic fibers such as rock wool or glass fiber mats, preferably those that are solidified by the addition of a binder or also foams, such as soft foam made of latex materials, but preferably hard foams, such as polystyrene foam, glass foams or polyurethane foams. Hard foam panels, which are themselves fiber-reinforced, are particularly preferred, in particular those that have high mechanical stability due to the incorporation of three-dimensional fiber frameworks.

Wie bereits oben ausgeführt, weisen die erfindungsgemäßen Fassadenelemente vorzugsweise einen dreischichtigen Aufbau aus einer Tragschicht, einer Dämmschicht und einer Vorsatzschicht auf. Die Stärke der einzelnen Schichten wird gemäß ihren oben spezifizierten Funktionen gewählt. Die Stärke der Tragschicht wird daher unter Berücksichtigung der Festigkeitseigenschaften des faserverstärkten Betons den Forderungen der Statik angepaßt, die Stärke der Vorsatzschicht und der Dämmschicht wird gemäß den geforderten Schutz- und Dämmeigenschaften gewählt.As already stated above, the facade elements according to the invention preferably have a three-layer structure comprising a base layer, an insulation layer and a facing layer. The thickness of the individual layers is chosen according to their functions specified above. The thickness of the base layer is therefore adapted to the requirements of statics, taking into account the strength properties of the fiber-reinforced concrete, the thickness of the facing layer and the insulation layer is selected in accordance with the required protection and insulation properties.

Als zweckmäßig haben sich inbesondere bei einem dreischichtigen Aufbau des Fassadenelementes die folgenden Stärkebereiche erwiesen:The following strength areas have proven to be expedient, in particular in the case of a three-layer structure of the facade element:

Für die Tragschicht 8 bis 30 cm, vorzugsweise 10 bis 20 cm je nach statischen Anforderungen,
für die Vorsatzschicht 3 bis 8 cm, vorzugsweise 4 bis 6 cm und für die Dämmschicht 2 bis 30 cm, vorzugsweise 5 bis 15 cm.
For the base course 8 to 30 cm, preferably 10 to 20 cm depending on the static requirements,
for the facing layer 3 to 8 cm, preferably 4 to 6 cm and for the insulating layer 2 to 30 cm, preferably 5 to 15 cm.

Die einzelnen Schichten des erfindungsgemäßen Fassadenelementes sind formschlüssig miteinander verbunden. Die Verbindung der Schichten muß so fest sein, daß sie allen bei der Herstellung, der Verarbeitung und im späteren Gebrauch auftretenden Scher- und Delaminierungskräften widersteht. Insbesondere im fertigen Gebäude muß die formschlüssige Verbindung insbesondere die Eigengewichtskraft der Vorsatzschicht und die daran angreifenden Windsogkräfte aufnehmen. Als Verbindungsmittel für die Schichten können alle bekannten Mittel eingesetzt werden, die die erforderliche Festigkeit ergeben. So kann bei Wahl eines entsprechend festen formstabilen Dämmaterials und relativ leichter Versatzschale eine Klebeverbindung der drei Schichten erfolgen. Unabhängig von der mechanischen Eigenschaft der Dämmschicht und daher bevorzugt ist die formschlüssige Verbindung der einzelnen Schichten des erfindungsgemäßen Fassadenelementes durch im wesentlichen oder vorzugsweise vollständig metallfreie Anker, die alle Schichten des Fassadenelementes durchsetzen und in den Faserbetonschichten fest verankert sind. Als Material für diese vorzugsweise metallfreien Anker wird zweckmäßigerweise ein faserverstärkter Kunststoff mit hoher Zug-, Biegezug- und Scherfestigkeit eingesetzt. Zur unlösbaren Fixierung des Ankers in den Faserbetonschichten, weist der Anker in Bereichen, in denen er in der Faserbetonschicht liegt, mindestens eine Änderung seiner Form, z.B. eine Biegung oder eine Änderung seines Durchmessers auf. Auch andere Fixierungsmöglichkeiten der Anker in den Faserbetonschichten des erfindungsgemäßen Fassadenelementes sind möglich. So können beispielsweise Anker, die alle Schichten des Fassadenelementes durchdringen, in den Bereichen der Faserbetonschichten gespreizt und damit fixiert sein. Auch eine Verleimung der Anker im Bereich der Faserbetonschichten durch entsprechende hochfeste Kleber kommt zur Fixierung der Anker in den Betonschichten in Betracht. Die Anker werden über die Fläche des erfindungsgemäßen Fassadenelementes gleichmäßig verteilt, so daß alle Anker durch die zu übertragenden Kräfte in etwa gleichmäßig belastet werden. Die Zahl der Anker richtet sich naturgemäß nach der Größe der zu übertragenden Kräfte und der Stabilität der Ankerelemente. Zweckmäßigerweise liegen Anker, die vorwiegend die Windsogkräfte aufnehmen müssen, im wesentlichen senkrecht zur Fläche des erfindungsgemäßen Fassadenelementes; die Richtung von Ankern, die vorwiegend die Eigengewichtskraft der Vorsatzschale aufnehmen dagegen hat eine möglichst große senkrechte Komponente, d.h. daß diese Ankerelemente schräg, in Richtung auf die Senkrechte geneigt, in dem Fassadenelement vorliegen.The individual layers of the facade element according to the invention are positively connected to one another. The connection of the layers must be so tight that they can withstand all shear and delamination forces that occur during production, processing and later use resists. In the finished building in particular, the positive connection must absorb in particular the inherent weight of the facing layer and the wind suction forces acting thereon. All known means which give the required strength can be used as connecting means for the layers. When choosing an appropriately stable, dimensionally stable insulation material and a relatively light offset shell, the three layers can be glued. Regardless of the mechanical property of the insulation layer and therefore preferred is the positive connection of the individual layers of the facade element according to the invention by essentially or preferably completely metal-free anchors which penetrate all layers of the facade element and are firmly anchored in the fiber concrete layers. A fiber-reinforced plastic with high tensile, bending tensile and shear strength is expediently used as the material for these preferably metal-free anchors. For the permanent attachment of the anchor in the fiber concrete layers, the anchor has at least one change in its shape, for example a bend or a change in its diameter, in areas in which it lies in the fiber concrete layer. Other options for fixing the anchors in the fiber concrete layers of the facade element according to the invention are also possible. For example, anchors that penetrate all layers of the facade element can be spread and thus fixed in the areas of the fiber concrete layers. Gluing the anchors in the area of the fiber concrete layers using appropriate high-strength adhesives can also be used to fix the anchors in the concrete layers. The anchors are evenly distributed over the surface of the facade element according to the invention, so that all anchors are approximately uniformly loaded by the forces to be transmitted. The number of anchors naturally depends on the size of the forces to be transmitted and the stability of the Anchor elements. Anchors, which predominantly have to absorb the wind suction forces, expediently lie essentially perpendicular to the surface of the facade element according to the invention; on the other hand, the direction of anchors, which predominantly absorb the inherent weight of the facing shell, has the largest possible vertical component, ie that these anchor elements are inclined in the facade element, inclined in the direction of the vertical.

Eine alternative Möglichkeit, die Eigengewichtskraft der Vorsatzschale abzutragen besteht darin, daß die Vorsatzschicht und die dieser benachbarte Tragschicht, in der Höhe gegeneinander versetzte, in den Zwischenraum zwischen beide Schichten ragende horizontale Konsolen aufweisen, die so übereinander liegen, daß die Eigengewichtskraft der Vorsatzschicht von deren Konsole über das Material der Dämmschicht auf die Konsole der Tragschicht übertragen wird. Diese Konstruktion setzt selbstverständlich eine entsprechende Tragfähigkeit des Dämmaterials voraus. Selbstverständlich kann die Vorsatzschicht und die benachbarte Tragschicht auch mehrere in der Höhe beabstandete horizontale Konsolen aufweisen, die einander kraftübertragend zugeordnet sind. Die Ausladung der Konsolen wird so gewählt, daß sie etwa 2/3 bis 3/4 der Stärke der Dämmschicht entsprechen. Dies hat zur Folge, daß einerseits keine gravierenden Kältebrücken entstehen, andererseits eine ausreichende Überlappung der Konsolen zur Übertragung der Eigengewichtskraft der Vorsatzschicht vorhanden ist. Der Querschnitt der Konsolen kann im Prinzip beliebig gewählt werden, z.B. rechteckig oder dreieckig, seine Stärke muß jedoch ausreichen, um die anfallenden Kräfte zu übertragen. Ein dreieckiger oder trapezförmiger Querschnitt hat den Vorteil, daß der Bereich, in welchem die Dämmschicht dünner ist, relativ klein gehalten werden kann.An alternative way to remove the inherent weight of the facing shell is that the facing layer and the adjacent supporting layer, offset in height from each other, have horizontal brackets projecting into the space between the two layers, which lie one above the other in such a way that the dead weight of the facing layer differs from that Console is transferred via the material of the insulation layer to the console of the base layer. Of course, this construction requires an appropriate load-bearing capacity of the insulation material. Of course, the facing layer and the adjacent base layer can also have a plurality of horizontally spaced horizontal brackets which are assigned to one another in a force-transmitting manner. The projection of the consoles is chosen so that they correspond to approximately 2/3 to 3/4 of the thickness of the insulation layer. This means that on the one hand there are no serious cold bridges, on the other hand there is sufficient overlap of the brackets for transferring the weight of the facing layer. The cross-section of the brackets can in principle be chosen arbitrarily, for example rectangular or triangular, but its strength must be sufficient to transmit the forces that arise. A triangular or trapezoidal cross-section has the advantage that the area in which the insulation layer is thinner can be kept relatively small.

Zur Veranschaulichung von bevorzugten Ausführungsformen der vorliegenden Erfindung dienen die Figuren 1 und 2. Die Figur 1 zeigt schematisch eine schräge Aufsicht auf ein erfindungsgemäßes Fassadenelement mit teilweise entfernten Einzelschichten, das aus einer Tragschicht (1), einer Vorsatzschicht (2) und einer Dämmschicht (3) besteht und das Anker (4) zur formschlüssigen Verbindung der Schichten aufweist.FIGS. 1 and 2 serve to illustrate preferred embodiments of the present invention. FIG. 1 schematically shows an oblique plan view of a facade element according to the invention with partially removed individual layers, which consists of a base layer (1), a facing layer (2) and an insulating layer (3 ) exists and has the anchor (4) for the positive connection of the layers.

Die Figur 2 zeigt schematisch eine schräge Aufsicht auf ein erfindungsgemäßes Fassadenelement mit teilweise entfernten Einzelschichten, das aus einer Trageschicht (1), einer Vorsatzschicht (2) und einer Dämmschicht (3) besteht und das Anker (4) und horizontale Konsolen (5) zur formschlüssigen Verbindung der Schichten aufweist.Figure 2 shows schematically an oblique view of a facade element according to the invention with partially removed individual layers, which consists of a support layer (1), a facing layer (2) and an insulation layer (3) and the anchor (4) and horizontal brackets (5) has positive connection of the layers.

Besonders bevorzugt sind solche erfindungsgemäße Fassadenelemente, die mehrere der oben genannten bevorzugten Merkmale vereinigen. So ist beispielsweise besonders bevorzugt ein selbsttragendes erfindungsgemäßes Fassadenelement aus einer Tragschicht, einer Vorsatzschicht und einer dazwischenliegenden Dämmschicht, das dadurch gekennzeichnet ist, daß es völlig metallfrei ist, daß Trag- und Vorsatzschicht aus faserverstärktem Beton, insbesondere Zementbeton, bestehen, die Verstärkungsfasern als Stapelfasern mit einer Stapellänge von 2 bis 60 mm vorliegen und aus Polyacrylnitril bestehen, und daß die drei Schichten durch Kunststoffanker formschlüssig miteinander verbunden sind.Facade elements according to the invention which combine several of the preferred features mentioned above are particularly preferred. For example, a self-supporting facade element according to the invention is particularly preferred consisting of a base layer, a facing layer and an intervening insulation layer, which is characterized in that it is completely metal-free, that the base and facing layer consist of fiber-reinforced concrete, in particular cement concrete, with the reinforcing fibers as staple fibers have a stack length of 2 to 60 mm and consist of polyacrylonitrile, and that the three layers are positively connected to each other by plastic anchors.

Die Herstellung des erfindungsgemäßen Fassadenelementes erfolgt in der Weise, daß man mindestens 2 selbsttragende Flächenelemente aus faserverstärktem Beton mit Zwischenlagen aus porösem Dämmaterial miteinander formschlüssig verbindet. Bei Einsatz eines formstabilen mechanisch belastbaren Dämmaterials können die vorgefertigten Einzelschichten durch Verkleben miteinander formschlüssig verbunden werden. Eine weitere Möglichkeit der Herstellung der erfindungsgemäßen Fassadenelemente besteht darin, die vorgefertigten Schichten in der gewünschten Weise zu positionieren, den noch losen Sandwich an mehreren, über die Fläche verteilten Stellen, zu perforieren und in die Perforationslöcher Kunststoffanker einzuziehen, die im Bereich der Faserbetonschichten fixierbar sind. Hierbei kann die Fixierung entweder durch Spreizung oder durch Verklebung der Kunststoffanker erfolgen. Diese Herstellungsmethode ist unabhängig von der mechanischen Stabilität der Dämmschicht. Schließlich ist es auch möglich, die Schichten vor dem Abbinden des Betons übereinander zu stapeln und Kunststoffanker mit profilierten Endstücken in den noch plastischen oder flüssigen Beton einzubringen. Nach dem Aushärten der Betonmasse erhält man auch hier eine feste formschlüssige Verbindung des mehrschichtigen Aufbaus. Die letzte Methode ist ebenfalls unabängig von der mechanischen Stabilität des Dämmaterials und sie eignet sich besonders, zu einer rationellen Serienfertigung des erfindungsgemäßen Fassadenelementes. Sie ist daher besonders bevorzugt. Im übrigen ist der Einsatz formstabiler Dämmaterialien besonders vorteilhaft.The facade element according to the invention is produced by positively connecting at least 2 self-supporting surface elements made of fiber-reinforced concrete with intermediate layers made of porous insulating material. When using a dimensionally stable, mechanically resilient The prefabricated individual layers can be connected to each other in a form-fitting manner by gluing. Another possibility for producing the facade elements according to the invention is to position the prefabricated layers in the desired manner, to perforate the still loose sandwich at several locations distributed over the surface and to insert plastic anchors into the perforation holes, which can be fixed in the area of the fiber-reinforced concrete layers . The fixation can be done either by spreading or by gluing the plastic anchors. This manufacturing method is independent of the mechanical stability of the insulation layer. Finally, it is also possible to stack the layers on top of one another before the concrete sets and to insert plastic anchors with profiled end pieces into the still plastic or liquid concrete. After the concrete mass has hardened, a firm, form-fitting connection of the multi-layer structure is also obtained here. The last method is also independent of the mechanical stability of the insulating material and it is particularly suitable for efficient series production of the facade element according to the invention. It is therefore particularly preferred. In addition, the use of dimensionally stable insulation materials is particularly advantageous.

Das erfindungsgemäße Fassadenelement wird mit besonderem Vorteil eingesetzt zur Errichtung von Bauwerken in Gebieten, in denen Radarleitsysteme arbeiten, z.B. im Bereich von Flugplätzen.The facade element according to the invention is used with particular advantage for the construction of structures in areas in which radar guidance systems work, e.g. in the area of airfields.

Claims (17)

1. Selbsttragendes Fassadenelement in Sandwichbauweise aus mindestens zwei selbsttragenden Schichten und mindestens einer dazwischenliegenden Dämmschicht, dadurch gekennzeichnet, daß es im wesentlichen metallfrei ist, die selbsttragenden Schichten aus faserverstärktem Beton bestehen und die Schichten durch im wesentlichen nicht metallische Befestigungsmittel formschlüssig aneinander fixiert sind.1. Self-supporting facade element in sandwich construction from at least two self-supporting layers and at least one intermediate insulation layer, characterized in that it is essentially metal-free, the self-supporting layers consist of fiber-reinforced concrete and the layers are positively fixed to each other by essentially non-metallic fasteners. 2. Fassadenelement gemäß Anspruch 1, dadurch gekenzeichnet, daß es völlig metallfrei ist.2. facade element according to claim 1, characterized in that it is completely metal-free. 3. Fassadenelement gemäß mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß mindestens eine der selbsttragenden Schichten eine Tragschicht und eine der selbsttragenden Schichten eine außenliegende Vorsatzschicht ist.3. Facade element according to at least one of claims 1 and 2, characterized in that at least one of the self-supporting layers is a base layer and one of the self-supporting layers is an external facing layer. 4. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dämmschicht aus einem porösen anorganischen oder organischen Material besteht.4. facade element according to at least one of claims 1 to 3, characterized in that the insulating layer consists of a porous inorganic or organic material. 5. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es aus drei Schichten, nämlich einer Tragschicht (1), einer Vorsatzschicht (2) und einer dazwischenliegenden Dämmschicht (3) besteht.5. facade element according to at least one of claims 1 to 4, characterized in that it consists of three layers, namely a base layer (1), a facing layer (2) and an intermediate insulation layer (3). 6. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die im wesentlichen metallfreien Befestigungsmittel Anker (4), vorzugsweise Kunststoffanker sind.6. facade element according to at least one of claims 1 to 5, characterized in that the substantially metal-free fastening means anchor (4), preferably plastic anchor. 7. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Vorsatzschicht und die benachbarte Tragschicht in der Höhe gegeneinander versetzte, in den Zwischenraum zwischen beiden Schichten ragende, horizontale Konsolen (5) aufweisen, die so übereinander liegen, daß die Eigengewichtskraft der Vorsatzschicht von deren Konsole über das Material der Dämmschicht auf die Konsole der Tragschicht übertragen wird.7. Facade element according to at least one of claims 1 to 6, characterized in that the facing layer and the adjacent base layer offset in height, in the space between the two layers projecting, horizontal brackets (5) which lie one above the other so that the The weight of the facing layer is transferred from its bracket to the bracket of the base layer via the material of the insulation layer. 8. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Tragschicht (1) eine Stärke von 8 bis 30 cm, die Vorsatzschicht (2) eine Stärke von 3 bis 8 cm und die Dämmschicht (3) eine Stärke von 2 bis 30 cm hat.8. facade element according to at least one of claims 1 to 7, characterized in that the support layer (1) a thickness of 8 to 30 cm, the facing layer (2) a thickness of 3 to 8 cm and the insulation layer (3) a thickness of 2 to 30 cm. 9. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der faserverstärkte Beton der selbsttragenden Schalen Fasern in Form von Endlosfilamenten, Stapelfasern, Endlos- oder Stapelfasergarnen, Strängen, Stäben, Geweben, Gewirken oder Vliesen enthält.9. facade element according to at least one of claims 1 to 8, characterized in that the fiber-reinforced concrete of the self-supporting shells contains fibers in the form of continuous filaments, staple fibers, continuous or staple fiber yarns, strands, rods, fabrics, knitted or nonwovens. 10. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Fasermaterial im Beton im Mittel in einer Menge von 0,1 bis 10, vorzugsweise 0,3 bis 2 Vol.-% vorliegt.10. facade element according to at least one of claims 1 to 9, characterized in that the fiber material in the concrete is present on average in an amount of 0.1 to 10, preferably 0.3 to 2 vol .-%. 11. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der faserverstärkte Beton der selbsttragenden Schichten Fasermaterial aus Polyacrylnitril oder Polyester enthält.11. Facade element according to at least one of claims 1 to 10, characterized in that the fiber-reinforced concrete of the self-supporting layers contains fiber material made of polyacrylonitrile or polyester. 12. Fassadenelement gemäß mindestens einem der Ansprüche 1 bis 11 aus einer Tragschicht , einer Vorsatzschicht und einer dazwischenliegenden Dämmschicht, dadurch gekennzeichnet, daß es völlig metallfrei ist, daß Trage- und Vorsatzschicht aus faserverstärktem Beton bestehen, die Verstärkungsfasern als Stapelfasern mit einer Stapellänge von 2 bis 60 mm vorliegen und aus Polyacrylnitril bestehen, und daß die drei Schichten durch Kunststoffanker formschlüssig verbunden sind.12. facade element according to at least one of claims 1 to 11 of a base layer, a facing layer and an intermediate insulation layer, characterized in that it is completely metal-free, that the support and facing layers consist of fiber-reinforced concrete, the reinforcing fibers are staple fibers with a stack length of 2 to 60 mm and are made of polyacrylonitrile, and that the three layers are positively connected by plastic anchors are. 13. Verfahren zur Herstellung des selbsttragenden Fassadenelementes des Anspruchs 1, dadurch gekennzeichnet, daß man mindestens zwei selbsttragende Flächenelemente aus faserverstärktem Beton mit Zwischenlagen aus porösem Dämmaterial miteinander formschlüssig verbindet.13. The method for producing the self-supporting facade element of claim 1, characterized in that at least two self-supporting surface elements made of fiber-reinforced concrete with intermediate layers of porous insulating material are positively connected to one another. 14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß ein formstabiles mechanisch belastbares Flächenelement aus porösem Dämmaterial eingesetzt wird.14. The method according to claim 13, characterized in that a dimensionally stable, mechanically resilient surface element made of porous insulating material is used. 15. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß man die formschlüssige Verbindung der Schichten durch Anker bewerkstelligt.15. The method according to claim 13, characterized in that one accomplishes the positive connection of the layers by anchors. 16. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, daß man die Schichten vor dem Abbinden des Betons übereinander stapelt und Kunststoffanker mit profilierten Endstücken in den noch plastischen oder flüssigen Beton einbringt.16. The method according to claim 13, characterized in that the layers are stacked one above the other before the setting of the concrete and plastic anchors with profiled end pieces are introduced into the still plastic or liquid concrete. 17. Verwendung der selbsttragenden Fassadenelemente des Anspruchs 1 als Baumaterial für elektromagnetische Wellen nicht reflektierende Bauwerke.17. Use of the self-supporting facade elements of claim 1 as a building material for electromagnetic waves not reflecting buildings.
EP90101046A 1989-01-24 1990-01-19 Structural supporting sandwich facade member Expired - Lifetime EP0379980B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3901937A DE3901937A1 (en) 1989-01-24 1989-01-24 SELF-SUPPORTING FAÇADE ELEMENT IN SANDWICH DESIGN
DE3901937 1989-01-24

Publications (2)

Publication Number Publication Date
EP0379980A1 true EP0379980A1 (en) 1990-08-01
EP0379980B1 EP0379980B1 (en) 1992-01-15

Family

ID=6372646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90101046A Expired - Lifetime EP0379980B1 (en) 1989-01-24 1990-01-19 Structural supporting sandwich facade member

Country Status (9)

Country Link
EP (1) EP0379980B1 (en)
JP (1) JPH02248556A (en)
AT (1) ATE71684T1 (en)
DE (2) DE3901937A1 (en)
DK (1) DK0379980T3 (en)
ES (1) ES2030303T3 (en)
GR (1) GR3004343T3 (en)
IE (1) IE900252L (en)
PT (1) PT92936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826109C1 (en) * 1998-06-12 1999-10-07 Bock Hans Peter Method for producing a compound plate with heat and sound insulating properties for building trade
DE10141265A1 (en) * 2001-08-22 2003-03-13 Hans-Peter Bock Compound plate comprises concrete or plaster carrier layers and a variable sequence of sound insulating layers and/or a heat and sound insulating layer
ITTO20080750A1 (en) * 2008-10-14 2010-04-15 Deda Di C Defilippi E C S A S ELEMENTS FOR WALL-MOUNTED AND THERMO-INSULATING WALLS AND SOUNDPROOFING BARRIERS WITH IMPROVED PERFORMANCE
FR2962462A1 (en) * 2010-07-09 2012-01-13 Lamoureux Ricciotti Ingenierie Insulating panel e.g. monolithic panel, for constructing walls of floor, has facings and longitudinal edge wall or surface formed of single piece, where facings and edge wall or surface are made of ultra high performance concrete
CN112064883A (en) * 2020-09-17 2020-12-11 安徽艾雅伦新材料科技有限公司 Sound-absorbing soft reinforced thermal insulation wallboard and manufacturing process thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035460A1 (en) * 1990-11-08 1992-05-14 Messerschmitt Boelkow Blohm Large surface, sandwiched sound insulating wall - has extra material layer on side exposed to impingement for narrow band suppression
DE10007100B4 (en) * 2000-02-16 2005-04-21 Syspro-Gruppe Betonbauteile E.V. Wall / Deckenhalbfertigbaulelement
DE20207945U1 (en) * 2002-05-22 2003-09-25 Molter Matthias Facade panel is made from concrete and has two reinforcing layers of textile which are connected by transverse threads and are slightly inside surfaces of panel
DE102013021323A1 (en) 2013-12-17 2015-06-18 Herbert Eberlein Concrete slab unit
DE202014003123U1 (en) 2014-04-10 2015-02-11 Herbert Eberlein Concrete slab unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1484152A1 (en) * 1963-05-28 1969-01-16 Leopold Colard Laminate
AT352968B (en) * 1978-05-31 1979-10-25 Wienerberger Baustoffind Ag MULTI-LAYER COMPONENT
EP0015613A1 (en) * 1979-03-01 1980-09-17 Stamicarbon B.V. Method for making laminated boards
FR2465844A1 (en) * 1979-09-25 1981-03-27 Patrick Mournaud Composite structural building panels - involving expanded and dense plastics and concrete or plaster strata
DE2939877A1 (en) * 1979-10-02 1981-05-07 Walther Ing.(grad.) 4952 Porta Westfalica Schröder Universal composite sandwich building slab - has offset parallel recesses in insulation between rustless anchor tied outer shells
AU520177B2 (en) * 1977-08-15 1982-01-21 John Tilly Graeme Wall panel
EP0073553A2 (en) * 1981-04-30 1983-03-09 International Housing Limited Insulated wall construction apparatus
FR2568869A1 (en) * 1984-08-10 1986-02-14 Selam Sa Composite material for mfr. of prefabricated panels for buildings

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1484152A1 (en) * 1963-05-28 1969-01-16 Leopold Colard Laminate
AU520177B2 (en) * 1977-08-15 1982-01-21 John Tilly Graeme Wall panel
AT352968B (en) * 1978-05-31 1979-10-25 Wienerberger Baustoffind Ag MULTI-LAYER COMPONENT
EP0015613A1 (en) * 1979-03-01 1980-09-17 Stamicarbon B.V. Method for making laminated boards
FR2465844A1 (en) * 1979-09-25 1981-03-27 Patrick Mournaud Composite structural building panels - involving expanded and dense plastics and concrete or plaster strata
DE2939877A1 (en) * 1979-10-02 1981-05-07 Walther Ing.(grad.) 4952 Porta Westfalica Schröder Universal composite sandwich building slab - has offset parallel recesses in insulation between rustless anchor tied outer shells
EP0073553A2 (en) * 1981-04-30 1983-03-09 International Housing Limited Insulated wall construction apparatus
FR2568869A1 (en) * 1984-08-10 1986-02-14 Selam Sa Composite material for mfr. of prefabricated panels for buildings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826109C1 (en) * 1998-06-12 1999-10-07 Bock Hans Peter Method for producing a compound plate with heat and sound insulating properties for building trade
DE10141265A1 (en) * 2001-08-22 2003-03-13 Hans-Peter Bock Compound plate comprises concrete or plaster carrier layers and a variable sequence of sound insulating layers and/or a heat and sound insulating layer
DE10141265B4 (en) * 2001-08-22 2005-02-24 Hans-Peter Bock Modified composite panel
ITTO20080750A1 (en) * 2008-10-14 2010-04-15 Deda Di C Defilippi E C S A S ELEMENTS FOR WALL-MOUNTED AND THERMO-INSULATING WALLS AND SOUNDPROOFING BARRIERS WITH IMPROVED PERFORMANCE
FR2962462A1 (en) * 2010-07-09 2012-01-13 Lamoureux Ricciotti Ingenierie Insulating panel e.g. monolithic panel, for constructing walls of floor, has facings and longitudinal edge wall or surface formed of single piece, where facings and edge wall or surface are made of ultra high performance concrete
CN112064883A (en) * 2020-09-17 2020-12-11 安徽艾雅伦新材料科技有限公司 Sound-absorbing soft reinforced thermal insulation wallboard and manufacturing process thereof

Also Published As

Publication number Publication date
IE900252L (en) 1990-07-24
EP0379980B1 (en) 1992-01-15
ES2030303T3 (en) 1992-10-16
PT92936A (en) 1991-09-30
DE3901937A1 (en) 1990-07-26
DK0379980T3 (en) 1992-05-11
ATE71684T1 (en) 1992-02-15
GR3004343T3 (en) 1993-03-31
DE59000030D1 (en) 1992-02-27
JPH02248556A (en) 1990-10-04

Similar Documents

Publication Publication Date Title
DE2854228C2 (en) Multi-layer sheet made of aerated concrete, as well as process for their manufacture
DE19711211C2 (en) Formwork element
EP2894272B1 (en) High performance concrete
DE2728351A1 (en) METHOD OF MANUFACTURING PANELS
DE2756820A1 (en) MIXED MATERIAL COMPONENT ELEMENT AND PROCESS FOR ITS MANUFACTURING
EP0379980B1 (en) Structural supporting sandwich facade member
EP2839089A1 (en) Structural element and method for producing a structural element
DE3790970C2 (en) Curtain wall for building
DE202008010803U1 (en) Heat-insulating brick
EP0051101B1 (en) Cement slab, and process and device for producing the same
DE19737219C2 (en) Fabric tape as a crack-bridging carrier on thermal insulation facades
DE2705842A1 (en) BUILDING MATERIALS FOR BUILDING
DE2322271C2 (en) Process for the mechanical reinforcement of moldable and / or hardenable materials
DE202011106980U1 (en) Non-combustible building board
DE2611033A1 (en) FIRE RESISTANT LIGHTWEIGHT PARTITION WALL FOR THE INTERIORS OF BUILDINGS
DE102019103215A1 (en) Composite wall construction for a building
DE2713487A1 (en) Insulated hard foam panel for supporting rendering - has reinforcing fibre glass lattice mat impregnated and sheathed with synthetic resin
EP1554228B1 (en) Construction material on a plant basis and method for the producing of this construction material.
DE7837214U1 (en) Aerated concrete component
DE3506555A1 (en) Mortar-like mass and process for the manufacture and use thereof
DE4020685A1 (en) Prefabricated tile partition - with concrete core flanked by glass fibre mats or grids embedded in adhesion promotion layers
DE102005053104A1 (en) building board
DE8029806U1 (en) PLATE WITH REINFORCEMENT INSERTS
DE8618179U1 (en) Multi-layer plate-shaped component
AT200769B (en) Process for the production of structures from concrete and structure produced therefrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900712

17Q First examination report despatched

Effective date: 19910125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 71684

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59000030

Country of ref document: DE

Date of ref document: 19920227

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030303

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3004343

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931229

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19931230

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940103

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940113

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 5

Ref country code: LU

Payment date: 19940131

Year of fee payment: 5

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940311

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19940331

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950119

Ref country code: GB

Effective date: 19950119

Ref country code: DK

Effective date: 19950119

Ref country code: AT

Effective date: 19950119

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950120

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950120

EAL Se: european patent in force in sweden

Ref document number: 90101046.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

Ref country code: BE

Effective date: 19950131

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3004343

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

EUG Se: european patent has lapsed

Ref document number: 90101046.2

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119