EP0370866A1 - Procédé d'électrosynthèse d'aldéhydes - Google Patents
Procédé d'électrosynthèse d'aldéhydes Download PDFInfo
- Publication number
- EP0370866A1 EP0370866A1 EP89403133A EP89403133A EP0370866A1 EP 0370866 A1 EP0370866 A1 EP 0370866A1 EP 89403133 A EP89403133 A EP 89403133A EP 89403133 A EP89403133 A EP 89403133A EP 0370866 A1 EP0370866 A1 EP 0370866A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- organic halide
- reaction medium
- electrolysis
- anode
- aldehyde
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000008569 process Effects 0.000 title claims abstract description 7
- 150000001299 aldehydes Chemical class 0.000 title description 22
- 150000004820 halides Chemical class 0.000 claims abstract description 33
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- -1 N,N-disubstituted formamide Chemical class 0.000 claims abstract description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011777 magnesium Substances 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 239000011701 zinc Substances 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 8
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000007062 hydrolysis Effects 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 5
- 150000002739 metals Chemical class 0.000 claims abstract description 5
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims abstract 4
- 239000012429 reaction media Substances 0.000 claims description 18
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 48
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000011541 reaction mixture Substances 0.000 abstract 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- KPWJBEFBFLRCLH-UHFFFAOYSA-L cadmium bromide Chemical compound Br[Cd]Br KPWJBEFBFLRCLH-UHFFFAOYSA-L 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000006184 cosolvent Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 4
- 229940073608 benzyl chloride Drugs 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 150000003948 formamides Chemical class 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JIKUXBYRTXDNIY-UHFFFAOYSA-N n-methyl-n-phenylformamide Chemical compound O=CN(C)C1=CC=CC=C1 JIKUXBYRTXDNIY-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 150000005375 primary alkyl halides Chemical class 0.000 description 2
- 150000005376 secondary alkyl halides Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- JVTSHOJDBRTPHD-UHFFFAOYSA-N 2,2,2-trifluoroacetaldehyde Chemical compound FC(F)(F)C=O JVTSHOJDBRTPHD-UHFFFAOYSA-N 0.000 description 1
- FJJYHTVHBVXEEQ-UHFFFAOYSA-N 2,2-dimethylpropanal Chemical compound CC(C)(C)C=O FJJYHTVHBVXEEQ-UHFFFAOYSA-N 0.000 description 1
- ZDVRPKUWYQVVDX-UHFFFAOYSA-N 2-(trifluoromethyl)benzaldehyde Chemical compound FC(F)(F)C1=CC=CC=C1C=O ZDVRPKUWYQVVDX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- XCQNGFVUWRTJKE-UHFFFAOYSA-N O=CN(C)C1=CC=CC=C1.O=CN(C)C1=CC=CC=C1 Chemical compound O=CN(C)C1=CC=CC=C1.O=CN(C)C1=CC=CC=C1 XCQNGFVUWRTJKE-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001672648 Vieira Species 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- RJCQBQGAPKAMLL-UHFFFAOYSA-N bromotrifluoromethane Chemical compound FC(F)(F)Br RJCQBQGAPKAMLL-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- QARVLSVVCXYDNA-UHFFFAOYSA-N phenyl bromide Natural products BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- RKSOPLXZQNSWAS-UHFFFAOYSA-N tert-butyl bromide Chemical compound CC(C)(C)Br RKSOPLXZQNSWAS-UHFFFAOYSA-N 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
Definitions
- the invention relates to a process for the electrochemical synthesis of an aldehyde by electrolysis in a cell provided with electrodes of an organic halide and of an N, N-disubstituted formamide, then hydrolysis of the reaction medium.
- Aldehydes are compounds commonly used in many fields of the chemical industry, notably in perfumery, agrochemicals and pharmacy.
- aldehydes There are many methods of synthesizing aldehydes. Among these, mention may be made of those for which the aldehyde is obtained by electrolysis, in a cell provided with electrodes, an organic halide and an N, N-disubstituted formamide, then hydrolysis of the reaction medium.
- CASARDO and GALLARDO in Electrochimica Acta, Vol. 32, n ° 8, pp. 1145-1147, (1987) describe the synthesis of traces of benzaldehyde during the electrolysis of bromo or iodobenzene solutions in dimethylformamide (DMF).
- the cell has 2 separate compartments, anodic and cathodic.
- the cathode is made of mercury and the inert anode is made of graphite.
- VIEIRA and PETERS in J. Org. Chem., Vol. 51, n ° 8, pp. 1231-1239, (1986) describe the synthesis of pivalic aldehyde during the electrolysis of a solution of tert-butyl bromide in DMF. The yields are very low, less than 14%.
- the cell has 2 separate compartments, anodic and cathodic.
- the cathode is made of mercury and the inert anode is made of carbon.
- the method according to the invention compared with the closest aforementioned state of the art, has, in addition to a considerable improvement in yield and a widening of the field of application, a certain number of other advantages, the main ones of which are: a simpler implementation since the process is carried out in an electrolysis cell comprising only one compartment, without diaphragm or sintered, which is very important at the industrial stage, - a very much higher halide concentration, - a higher current intensity, of the order of several amperes per dm2, - the possibility of using a very low support electrolyte concentration, of the order of 10 ⁇ 2M, - the use of solid electrodes limiting the risks of pollution by heavy metals such as mercury.
- the electrolysis cell is a cell comprising only one compartment, that is to say for which there is no comparison separate anode and cathode tents. This possibility of using such a cell is an important advantage, as has already been mentioned.
- the anode is consumable, that is to say it is consumed during the electrochemical reaction of which it is the seat. This is the reason why such processes are sometimes called "soluble anode".
- the anode is made of a metal chosen from the group consisting of reducing metals and their alloys, that is to say any alloy containing at least one reducing metal.
- the anode is made of a reducing metal chosen from the group consisting of magnesium, aluminum, zinc and their alloys, that is to say any alloy containing at least one of the three metals mentioned above, namely zinc, aluminum and magnesium.
- This anode can have any shape and in particular all the classic forms of metal electrodes such as twisted wire, flat bar, cylindrical bar, renewable bed, balls, fabric, grid.
- a cylindrical bar of diameter adapted to the dimensions of the cell is used.
- the cathode is any metal such as stainless steel, gold, nickel, platinum, copper, aluminum, iron or carbon such as, for example, vitreous carbon or graphite. It is preferably formed by a grid or a cylindrical plate arranged concentrically around the anode.
- the Applicant has discovered that, unexpectedly, the efficiency is considerably improved when the cathode is covered with an electrolytic deposit of a metal M chosen from the group consisting of zinc, cadmium, lead and tin.
- the electrodeposition of the metal M on the cathode, prior to the electrosynthesis of the aldehyde, can be carried out according to various methods, in particular those described in Examples 14 to 38.
- the electrodes are supplied with direct current via a stabilized power supply.
- the aldehyde corresponds to the general formula RCHO in which R represents an organic radical
- the organic halide corresponds to the general formula RX in which R has the abovementioned meaning and X represents an atom of halogen, preferably chlorine or bromine
- the N, N-disubstituted formamide corresponds to the general formula in which R1 and R2, identical or different, represent an aliphatic or aromatic chain, substituted or unsubstituted, preferably either an alkyl chain containing 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl ring, or alternatively R1 and R2 form a cycle.
- R represents an aliphatic, arylaliphatic, aromatic, alkylaromatic or heterocyclic organic radical, substituted or unsubstituted, preferably an alkyl radical or a phenyl group, substituted or unsubstituted.
- R carries various substituents, these must be more difficult to reduce than the R-X bond.
- the formamide is DMF.
- other formamides mention may be made of N, N-dialkylformamides and N-phenyl N-methylformamide (N-methylformanilide).
- the hydrolysis of the reaction medium is for example carried out with an acidic aqueous solution.
- the formamide N, N-disubstituted in addition to its role as reagent, also plays the role of solvent. This is particularly the case when using DMF. It is then not necessary to use another solvent. Electrolysis can however be carried out in the presence of a co-solvent chosen from aprotic solvents with low electrophilicity, such as, for example, tetramethylurea (TMU) and tetrahydrofuran (THF).
- a co-solvent chosen from aprotic solvents with low electrophilicity, such as, for example, tetramethylurea (TMU) and tetrahydrofuran (THF).
- the concentration of the reactants is preferably chosen so as to ensure a very large molar excess of formamide, since the latter also preferably plays the role of solvent.
- the concentration of the organic halide in the reaction medium is generally between 0.05 and 2 mol / l.
- the reaction medium is made conductive by a slightly reducible support electrolyte.
- a slightly reducible support electrolyte Mention may be made, for example, of salts whose anion is a halide, a carboxylate, a fluoroborate, a perchlo spleen or a hexafluorophosphate and the cation a quaternary ammonium, aluminum, zinc, sodium, potassium, calcium, lithium, a tetraalkylphosphonium, as well as mixtures of these salts. Tetramethylammonium fluoroborate or tetrabutylammonium bromide is preferably used.
- the solution is oxygenated by bubbling an inert gas, nitrogen or argon for example.
- the reaction temperature is preferably between 0 and 80 ° C, for example room temperature.
- the solution is stirred, maintained under an inert atmosphere, of nitrogen or argon for example, and cooled if necessary to maintain its temperature between 0 and 80 ° C. preferably.
- the current density on the cathode is preferably chosen between 0.2 and 20 A / dm2.
- the duration of the electrolysis is preferably chosen so that the amount of current involved corresponds approximately to 2 Faraday (193 103C) per mole of organic halide.
- reaction medium After electrolysis, the reaction medium is hydrolyzed with an acidic aqueous solution, for example dilute hydrochloric acid, then extraction is carried out with an organic solvent. After drying and evaporation of the extraction solvent, the aldehyde is obtained which is identified and assayed according to conventional methods of analysis, after optional purification by passage over a column of silica for example.
- acidic aqueous solution for example dilute hydrochloric acid
- organic solvent After drying and evaporation of the extraction solvent, the aldehyde is obtained which is identified and assayed according to conventional methods of analysis, after optional purification by passage over a column of silica for example.
- a cathode covered with an electrolytic deposit of a metal M as defined above it is possible, when M represents cadmium, lead or tin, to directly introduce the metal M to be deposited on the cathode in the form of salt, cadmium bromide, lead acetate or tin chloride for example, in the organic halide and N, N-disubstituted formamide mixture.
- the metal M is deposited on the cathode.
- the yield is improved by adding the organic halide gradually into the reaction medium during electrolysis.
- a conventional electrolysis cell comprising only one compartment.
- the upper part of the cell is made of glass and is equipped with 5 tubes, including a central one, allowing the arrival and the exit of argon used as inert gas, the possible samples of solution during electrolysis, the addition of reagents, electrical passages.
- the lower part consists of a stopper fitted with a seal, screwed onto the upper glass part.
- the total volume of the cell is close to 45 cm3 and its volume uti the neighbor of 35 cm3.
- the anode is a cylindrical bar with a diameter close to 1 cm, made of zinc, magnesium or aluminum according to the tests. It is introduced into the cell through the central tube and is thus located approximately in axial position relative to the cell.
- the cathode consists of a metallic cylindrical grid arranged concentrically around the anode.
- the working surface of the cathode is around 20 cm2.
- the cell is immersed in a thermostatic bath set to the chosen temperature.
- reaction medium is stirred, for example by means of a magnetic bar.
- the solution to be electrolyzed consisting of: - organic halide, - the formamide N, N-disubstituted or the mixture of formamides N, N-disubstituted, - possibly the co-solvent, the support electrolyte, tetramethylammonium fluoroborate at a concentration of 5 ⁇ 10 -2 M except for Example 7 for which the support electrolyte is tetrabutylammonium bromide at the concentration of 10 ⁇ 2M.
- This mixture is degassed by bubbling argon, then it is maintained under an argon atmosphere.
- reaction medium After constant intensity electrolysis for a corresponding period dant at 3 Faraday (290 103C) per mole of organic halide, the reaction medium is hydrolyzed with a 1N aqueous hydrochloric acid solution and then extracted with diethyl ether.
- the organic phase is then separated and washed with water.
- the aldehyde obtained is purified by chromatography on a silica column and then identified according to conventional methods of analysis, in particular by infrared (IR), mass (SM) and nuclear magnetic resonance (NMR) spectrometries. ).
- the organic halide concentration is 0.5 M for Examples 1, 3 to 9, 12 and 0.125 M for Example 2.
- CF3Br being a gas
- it is introduced by bubbling into the reaction medium under a pressure of 105Pa (1 bar).
- the cathode is made of nickel for examples 10 and 11, of stainless steel for examples 1 to 6, 8, 9 to 12, of lead for example 7.
- the anode is made of zinc for example 10, of aluminum for examples 1 to 4, 6 to 9 and 12.
- the volume of formamide, or mixture of formamides, is 36cm3. This volume includes the co-solvent when it is present.
- the formamide is DMF for examples 1 to 5 and 7 to 12, a 1/1 mixture by volume of DMF / N-methylformanilide for example 6.
- Examples 2 and 4 are carried out in the presence of a co-solvent.
- the co-solvent is THF and the volume ratio DMF / THF is 2/1 respectively.
- the co-solvent is TMU and the volume ratio DMF / TMU is respectively 1/1.
- the current density on the cathode is 2A / dm2 for examples 1, 2, 7 to 11, 1.5 A / dm2 for example 12, 1 A / dm2 for examples 3 and 4 and 0.5 A / dm2 for examples 5 and 6.
- the reaction temperature is 25 ° C for Examples 1 to 9 and 0 ° C for Examples 10 to 12.
- the trifluoroacetaldehyde is isolated in the form of a hydrate and the yield indicated in Table 1 is a faradaic yield calculated from the amount of electricity used.
- the experimental conditions for this example are the same as those of Example 1 but the initial concentration of benzyl chloride is 0.125 M. After electrolysis corresponding to the passage of 2 Faraday (193 103C) per mole of benzyl chloride, we add an amount of benzyl chloride equal to that present at the start. Electrolysis is then continued until the total duration thereof corresponds to 3 Faraday (290 103C) per mole of benzyl chloride used. The yield of isolated pure aldehyde is 50%.
- the cathode made of stainless steel or nickel, is covered with an electrolytic deposit of a metal M.
- MBr2 is added at a concentration of the order of 5 10 ⁇ 2M to 10-1M.
- the cell is equipped with a metal anode M and a current of 0.1 to 0.2 A is imposed for 0.5 to 1 hour, which makes it possible to transport M from the anode to the cathode.
- the anode M is then replaced by a magnesium bar and the electrolysis is continued at constant intensity for the time necessary for the almost complete exhaustion of the M2+ ions present in the solution.
- the organic halide is then added to this solution.
- MBr2 is added at a concentration of the order of 5 10 ⁇ 2M to 10 ⁇ 1M.
- the cell is equipped with a magnesium anode and a current of 0.1 to 0.2 A is imposed for the time necessary for the electrodeposition of the M2+ ions on the cathode.
- the organic halide is then added.
- M is cadmium, lead or tin
- DMF containing tetrabutylammonium bromide as support electrolyte at the concentration of 10 ⁇ 2M, CdBr2, Pb (CH3CO2) 2 or SnCl2 are added, at a concentration of the order of 5 10 52 to 10 ⁇ 1M, as well as organic halide.
- the cell is equipped with a magnesium anode and a constant intensity current is imposed.
- the cathode coated according to one of the aforementioned methods A, B or C then having served for the electrosynthesis of an aldehyde according to the invention is reused without modification in a new electrosynthesis of aldehyde with a magnesium anode, in DMF medium containing tetrabutylammonium bromide at a concentration of 10 ⁇ 2M as a support electrolyte.
- electrosynthesis is carried out at ambient temperature, by imposing a current of constant intensity such that the current density on the cathode is 1 A / dm2.
- the duration of the electrolysis is chosen so as to employ 2.1 Faraday (203 103 C) per mole of organic halide.
- reaction medium Before electrolysis, the reaction medium is degassed for barbota argon, then the medium is maintained under an argon atmosphere.
- the medium is hydrolyzed, then the aldehyde formed is isolated, purified, identified and assayed according to the method described for Examples 1 to 14.
- the aldehyde is recovered in the form of a hydrate.
- the following table 2 specifies for each example the nature and the concentration in DMF of the organic halide, the nature of the cathode as well as the method used for electrodepositing the metal M.
- Table 3 specifies for each example the conversion rate of the organic halide as well as the nature and the yield with respect to the starting organic halide, of the aldehyde formed. For certain examples, the yield of isolated pure aldehyde is also indicated in brackets.
- the operation is carried out according to the general conditions relating to examples 14 to 38 but: -
- the current density on the cathode is 0.1 A / dm2.
- the reaction medium is a 75/25 mixture by volume of N-methylformanilide and TMU respectively, containing tetrabutylammonium bromide as support electrolyte at the concentration of 10 ⁇ 2M and pCF3C6H4Cl as organic halide at the concentration of 0.50 mol / l.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Compounds Of Unknown Constitution (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- L'invention concerne un procédé de synthèse électrochimique d'un aldéhyde par électrolyse dans une cellule munie d'électrodes d'un halogénure organique et d'un formamide N,N-disubstitué, puis hydrolyse du milieu réactionnel.
- Les aldéhydes sont des composés couramment utilisés dans de nombreux domaines de l'industrie chimique, notamment en parfumerie, en agrochimie et en pharmacie.
- Il existe de très nombreux procédés de synthyse d'aldéhydes. Parmi ceux-ci on peut citer ceux pour lesquels l'aldéhyde est obtenu par électrolyse, dans une cellule munie d'électrodes, d'un halogénure organique et d'un formamide N,N-disubstitué, puis hydrolyse du milieu réactionnel.
- CASARDO et GALLARDO dans Electrochimica Acta, Vol. 32, n°8, pp.1145-1147, (1987) décrivent la synthèse de traces de benzaldéhyde lors de l'électrolyse de solutions de bromo ou de iodobenzène dans le diméthylformamide (DMF). La cellule comprend 2 compartiments, anodique et cathodique, séparés. La cathode est en mercure et l'anode, inerte, est en graphite.
- VIEIRA et PETERS dans J. Org. Chem., Vol. 51, n°8, pp.1231-1239, (1986) décrivent la synthèse d'aldéhyde pivalique lors de l'électrolyse d'une solution de bromure de tertiobutyle dans le DMF. Les rendements sont très faibles, inférieurs à 14%. La cellule comprend 2 compartiments, anodique et cathodique, séparés. La cathode est en mercure et l'anode, inerte, est en carbone.
- Les auteurs enseignent également qu'ils n'ont pas pu obtenir, dans les mêmes conditions, la formation d'aldéhydes à partir d'halogénures d'alkyles primaires ou secondaires.
- La Demanderesse a découvert que de façon totalement inattendue, on obtenait de bons rendements, même à partir d'halogénures d'alkyles primaires ou secondaires, lorsque la cellule ne comporte qu'un seul compartiment et lorsqu'on utilise une anode consommable en un métal choisi dans le groupe constitué par les métaux réducteurs et leurs alliages.
- Le procédé selon l'invention, comparativement à l'état de la technique le plus proche précité, présente, outre une amélioration considérable du rendement et un élargissement du domaine d'application, un certain nombre d'autres avantages dont les principaux sont :
- une mise en oeuvre plus simple puisque le procédé est réalisé dans une cellule d'électrolyse ne comportant qu'un seul compartiment, sans diaphragme ni fritté, ce qui est très important au stade industriel,
- une concentration en halogénure très nettement plus élevée,
- une intensité de courant plus élevée, de l'ordre de plusieurs ampères par dm²,
- la possibilité d'utiliser une concentration en électrolyte support très faible, de l'ordre de 10⁻²M,
- l'utilisation d'électrodes solides limitant les risques de pollution par les métaux lourds tels que le mercure. - La cellule d'électrolyse est une cellule ne comportant qu'un seul compartiment, c'est-à-dire pour laquelle il n'existe pas de compar timents anodique et cathodique séparés. Cette possibilité d'utiliser une telle cellule est un avantage important, comme cela a déjà été mentionné.
- L'anode est consommable, c'est-à-dire qu'elle est consommée au cours de la réaction électrochimique dont elle est le siège. C'est la raison pour laquelle de tels procédés sont parfois appelés "à anode soluble". L'anode est en un métal choisi dans le groupe constitué par les métaux réducteurs et leurs alliages, c'est-à-dire tout alliage contenant au moins un métal réducteur.
- De façon préférée, l'anode est en un métal réducteur choisi dans le groupe constitué par le magnésium, l'aluminium, le zinc et leurs alliages, c'est-à-dire tout alliage contenant au moins un des trois métaux précités, à savoir le zinc, l'aluminium et le magnésium. Cette anode peut avoir une forme quelconque et notamment toutes les formes classiques d'électrodes métalliques comme par exemple fil torsadé, barreau plat, barreau cylindrique, lit renouvelable, billes, toile, grille. De façon préférée, on utilise un barreau cylindrique de diamètre adapté aux dimensions de la cellule.
- La cathode est un métal quelconque tel que l'acier inoxydable, l'or, le nickel, le platine, le cuivre, l'aluminium, le fer ou du carbone comme par exemple du carbone vitreux ou du graphite. Elle est constituée, de façon préférée, par une grille ou une plaque cylindrique disposée concentriquement autour de l'anode.
- La Demanderesse a découvert que de façon inattendue on améliorait considérablement le rendement lorsque la cathode est recouverte d'un dépôt électrolytique d'un métal M choisi dans le groupe constitué par le zinc, le cadmium, le plomb et l'étain.
- L'électrodéposition du métal M sur la cathode, préalablement à l'électrosynthèse de l'aldéhyde, peut être effectuée selon diverses méthodes, notamment celles décrites aux exemples 14 à 38.
- Les électrodes sont alimentées en courant continu par l'intermédiaire d'une alimentation stabilisée.
- De façon préférée, selon l'invention, l'aldéhyde répond à la formule générale RCHO dans laquelle R représente un radical organique, l'halogénure organique répond à la formule générale RX dans laquelle R a la signification précitée et X représente un atome d'halogène, de préférence le chlore ou le brome, et le formamide N,N-disubstitué répond à la formule générale
- De façon préférée, R représente un radical organique aliphatique, arylaliphatique, aromatique, alkylaromatique ou hétérocyclique, substitué ou non substitué, de préférence un radical alkyle ou un groupe phényle, substitué ou non substitué. Bien évidemment, lorsque R est porteur de divers substituants, ceux-ci doivent être plus difficilement réductibles que la liaison R-X.
- De façon particulièrement préférée le formamide est le DMF. Comme exemples d'autres formamides on peut citer les N,N-dialkylformamides et le N-phényl N-méthylformamide (N-méthylformanilide).
- On peut également utiliser un mélange de plusieurs formamides répondant à la formule générale précitée.
-
- L'hydrolyse du milieu réactionnel est par exemple réalisée par une solution aqueuse acide.
- De façon préférée, dans le cadre de la présente invention, le formamide N,N-disubstitué, outre son rôle de réactif, joue également le rôle de solvant. C'est notamment le cas lorsqu'on utilise le DMF. Il n'est alors pas nécessaire d'utiliser un autre solvant. On peut toutefois effectuer l'électrolyse en présence d'un co-solvant choisi parmi les solvants aprotiques peu électrophiles comme par exemple la tétraméthylurée (TMU) et le tétrahydrofuranne (THF).
- Lorsque dans les conditions de l'électrosynthèse le formamide N,N-disubstitué se trouve dans un état physique tel qu'il ne puisse plus jouer convenablement son rôle de solvant, la présence d'un tel solvant aprotique peu électrophile est alors recommandée.
- La concentration des réactifs est de préférence choisie de façon à assurer un très large excès molaire en formamide, puisque celui-ci joue également de préférence le rôle de solvant.
- La concentration de l'halogènure organique dans le milieu réactionnel est généralement comprise entre 0,05 et 2 mol/l.
- Le milieu réactionnel est rendu conducteur par un électrolyte support peu réductible. On peut citer par exemple les sels dont l'anion est un halogénure, un carboxylate, un fluoroborate, un perchlo rate ou un hexafluorophosphate et le cation un ammonium quaternaire, l'aluminium, le zinc, le sodium, le potassium, le calcium, le lithium, un tétraalkylphosphonium, ainsi que les mélanges de ces sels. On utilise, de façon préférée, le fluoroborate de tétraméthylammonium ou le bromure de tétrabutylammonium.
- Avant l'électrolyse, on désoxygène la solution par barbotage d'un gaz inerte, azote ou argon par exemple.
- La température de réaction est de préférence comprise entre 0 et 80°C, par exemple la température ambiante.
- Pendant toute la durée de l'électrolyse la solution est agitée, maintenue sous atmosphère inerte, d'azote ou d'argon par exemple, et refroidie si nécessaire pour maintenir sa température entre 0 et 80°C de préférence.
- La densité de courant sur la cathode est de préférence choisie entre 0,2 et 20 A/dm².
- On opère en général à intensité constante, mais on peut également opérer à tension constante, à potentiel contrôlé, ou avec intensité et potentiel variables.
- La durée de l'électrolyse est de préférence choisie de façon à ce que la quantité de courant mise en jeu corresponde environ à 2 Faraday (193 10³C) par mole d'halogénure organique.
- On peut également suivre l'évolution de la concentration en halogènure organique par analyse de prélévèments aliquotes et stopper l'électrolyse dès que le taux de transformation souhaité est atteint.
- Après électrolyse, on hydrolyse le milieu réactionnel par une solution aqueuse acide, acide chlorhydrique dilué par exemple, puis on extrait avec un solvant organique. Après séchage et évaporation du solvant d'extraction, on obtient l'aldéhyde qui est identifié et dosé selon les méthodes classiques d'analyse, après purification éventuelle par passage sur une colonne de silice par exemple.
- Dans le cas particulier où l'on utilise un cathode recouverte d'un dépôt électrolytique d'un métal M tel que défini précédemment, on peut, lorsque M représente le cadmium, le plomb ou l'étain, introduire directement le métal M à déposer sur la cathode sous forme de sel, bromure de cadmium, acétate de plomb ou chlorure d'étain par exemple, dans le mélange halogènure organique et formamide N,N-disubstitué. En début d'électrolyse le métal M se dépose sur la cathode. Afin d'améliorer l'adhérence et la qualite du dépôt, on peut,en début d'électrolyse, utiliser un courant d'intensité plus faible.
- Lorsque l'halogénure organique est très réactif, ce qui est le cas par exemple pour les halogénures allyliques ou benzyliques, on améliore le rendement en ajoutant l'halogénure organique progressivement dans le milieu réactionnel en cours d'électrolyse.
- L'invention est illustrée par les exemples non limitatifs qui vont suivre.
- Pour réaliser ces exemples, on utilise une cellule d'électrolyse classique, ne comportant qu'un seul compartiment.
- La partie supérieure de la cellule est en verre et est équipée de 5 tubulures, dont une centrale, permettant l'arrivée et la sortie d'argon utilisé comme gaz inerte, les prélèvements éventuels de solution en cours d'électrolyse, l'addition des réactifs, les passages électriques.
- La partie inférieure est constituée par un bouchon muni d'un joint, vissé sur la partie supérieure en verre.
- Le volume total de la cellule est voisin de 45cm³ et son volume uti le voisin de 35 cm³.
- L'anode est un barreau cylindrique de diamètre voisin de 1cm, en zinc, magnésium ou aluminium selon les essais. Elle est introduite dans la cellule par la tubulure centrale et se trouve ainsi située approximativement en position axiale par rapport à la cellule.
- La cathode est constituée par une grille cylindrique métallique disposée concentriquement autour de l'anode. La surface de travail de la cathode est de l'ordre de 20 cm².
- La cellule est plongée dans un bain thermostatique réglé à la température choisie.
- Durant l'électrolyse le milieu réactionnel est agité, par exemple par l'intermédiaire d'un barreau aimanté.
- On introduit dans la cellule la solution à électrolyser, constituée de :
- l'halogénure organique,
- le formamide N,N-disubstitué ou le mélange de formamides N,N-disubstitués,
- éventuellement le co-solvant,
- l'électrolyte support, du fluoroborate de tétraméthylammonium à la concentration de 5 10⁻² M sauf pour l'exemple 7 pour lequel l'électrolyte support est du bromure de tétrabutylammonium à la concentration de 10⁻²M. - On dégaze ce mélange par barbotage d'argon, puis on le maintient sous atmosphère d'argon.
- Aprés électrolyse à intensité constante pendant une durée correspon dant à 3 Faraday (290 10³C) par mole d'halogénure organique, on hydrolyse le milieu réactionnel avec une solution aqueuse d'acide chlorhydrique 1N puis on extrait à l'éther diéthylique.
- On sépare alors la phase organique que l'on lave à l'eau.
- Après séchage et évaporation des solvants, l'aldéhyde obtenu est purifié par chromatographie sur colonne de silice puis identifié selon les méthodes classiques d'analyse, notamment par spectrométries infra-rouge (IR), de masse (SM) et résonance magnétique nucléaire (RMN).
- La nature de l'halogénure organique de départ, celle de l'aldéhyde formé et le rendement massique correspondant en aldéhyde pur isolé figurent dans le tableau 1 pour chaque exemple.
- La concentration en halogénure organique est de 0,5 M pour les exemples 1, 3 à 9, 12 et 0,125 M pour l'exemple 2.
- Pour les exemples 10 et 11, CF₃Br étant un gaz, il est introduit pas barbotage dans le milieu réactionnel sous une pression de 10⁵Pa (1 bar).
- La cathode est en nickel pour les exemples 10 et 11, en acier inoxydable pour les exemples 1 à 6, 8, 9 à 12, en plomb pour l'exemple 7.
- L'anode est en zinc pour l'exemple 10, en aluminium pour les exemples 1 à 4, 6 à 9 et 12.
- Le volume de formamide, ou du mélange de formamides, est de 36cm³. Ce volume comprend le co-solvant lorque celui-ci est présent.
- Le formamide est le DMF pour les exemples 1 à 5 et 7 à 12, un mélange 1/1 en volumes DMF/N-méthylformanilide pour l'exemple 6.
- Les exemples 2 et 4 sont réalisés en présence d'un co-solvant. Pour l'exemple 2 le co-solvant est le THF et le rapport volumique DMF/THF est respectivement 2/1. Pour l'exemple 4 le co-solvant est la TMU et le rapport volumique DMF/TMU est respectivement 1/1.
- La densité de courant sur la cathode est de 2A/dm² pour les exemples 1, 2, 7 à 11, 1,5 A/dm² pour l'exemple 12, 1 A/dm² pour les exemples 3 et 4 et 0,5 A/dm² pour les exemples 5 et 6.
- La température de la réaction est 25°C pour les exemples 1 à 9 et 0°C pour les exemples 10 à 12.
-
- Les conditions expérimentales pour cet exemple sont les mêmes que celles de l'exemple 1 mais la concentration initiale en chlorure de benzyle est de 0,125 M. Après électrolyse correspondant au passage de 2 Faraday (193 10³C) par mole de chlorure de benzyle, on ajoute une quantité de chlorure de benzyle égale à celle présente au départ. On poursuit alors l'électrolyse jusqu'à ce que la durée totale de celle-ci corresponde à 3 Faraday (290 10³C) par mole de chlorure de benzyle engagée. Le rendement en aldéhyde pur isolé est de 50%.
- Pour ces exemples la cathode, en acier inoxydable ou en nickel, est recouverte d'un dépôt électrolytique d'un métal M.
- L'électrodéposition du métal M sur la cathode, préalablement à l'électrosynthèse de l'aldéhyde, a été effectuée selon plusieurs méthodes :
- Dans le DMF contenant du bromure de tétrabutylammonium comme électrolyte support à la concentration de 10⁺²M, on ajoute MBr₂ à une concentration de l'ordre de 5 10⁻²M à 10-¹M. La cellule est équipée d'une anode en métal M et on impose durant 0,5 à 1h un courant de 0,1 à 0,2 A, ce qui permet d'assurer le transport de M de l'anode vers la cathode.
L'anode M est ensuite remplacée par un barreau de magnésium et l'électrolyse est poursuivie à intensité constante pendant le temps nécessaire à l'épuisement presque complet des ions M²⁺ présents dans la solution. On ajoute alors l'halogénure organique à cette solution. - Dans le DMF contenant du bromure de tétrabutylammonium comme électrolyte support à la concentration de 10⁻²M, on ajoute MBr₂ à une concentration de l'ordre de 5 10⁻²M à 10⁻¹M. La cellule est équipée d'une anode en magnésium et on impose un courant de 0,1 à 0,2 A pendant le temps nécessaire à l'électrodéposition des ions M²⁺ sur la cathode. On ajoute ensuite l'halogénure organique.
- Lorsque M est le cadmium, le plomb ou l'étain, on peut opérer en une seule étape. Dans le DMF contenant du bromure de tétrabutylammonium comme électrolyte support à la concentration de 10⁻²M, on ajoute CdBr₂, Pb(CH₃CO₂)₂ ou SnCl₂, à une concentration de l'ordre de 5 10⁻² à 10⁻¹M, ainsi que l'halogénure organique.
La cellule est équipée d'une anode en magnésium et on impose un courant d'intensité constante.
L'électrodéposition du cadmium, du plomb ou de l'étain sur la cathode précède l'électrosynthèse de l'aldéhyde. - La cathode revêtue selon l'une des méthodes précitées A, B ou C puis ayant servi pour l'électrosynthèse d'un aldéhyde selon l'invention est réutilisée sans modification dans une nouvelle électrosynthèse d'aldéhyde avec une anode en magnésium, en milieu DMF contenant du bromure de tétrabutylammonium à la concentration de 10⁻²M comme électrolyte support.
- Pour tous ces exemples 14 à 38, l'électrosynthèse est conduite à température ambiante, en imposant un courant d'intensité constante telle que la densité de courant sur la cathode soit de 1 A/dm².
- La durée de l'électrolyse est choisie de façon à engager 2,1 Faraday (203 10³ C) par mole d'halogénure organique.
- Avant l'électrolyse, on dégaze le milieu réactionnel pour barbota ge d'argon, puis on maintient le milieu sous atmosphère d'argon.
- Après l'électrolyse, on hydrolyse le milieu, puis on isole, purifie, identifie et dose l'aldéhyde formé selon la méthode décrite pour les exemples 1 à 14.
- Pour l'exemple 37, l'aldéhyde est récupéré sous forme d'hydrate.
- On peut aussi doser l'halogénure organique n'ayant pas réagi et l'aldéhyde formé par chromatographie en phase gazeuse (CPG) à partir d'un prélèvement d'une partie aliquote de la solution après hydrolyse acide (HCl 6 N) et extraction à l'éther diéthylique.
Le dosage de l'halogénure organique n'ayant pas réagi permet le calcul du taux de conversion de cet halogénure. - Le tableau 2 suivant précise pour chaque exemple la nature et la concentration dans le DMF de l'halogénure organique, la nature de la cathode ainsi que la méthode utilisée pour électrodéposer le métal M.
- Le tableau 3 suivant précise pour chaque exemple le taux de conversion de l'halogénure organique ainsi que la nature et le rendement par rapport à l'halogénure organique de départ, de l'aldéhyde formé. Pour certains exemples, le rendement en aldéhyde pur isolé est également indiqué entre parenthèses.
- On opère selon les conditions générales relatives aux exemples 14 à 38 mais :
- La densité de courant sur la cathode est de 0,1 A/dm².
- On utilise une cathode en acier inox revêtue d'un dépôt électrolytique de cadmium selon la méthode D.
- Le milieu réactionnel est un mélange 75/25 en volumes de N-méthylformanilide et de TMU respectivement, contenant du bromure de tétrabutylammonium comme électrolyte support à la concentration de 10⁻²M et pCF₃C₆H₄Cl comme halogénure organique à la concentration de 0,50 mol/l. - Le taux de conversion de l'halogénure organique est de 100 %. On obtient pCF₃C₆H₄CHO avec un rendement de 15 %.
- Après dégazage par barbotage d'argon et maintien de la cellule sous atmosphère d'argon, on électrolyse une solution de 9 g de parachlorotrifluorotoluène, 200 mg de bromure de tétrabutylammonium et 500 mg de bromure de cadmium anhydre dans 35 ml de DMF pendant 1h sous un courant d'intensité 0,1 A puis pendant 5h et 30 min sous un courant d'intensité 0,5 A en maintenant la température du milieu réactionnel à environ 40°C.
L'anode est en magnésium et la cathode en acier inoxydable.
Le milieu réactionnel est ensuite traité comme pour les exemples 14 à 38. On obtient le trifluorométhylbenzaldéhyde avec un rendement de 85%. Il faut noter dans cet exemple la concentration particulièrement élevée en halogénure organique (environ 1,5 M).
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89403133T ATE94590T1 (de) | 1988-11-23 | 1989-11-15 | Verfahren zur elektrosynthese von aldehyden. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8815235 | 1988-11-23 | ||
FR8815235A FR2639364B1 (fr) | 1988-11-23 | 1988-11-23 | Procede d'electrosynthese d'aldehydes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0370866A1 true EP0370866A1 (fr) | 1990-05-30 |
EP0370866B1 EP0370866B1 (fr) | 1993-09-15 |
Family
ID=9372136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89403133A Expired - Lifetime EP0370866B1 (fr) | 1988-11-23 | 1989-11-15 | Procédé d'électrosynthèse d'aldéhydes |
Country Status (7)
Country | Link |
---|---|
US (1) | US4988416A (fr) |
EP (1) | EP0370866B1 (fr) |
JP (1) | JP2812748B2 (fr) |
AT (1) | ATE94590T1 (fr) |
DE (1) | DE68909184T2 (fr) |
ES (1) | ES2045513T3 (fr) |
FR (1) | FR2639364B1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0565252A1 (fr) * | 1992-04-07 | 1993-10-13 | United Kingdom Atomic Energy Authority | Hydrolyse |
EP0697472A1 (fr) | 1994-08-16 | 1996-02-21 | Hoechst Aktiengesellschaft | Procédé d'électrosynthèse d'aldéhydes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5756851A (en) * | 1996-10-21 | 1998-05-26 | Albemarle Corporation | Production of nabumetone or precursors thereof |
JP2004530044A (ja) * | 2001-04-12 | 2004-09-30 | アストラゼネカ アクチボラグ | 微細工学的反応装置 |
PL2018446T3 (pl) * | 2006-05-15 | 2020-06-29 | Nouryon Chemicals International B.V. | Proces elektrochemiczny do otrzymywania związku fluorowcowanego zawierającego grupę karbonylową |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219367A1 (fr) * | 1985-09-05 | 1987-04-22 | Societe Nationale Des Poudres Et Explosifs | Cellule d'électrolyse organique à électrode consommable |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547271A (en) * | 1984-09-12 | 1985-10-15 | Canada Packers Inc. | Process for the electrochemical reduction of 7-ketolithocholic acid to ursodeoxycholic acid |
US4582577A (en) * | 1984-12-19 | 1986-04-15 | Monsanto Company | Electrochemical carboxylation of p-isobutylacetophenone |
US4601797A (en) * | 1984-12-19 | 1986-07-22 | Monsanto Company | Electrochemical carboxylation of p-isobutylacetophenone and other aryl ketones |
FR2579627B1 (fr) * | 1985-03-29 | 1987-05-15 | Poudres & Explosifs Ste Nale | Procede d'electrosynthese d'alcools |
FR2579626B1 (fr) * | 1985-03-29 | 1987-05-15 | Poudres & Explosifs Ste Nale | Procede d'electrosynthese de cetones et d'aldehydes |
-
1988
- 1988-11-23 FR FR8815235A patent/FR2639364B1/fr not_active Expired - Lifetime
-
1989
- 1989-11-15 ES ES89403133T patent/ES2045513T3/es not_active Expired - Lifetime
- 1989-11-15 EP EP89403133A patent/EP0370866B1/fr not_active Expired - Lifetime
- 1989-11-15 DE DE89403133T patent/DE68909184T2/de not_active Expired - Fee Related
- 1989-11-15 AT AT89403133T patent/ATE94590T1/de active
- 1989-11-17 US US07/437,820 patent/US4988416A/en not_active Expired - Fee Related
- 1989-11-24 JP JP1303444A patent/JP2812748B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219367A1 (fr) * | 1985-09-05 | 1987-04-22 | Societe Nationale Des Poudres Et Explosifs | Cellule d'électrolyse organique à électrode consommable |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0565252A1 (fr) * | 1992-04-07 | 1993-10-13 | United Kingdom Atomic Energy Authority | Hydrolyse |
EP0697472A1 (fr) | 1994-08-16 | 1996-02-21 | Hoechst Aktiengesellschaft | Procédé d'électrosynthèse d'aldéhydes |
US5571400A (en) * | 1994-08-16 | 1996-11-05 | Hoechst Aktiengesellschaft | Process for the electrosynthesis of aldehydes |
Also Published As
Publication number | Publication date |
---|---|
ES2045513T3 (es) | 1994-01-16 |
US4988416A (en) | 1991-01-29 |
ATE94590T1 (de) | 1993-10-15 |
DE68909184D1 (de) | 1993-10-21 |
FR2639364B1 (fr) | 1990-12-28 |
DE68909184T2 (de) | 1994-04-07 |
FR2639364A1 (fr) | 1990-05-25 |
JP2812748B2 (ja) | 1998-10-22 |
EP0370866B1 (fr) | 1993-09-15 |
JPH02185989A (ja) | 1990-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0323300B1 (fr) | Procédé de synthèse électrochimique de cétones alpha saturées | |
US20180244668A1 (en) | Method for the preparation of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and recovery of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide by electrochemical methods | |
NO128490B (fr) | ||
EP0277048B1 (fr) | Procédé de synthèse électrochimique d'acides carboxyliques | |
CH624947A5 (fr) | ||
FR2646441A1 (fr) | Procede d'electrosynthese d'un ester beta gamma insature | |
JPH09286774A (ja) | 2−アルキルメルカプト−4−(トリフルオルメチル) 安息香酸エステル及びこれの製造方法 | |
EP0370866B1 (fr) | Procédé d'électrosynthèse d'aldéhydes | |
EP0268526B1 (fr) | Procédé d'électrosynthèse d'aryl alkyl phosphines tertiaires | |
EP0192931B1 (fr) | Procédé pour la préparation d'isoxazoles | |
EP0198743B1 (fr) | Procédé d'électrosynthése de cétones | |
Muller | Synthesis of 5, 5, 5-trifluoro-DL-isoleucine and 5, 5, 5-trifluoro-DL-alloisoleucine | |
EP0201365B1 (fr) | Procédé d'électrosynthèse d'alcools et de composés époxydes | |
CH664979A5 (fr) | Procede d'electrosynthese d'acides carboxyliques. | |
JP2002105686A (ja) | カソードおよびその製造方法 | |
FR2623525A1 (fr) | Procede d'electrosynthese de composes gem di ou tri halogenes | |
FR2542764A1 (fr) | Nouveau procede electrochimique de dicarboxylation de composes organiques insatures | |
FR2688519A1 (fr) | Procede d'electrosynthese de fluorobiphenyles symetriques. | |
WO2002033151A1 (fr) | Procede electrochimique de transformation selective des composes alkylaromatiques en aldehydes | |
US4845267A (en) | Alkyl 2-fluoro-1-methoxyethylcarbamates | |
US4014762A (en) | Process for the preparation of hexafluoropropene epoxide | |
US4927508A (en) | Alkyl 2-fluoro-1-methoxyethylcarbamates | |
SU836007A1 (ru) | Способ получени бензилового спирта | |
EP0003446A1 (fr) | Procédé de préparation d'amino-2 éthyl-2 thiophène par voie électrochimique | |
EP0100822A1 (fr) | Procédé pour la préparation de cyclopentadéc-4-ynone et de son homologue 3-méthyle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901110 |
|
17Q | First examination report despatched |
Effective date: 19920703 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 94590 Country of ref document: AT Date of ref document: 19931015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 68909184 Country of ref document: DE Date of ref document: 19931021 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930927 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3009140 |
|
EPTA | Lu: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2045513 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89403133.5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19971015 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19971104 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19971106 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19971120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971121 Year of fee payment: 9 Ref country code: AT Payment date: 19971121 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19971130 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19971209 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971212 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980129 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19980209 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981115 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981115 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981116 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
BERE | Be: lapsed |
Owner name: SOC. NATIONALE DES POUDRES ET EXPLOSIFS Effective date: 19981130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990730 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89403133.5 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19991214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051115 |