EP0377214B1 - Anordnung zur Steuerung eines elektrischen Stromes - Google Patents

Anordnung zur Steuerung eines elektrischen Stromes Download PDF

Info

Publication number
EP0377214B1
EP0377214B1 EP89124054A EP89124054A EP0377214B1 EP 0377214 B1 EP0377214 B1 EP 0377214B1 EP 89124054 A EP89124054 A EP 89124054A EP 89124054 A EP89124054 A EP 89124054A EP 0377214 B1 EP0377214 B1 EP 0377214B1
Authority
EP
European Patent Office
Prior art keywords
current value
coil
current
time interval
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89124054A
Other languages
English (en)
French (fr)
Other versions
EP0377214A1 (de
Inventor
Thomas Eugene Boe
Vijay Manilal Dharia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deere and Co filed Critical Deere and Co
Publication of EP0377214A1 publication Critical patent/EP0377214A1/de
Application granted granted Critical
Publication of EP0377214B1 publication Critical patent/EP0377214B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching

Definitions

  • the invention relates to an arrangement for controlling an electrical current according to the preamble of claim 1.
  • Another known method for controlling the coil current uses a current feedback sensor connected in series with the coil.
  • the current is determined by a comparison device, which in turn moves the control unit back when the coil current exceeds a reference value and which drives the control unit back up when the coil current falls below the reference value.
  • a switch-insensitivity range can be set for the comparison circuit by means of controllable switch-off and switch-on times.
  • the valve actuation process provides precise control of the average coil current for both changing supply voltages and changing coil resistances.
  • the cost and number of electronic components required for this method can be considerably higher than for the pulse width modulation method. Consequently, it becomes inexpensive and effective arrangement for controlling the electromagnet current.
  • an amplifier circuit for electromagnets of proportional or servo valves with the generic features in which the input of a clocked pulse width modulator is connected to the output of a controller, the pulse width of which is determined by the output signal of the controller becomes.
  • the output signal of the pulse width modulator is fed to a control logic which drives transistors arranged in a bridge circuit.
  • the excitation winding of an electromagnet is located in a branch of the bridge circuit.
  • In other branches of the bridge circuit there are two resistors whose voltage drop is measured and used to generate the actual value for the current in the field winding. The difference between the actual current value and a current setpoint is formed at a summing point and fed to the controller as a control deviation.
  • EP-A-0 220 559 specifies a method for driving a magnetic coil which is periodically fed by direct current pulses. After a certain period of time, the coil current is reduced in order to reduce the thermal load on the magnet coil after lifting work has been carried out, if the magnet coil is only intended to ensure a holding function.
  • the object to be achieved with the invention is seen in specifying an arrangement of the type mentioned at the outset, which is simple in construction and inexpensive. Furthermore, the current control arrangement should be able to be developed in such a way that it can determine whether the magnet coil is in an open circuit and that it enables the interruption frequency to be set easily.
  • a microprocessor periodically generates a peak current setpoint and energizes the solenoid.
  • a voltage corresponding to the peak current set point is applied to an input of a comparator.
  • the actual coil current is sensed through a resistor in series with the coil and a voltage corresponding to the sensed coil current is applied to the other input of the comparator.
  • the comparison device generates an interrupt signal at its output as soon as the detected coil current reaches the peak current setpoint.
  • the interrupt signal is fed to the microprocessor, which emits control signals for separating the magnetic coil from the earth potential. If the microprocessor does not receive an interrupt signal, it lowers the peak current setpoint after a predeterminable time interval, whereupon a new comparison is made. If an interrupt signal is still not generated, the peak current setpoint is lowered again and a comparison is carried out again. If there is also no interruption signal, a signal is generated which indicates that the circuit in which the magnet coil is located is interrupted.
  • This peak current detection method provides proximity control for the coil current that regularly requires fewer parts than other known ones Methods of current compensation control. Since the interruption time is controlled by the software of the microprocessor, the interruption frequency can also be conveniently set. The number of parts is reduced because the interrogation resistance can be inserted into the switchable earth line of the coil and because no switch insensitivity range of the comparison device is required. Another advantage of this modulation control method is that a coil short-circuit has a self-limiting effect, since the average current of a pure ohmic load is much smaller than the peak current. Furthermore, software that can be used allows a broken circuit to be sensed by the absence of a peak current break.
  • valves 42a and 42b shown in FIGS. 1a and 1b are each driven by identical valve control circuits 512, each of which via a relay K501 with a +12 volt voltage source, via a D / A converter U203 with the microprocessor 508 and with one of the Microprocessor connections 6 and 7 and connected to a NAND gate U002.
  • valve control circuits 512 each of which via a relay K501 with a +12 volt voltage source, via a D / A converter U203 with the microprocessor 508 and with one of the Microprocessor connections 6 and 7 and connected to a NAND gate U002.
  • only one valve with a valve control circuit is required for the application of the present invention, it being possible to dispense with the NAND gate U002 shown.
  • only one of the two valves 42a and 42b is activated.
  • the block diagram according to FIG. 1a and the valve control circuit according to FIG. 1b contain the following components:
  • the microprocessor 508 In cooperation with the valve drive circuit shown in Figures 1a and 1b, the microprocessor 508 periodically executes valve drive program sequences (see Figures 2a and 2b) which respond as follows: A reference value for the peak valve current VCOM is sent to the minus input via the D / A converter U203 of the comparator U004. Microprocessor 508 also generates a signal that is present at terminals 6 or 7 and turns on transistor Q601 so that current flows through the solenoid of valve 42a or 42b. When the solenoid current sensed through resistor R601 reaches a value that corresponds to the peak value VCOM, the output of comparator U004 switches from one position to another, thereby providing an interrupt signal to terminal 12 of microprocessor 508.
  • This interrupt signal triggers the program run (Steps 100 to 106) for the peak current detection, which is shown in FIGS. 2a and 2b and begins with the input step 100.
  • This program then generates a signal in step 102 which opens the transistor Q601, whereby the current to the magnet coil is interrupted for a predeterminable period of time, which is predetermined by steps 104 to 116.
  • Microprocessor 508 also detects whether the solenoid is in an open circuit or not. This is done by lowering the reference value for the peak valve current twice, provided that no interruption signal is received within a certain time interval. If the queried valve current does not reach the twice reduced reference current value and no interruption has yet been received within an additional time interval, a signal is generated which indicates the open circuit. These steps are carried out with the time program (steps 120 to 156), which is shown in FIGS. 3a to 3c.
  • the time program is started with step 120 by a trigger signal every 80 microseconds. It is then determined in step 122 whether both valves are de-energized. If this is the case, the algorithm proceeds to step 130, otherwise it proceeds to step 124. In 124 it is determined whether an off time interval is currently in progress. If so, the algorithm proceeds to step 126. If not, the algorithm proceeds to step 132. If there is an off time interval, the value of the off timer is gradually reduced in step 126 and it is determined in each case whether the timeout has expired. If not, the algorithm proceeds to step 134, otherwise it proceeds to step 128. Step 128 emits a signal which indicates that no off-time interval is active and switches the corresponding valve on.
  • step 130 it is indicated that the peak current interruption is no longer present, an open circuit timer is activated again and it is indicated that there is no current limitation.
  • the open circuit timer has a duration of 0.6 seconds. If no interrupt signal is generated within this time, this means that the coil is in an interrupted circuit.
  • Step 132 indicates that no peak current interruption has occurred.
  • Step 134 counts down the timer of the main program loop and emits a signal when the time interval of the timer has expired.
  • the main program timer has a duration of 10 seconds.
  • step 136 it is checked in step 136 whether the algorithm is waiting for a peak current interrupt. If not, the algorithm continues in step 152. Otherwise, the algorithm proceeds to step 138, in which the query is "is this an end of the circuit test?". If so, the algorithm proceeds to step 152 again. If not, go to step 140.
  • Step 140 counts down an open circuit timer and determines if its time has expired. If not, the algorithm continues to step 152; if the time has expired, proceed
  • step 142 the current limit value is checked and, depending on this value, the program is continued with one of the steps 144, 146 or 148. If, for example, the current limit is zero, which means that there is no current limit, the program continues with step 144, which sets the current limit to the maximum value. If, according to step 142, the current limit value is equal to the maximum limit value, the program continues with step 146, where the current limit value is reduced to a lower value. If, according to step 142, the current limit value is equal to the lower limit value, this becomes The program proceeds to step 148, where an error signal is set which indicates that a faulty open circuit has occurred. In this case, the valve drive is switched off by opening the relay K501 and the current limit value is reset to zero.
  • step 150 the timer for the open circuit is reactivated in step 150.
  • steps 152 and 154 other timers are reset or reactivated depending on the present case.
  • the peak current level can be set (using a digital / analog converter U203) and markers can be set which indicate to the timer program which valve is switched on.
  • This valve program also controls the length of the time interval (delay) during which the valves are switched off.
  • G80 and G81 are predeterminable constants and VCOM is the peak current setpoint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Feedback Control In General (AREA)

Description

  • Die Erfindung betrifft eine Anordnung zur Steuerung eines elektrischen Stromes gemäß dem Oberbegriff des Patentanspruches 1.
  • Es ist bekannt, eine Pulsbreitenmodulationstechnik zur Spulenstromsteuerung des Elektromagneten eines elektrohydraulischen Ventiles zu verwenden. Hierbei handelt es sich genau genommen um eine Spannungssteuertechnik. Da jedoch die Kraft des Elektromagneten proportional zum Spulenstrom ist, ist bei dieser Technik ein Verfahren zur Kompensation von Veränderungen der Versorgungsspannung und des Spulenwiderstandes, beispielsweise eine durch eine Bedienungsperson einstellbare Empfindlichkeitssteuerung, erforderlich.
  • Ein anderes bekanntes Verfahren zur Steuerung des Spulenstromes verwendet einen in Serie mit der Spule geschalteten Stromrückkopplungssensor. Hierbei wird der Strom durch eine Vergleichseinrichtung ermittelt, welche ihrerseits die Ansteuereinheit zurückfährt, wenn der Spulenstrom einen Bezugswert übersteigt, und welche die Ansteuereinheit wieder hochfährt, wenn der Spulenstrom unter den Bezugswert fällt. Durch ansteuerbare Aus- und Einschaltzeiten kann für den Vergleichskreis ein Umschaltunempfindlichkeitsbereich eingestellt werden. Das Ventilansteuerverfahren liefert eine genaue Steuerung des Durchschnittsspulenstromes sowohl für wechselnde Versorgungsspannungen als auch für wechselnde Spulenwiderstände. Kosten und Anzahl der elektronischen Bauteile, die für dieses Verfahren erforderlich sind, können jedoch beträchtlich höher liegen als beim Pulsbreitenmodulationsverfahren. Folglich wird eine kostengünstige und wirkungsvolle Anordnung zur Steuerung des Elektromagnetenstromes begehrt.
  • Durch die DE-A-3 530 966 ist eine Verstärkerschaltung für Elektromagnete von Proportional- oder Servoventilen mit den gattungsgemäßen Merkmalen bekannt geworden, bei der an den Ausgang eines Reglers der Eingang eines getakteten Impulsbreiten-Modulators angeschlossen ist, dessen Pulsbreite vom Ausgangssignal des Reglers bestimmt wird. Das Ausgangssignal des Impulsbreiten-Modulators wird einer Steuerlogik zugeführt, die in einer Brückenschaltung angeordnete Transistoren ansteuert. In einem Zweig der Brückenschaltung liegt die Erregerwicklung eines Elektromagneten. In weiteren Zweigen der Brückenschaltung liegen zwei Widerstände, deren Spannungsabfall gemessen und zur Istwertbildung für den Strom in der Erregerwicklung herangezogen wird. In einem Summierpunkt wird die Differenz zwischen dem Strom-Istwert und einem Strom-Sollwert gebildet und dem Regler als Regelabweichung zugeführt.
  • Die EP-A-0 220 559 gibt ein Verfahren zur Ansteuerung einer Magnetspule an, die periodisch durch Gleichstromimpulse gespeist wird. Nach Ablauf einer bestimmten Zeitspanne wird der Spulenstrom verringert, um nach ausgeführter Hubarbeit, wenn die Magnetspule lediglich eine Haltefunktion sicherstellen soll, die thermische Belastung der Magnetspule zu reduzieren.
  • Die mit der Erfindung zu lösende Aufgabe wird darin gesehen, eine Anordnung der eingangs genannten Art anzugeben, welche einfach im Aufbau und kostengünstig ist. Ferner soll die Stromsteueranordnung so weitergebildet werden Können, daß sie feststellen kann, ob die Magnetspule in einem offenen Stromkreis liegt, und daß sie eine einfache Einstellung der Unterbrechungsfrequenz ermöglicht.
  • Die Aufgabe wird bei einer gattungsgemäßen Anordnung durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Zweckmäßige Ausgestaltungen gehen aus den Unteransprüchen 2 bis 4 hervor.
  • Ein Mikroprozessor erzeugt periodisch einen Spitzenstromsollwert und erregt die Magnetspule. Eine Spannung, die dem Spitzenstromsollwert entspricht, wird an einen Eingang einer Vergleichseinrichtung angelegt. Der tatsächliche Spulenstrom wird über einen in Serie mit der Spule liegenden Widerstand erfaßt, und eine Spannung, die dem erfaßten Spulenstrom entspricht, wird an den anderen Eingang der Vergleichseinrichtung angelegt. Die Vergleichseinrichtung erzeugt an ihrem Ausgang ein Unterbrechungssignal, sobald der erfaßte Spulenstrom den Spitzenstromsollwert erreicht. Das Unterbrechungssignal wird dem Mikroprozessor zugeführt, welcher Steuersignale zum Trennen der Magnetspule vom Erdpotential abgibt. Wird vom Mikroprozessor kein Unterbrechungssignal empfangen, so senkt dieser nach einem vorgebbaren Zeitintervall den Spitzenstromsollwert ab, woraufhin ein erneuter Vergleich erfolgt. Wird immer noch kein Unterbrechungssignal erzeugt, so wird der Spitzenstromsollwert wiederum abgesenkt und wieder ein Vergleich durchgeführt. Liegt auch jetzt kein Unterbrechungssignal vor, so wird ein Signal erzeugt, welches anzeigt, daß der Stromkreis, in dem die Magnetspule liegt, unterbrochen ist.
  • Dieses Spitzenstromerfassungsverfahren liefert eine Näherungssteuerung für den Spulenstrom, die regelmäßig eine geringere Einzelteilanzahl erfordert als andere bekannte Methoden zur Stromkompensationsansteuerung. Da die Unterbrechungszeit durch die Software des Mikroprozessors gesteuert wird, läßt sich auch die Unterbrechungsfrequenz bequem einstellen. Die Teilezahl ist vermindert, da der Abfragewiderstand sich in die umschaltbare Erdleitung der Spule einfügen läßt und weil kein Umschaltunempfindlichkeitsbereich der Vergleichseinrichtung erforderlich ist. Ein weiterer Vorteil dieses Verfahrens zur Modulationssteuerung liegt darin, daß ein Spulenkurzschluß selbstbegrenzend wirkt, da der Durchschnittsstrom einer reinen ohmschen Belastung viel kleiner ist als der Spitzenstrom. Ferner läßt es eine verwendbare Software zu, einen unterbrochenen Stromkreis durch das Fehlen einer Spitzenstromunterbrechung wahrzunehmen.
  • Anhand der Zeichnung, die ein Ausführungsbeispiel der Erfindung zeigt, sollen die Erfindung sowie weitere Vorteile und vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung näher beschrieben und erläutert werden.
  • Es zeigt:
  • Fig. 1a
    ein vereinfachtes schematisches Blockdiagramm der vorliegenden Erfindung,
    Fig. 1b
    ein detailliertes Stromkreisschema des in Fig. 1 dargestellten Ventilansteuerkreises,
    Fig. 2a, 2b und 3a bis 3c
    Flußdiagramme von Algorithmen, die von dem in Fig. 1 dargestellten Mikroprozessor ausgeführt werden.
  • Die in den Figuren 1a und 1b dargestellten Ventile 42a und 42b werden je durch identische Ventilansteuerkreise 512 angetrieben, welche jeweils über ein Relais K501 mit einer +12 Volt-Spannungsquelle, über einen D/A-Konverter U203 mit dem Mikroprozessor 508 sowie mit einem der Mikroprozessoranschlüsse 6 bzw. 7 und mit einem NAND-Gatter U002 verbunden sind. Für die Anwendung der vorliegenden Erfindung ist grundsätzlich nur ein Ventil mit einem Ventilansteuerkreis erforderlich, wobei das dargestellte NAND-Gatter U002 entfallen kann. Bei der vorliegenden Schaltung wird immer nur eines der beiden Ventile 42a und 42b angesteuert. Das Blockdiagramm gemäß Fig. 1a und der Ventilansteuerkreis gemäß Fig. 1b enthalten folgende Bauteile:
  • Dioden
  • CR601
    ultraschneller Gleichrichter, MUR410
    CR603
    Zenerdiode, IN4745, 16 Volt
    CR605, CR606
    Doppeldiode SOT-23, BAV99
    Integrierte Schaltungen
  • U203
    8 bit Digital/Analog-Konverter, AD558
    U002
    Vierfach-NOR-Gatter (Nicht-Oder-Gatter), 74HC02
    U004
    Vergleicher, LM2901
    Transistoren
  • Q601
    Leistungs-MOSFET, BUZ11
    Q603
    NPN-Darlingon-Transistor, MPS A29
    Widerstände
  • R612
    5,6 kOhm, 1/8 W
    R613
    330 Ohm, 1/8 W
    R614
    750 Ohm, 1 W
    R607
    120 Ohm, 1/8 W
    R601
    Drahtwiderstand 0,75 Ohm, 7 W
    R602
    1,0 kOhm, 1/8 W
    R603
    4,7 kOhm, 1/8 W
    Kapazitäten
  • C602
    150 pF, 50 V
    C603
    0,001 µF, 100 V
    C604
    0,001 µF, 100 V
    C607
    0,001 µF, 100 V
    C608
    0,001 µF, 100 V
    C611
    0,047 µF, 50 V
    C612
    0,047 µF, 50 V
    C002
    0,01 µF, 100 V
    Drosselspulen
  • L601
    Axial Ferrite Bead
    L602
    Axial Ferrite Bead
  • In Zusammenwirkung mit dem in den Figuren 1a und 1b dargestellten Ventilansteuerstromkreis führt der Mikroprozessor 508 periodisch Ventilansteuerprogrammabläufe durch (siehe die Figuren 2a und 2b), welche folgendermaßen ansprechen: Ein Bezugswert für den Spitzenventilstrom VCOM wird über den D/A-Konverter U203 an den Minuseingang des Vergleichers U004 angelegt. Ferner erzeugt der Mikroprozessor 508 ein Signal, das an den Anschlüssen 6 oder 7 ansteht und den Transistor Q601 durchschaltet, so daß Strom durch die Magnetspule des Ventils 42a oder 42b fließt. Erreicht der Magnetspulenstrom, der über den Widerstand R601 abgefragt wird, einen Wert, der dem Spitzenwert VCOM entspricht, so schaltet der Ausgang des Vergleichers U004 von einer Lage auf die andere um, wodurch ein Unterbrechungssignal an den Anschluß 12 des Mikroprozessors 508 geliefert wird. Dieses Unterbrechungssignal bewirkt die Auslösung des Programmablaufes (Schritte 100 bis 106) für die Spitzenstromerfassung, welches in den Figuren 2a und 2b dargestellt ist und mit dem Eingangsschritt 100 beginnt. Daraufhin erzeugt dieses Programm in Schritt 102 ein Signal, welches den Transistor Q601 öffnet, wodurch der Strom zu der Magnetspule für eine vorherbestimmbare Zeitspanne, die durch die Schritte 104 bis 116 vorgegeben wird, unterbrochen wird.
  • Der Mikroprozessor 508 erfaßt auch, ob die Magnetspule in einem offenen Stromkreis liegt oder nicht. Dies erfolgt durch zweimalige Absenkung des Bezugswertes für den Spitzenventilstrom, sofern innerhalb eines bestimmten Zeitintervalls kein Unterbrechungssignal empfangen wird. Wenn der abgefragte Ventilstrom den zweimal reduzierten Bezugsstromwert nicht erreicht und innerhalb eines zusätzlichen Zeitintervalls noch keine Unterbrechung empfangen wurde, dann wird ein Meldesignal erzeugt, welches den offenen Stromkreis anzeigt. Diese Schritte werden mit dem Zeitprogramm (Schritte 120 bis 156), das aus den Figuren 3a bis 3c hervorgeht, vollzogen.
  • Das Zeitprogramm wird mit dem Schritt 120 durch ein Auslösesignal alle 80 Mikrosekunden gestartet. In Schritt 122 wird dann festgestellt, ob beide Ventile stromlos sind. Ist dies der Fall, so schreitet der Algorithmus zu Schritt 130 weiter, anderenfalls geht es mit Schritt 124 weiter. In 124 wird festgestellt, ob gerade ein Aus-Zeitintervall abläuft. Wenn ja, schreitet der Algorithmus zu Schritt 126 weiter. Wenn nicht, schreitet der Algorithmus zu Schritt 132 weiter. Liegt ein Aus-Zeitintervall vor, so wird der Wert des Aus-Zeitgebers in Schritt 126 stufenweise verringert und jeweils ermittelt, ob die Auszeit abgelaufen ist. Wenn nicht, schreitet der Algorithmus zu Schritt 134 weiter, anderenfalls geht es mit Schritt 128 weiter. Schritt 128 gibt ein Signal ab, durch welches angezeigt wird, daß kein Aus-Zeitintervall aktiv ist, und schaltet das entsprechende Ventil ein.
  • In Schritt 130 wird angezeigt, daß die Spitzenstromunterbrechung nicht mehr vorliegt, ferner wird wieder ein Zeitglied für den offenen Stromkreis aktiviert, und es wird angezeigt, daß keine Strombegrenzung vorliegt. Der Zeitgeber für den offenen Stromkreis beinhaltet eine Zeitdauer von 0,6 Sekunden. Wird innerhalb dieser Zeit kein Unterbrechungssignal erzeugt, so bedeutet dies, daß die Spule in einem unterbrochenen Stromkreis liegt. Schritt 132 zeigt hingegen an, daß keine Spitzenstromunterbrechung eingetreten war. Schritt 134 zählt das Zeitglied der Hauptprogrammschleife herunter und gibt ein Signal ab, wenn das Zeitintervall des Zeitgliedes abgelaufen ist. Der Zeitgeber der Hauptprogrammschleife beinhaltet eine Zeitdauer von 10 Sekunden. Als nächstes wird in Schritt 136 geprüft, ob der Algorithmus auf eine Spitzenstromunterbrechung wartet. Wenn nicht, wird der Algorithmus in Schritt 152 fortgesetzt. Anderenfalls schreitet der Algorithmus zu Schritt 138 weiter, in welchem abgefragt wird, "ist dies ein Ende des Stromkreistestes?". Wenn ja, schreitet der Algorithmus wieder mit Schritt 152 weiter. Wenn nicht, geht es weiter mit Schritt 140. Schritt 140 zählt ein Zeitglied für den offenen Stromkreis herunter und stellt fest, ob dessen Zeit abgelaufen ist. Wenn nicht, setzt der Algorithmus den Ablauf mit dem Schritt 152 fort, wenn die Zeit abgelaufen ist, wird mit Schritt 142 fortgefahren.
  • In Schritt 142 wird der Stromgrenzwert geprüft und abhängig von diesem Wert das Programm mit einem der Schritte 144, 146 oder 148 fortgesetzt. Ist beispielsweise der Stromgrenzwert Null, was bedeutet, daß keine Strombegrenzung vorliegt, dann wird das Programm mit Schritt 144 fortgesetzt, welcher die Strombegrenzung auf den maximalen Wert festsetzt. Ist gemäß Schritt 142 der Stromgrenzwert gleich dem maximalen Grenzwert, dann wird das Programm mit Schritt 146 fortgesetzt, wo der Stromgrenzwert auf einen tieferen Wert vermindert wird. Ist gemäß Schritt 142 der Stromgrenzwert gleich dem unteren Grenzwert, so wird das Programm mit Schritt 148 fortgesetzt, wo ein Fehlersignal gesetzt wird, durch welches indiziert wird, daß ein fehlerhafter offener Stromkreis aufgetreten ist. In diesem Fall wird der Ventilantrieb durch Öffnen des Relais K501 abgestellt und der Stromgrenzwert auf Null zurückgestellt.
  • Nach den Schritten 144, 146 oder 148 wird in Schritt 150 das Zeitglied für den offenen Stromkreis wieder aktiviert. In den Schritten 152 und 154 werden je nach dem vorliegenden Fall andere Zeitglieder zurückgesetzt oder wieder aktiviert. Schließlich wird in Schritt 156 der Programmablauf beendet.
  • In einem nicht dargestellten Ventilprogramm können das Spitzenstromniveau (durch einen Digital/Analog-Konverter U203) eingestellt und Marken gesetzt werden, welche dem Zeitgliedprogramm anzeigen, welches Ventil eingeschaltet ist. Dieses Ventilprogramm steuert ferner die Länge des Zeitintervalls (Verzögerung), währenddessen die Ventile ausgeschaltet sind. Dabei wird die Verzögerung (DELAY) durch folgende Beziehung abgeleitet:

    DELAY = G80 - VCOM x G81/256
    Figure imgb0001

  • Dabei sind G80 und G81 vorherbestimmbare Konstanten und VCOM ist der Spitzenstromsollwert.
  • Es ist ersichtlich, daß dieses Auszeitintervall verringert wird, wenn der Bezugswert für den Spitzenventilstrom ansteigt.

Claims (4)

  1. Anordnung zur Steuerung eines elektrischen Stromes, der periodisch an die Spule eines Elektromagneten angelegt wird, mit Mitteln zur Erfassung eines Stromistwertes, der dem aktuellen Spulenstrom entspricht, Mitteln zur Erzeugung eines Referenzstromwertes, Mitteln zum Vergleich des Stromistwertes mit dem Referenzstromwert und zur Erzeugung eines ersten Signales, wenn der Stromistwert den Referenzstromwert erreicht, und Mitteln, die in Abhängigkeit vom ersten Signal den Spulenstrom periodisch unterbrechen, dadurch gekennzeichnet, daß der Referenzstromwert einem gewünschten Spitzenspulenstromsollwert entspricht und daß Mittel vorgesehen sind, die den Referenzstromwert reduzieren, sofern innerhalb einer bestimmten Zeitspanne kein erstes Signal erzeugt wurde.
  2. Anordnung nach Anspruch 1, gekennzeichnet durch Mittel zur Erzeugung eines zweiten Signales, sofern der Stromistwert nicht innerhalb einer vorbestimmbaren Zeitspanne den reduzierten Referenzstromwert erreicht.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die eine Wiedererregung der Spule innerhalb einer vorherbestimmbaren Zeitspanne, nachdem der Spulenstrom unterbrochen wurde, veranlassen, wobei die vorherbestimmbare Zeitspanne mit zunehmendem Referenzstromwert abnimmt.
  4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Länge des Zeitintervalls DELAY, während dessen der Spulenstrom unterbrochen ist, aus folgender Beziehung abgeleitet wird:

    DELAY = G80 - VCOM x G81/256,
    Figure imgb0002


    wobei G80 und G81 vorherbestimmbare Konstanten gemäß der Anordnung und VCOM der Spitzenspulenstromsollwert sind.
EP89124054A 1989-01-06 1989-12-28 Anordnung zur Steuerung eines elektrischen Stromes Expired - Lifetime EP0377214B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/294,527 US4964014A (en) 1989-01-06 1989-01-06 Solenoid valve driver
US294527 1989-01-06

Publications (2)

Publication Number Publication Date
EP0377214A1 EP0377214A1 (de) 1990-07-11
EP0377214B1 true EP0377214B1 (de) 1993-04-28

Family

ID=23133827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89124054A Expired - Lifetime EP0377214B1 (de) 1989-01-06 1989-12-28 Anordnung zur Steuerung eines elektrischen Stromes

Country Status (4)

Country Link
US (1) US4964014A (de)
EP (1) EP0377214B1 (de)
CA (1) CA2002433C (de)
DE (1) DE58904211D1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2269950A (en) * 1992-08-22 1994-02-23 Rover Group Fuel injector controller with fault monitoring
US5438489A (en) * 1993-09-30 1995-08-01 Judy; Steven W. Solenoid driver circuit and diagnostics
IT1281587B1 (it) * 1996-01-03 1998-02-20 Italcementi Spa Composizione superfluidificante per composizioni cementizie
US5748431A (en) * 1996-10-16 1998-05-05 Deere & Company Solenoid driver circuit
US6111514A (en) * 1996-12-18 2000-08-29 Kelsey-Hayes Company Solenoid fail-safe using current feedback as a diagnostic input
US5918195A (en) * 1997-05-08 1999-06-29 Case Corporation Calibration of a command device in control system
US6256185B1 (en) 1999-07-30 2001-07-03 Trombetta, Llc Low voltage direct control universal pulse width modulation module
US6407902B1 (en) * 2000-02-29 2002-06-18 Dietrich Industries, Inc. Control system for a solenoid valve driver used to drive a valve of a compression cylinder
BRPI0613879A2 (pt) * 2005-07-29 2011-02-15 Graco Minnesota Inc bomba de ação alternada com válvula de ar monitorada eletronicamente, com monitoramento eletrÈnico de bateria e de solenóide
US20150369145A1 (en) * 2015-08-28 2015-12-24 Caterpillar Inc. Method of operating current controlled driver module
US11346311B2 (en) * 2015-11-30 2022-05-31 Denso Corporation Fuel injection control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220559A1 (de) * 1985-10-10 1987-05-06 Honeywell Inc. Verfahren zum Ansteuern einer gleichstrombetriebenen elektromagnetischen Spule und Steuerschaltung zur Durchführung des Verfahrens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173259A (en) * 1977-12-29 1979-11-06 Allis-Chalmers Corporation Rear drive assembly with load sensing
JPS5579679A (en) * 1978-12-08 1980-06-16 Hitachi Ltd Controller for transistor chopper
DE2916322A1 (de) * 1979-04-23 1980-11-13 Vdo Schindling Verfahren und vorrichtung zum schutz eines insbesondere mit einem halbleiterelement aufgebauten, durch ein einschaltsignal einschaltbaren schaltglieds gegen ueberlastung bei kurzschluss
DE3322006A1 (de) * 1983-06-18 1984-12-20 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur steuerung eines induktiven stellgliedes, insbesondere eines vergasers
FR2548840B1 (fr) * 1983-07-08 1986-07-18 Peugeot Commutateur disjoncteur statique
DE3338764A1 (de) * 1983-10-26 1985-05-09 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zum ein- und ausschalten und ueberwachen elektrischer verbraucher
DE3508187A1 (de) * 1985-03-05 1986-09-11 Oelsch KG, 1000 Berlin Ventilsteuerschaltung
US4618908A (en) * 1985-08-05 1986-10-21 Motorola, Inc. Injector driver control unit with internal overvoltage protection
DE3530966A1 (de) * 1985-08-30 1987-03-05 Bso Steuerungstechnik Gmbh Verstaerkerschaltung fuer elektromagnete von proportional- oder servoventilen
US4661766A (en) * 1985-12-23 1987-04-28 Caterpillar Inc. Dual current sensing driver circuit
DE3767791D1 (de) * 1986-06-14 1991-03-07 Massey Ferguson Services Nv Betaetigungsvorrichtung fuer schlepperkraftheber.
US4737882A (en) * 1987-02-09 1988-04-12 Honeywell Inc. Proportional solenoid valve control circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220559A1 (de) * 1985-10-10 1987-05-06 Honeywell Inc. Verfahren zum Ansteuern einer gleichstrombetriebenen elektromagnetischen Spule und Steuerschaltung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
US4964014A (en) 1990-10-16
EP0377214A1 (de) 1990-07-11
CA2002433A1 (en) 1990-07-06
DE58904211D1 (de) 1993-06-03
CA2002433C (en) 1995-03-07

Similar Documents

Publication Publication Date Title
EP0438640B1 (de) Verfahren zur Bewegungs- und Lagezustandserkennung eines durch magnetische Wechselwirkung zwischen einer Ruhelage und einer Endlage beweglichen Bauteiles eines induktiven elektrischen Verbrauchers
DE69028802T2 (de) Erfassung des Einschaltens einer Spule
DE19907505B4 (de) Verfahren und Vorrichtung zur Steuerung einer Stromanstiegszeit während mehrfacher Kraftstoffeinspritzvorgänge
DE102005044886B4 (de) Vorrichtung und Verfahren zum Erkennen eines Endes einer Bewegung eines Ventilkolbens in einem Ventil
EP0377214B1 (de) Anordnung zur Steuerung eines elektrischen Stromes
WO1989002648A1 (en) Process and device for detecting the switching times of electrovalves
DE3543055C1 (de) Schaltungsanordnung zum Ansteuern eines Elektromagneten
DE19921456A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines piezoelektrischen Aktors
DE102004035554A1 (de) Relaistreiberverfahren und -gerät mit einer Relaiskontakteinschalthaltefunktion
DE4417464C2 (de) Ventil mit dynamischer Funktionsprüfung
EP1830370B1 (de) Vorrichtung zur Steuerung eines elektromagnetischen Stellantriebs
DE4142996A1 (de) Verfahren zum messen der mechanischen bewegung eines magnetventilankers, insbesondere von elektrisch gesteuerten einspritzanlagen
DE10150231A1 (de) Selbsteinstellender Magnetantrieb und Verfahren
DE102016213522B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs
EP1347908B1 (de) Vorrichtung zur ansteuerung von bremsventilen
DE19704089C2 (de) Verfahren zur Steuerung eines Zerhacker(Chopper)-Treibers und Schaltungsanordnung zur Durchführung des Verfahrens
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
DE4242432A1 (de) Verfahren zum Ansteuern eines Elektromagnetventils, eines Hubmagneten, eines Drehmagneten oder eines Relais
DE102016210449B3 (de) Verfahren und Vorrichtung zur Ermittlung von Bestromungsdaten für ein Stellglied eines Einspritzventils eines Kraftfahrzeugs
WO2017089094A1 (de) Verfahren zur stromregelung einer induktiven last
EP0865660B1 (de) Ansteuergerät für schaltgeräte
WO1996003758A1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen verbrauchers
EP0880787B1 (de) Steuervorrichtung für eine brennkraftmaschine
DE102020213169B3 (de) Verfahren und Vorrichtung zur Bewegungsdiagnose eines Ankers eines Magnetventils
DE102014220929A1 (de) Verfahren zur Ansteuerung eines induktiven Aktors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900629

17Q First examination report despatched

Effective date: 19920603

ITF It: translation for a ep patent filed

Owner name: LENZI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930427

REF Corresponds to:

Ref document number: 58904211

Country of ref document: DE

Date of ref document: 19930603

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021212

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021223

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051228