EP0372176B1 - Hydraulic lifting equipment, in particular lifting platform with two or more pillars - Google Patents

Hydraulic lifting equipment, in particular lifting platform with two or more pillars Download PDF

Info

Publication number
EP0372176B1
EP0372176B1 EP19890117332 EP89117332A EP0372176B1 EP 0372176 B1 EP0372176 B1 EP 0372176B1 EP 19890117332 EP19890117332 EP 19890117332 EP 89117332 A EP89117332 A EP 89117332A EP 0372176 B1 EP0372176 B1 EP 0372176B1
Authority
EP
European Patent Office
Prior art keywords
stage
piston
telescopic
hydraulic lifting
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890117332
Other languages
German (de)
French (fr)
Other versions
EP0372176A1 (en
Inventor
Hans Dipl.-Ing. Böck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Ja Becker U Sohne Neckarsulm & Co Kg GmbH
Original Assignee
Maschinenfabrik Ja Becker U Sohne Neckarsulm & Co Kg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Ja Becker U Sohne Neckarsulm & Co Kg GmbH filed Critical Maschinenfabrik Ja Becker U Sohne Neckarsulm & Co Kg GmbH
Publication of EP0372176A1 publication Critical patent/EP0372176A1/en
Application granted granted Critical
Publication of EP0372176B1 publication Critical patent/EP0372176B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/10Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks
    • B66F7/16Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks by one or more hydraulic or pneumatic jacks
    • B66F7/20Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks by one or more hydraulic or pneumatic jacks by several jacks with means for maintaining the platforms horizontal during movement

Definitions

  • the invention relates to a hydraulic lifting device, in particular two-column or multi-column lifting platform, with the features in the preamble of claim 1.
  • the plungers are designed as two-stage telescopic cylinders of the plunger type, in which the stages are extended one behind the other.
  • the punches are firmly and rigidly connected to an inverted U-shaped unit with the aid of a common lifting crossbar.
  • This lifting traverse extends as a rigid part over all stamps. This should eliminate the need for synchronism controls, because the rigid connection of the upper punch ends in the load bearing area with the common lifting traverse ensures synchronism when lifting and lowering.
  • Another known lifting device (US-A-27 50 004) has two spaced-apart single-stage working cylinders which are coupled via a mechanical synchronous control device, which distributes force in a non-positive and positive manner with the aid of mechanical links, e.g. Pinion, shaft and racks or chains and sprockets instead.
  • a link in this mechanical synchronism control e.g. a rack engages at the upper end of the extending piston and thus in the load bearing area.
  • the mechanical synchronizing means attacks the last stage in the same way as in DE-A-32 35 829.
  • the rack extends downward over a length corresponding at least to the entire extension stroke for lifting.
  • this lifting device has a relatively simple mechanical synchronization control device, it has the disadvantage of a relatively small extension stroke with a relatively large overall depth. The ratio of the extension stroke to the overall depth is unfavorable and significantly smaller than 1.
  • the invention has for its object to provide a hydraulic lifting device of the type mentioned in the preamble of claim 1, in which reliable synchronization of the lifting / lowering movement of both telescopic cylinders is made possible by simple means despite the two-stage design for each telescopic cylinder.
  • the invention has overcome this and takes advantage of the knowledge that in an at least two-stage synchronous telescopic cylinder, the second stage is hydraulically connected to the first stage and hydraulically positively coupled, and thus when a mechanical synchronous control acts on the first telescopic stage in accordance with the invention , a reliable synchronization control of this stage and the second stage is made possible with simple means.
  • the synchronization control is simple, inexpensive and reliable in terms of construction.
  • a hydraulic lifting device with at least two synchronous telescopic cylinders is thus created with simple means, each of which is at least two-stage and nevertheless experiences simple and reliable synchronization when lifting and lowering.
  • the hydraulic lifting device shown in the drawings is designed here as a two-column lifting platform 10 which has two lifting units 11 and 12 which are arranged at a distance from one another and which together can lift and lower a load synchronously.
  • Each lifting unit 11 and 12 has an at least two-stage telescopic cylinder 13 and 14, respectively. These are each arranged in a bottom recess, pit or the like, at least substantially recessed, and are each effective for themselves without a bridge connecting the two telescopic cylinders 13, 14 being present.
  • the telescopic cylinders 13, 14 are at the required longitudinal distance when arranged one behind the other or transverse distance arranged from each other. At the free upper end of each telescopic cylinder 13,14 not shown shots, ramps or the like.
  • the drive-up direction for the vehicles in Fig. 1 is illustrated by arrow 15 or extends transversely thereto.
  • Each telescopic cylinder 13, 14 has at least two stages. Details are explained below with reference to FIG. 2 using the example of the telescopic cylinder 13 shown there.
  • the first stage of the telescopic cylinder 13 has an outer cylinder tube 16 and a piston 17 which is displaceable therein and which is designed as a disk piston 18 acting on both sides.
  • the piston 17 is fixedly attached to one end 19 of a hollow cylinder 20 located at the bottom in FIG. 2.
  • the hollow cylinder 20 thus represents, as it were, the piston rod of the disk piston 18, the hollow cylinder 20 and also the disk piston 18 being displaceable and tightly guided in the interior of the outer cylinder tube 16, such that 18 pressure chambers 21 and 22 are formed on both sides of the disk piston.
  • the hollow cylinder 20 is fed with the pressure medium displaced from the first stage and thereby from the pressure chamber 22 during lifting.
  • the hollow cylinder 20 contains at least one passage opening 25 for the pressure medium in its wall 24. Via this opening 25, the interior 26 of the hollow cylinder 20 is permanently connected to the pressure chamber 22.
  • a further piston 27 is slidably received, which is designed as a plunger.
  • the piston 27 can be extended from the telescopic cylinder 13 in the direction of the arrow 28, in the same way as the hollow cylinder 20 also in the direction of the arrow 29 and at the same time.
  • pressure medium e.g. Hydraulic oil
  • pressure medium introduced with pressure, which acts on the pressure chamber 21 facing surface of the disk piston 18, which is thereby pushed out together with the hollow cylinder 20 attached to it in the direction of arrow 29.
  • the disk piston 18 with its piston surface facing the other pressure chamber 22 displaces pressure medium contained in this pressure chamber 22, which is thereby pushed into the interior 26 through the at least one opening 25.
  • the piston 27 With the pressure medium forced into this pressure space 26, the piston 27 is acted upon with its facing effective piston surface, whereby the piston 27 is ejected in the direction of arrow 28.
  • This stroke movement of the second stage 20, 26 and 27 in the arrow direction 28 takes place synchronously with the stroke movement of the first stage 16-20 in the arrow direction 29.
  • the pressurization in the direction of the arrow 30 is ended and here instead switching to opposite ventilation.
  • the piston 27 is thereby pushed in the opposite direction to the arrow 28 into the pressure chamber 26, from which the pressure medium passes through the at least one opening 25 into the pressure chamber 22, where it acts on the piston surface of the disk piston 18 facing this pressure chamber 22 as a result, together with the hollow cylinder 20, is displaced downward in the opposite direction to the arrow 29 in FIG. 2 and, with its piston surface facing the pressure chamber 21, presses the pressure medium therein out of the outer cylinder tube 16 in the opposite direction to the arrow 30.
  • a plate 31 is fastened, which serves as an axial stop for this piston 27.
  • the second stage 20, 26 and 27 of the telescopic cylinder 13 is thus hydraulically connected to the first stage 16-22 and is forcibly coupled. This means that the lifting movement, which the disk piston 18 carries out with the hollow cylinder 20 attached to it, is also communicated to the second stage 20, 26 and 27 via this hydraulic coupling, as a result of which a synchronization between the first and the second stage is established.
  • the two telescopic cylinders 13 and 14 are coupled to one another via a mechanical synchronization control device 36, which has a transmission 37 and 38 for each telescopic cylinder 13, 14.
  • the respective gear 37 or 38 is assigned to the first stage of the respective telescopic cylinder.
  • the gear 37 of the telescopic cylinder 13 is designed as a rack and pinion gear.
  • This has a rack 39 which is attached to a telescopic part of the first stage.
  • the rack 39 is aligned parallel to the hollow cylinder 20 of the first stage and is fixedly connected to it at the upper end in FIG. 2 by means of a plate 40 there.
  • a pinion 41 is in gear engagement with the toothed rack 39 and is arranged on the other telescopic part of the first stage.
  • this pinion 41 is held on the spatially fixed outer cylinder tube 16, specifically there in a housing 42 which is connected to the upper flange 43 of the outer cylinder tube 16 in FIG. 2.
  • the synchronization control device 36 has a shaft 44 on which the pinion 41 of one telescopic cylinder 13 and, in an analogous manner, a corresponding pinion of the other telescopic cylinder 14 are arranged in a rotationally fixed manner. In this way, both gears 37, 36 are mechanically positively coupled.
  • a pressure switch 45 is provided in the first stage of each telescopic cylinder 13, 14, as indicated with reference to FIG. 2 for the telescopic cylinder 13, by means of which, when lowering, in the opposite direction to the arrows 28 and 29, which emerges from the pressure chamber 26 second stage can be detected via the opening 25 back into the pressure chamber 22 of the first stage pressure medium. Should it happen during this lowering movement that the plunger 27 is stuck in the hollow cylinder 20 instead of being lowered and gets stuck, so that no pressure medium is forced out of the pressure chamber 26 through the opening 25 and into the pressure chamber 22 via the plunger 27, this pressure drop in Pressure chamber 22 is detected by the pressure switch 45, whereupon the pressure switch 45 causes the lowering movement to be blocked hydraulically.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Actuator (AREA)
  • Types And Forms Of Lifts (AREA)

Description

Die Erfindung bezieht sich auf eine hydraulische Hubeinrichtung, insbesondere Zweisäulen- oder Mehrsäulen-Hebebühne, mit den Merkmalen im Oberbegriff des Anspruchs 1.The invention relates to a hydraulic lifting device, in particular two-column or multi-column lifting platform, with the features in the preamble of claim 1.

Bei einer bekannten hydraulischen Hubeinrichtung dieser Art (DE-A-32 35 829) sind die Stempel als zweistufige Teleskopzylinder der Plungerkolbenbauart ausgebildet, bei denen die Stufen hintereinander ausgefahren werden. Die Stempel sind an ihren oberen Enden, wo die Lastaufnahme erfolgt, mit Hilfe einer gemeinsamen Hebetraverse fest und starr zu einer umgekehrt U-förmigen Einheit verbunden. Diese Hebetraverse erstreckt sich als starres Teil über sämtliche Stempel. Dadurch soll die Notwendigkeit von Gleichlaufsteuerungen entfallen, weil durch die starre Verbindung der oberen Stempelenden im Lastaufnahmebereich mit der allen gemeinsamen Hebetraverse der Gleichlauf beim Heben und Absenken erzielt ist. Aufgrund dieser starren Verbindung besteht jedoch in erheblichem Maße die Gefahr des Klemmens, und zwar beim Ausfahren (Heben) und im noch stärkerem Maße beim Einfahren (Absenken). Die Aufnahme von Lastmomenten ist nicht möglich. Es können nur vertikale Kräfte aufgenommen werden,ebenfalls wegen Klemmgefahr. Zunächst, beim Ausfahren der ersten Stufe beider Stempel, besteht eine Synchronisierung nicht und somit Klemmgefahr, die beim Einfahren (Absenken) noch größer ist. Erst wenn nach ausgefahrener erster Stufe die zweiten Stufen ausgefahren werden, sind diese an ihrem oberen Ende durch die starre Hebetraverse synchronisiert. Diese starre Hebetraverse versperrt den freien Zugang zu wesentlichen Teilen eines angehobenen Fahrzeuges, insbesondere zur Bodengruppe, zur Abgasanlage, zum Katalysator, zur Kardanwelle, zum Getriebe od. dgl. Im abgesenkten Zustand behindert die obere Hebetraverse das angestrebte freie Überfahren des Bodens. Auch beinhaltet die Hebetraverse ein Sicherheitsrisiko vor allem beim Absenken.In a known hydraulic lifting device of this type (DE-A-32 35 829), the plungers are designed as two-stage telescopic cylinders of the plunger type, in which the stages are extended one behind the other. At their upper ends, where the load is taken up, the punches are firmly and rigidly connected to an inverted U-shaped unit with the aid of a common lifting crossbar. This lifting traverse extends as a rigid part over all stamps. This should eliminate the need for synchronism controls, because the rigid connection of the upper punch ends in the load bearing area with the common lifting traverse ensures synchronism when lifting and lowering. Because of this rigid connection, however, there is a considerable risk of jamming, namely when extending (lifting) and to an even greater extent when retracting (lowering). It is not possible to absorb load moments. Only vertical forces can be absorbed, too due to the risk of pinching. First of all, when the first stage of both punches is extended, there is no synchronization and therefore there is a risk of pinching, which is even greater when retracting (lowering). Only when the second stages are extended after the first stage has been extended are they synchronized at their upper end by the rigid lifting crossbar. This rigid lifting crossbar blocks free access to essential parts of a raised vehicle, in particular to the floor assembly, the exhaust system, the catalytic converter, the cardan shaft, the gearbox or the like. In the lowered state, the upper lifting crossbar prevents the desired free crossing of the floor. The lifting crossbar also contains a safety risk, especially when lowering.

Eine andere bekannte Hubeinrichtung (US-A-27 50 004) weist zwei in Abstand nebeneinander angeordnete einstufige Arbeitszylinder auf, die über eine mechanische Gleichlaufsteuereinrichtung gekoppelt sind, welche eine Kraftverteilung kraft- und formschlüssig mit Hilfe mechanischer Glieder, z.B. Ritzel, Welle und Zahnstangen oder statt dessen Ketten und Kettenräder, bewirkt. Ein Glied dieser mechanischen Gleichlaufsteuerung, z.B. eine Zahnstange, greift am oberen Ende des ausfahrenden Kolbens und somit im Lastaufnahmebereich an. Somit greift auch hier das mechanische Gleichlaufmittel in gleicher Weise wie bei der DE-A-32 35 829 an der letzten Stufe an. Die Zahnstange erstreckt sich nach unten über eine mindestens dem gesamten Ausfahrhub zum Heben entsprechende Länge. Diese Hubeinrichtung verfügt zwar über eine relativ einfache mechanische Gleichlaufsteuereinrichtung, hat aber den Nachteil eines relativ kleinen Ausfahrhubes bei relativ großer Bautiefe. Das Verhältnis Ausfahrhub zu Bautiefe ist ungünstig und deutlich kleiner als 1.Another known lifting device (US-A-27 50 004) has two spaced-apart single-stage working cylinders which are coupled via a mechanical synchronous control device, which distributes force in a non-positive and positive manner with the aid of mechanical links, e.g. Pinion, shaft and racks or chains and sprockets instead. A link in this mechanical synchronism control, e.g. a rack engages at the upper end of the extending piston and thus in the load bearing area. Thus, the mechanical synchronizing means attacks the last stage in the same way as in DE-A-32 35 829. The rack extends downward over a length corresponding at least to the entire extension stroke for lifting. Although this lifting device has a relatively simple mechanical synchronization control device, it has the disadvantage of a relatively small extension stroke with a relatively large overall depth. The ratio of the extension stroke to the overall depth is unfavorable and significantly smaller than 1.

Aus der EP-A-0 028 748 sind zweistufige Gleichlauf-Teleskopzylinder für Hebebühnen bekannt. Bei dieser Bauart sind die beiden Stufen hydraulisch zwangsgekoppelt, wobei sie nicht - wie bei der Plungerkolbenbauart - hintereinander, sondern gleichzeitig ausgefahren und gegensinnig eingefahren werden. Diese Gleichlauf-Teleskopzylinder ermöglichen eine kompakte Bauweise mit einem günstigen Verhältnis Ausfahrhub zu Bautiefe. Sie bedürfen jedoch für eine Synchronisierung der Hub-/Senkbewegung aufwendiger Gleichlaufsteuereinrichtungen.From EP-A-0 028 748 two-stage synchronous telescopic cylinders for lifting platforms are known. At this The two stages are hydraulically positively coupled, whereby they are not extended one behind the other - as in the case of the plunger piston type - but at the same time extended and retracted in opposite directions. These synchronous telescopic cylinders enable a compact design with a favorable ratio of extension stroke to construction depth. However, they require complex synchronization control devices to synchronize the lifting / lowering movement.

Der Erfindung liegt die Aufgabe zugrunde, eine hydraulische Hubeinrichtung der im Oberbegriff des Anspruchs 1 genannten Art zu schaffen, bei der trotz der zweistufigen Ausbildung je Teleskopzylinder mit einfachen Mitteln eine zuverlässige Synchronisierung der Hub-/Senkbewegung beider Teleskopzylinder ermöglicht ist.The invention has for its object to provide a hydraulic lifting device of the type mentioned in the preamble of claim 1, in which reliable synchronization of the lifting / lowering movement of both telescopic cylinders is made possible by simple means despite the two-stage design for each telescopic cylinder.

Die Aufgabe ist bei einer hydraulischen Hubeinrichtung der im Oberbegriff des Anspruchs 1 genannten Art gemäß der Erfindung durch die Merkmale im Kennzeichnungsteil des Anspruchs 1 gelöst. Obwohl eine mechanische Gleichlaufsteuereinrichtung, die z.B. je Hubeinheit ein Zahnstangengetriebe aufweist, die über eine beiden gemeinsame Welle zwangsgekoppelt sind, bei einstufigen Hubeinheiten schon bekannt ist, meinte man jedoch bisher, daß Hubeinheiten, die jeweils einen zumindest zweistufigen Gleichlauf-Teleskopzylinder aufweisen, einer Gleichlaufregelung nicht oder nur auf sehr komplizierte und dabei unzuverlässige, z.B. hydraulische, Weise zugänglich sind. Die Erfindung hat dieses überwunden und macht sich die Erkenntnis zunutze, daß bei einem zumindest zweistufigen Gleichlauf-Teleskopzylinder die zweite Stufe mit der ersten Stufe hydraulisch verbunden und hydraulisch zwangsgekoppelt ist, und daß somit dann, wenn eine mechanische Gleichlaufregelung erfindungsgemäß jeweils an der ersten Teleskopstufe angreift, mit einfachen Mitteln eine zuverlässige Gleichlaufregelung dieser Stufe und auch der zweiten Stufe ermöglicht ist. Die Gleichlaufregelung ist hinsichtlich des Aufbaus einfach, kostengünstig und betriebssicher. Somit ist mit einfachen Mitteln eine hydraulische Hubeinrichtung mit zumindest zwei Gleichlauf-Teleskopzylindern geschaffen, die jeweils mindestens zweistufig sind und gleichwohl eine einfache und betriebssichere Synchronisierung beim Heben und Senken erfahren.The object is achieved in a hydraulic lifting device of the type mentioned in the preamble of claim 1 according to the invention by the features in the characterizing part of claim 1. Although a mechanical synchronization control device, which has, for example, a rack and pinion gear per lifting unit, which are positively coupled via a common shaft, is already known in single-stage lifting units, it has previously been thought that lifting units, each having an at least two-stage synchronous telescopic cylinder, do not have a synchronous control or are only accessible in a very complicated and unreliable, for example hydraulic, manner. The invention has overcome this and takes advantage of the knowledge that in an at least two-stage synchronous telescopic cylinder, the second stage is hydraulically connected to the first stage and hydraulically positively coupled, and thus when a mechanical synchronous control acts on the first telescopic stage in accordance with the invention , a reliable synchronization control of this stage and the second stage is made possible with simple means. The synchronization control is simple, inexpensive and reliable in terms of construction. A hydraulic lifting device with at least two synchronous telescopic cylinders is thus created with simple means, each of which is at least two-stage and nevertheless experiences simple and reliable synchronization when lifting and lowering.

Weitere vorteilhafte Merkmale der Erfindung ergeben sich aus den Ansprüchen 2 - 9.Further advantageous features of the invention result from claims 2-9.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung.Further details and advantages of the invention result from the following description.

Die Erfindung ist nachfolgend anhand eines in den Zeichnungen gezeigten Ausführungsbeispieles näher erläutert. Es zeigen:

  • Fig. 1 eine schematische Draufsicht einer hydraulischen Hubeinrichtung in Form einer Zweisäulen-Hebebühne,
  • Fig. 2 einen schematischen axialen Längsschnitt entlang der Linie II - II der Hubeinrichtung in Fig. 1,
The invention is explained below with reference to an embodiment shown in the drawings. Show it:
  • 1 is a schematic plan view of a hydraulic lifting device in the form of a two-column lift,
  • 2 shows a schematic axial longitudinal section along the line II-II of the lifting device in FIG. 1,

Die in den Zeichnungen gezeigte hydraulische Hubeinrichtung ist hier als Zweisäulen-Hebebühne 10 gestaltet, die zwei in Abstand voneinander angeordnete Hubeinheiten 11 und 12 aufweist, welche gemeinsam eine Last synchron heben und senken können. Jede Hubeinheit 11 und 12 weist einen zumindest zweistufigen Teleskopzylinder 13 bzw. 14 auf. Diese sind jeweils für sich in einer bodenseitigen Vertiefung, Grube od. dgl. zumindest im wesentlichen versenkt angeordnet und jeweils für sich wirksam, ohne daß eine beide Teleskopzylinder 13, 14 verbindende Brücke vorhanden ist. Die Teleskopzylinder 13, 14 sind mit dem erforderlichen Längsabstand bei Anordnung hintereinander oder Querabstand voneinander angeordnet. Am freien oberen Ende jedes Teleskopzylinders 13,14 können nicht weiter dargestellte Aufnahmen, Auffahrrampen od. dgl. zum Heben und Senken z. B. von Fahrzeugen angeordnet sein, wobei die Auffahrrichtung für die Fahrzeuge in Fig. 1 durch Pfeil 15 verdeutlicht ist oder quer dazu verläuft.The hydraulic lifting device shown in the drawings is designed here as a two-column lifting platform 10 which has two lifting units 11 and 12 which are arranged at a distance from one another and which together can lift and lower a load synchronously. Each lifting unit 11 and 12 has an at least two-stage telescopic cylinder 13 and 14, respectively. These are each arranged in a bottom recess, pit or the like, at least substantially recessed, and are each effective for themselves without a bridge connecting the two telescopic cylinders 13, 14 being present. The telescopic cylinders 13, 14 are at the required longitudinal distance when arranged one behind the other or transverse distance arranged from each other. At the free upper end of each telescopic cylinder 13,14 not shown shots, ramps or the like. For lifting and lowering z. B. be arranged by vehicles, the drive-up direction for the vehicles in Fig. 1 is illustrated by arrow 15 or extends transversely thereto.

Jeder Teleskopzylinder 13, 14 ist zumindest zweistufig. Einzelheiten sind nachfolgend anhand von Fig. 2 am Beispiel des dort gezeigten Teleskopzylinders 13 näher erläutert. Die erste Stufe des Teleskopzylinders 13 weist ein äußeres Zylinderrohr 16 und einen darin verschiebbaren Kolben 17 auf, der als beidseitig wirkender Scheibenkolben 18 ausgebildet ist. Der Kolben 17 ist am in Fig. 2 unten befindlichen einen Ende 19 eines Hohlzylinders 20 fest angebracht. Der Hohlzylinder 20 stellt somit gewissermaßen die Kolbenstange des Scheibenkolbens 18 dar, wobei der Hohlzylinder 20 und auch der Scheibenkolben 18 im Inneren des äußeren Zylinderrohres 16 verschiebbar und dabei dicht geführt sind, derart, daß beidseitig des Scheibenkolbens 18 Druckräume 21 bzw. 22 gebildet sind. Im Zylinderrohr 16 ist im oberen Bereich ein Rohr 23 enthalten, das mit seinem in Fig. 2 unteren Ende einen Axialanschlag für den Scheibenkolben 18 bildet. Das äußere Zylinderrohr 16 mitsamt dem Scheibenkolben 18 und dessen Hohlzylinder 20 bildet die erste Stufe des Teleskopzylinders 13. Der Hohlzylinder 20 ist beim Heben mit dem aus der ersten Stufe, und dabei aus dem Druckraum 22, verdrängten Druckmittel gespeist. Hierzu enthält der Hohlzylinder 20 in seiner Wandung 24 mindestens eine Durchlaßöffnung 25 für das Druckmittel. Über diese Öffnung 25 steht das Innere 26 des Hohlzylinders 20 permanent in Verbindung mit dem Druckraum 22. In diesem Inneren 26 des Hohlzylinders 20 ist ein weiterer Kolben 27 verschiebbar aufgenommen, der als Plungerkolben ausgebildet ist. Am ausfahrenden freien Ende des Kolbens 27 ist, wie nicht weiter gezeigt ist, die besagte Aufnahme für die Last angebracht. Mit diesem Ende ist der Kolben 27 in Pfeilrichtung 28 aus dem Teleskopzylinder 13 ausfahrbar, in gleicher Weise wie der Hohlzylinder 20 dies in Pfeilrichtung 29 ebenfalls und dabei gleichzeitig ist.Each telescopic cylinder 13, 14 has at least two stages. Details are explained below with reference to FIG. 2 using the example of the telescopic cylinder 13 shown there. The first stage of the telescopic cylinder 13 has an outer cylinder tube 16 and a piston 17 which is displaceable therein and which is designed as a disk piston 18 acting on both sides. The piston 17 is fixedly attached to one end 19 of a hollow cylinder 20 located at the bottom in FIG. 2. The hollow cylinder 20 thus represents, as it were, the piston rod of the disk piston 18, the hollow cylinder 20 and also the disk piston 18 being displaceable and tightly guided in the interior of the outer cylinder tube 16, such that 18 pressure chambers 21 and 22 are formed on both sides of the disk piston. In the upper region of the cylinder tube 16 there is a tube 23 which, with its lower end in FIG. 2, forms an axial stop for the disc piston 18. The outer cylinder tube 16 together with the disk piston 18 and its hollow cylinder 20 forms the first stage of the telescopic cylinder 13. The hollow cylinder 20 is fed with the pressure medium displaced from the first stage and thereby from the pressure chamber 22 during lifting. For this purpose, the hollow cylinder 20 contains at least one passage opening 25 for the pressure medium in its wall 24. Via this opening 25, the interior 26 of the hollow cylinder 20 is permanently connected to the pressure chamber 22. In this interior 26 of the hollow cylinder 20, a further piston 27 is slidably received, which is designed as a plunger. At the extending free end of the piston 27, the said receptacle for the load is attached, as is not shown further. With this end, the piston 27 can be extended from the telescopic cylinder 13 in the direction of the arrow 28, in the same way as the hollow cylinder 20 also in the direction of the arrow 29 and at the same time.

Beim Betrieb Heben wird in den Druckraum 21 Druckmittel, z.B. Hydrauliköl, mit Druck eingeleitet, das die dem Druckraum 21 zugewandte Fläche des Scheibenkolbens 18 beaufschlagt, der dadurch mitsamt dem daran festen Hohlzylinder 20 in Pfeilrichtung 29 ausgeschoben wird. Dabei verdrängt der Scheibenkolben 18 mit seiner dem anderen Druckraum 22 zugewandten Kolbenfläche in diesem Druckraum 22 enthaltenes Druckmittel, das dadurch durch die mindestens eine Öffnung 25 in das Innere 26 gedrängt wird. Der dortige Raum stellt ebenfalls einen Druckraum dar. Mit dem in diesen Druckraum 26 gedrängten Druckmittel wird der Kolben 27 mit seiner zugewandten wirksamen Kolbenfläche beaufschlagt, wodurch der Kolben 27 in Pfeilrichtung 28 ausgestoßen wird. Diese Hubbewegung der zweiten Stufe 20, 26 und 27 in Pfeilrichtung 28 erfolgt synchron mit der Hubbewegung der ersten Stufe 16 - 20 in Pfeilrichtung 29.During the lifting operation, pressure medium, e.g. Hydraulic oil, introduced with pressure, which acts on the pressure chamber 21 facing surface of the disk piston 18, which is thereby pushed out together with the hollow cylinder 20 attached to it in the direction of arrow 29. In this case, the disk piston 18 with its piston surface facing the other pressure chamber 22 displaces pressure medium contained in this pressure chamber 22, which is thereby pushed into the interior 26 through the at least one opening 25. The space there also represents a pressure space. With the pressure medium forced into this pressure space 26, the piston 27 is acted upon with its facing effective piston surface, whereby the piston 27 is ejected in the direction of arrow 28. This stroke movement of the second stage 20, 26 and 27 in the arrow direction 28 takes place synchronously with the stroke movement of the first stage 16-20 in the arrow direction 29.

Soll die auf diese Weise angehobene Last gegensinnig zu den Pfeilen 28, 29 abgesenkt werden, so wird die Druckbeaufschlagung in Pfeilrichtung 30 beendet und hier statt dessen auf gegensinnige Entlüftung geschaltet. Unter der Wirkung der Last wird dadurch der Kolben 27 gegensinnig zum Pfeil 28 in den Druckraum 26 eingeschoben, aus dem das Druckmittel durch die mindestens eine Öffnung 25 in den Druckraum 22 gelangt, wo es die diesem Druckraum 22 zugewandte Kolbenfläche des Scheibenkolbens 18 beaufschlagt, der dadurch mitsamt dem Hohlzylinder 20 gegensinnig zum Pfeil 29 in Fig. 2 nach unten verschoben wird und dabei mit seiner dem Druckraum 21 zugewandten Kolbenfläche das darin befindliche Druckmittel gegensinnig zum Pfeil 30 aus dem äußeren Zylinderrohr 16 herausdrückt . Am in Fig. 2 unteren Ende des Kolbens 27 ist eine Platte 31 befestigt, die für diesen Kolben 27 als Axialanschlag dient.If the load raised in this way is to be lowered in the opposite direction to the arrows 28, 29, the pressurization in the direction of the arrow 30 is ended and here instead switching to opposite ventilation. Under the effect of the load, the piston 27 is thereby pushed in the opposite direction to the arrow 28 into the pressure chamber 26, from which the pressure medium passes through the at least one opening 25 into the pressure chamber 22, where it acts on the piston surface of the disk piston 18 facing this pressure chamber 22 as a result, together with the hollow cylinder 20, is displaced downward in the opposite direction to the arrow 29 in FIG. 2 and, with its piston surface facing the pressure chamber 21, presses the pressure medium therein out of the outer cylinder tube 16 in the opposite direction to the arrow 30. At the lower end of the piston 27 in FIG. 2, a plate 31 is fastened, which serves as an axial stop for this piston 27.

Wie erläutert ist somit die zweite Stufe 20, 26 und 27 des Teleskopzylinders 13 mit der ersten Stufe 16 - 22 hydraulisch verbunden und zwangsgekoppelt. Das bedeutet, daß die Hubbewegung, die der Scheibenkolben 18 mit daran festem Hohlzylinder 20 vollführt über diese hydraulische Kopplung auch der zweiten Stufe 20, 26 und 27 mitgeteilt wird, wodurch ein Gleichlauf zwischen der ersten und der zweiten Stufe hergestellt ist.As explained, the second stage 20, 26 and 27 of the telescopic cylinder 13 is thus hydraulically connected to the first stage 16-22 and is forcibly coupled. This means that the lifting movement, which the disk piston 18 carries out with the hollow cylinder 20 attached to it, is also communicated to the second stage 20, 26 and 27 via this hydraulic coupling, as a result of which a synchronization between the first and the second stage is established.

Die beiden Teleskopzylinder 13 und 14 sind über eine mechanische Gleichlaufsteuereinrichtung 36 miteinander gekoppelt, die je Teleskopzylinder 13, 14 ein Getriebe 37 bzw. 38 aufweist. Dabei ist das jeweilige Getriebe 37 bzw. 38 jeweils der ersten Stufe des jeweiligen Teleskopzylinders zugeordnet.The two telescopic cylinders 13 and 14 are coupled to one another via a mechanical synchronization control device 36, which has a transmission 37 and 38 for each telescopic cylinder 13, 14. The respective gear 37 or 38 is assigned to the first stage of the respective telescopic cylinder.

Wie Fig. 2 zeigt, ist das Getriebe 37 des Teleskopzylinders 13 als Zahnstangengetriebe ausgebildet. Dieses weist eine Zahnstange 39 auf, die am einen Teleskopteil der ersten Stufe angebracht ist. Beim gezeigten Ausführungsbeispiel ist die Zahnstange 39 parallel zum Hohlzylinder 20 der ersten Stufe ausgerichtet und mit diesem am in Fig. 2 oberen Ende mittels einer dortigen Platte 40 fest verbunden. Mit der Zahnstange 39 steht ein Ritzel 41 in Getriebeeingriff, das am anderen Teleskopteil der ersten Stufe angeordnet ist. Beim gezeigten Ausführungsbeispiel ist dieses Ritzel 41 am räumlich feststehenden äußeren Zylinderrohr 16 gehalten, und zwar dort in einem Gehäuse 42, das mit dem in Fig. 2 oberen Flansch 43 des äußeren Zylinderrohres 16 verbunden ist. Die Gleichlaufsteuereinrichtung 36 weist eine Welle 44 auf, an der das Ritzel 41 des einen Teleskopzylinders 13 und in analoger Weise ein entsprechendes Ritzel des anderen Teleskopzylinders 14 drehfest angeordnet sind. Auf diese Weise sind beide Getriebe 37, 36 mechanisch zwangsgekoppelt.2 shows, the gear 37 of the telescopic cylinder 13 is designed as a rack and pinion gear. This has a rack 39 which is attached to a telescopic part of the first stage. In the exemplary embodiment shown, the rack 39 is aligned parallel to the hollow cylinder 20 of the first stage and is fixedly connected to it at the upper end in FIG. 2 by means of a plate 40 there. A pinion 41 is in gear engagement with the toothed rack 39 and is arranged on the other telescopic part of the first stage. In the exemplary embodiment shown, this pinion 41 is held on the spatially fixed outer cylinder tube 16, specifically there in a housing 42 which is connected to the upper flange 43 of the outer cylinder tube 16 in FIG. 2. The synchronization control device 36 has a shaft 44 on which the pinion 41 of one telescopic cylinder 13 and, in an analogous manner, a corresponding pinion of the other telescopic cylinder 14 are arranged in a rotationally fixed manner. In this way, both gears 37, 36 are mechanically positively coupled.

Beim Betrieb "Heben" hat somit eine über das Druckmittel im Druckraum 21 bewirkte Verschiebung des Scheibenkolbens 18 mit Hohlzylinder 20 in Pfeilrichtung 29 zur Folge, daß zugleich die damit fest verbundene Zahnstange 39 entsprechend in Fig. 2 nach oben verschoben wird und über das damit kämmende Ritzel 41 die Welle 44 entsprechend angetrieben wird, so daß das andere Ritzel des Getriebes 38 und über dieses dessen Zahnstange und somit bei diesem Teleskopzylinder 14 dessen erste Stufe in gleicher Weise ausgeschoben wird. Bei jedem Teleskopzylinder 13, 14 ist somit über diese mechanische Gleichlaufsteuereinrichtung 36 eine mechanische Synchronisation der ersten Stufe gewährleistet. Über diese Gleichlaufsteuereinrichtung 36 der ersten Stufe und mittels der jeweiligen hydraulischen Zwangskopplung zwischen der ersten und zweiten Stufe je Teleskopzylinder 13, 14 sind diese somit auch bezüglich ihrer zweiten Stufe miteinander synchronisiert, so daß auch in dieser zweiten Stufe ein Gleichlauf gewährleistet ist. Der so gewährleistete Gleichlauf je Teleskopzylinder 13 und 14 in der ersten und zweiten Stufe ist mit einfachen Mitteln erreicht und mit Sicherheit gewährleistet, so daß die erforderliche Betriebssicherheit der Zweisäulen-Hebebühne 10 gegeben ist.During operation "lifting", a displacement of the disk piston 18 with the hollow cylinder 20 in the direction of arrow 29, which is caused by the pressure medium in the pressure chamber 21, results in the rack 39, which is firmly connected to it, being simultaneously shifted upwards in FIG. 2 and via the meshing therewith Pinion 41, the shaft 44 is driven accordingly, so that the other pinion of the gear 38 and via this its rack and thus in this telescopic cylinder 14 whose first stage is pushed out in the same way. With each telescopic cylinder 13, 14, mechanical synchronization of the first stage is thus ensured via this mechanical synchronism control device 36. Via this synchronism control device 36 of the first stage and by means of the respective hydraulic positive coupling between the first and second stages per telescopic cylinder 13, 14, these are thus also synchronized with one another with respect to their second stage, so that synchronism is also ensured in this second stage. The synchronism guaranteed in this way for each telescopic cylinder 13 and 14 in the first and second stage is achieved with simple means and is guaranteed with certainty, so that the required operational reliability of the two-column lifting platform 10 is given.

Aus Sicherheitsgründen ist in der ersten Stufe jedes Teleskopzylinders 13, 14 so, wie anhand von Fig. 2 beim Teleskopzylinder 13 angedeutet ist, ein Druckwächter 45 vorgesehen, mittels dessen beim Senken, gegensinnig zu den Pfeilen 28 und 29, das aus der Druckkammer 26 der zweiten Stufe über die Öffnung 25 zurück in den Druckraum 22 der ersten Stufe gedrängte Druckmittel erfaßbar ist. Sollte es bei dieser Senkbewegung passieren, daß der Plungerkolben 27 statt abzusenken im Hohlzylinder 20 klemmt und hängen bleibt, so daß über den Plungerkolben 27 kein Druckmittel aus dem Druckraum 26 durch die Öffnung 25 und in den Druckraum 22 gedrängt wird, so wird dieser Druckabfall im Druckraum 22 vom Druckwächter 45 erfaßt, woraufhin vom Druckwächter 45 ein hydraulisches Sperren der Senkbewegung veranlaßt wird.For safety reasons, a pressure switch 45 is provided in the first stage of each telescopic cylinder 13, 14, as indicated with reference to FIG. 2 for the telescopic cylinder 13, by means of which, when lowering, in the opposite direction to the arrows 28 and 29, which emerges from the pressure chamber 26 second stage can be detected via the opening 25 back into the pressure chamber 22 of the first stage pressure medium. Should it happen during this lowering movement that the plunger 27 is stuck in the hollow cylinder 20 instead of being lowered and gets stuck, so that no pressure medium is forced out of the pressure chamber 26 through the opening 25 and into the pressure chamber 22 via the plunger 27, this pressure drop in Pressure chamber 22 is detected by the pressure switch 45, whereupon the pressure switch 45 causes the lowering movement to be blocked hydraulically.

Claims (9)

  1. l. An hydraulic lifting arrangement, particularly a twin-column or multi-column lifting platform, with, disposed at a distance from each other, at least two lifting units (ll, l2) which are able jointly and in synchronism to raise and lower a load, each lifting unit (ll, l2), comprising an at least two-stage telescopic cylinder (l3, l4), characterised in that the at least two at least two-stage telescopic cylinders (l3, l4) are coupled to each other in the first stage (l6 - 22) via a mechanical synchronism controlling device (36), and in that each telescopic cylinder (l3, l4) is constructed as a synchronous telescopic cylinder in which the second stage (20, 26, 27) of the relevant telescopic cylinder (l3, l4) is hydraulically connected and hydraulically and positively coupled to the first stage (l6 - 22) and in that via the mechanical synchronism control device (36) of the first stage (l6 - 22) and by means of the relevant hydraulic positive coupling between the first stage (l6 - 22) and the second stage (20, 26, 27) the at least two telescopic cylinders (l3, l4) are also synchronised in relation to their second stage (20, 26, 27).
  2. 2. An hydraulic lifting arrangement according to claim l, characterised in that the mechanical synchronism control device (26) comprises one transmission (37, 38) per telescopic cylinder (l3, l4).
  3. 3. An hydraulic lifting arrangement according to claim 2, characterised in that the transmission (37, 38) is in each case constructed as a rack gear mechanism comprising a rack (37) connected to a telescopic part and on the other telescopic part of the first stage (l6 - 22) a pinion (4l) which meshes with the rack (39).
  4. 4. An hydraulic lifting arrangement according to claim 3, characterised in that the pinions (4l) of the at least two telescopic cylinders (l3, l4) are coupled to each other by a shaft (44).
  5. 5. An hydraulic lifting arrangement according to one of claims l to 4, characterised in that for each telescopic cylinder (l3, l4), of which the first stage comprises an outer cylinder tube (l6) and, displaceable therein, a piston (l7) which comprises a hollow cylinder (20) supplied with pressurised medium which during lifting is displaced from the first stage (22) and a second stage piston (27) which can be displaced thereby within the hollow cylinder (20).
  6. 6. An hydraulic lifting arrangement according to claim 5, characterised in that the piston (27) of the second stage is constructed as a plunger piston.
  7. 7. An hydraulic lifting arrangement according to claim 5 or 6, characterised in that the piston (l7) of the first stage is constructed as a bilaterally acting disc piston (l8) and is rigidly mounted at one end (l9) of the hollow cylinder (20).
  8. 8. An hydraulic lifting arrangement according to one of claims 5 to 7, characterised in that the hollow cylinder (20) has in its wall (24) which is adjacent the piston (l7) in the axial direction of the lifting unit, at least one aperture (25) through which pressurised medium can pass.
  9. 9. An hydraulic lifting arrangement according to one of claims 3 to 8, characterised in that the rack (39) is aligned parallel with the hollow cylinder (20) of the first stage and is rigidly connected to the said hollow cylinder (20) and in that the piston (4l) is supported on the fixed outer cylinder tube (16).
EP19890117332 1988-10-29 1989-09-20 Hydraulic lifting equipment, in particular lifting platform with two or more pillars Expired - Lifetime EP0372176B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3836903 1988-10-29
DE19883836903 DE3836903C1 (en) 1988-10-29 1988-10-29

Publications (2)

Publication Number Publication Date
EP0372176A1 EP0372176A1 (en) 1990-06-13
EP0372176B1 true EP0372176B1 (en) 1992-09-09

Family

ID=6366165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890117332 Expired - Lifetime EP0372176B1 (en) 1988-10-29 1989-09-20 Hydraulic lifting equipment, in particular lifting platform with two or more pillars

Country Status (2)

Country Link
EP (1) EP0372176B1 (en)
DE (1) DE3836903C1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4018726A1 (en) * 1990-06-12 1992-01-02 Nussbaum Otto Gmbh Co Kg LIFT FOR MOTOR VEHICLES
DE29502958U1 (en) * 1995-02-22 1996-04-18 Meseck, Willi, 86444 Affing Overhead crane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616265A (en) * 1949-08-24 1952-11-04 Robert C Wilson Means for adjusting fluid motor elements to maintain synchronized movement
US2750004A (en) * 1952-04-09 1956-06-12 Dover Corp Combined load-equalizing and safety device for lifts
FR1403275A (en) * 1964-07-09 1965-06-18 Schwermaschb Heinrich Rau Veb Hydraulic synchronization device, applicable to bridges and lifting platforms, and presses
DE2604256A1 (en) * 1976-02-04 1977-08-11 Walter Vogler LIFTING DEVICE WITH SAFETY SUPPORT FOR VEHICLES
DE2657831C3 (en) * 1976-12-21 1980-02-21 Algi Alfred Giehl Kg Maschinen- U. Hydraulikbau, 6228 Eltville Hydraulic telescopic piston drive for lifting devices
DE2943370A1 (en) * 1979-10-26 1982-05-27 Otto Nußbaum GmbH & Co KG, 7640 Kehl HYDRAULIC LIFT
DE3235829A1 (en) * 1982-09-28 1984-03-29 Kirner Auto-Präzision Robert Fuchs GmbH & Co KG, 6570 Kirn Lifting platform for vehicles, in particular passenger cars
DE8535184U1 (en) * 1985-12-14 1986-02-06 Maschinenfabrik J.A. Becker u. Söhne Neckarsulm GmbH & Co KG, 7107 Neckarsulm Hydraulic lifting devices, in particular column lifts for vehicles

Also Published As

Publication number Publication date
DE3836903C1 (en) 1990-02-22
EP0372176A1 (en) 1990-06-13

Similar Documents

Publication Publication Date Title
DE10162159B4 (en) Linear actuator with shock absorbing mechanism
EP0372176B1 (en) Hydraulic lifting equipment, in particular lifting platform with two or more pillars
CH650473A5 (en) DEFLECTION DEVICE FOR TRANSPORT RAILWAYS.
DE3544238C2 (en)
DE2733270C2 (en) Expansion control for a progressive hydraulic expansion
DE3025156C2 (en) Press with a punching and / or pressing tool
DE102006056654A1 (en) Hydraulic lifting device, particularly two-column or multi-column lifting platform, has safety device that is secured against dropping by ladder, where safety device is formed as pressurized medium operated particularly hydraulic device
EP0960849B1 (en) Lifting device, in particular lifting platform for vehicles
DE2430737C3 (en) Turntable
DE4215031C2 (en) Lockable piston actuator for transporting a roll bar for motor vehicles
DE1776269C2 (en) Synchronizing device in a piston engine
DE2655207A1 (en) DEVICE FOR CONTINUOUS EXTRUDING
EP1156185B1 (en) Multiple crank drive for power machines , especially for membrane pumps
DE3246893A1 (en) Pneumatically or hydraulically operable frame press
DE1752698C3 (en) Device for the longitudinal advance of a slender pressure generating ram to be secured against buckling for hydrostatic extrusion or the like. Machine element or workpiece
DE3048229C2 (en) Check valve for pit lining stamps
DE3527401A1 (en) Step-change gear box, in particular for motor vehicles
DE8813604U1 (en) Hydraulic lifting device, in particular two-column or multi-column lifting platform
DE3876152T2 (en) TEMPERATURE DRAWING DEVICE.
AT390226B (en) Apparatus for the installation and removal of press tools
DE3618633A1 (en) MULTI-SPINDLE DRILLING HEAD FOR DRILLING GLASS PANELS OR PANELS FROM SIMILAR, BREAK-SENSITIVE MATERIAL
DE19622843A1 (en) Device for perforating sheet metal
DE9107328U1 (en) Multi-daylight press
DE19912906B4 (en) Hydraulic actuator
DE3902134C2 (en) Synchronous control for walking and sliding cap cylinders in walking extension units

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB SE

17P Request for examination filed

Effective date: 19900721

17Q First examination report despatched

Effective date: 19911002

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920909

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930906

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930924

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940921

EAL Se: european patent in force in sweden

Ref document number: 89117332.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940920

EUG Se: european patent has lapsed

Ref document number: 89117332.0