EP0370866A1 - Procédé d'électrosynthèse d'aldéhydes - Google Patents

Procédé d'électrosynthèse d'aldéhydes Download PDF

Info

Publication number
EP0370866A1
EP0370866A1 EP89403133A EP89403133A EP0370866A1 EP 0370866 A1 EP0370866 A1 EP 0370866A1 EP 89403133 A EP89403133 A EP 89403133A EP 89403133 A EP89403133 A EP 89403133A EP 0370866 A1 EP0370866 A1 EP 0370866A1
Authority
EP
European Patent Office
Prior art keywords
organic halide
reaction medium
electrolysis
anode
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403133A
Other languages
German (de)
English (en)
Other versions
EP0370866B1 (fr
Inventor
Jacques Perichon
Soline Sibille
Esther D'incan
Michel Troupel
Christophe Saboureau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Nationale des Poudres et Explosifs
Original Assignee
Societe Nationale des Poudres et Explosifs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale des Poudres et Explosifs filed Critical Societe Nationale des Poudres et Explosifs
Priority to AT89403133T priority Critical patent/ATE94590T1/de
Publication of EP0370866A1 publication Critical patent/EP0370866A1/fr
Application granted granted Critical
Publication of EP0370866B1 publication Critical patent/EP0370866B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the invention relates to a process for the electrochemical synthesis of an aldehyde by electrolysis in a cell provided with electrodes of an organic halide and of an N, N-disubstituted formamide, then hydrolysis of the reaction medium.
  • Aldehydes are compounds commonly used in many fields of the chemical industry, notably in perfumery, agrochemicals and pharmacy.
  • aldehydes There are many methods of synthesizing aldehydes. Among these, mention may be made of those for which the aldehyde is obtained by electrolysis, in a cell provided with electrodes, an organic halide and an N, N-disubstituted formamide, then hydrolysis of the reaction medium.
  • CASARDO and GALLARDO in Electrochimica Acta, Vol. 32, n ° 8, pp. 1145-1147, (1987) describe the synthesis of traces of benzaldehyde during the electrolysis of bromo or iodobenzene solutions in dimethylformamide (DMF).
  • the cell has 2 separate compartments, anodic and cathodic.
  • the cathode is made of mercury and the inert anode is made of graphite.
  • VIEIRA and PETERS in J. Org. Chem., Vol. 51, n ° 8, pp. 1231-1239, (1986) describe the synthesis of pivalic aldehyde during the electrolysis of a solution of tert-butyl bromide in DMF. The yields are very low, less than 14%.
  • the cell has 2 separate compartments, anodic and cathodic.
  • the cathode is made of mercury and the inert anode is made of carbon.
  • the method according to the invention compared with the closest aforementioned state of the art, has, in addition to a considerable improvement in yield and a widening of the field of application, a certain number of other advantages, the main ones of which are: a simpler implementation since the process is carried out in an electrolysis cell comprising only one compartment, without diaphragm or sintered, which is very important at the industrial stage, - a very much higher halide concentration, - a higher current intensity, of the order of several amperes per dm2, - the possibility of using a very low support electrolyte concentration, of the order of 10 ⁇ 2M, - the use of solid electrodes limiting the risks of pollution by heavy metals such as mercury.
  • the electrolysis cell is a cell comprising only one compartment, that is to say for which there is no comparison separate anode and cathode tents. This possibility of using such a cell is an important advantage, as has already been mentioned.
  • the anode is consumable, that is to say it is consumed during the electrochemical reaction of which it is the seat. This is the reason why such processes are sometimes called "soluble anode".
  • the anode is made of a metal chosen from the group consisting of reducing metals and their alloys, that is to say any alloy containing at least one reducing metal.
  • the anode is made of a reducing metal chosen from the group consisting of magnesium, aluminum, zinc and their alloys, that is to say any alloy containing at least one of the three metals mentioned above, namely zinc, aluminum and magnesium.
  • This anode can have any shape and in particular all the classic forms of metal electrodes such as twisted wire, flat bar, cylindrical bar, renewable bed, balls, fabric, grid.
  • a cylindrical bar of diameter adapted to the dimensions of the cell is used.
  • the cathode is any metal such as stainless steel, gold, nickel, platinum, copper, aluminum, iron or carbon such as, for example, vitreous carbon or graphite. It is preferably formed by a grid or a cylindrical plate arranged concentrically around the anode.
  • the Applicant has discovered that, unexpectedly, the efficiency is considerably improved when the cathode is covered with an electrolytic deposit of a metal M chosen from the group consisting of zinc, cadmium, lead and tin.
  • the electrodeposition of the metal M on the cathode, prior to the electrosynthesis of the aldehyde, can be carried out according to various methods, in particular those described in Examples 14 to 38.
  • the electrodes are supplied with direct current via a stabilized power supply.
  • the aldehyde corresponds to the general formula RCHO in which R represents an organic radical
  • the organic halide corresponds to the general formula RX in which R has the abovementioned meaning and X represents an atom of halogen, preferably chlorine or bromine
  • the N, N-disubstituted formamide corresponds to the general formula in which R1 and R2, identical or different, represent an aliphatic or aromatic chain, substituted or unsubstituted, preferably either an alkyl chain containing 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl ring, or alternatively R1 and R2 form a cycle.
  • R represents an aliphatic, arylaliphatic, aromatic, alkylaromatic or heterocyclic organic radical, substituted or unsubstituted, preferably an alkyl radical or a phenyl group, substituted or unsubstituted.
  • R carries various substituents, these must be more difficult to reduce than the R-X bond.
  • the formamide is DMF.
  • other formamides mention may be made of N, N-dialkylformamides and N-phenyl N-methylformamide (N-methylformanilide).
  • the hydrolysis of the reaction medium is for example carried out with an acidic aqueous solution.
  • the formamide N, N-disubstituted in addition to its role as reagent, also plays the role of solvent. This is particularly the case when using DMF. It is then not necessary to use another solvent. Electrolysis can however be carried out in the presence of a co-solvent chosen from aprotic solvents with low electrophilicity, such as, for example, tetramethylurea (TMU) and tetrahydrofuran (THF).
  • a co-solvent chosen from aprotic solvents with low electrophilicity, such as, for example, tetramethylurea (TMU) and tetrahydrofuran (THF).
  • the concentration of the reactants is preferably chosen so as to ensure a very large molar excess of formamide, since the latter also preferably plays the role of solvent.
  • the concentration of the organic halide in the reaction medium is generally between 0.05 and 2 mol / l.
  • the reaction medium is made conductive by a slightly reducible support electrolyte.
  • a slightly reducible support electrolyte Mention may be made, for example, of salts whose anion is a halide, a carboxylate, a fluoroborate, a perchlo spleen or a hexafluorophosphate and the cation a quaternary ammonium, aluminum, zinc, sodium, potassium, calcium, lithium, a tetraalkylphosphonium, as well as mixtures of these salts. Tetramethylammonium fluoroborate or tetrabutylammonium bromide is preferably used.
  • the solution is oxygenated by bubbling an inert gas, nitrogen or argon for example.
  • the reaction temperature is preferably between 0 and 80 ° C, for example room temperature.
  • the solution is stirred, maintained under an inert atmosphere, of nitrogen or argon for example, and cooled if necessary to maintain its temperature between 0 and 80 ° C. preferably.
  • the current density on the cathode is preferably chosen between 0.2 and 20 A / dm2.
  • the duration of the electrolysis is preferably chosen so that the amount of current involved corresponds approximately to 2 Faraday (193 103C) per mole of organic halide.
  • reaction medium After electrolysis, the reaction medium is hydrolyzed with an acidic aqueous solution, for example dilute hydrochloric acid, then extraction is carried out with an organic solvent. After drying and evaporation of the extraction solvent, the aldehyde is obtained which is identified and assayed according to conventional methods of analysis, after optional purification by passage over a column of silica for example.
  • acidic aqueous solution for example dilute hydrochloric acid
  • organic solvent After drying and evaporation of the extraction solvent, the aldehyde is obtained which is identified and assayed according to conventional methods of analysis, after optional purification by passage over a column of silica for example.
  • a cathode covered with an electrolytic deposit of a metal M as defined above it is possible, when M represents cadmium, lead or tin, to directly introduce the metal M to be deposited on the cathode in the form of salt, cadmium bromide, lead acetate or tin chloride for example, in the organic halide and N, N-disubstituted formamide mixture.
  • the metal M is deposited on the cathode.
  • the yield is improved by adding the organic halide gradually into the reaction medium during electrolysis.
  • a conventional electrolysis cell comprising only one compartment.
  • the upper part of the cell is made of glass and is equipped with 5 tubes, including a central one, allowing the arrival and the exit of argon used as inert gas, the possible samples of solution during electrolysis, the addition of reagents, electrical passages.
  • the lower part consists of a stopper fitted with a seal, screwed onto the upper glass part.
  • the total volume of the cell is close to 45 cm3 and its volume uti the neighbor of 35 cm3.
  • the anode is a cylindrical bar with a diameter close to 1 cm, made of zinc, magnesium or aluminum according to the tests. It is introduced into the cell through the central tube and is thus located approximately in axial position relative to the cell.
  • the cathode consists of a metallic cylindrical grid arranged concentrically around the anode.
  • the working surface of the cathode is around 20 cm2.
  • the cell is immersed in a thermostatic bath set to the chosen temperature.
  • reaction medium is stirred, for example by means of a magnetic bar.
  • the solution to be electrolyzed consisting of: - organic halide, - the formamide N, N-disubstituted or the mixture of formamides N, N-disubstituted, - possibly the co-solvent, the support electrolyte, tetramethylammonium fluoroborate at a concentration of 5 ⁇ 10 -2 M except for Example 7 for which the support electrolyte is tetrabutylammonium bromide at the concentration of 10 ⁇ 2M.
  • This mixture is degassed by bubbling argon, then it is maintained under an argon atmosphere.
  • reaction medium After constant intensity electrolysis for a corresponding period dant at 3 Faraday (290 103C) per mole of organic halide, the reaction medium is hydrolyzed with a 1N aqueous hydrochloric acid solution and then extracted with diethyl ether.
  • the organic phase is then separated and washed with water.
  • the aldehyde obtained is purified by chromatography on a silica column and then identified according to conventional methods of analysis, in particular by infrared (IR), mass (SM) and nuclear magnetic resonance (NMR) spectrometries. ).
  • the organic halide concentration is 0.5 M for Examples 1, 3 to 9, 12 and 0.125 M for Example 2.
  • CF3Br being a gas
  • it is introduced by bubbling into the reaction medium under a pressure of 105Pa (1 bar).
  • the cathode is made of nickel for examples 10 and 11, of stainless steel for examples 1 to 6, 8, 9 to 12, of lead for example 7.
  • the anode is made of zinc for example 10, of aluminum for examples 1 to 4, 6 to 9 and 12.
  • the volume of formamide, or mixture of formamides, is 36cm3. This volume includes the co-solvent when it is present.
  • the formamide is DMF for examples 1 to 5 and 7 to 12, a 1/1 mixture by volume of DMF / N-methylformanilide for example 6.
  • Examples 2 and 4 are carried out in the presence of a co-solvent.
  • the co-solvent is THF and the volume ratio DMF / THF is 2/1 respectively.
  • the co-solvent is TMU and the volume ratio DMF / TMU is respectively 1/1.
  • the current density on the cathode is 2A / dm2 for examples 1, 2, 7 to 11, 1.5 A / dm2 for example 12, 1 A / dm2 for examples 3 and 4 and 0.5 A / dm2 for examples 5 and 6.
  • the reaction temperature is 25 ° C for Examples 1 to 9 and 0 ° C for Examples 10 to 12.
  • the trifluoroacetaldehyde is isolated in the form of a hydrate and the yield indicated in Table 1 is a faradaic yield calculated from the amount of electricity used.
  • the experimental conditions for this example are the same as those of Example 1 but the initial concentration of benzyl chloride is 0.125 M. After electrolysis corresponding to the passage of 2 Faraday (193 103C) per mole of benzyl chloride, we add an amount of benzyl chloride equal to that present at the start. Electrolysis is then continued until the total duration thereof corresponds to 3 Faraday (290 103C) per mole of benzyl chloride used. The yield of isolated pure aldehyde is 50%.
  • the cathode made of stainless steel or nickel, is covered with an electrolytic deposit of a metal M.
  • MBr2 is added at a concentration of the order of 5 10 ⁇ 2M to 10-1M.
  • the cell is equipped with a metal anode M and a current of 0.1 to 0.2 A is imposed for 0.5 to 1 hour, which makes it possible to transport M from the anode to the cathode.
  • the anode M is then replaced by a magnesium bar and the electrolysis is continued at constant intensity for the time necessary for the almost complete exhaustion of the M2+ ions present in the solution.
  • the organic halide is then added to this solution.
  • MBr2 is added at a concentration of the order of 5 10 ⁇ 2M to 10 ⁇ 1M.
  • the cell is equipped with a magnesium anode and a current of 0.1 to 0.2 A is imposed for the time necessary for the electrodeposition of the M2+ ions on the cathode.
  • the organic halide is then added.
  • M is cadmium, lead or tin
  • DMF containing tetrabutylammonium bromide as support electrolyte at the concentration of 10 ⁇ 2M, CdBr2, Pb (CH3CO2) 2 or SnCl2 are added, at a concentration of the order of 5 10 52 to 10 ⁇ 1M, as well as organic halide.
  • the cell is equipped with a magnesium anode and a constant intensity current is imposed.
  • the cathode coated according to one of the aforementioned methods A, B or C then having served for the electrosynthesis of an aldehyde according to the invention is reused without modification in a new electrosynthesis of aldehyde with a magnesium anode, in DMF medium containing tetrabutylammonium bromide at a concentration of 10 ⁇ 2M as a support electrolyte.
  • electrosynthesis is carried out at ambient temperature, by imposing a current of constant intensity such that the current density on the cathode is 1 A / dm2.
  • the duration of the electrolysis is chosen so as to employ 2.1 Faraday (203 103 C) per mole of organic halide.
  • reaction medium Before electrolysis, the reaction medium is degassed for barbota argon, then the medium is maintained under an argon atmosphere.
  • the medium is hydrolyzed, then the aldehyde formed is isolated, purified, identified and assayed according to the method described for Examples 1 to 14.
  • the aldehyde is recovered in the form of a hydrate.
  • the following table 2 specifies for each example the nature and the concentration in DMF of the organic halide, the nature of the cathode as well as the method used for electrodepositing the metal M.
  • Table 3 specifies for each example the conversion rate of the organic halide as well as the nature and the yield with respect to the starting organic halide, of the aldehyde formed. For certain examples, the yield of isolated pure aldehyde is also indicated in brackets.
  • the operation is carried out according to the general conditions relating to examples 14 to 38 but: -
  • the current density on the cathode is 0.1 A / dm2.
  • the reaction medium is a 75/25 mixture by volume of N-methylformanilide and TMU respectively, containing tetrabutylammonium bromide as support electrolyte at the concentration of 10 ⁇ 2M and pCF3C6H4Cl as organic halide at the concentration of 0.50 mol / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Le procédé d'électrosynthèse d'un aldéhyde, selon l'invention, est mis en oeuvre par électrolyse, dans une cellule ne comportant qu'un seul compartiment, d'un halogénure organique et d'un formamide N,N-disubstitué tel que le diméthylformamide, puis hydrolyse du milieu réactionnel. L'anode est en un métal choisi dans le groupe constitué par les métaux réducteurs et leurs alliages, de préférence en zinc, aluminium ou magnésium. La cathode, inerte, est de préférence recouverte d'un dépôt électrolytique de zinc, cadmium, plomb ou étain. Les aldéhydes sont des composés couramment utilisés dans de nombreux domaines de l'industrie chimique, notamment en parfumerie, agrochimie et pharmacie.

Description

  • L'invention concerne un procédé de synthèse électrochimique d'un al­déhyde par électrolyse dans une cellule munie d'électrodes d'un ha­logénure organique et d'un formamide N,N-disubstitué, puis hydroly­se du milieu réactionnel.
  • Les aldéhydes sont des composés couramment utilisés dans de nom­breux domaines de l'industrie chimique, notamment en parfumerie, en agrochimie et en pharmacie.
  • Il existe de très nombreux procédés de synthyse d'aldéhydes. Parmi ceux-ci on peut citer ceux pour lesquels l'aldéhyde est obtenu par électrolyse, dans une cellule munie d'électrodes, d'un halogénure organique et d'un formamide N,N-disubstitué, puis hydrolyse du mi­lieu réactionnel.
  • CASARDO et GALLARDO dans Electrochimica Acta, Vol. 32, n°8, pp.1145-­1147, (1987) décrivent la synthèse de traces de benzaldéhyde lors de l'électrolyse de solutions de bromo ou de iodobenzène dans le diméthylformamide (DMF). La cellule comprend 2 compartiments, anodi­que et cathodique, séparés. La cathode est en mercure et l'anode, inerte, est en graphite.
  • VIEIRA et PETERS dans J. Org. Chem., Vol. 51, n°8, pp.1231-1239, (1986) décrivent la synthèse d'aldéhyde pivalique lors de l'électro­lyse d'une solution de bromure de tertiobutyle dans le DMF. Les ren­dements sont très faibles, inférieurs à 14%. La cellule comprend 2 compartiments, anodique et cathodique, séparés. La cathode est en mercure et l'anode, inerte, est en carbone.
  • Les auteurs enseignent également qu'ils n'ont pas pu obtenir, dans les mêmes conditions, la formation d'aldéhydes à partir d'halogénu­res d'alkyles primaires ou secondaires.
  • La Demanderesse a découvert que de façon totalement inattendue, on obtenait de bons rendements, même à partir d'halogénures d'alkyles primaires ou secondaires, lorsque la cellule ne comporte qu'un seul compartiment et lorsqu'on utilise une anode consommable en un mé­tal choisi dans le groupe constitué par les métaux réducteurs et leurs alliages.
  • Le procédé selon l'invention, comparativement à l'état de la techni­que le plus proche précité, présente, outre une amélioration consi­dérable du rendement et un élargissement du domaine d'application, un certain nombre d'autres avantages dont les principaux sont :
    - une mise en oeuvre plus simple puisque le procédé est réalisé dans une cellule d'électrolyse ne comportant qu'un seul comparti­ment, sans diaphragme ni fritté, ce qui est très important au sta­de industriel,
    - une concentration en halogénure très nettement plus élevée,
    - une intensité de courant plus élevée, de l'ordre de plusieurs am­pères par dm²,
    - la possibilité d'utiliser une concentration en électrolyte sup­port très faible, de l'ordre de 10⁻²M,
    - l'utilisation d'électrodes solides limitant les risques de pollu­tion par les métaux lourds tels que le mercure.
  • La cellule d'électrolyse est une cellule ne comportant qu'un seul compartiment, c'est-à-dire pour laquelle il n'existe pas de compar­ timents anodique et cathodique séparés. Cette possibilité d'utili­ser une telle cellule est un avantage important, comme cela a déjà été mentionné.
  • L'anode est consommable, c'est-à-dire qu'elle est consommée au cours de la réaction électrochimique dont elle est le siège. C'est la raison pour laquelle de tels procédés sont parfois appelés "à anode soluble". L'anode est en un métal choisi dans le groupe cons­titué par les métaux réducteurs et leurs alliages, c'est-à-dire tout alliage contenant au moins un métal réducteur.
  • De façon préférée, l'anode est en un métal réducteur choisi dans le groupe constitué par le magnésium, l'aluminium, le zinc et leurs al­liages, c'est-à-dire tout alliage contenant au moins un des trois métaux précités, à savoir le zinc, l'aluminium et le magnésium. Cette anode peut avoir une forme quelconque et notamment toutes les formes classiques d'électrodes métalliques comme par exemple fil torsadé, barreau plat, barreau cylindrique, lit renouvelable, bil­les, toile, grille. De façon préférée, on utilise un barreau cylin­drique de diamètre adapté aux dimensions de la cellule.
  • La cathode est un métal quelconque tel que l'acier inoxydable, l'or, le nickel, le platine, le cuivre, l'aluminium, le fer ou du carbo­ne comme par exemple du carbone vitreux ou du graphite. Elle est constituée, de façon préférée, par une grille ou une plaque cylin­drique disposée concentriquement autour de l'anode.
  • La Demanderesse a découvert que de façon inattendue on améliorait considérablement le rendement lorsque la cathode est recouverte d'un dépôt électrolytique d'un métal M choisi dans le groupe consti­tué par le zinc, le cadmium, le plomb et l'étain.
  • L'électrodéposition du métal M sur la cathode, préalablement à l'é­lectrosynthèse de l'aldéhyde, peut être effectuée selon diverses méthodes, notamment celles décrites aux exemples 14 à 38.
  • Les électrodes sont alimentées en courant continu par l'intermédiai­re d'une alimentation stabilisée.
  • De façon préférée, selon l'invention, l'aldéhyde répond à la formu­le générale RCHO dans laquelle R représente un radical organique, l'halogénure organique répond à la formule générale RX dans laquel­le R a la signification précitée et X représente un atome d'halogè­ne, de préférence le chlore ou le brome, et le formamide N,N-disubs­titué répond à la formule générale
    Figure imgb0001
    dans laquelle R¹ et R², identiques ou différents, représentent une chaîne alipha­tique ou aromatique, substituée ou non substituée, de préférence soit une chaîne alkyle comportant 1 à 8 atomes de carbone, soit un cycle phényle substitué ou non substitué, ou bien encore R¹ et R² forment un cycle.
  • De façon préférée, R représente un radical organique aliphatique, arylaliphatique, aromatique, alkylaromatique ou hétérocyclique, substitué ou non substitué, de préférence un radical alkyle ou un groupe phényle, substitué ou non substitué. Bien évidemment, lors­que R est porteur de divers substituants, ceux-ci doivent être plus difficilement réductibles que la liaison R-X.
  • De façon particulièrement préférée le formamide est le DMF. Comme exemples d'autres formamides on peut citer les N,N-dialkylformami­des et le N-phényl N-méthylformamide (N-méthylformanilide).
  • On peut également utiliser un mélange de plusieurs formamides répon­dant à la formule générale précitée.
  • Le procédé objet de la présente invention peut être représenté par le schéma réactionnel suivant :
    Figure imgb0002
    dans lequel R, R¹ et R² ont la signification précitée.
  • L'hydrolyse du milieu réactionnel est par exemple réalisée par une solution aqueuse acide.
  • De façon préférée, dans le cadre de la présente invention, le forma­mide N,N-disubstitué, outre son rôle de réactif, joue également le rôle de solvant. C'est notamment le cas lorsqu'on utilise le DMF. Il n'est alors pas nécessaire d'utiliser un autre solvant. On peut toutefois effectuer l'électrolyse en présence d'un co-solvant choi­si parmi les solvants aprotiques peu électrophiles comme par exem­ple la tétraméthylurée (TMU) et le tétrahydrofuranne (THF).
  • Lorsque dans les conditions de l'électrosynthèse le formamide N,N-­disubstitué se trouve dans un état physique tel qu'il ne puisse plus jouer convenablement son rôle de solvant, la présence d'un tel solvant aprotique peu électrophile est alors recommandée.
  • La concentration des réactifs est de préférence choisie de façon à assurer un très large excès molaire en formamide, puisque celui-ci joue également de préférence le rôle de solvant.
  • La concentration de l'halogènure organique dans le milieu réaction­nel est généralement comprise entre 0,05 et 2 mol/l.
  • Le milieu réactionnel est rendu conducteur par un électrolyte sup­port peu réductible. On peut citer par exemple les sels dont l'a­nion est un halogénure, un carboxylate, un fluoroborate, un perchlo­ rate ou un hexafluorophosphate et le cation un ammonium quaternai­re, l'aluminium, le zinc, le sodium, le potassium, le calcium, le lithium, un tétraalkylphosphonium, ainsi que les mélanges de ces sels. On utilise, de façon préférée, le fluoroborate de tétraméthy­lammonium ou le bromure de tétrabutylammonium.
  • Avant l'électrolyse, on désoxygène la solution par barbotage d'un gaz inerte, azote ou argon par exemple.
  • La température de réaction est de préférence comprise entre 0 et 80°C, par exemple la température ambiante.
  • Pendant toute la durée de l'électrolyse la solution est agitée, maintenue sous atmosphère inerte, d'azote ou d'argon par exemple, et refroidie si nécessaire pour maintenir sa température entre 0 et 80°C de préférence.
  • La densité de courant sur la cathode est de préférence choisie en­tre 0,2 et 20 A/dm².
  • On opère en général à intensité constante, mais on peut également opérer à tension constante, à potentiel contrôlé, ou avec intensi­té et potentiel variables.
  • La durée de l'électrolyse est de préférence choisie de façon à ce que la quantité de courant mise en jeu corresponde environ à 2 Fara­day (193 10³C) par mole d'halogénure organique.
  • On peut également suivre l'évolution de la concentration en halogè­nure organique par analyse de prélévèments aliquotes et stopper l'é­lectrolyse dès que le taux de transformation souhaité est atteint.
  • Après électrolyse, on hydrolyse le milieu réactionnel par une solu­tion aqueuse acide, acide chlorhydrique dilué par exemple, puis on extrait avec un solvant organique. Après séchage et évaporation du solvant d'extraction, on obtient l'aldéhyde qui est identifié et do­sé selon les méthodes classiques d'analyse, après purification éven­tuelle par passage sur une colonne de silice par exemple.
  • Dans le cas particulier où l'on utilise un cathode recouverte d'un dépôt électrolytique d'un métal M tel que défini précédemment, on peut, lorsque M représente le cadmium, le plomb ou l'étain, intro­duire directement le métal M à déposer sur la cathode sous forme de sel, bromure de cadmium, acétate de plomb ou chlorure d'étain par exemple, dans le mélange halogènure organique et formamide N,N-di­substitué. En début d'électrolyse le métal M se dépose sur la catho­de. Afin d'améliorer l'adhérence et la qualite du dépôt, on peut,en début d'électrolyse, utiliser un courant d'intensité plus faible.
  • Lorsque l'halogénure organique est très réactif, ce qui est le cas par exemple pour les halogénures allyliques ou benzyliques, on amé­liore le rendement en ajoutant l'halogénure organique progressive­ment dans le milieu réactionnel en cours d'électrolyse.
  • L'invention est illustrée par les exemples non limitatifs qui vont suivre.
  • Pour réaliser ces exemples, on utilise une cellule d'électrolyse classique, ne comportant qu'un seul compartiment.
  • La partie supérieure de la cellule est en verre et est équipée de 5 tubulures, dont une centrale, permettant l'arrivée et la sortie d'argon utilisé comme gaz inerte, les prélèvements éventuels de solution en cours d'électrolyse, l'addition des réactifs, les passa­ges électriques.
  • La partie inférieure est constituée par un bouchon muni d'un joint, vissé sur la partie supérieure en verre.
  • Le volume total de la cellule est voisin de 45cm³ et son volume uti­ le voisin de 35 cm³.
  • L'anode est un barreau cylindrique de diamètre voisin de 1cm, en zinc, magnésium ou aluminium selon les essais. Elle est introduite dans la cellule par la tubulure centrale et se trouve ainsi située approximativement en position axiale par rapport à la cellule.
  • La cathode est constituée par une grille cylindrique métallique dis­posée concentriquement autour de l'anode. La surface de travail de la cathode est de l'ordre de 20 cm².
  • La cellule est plongée dans un bain thermostatique réglé à la tempé­rature choisie.
  • Durant l'électrolyse le milieu réactionnel est agité, par exemple par l'intermédiaire d'un barreau aimanté.
  • Exemples 1 à 12
  • On introduit dans la cellule la solution à électrolyser, consti­tuée de :
    - l'halogénure organique,
    - le formamide N,N-disubstitué ou le mélange de formamides N,N-di­substitués,
    - éventuellement le co-solvant,
    - l'électrolyte support, du fluoroborate de tétraméthylammonium à la concentration de 5 10⁻² M sauf pour l'exemple 7 pour lequel l'électrolyte support est du bromure de tétrabutylammonium à la concentration de 10⁻²M.
  • On dégaze ce mélange par barbotage d'argon, puis on le maintient sous atmosphère d'argon.
  • Aprés électrolyse à intensité constante pendant une durée correspon­ dant à 3 Faraday (290 10³C) par mole d'halogénure organique, on hy­drolyse le milieu réactionnel avec une solution aqueuse d'acide chlorhydrique 1N puis on extrait à l'éther diéthylique.
  • On sépare alors la phase organique que l'on lave à l'eau.
  • Après séchage et évaporation des solvants, l'aldéhyde obtenu est pu­rifié par chromatographie sur colonne de silice puis identifié se­lon les méthodes classiques d'analyse, notamment par spectromé­tries infra-rouge (IR), de masse (SM) et résonance magnétique nu­cléaire (RMN).
  • La nature de l'halogénure organique de départ, celle de l'aldéhyde formé et le rendement massique correspondant en aldéhyde pur isolé figurent dans le tableau 1 pour chaque exemple.
  • La concentration en halogénure organique est de 0,5 M pour les exem­ples 1, 3 à 9, 12 et 0,125 M pour l'exemple 2.
  • Pour les exemples 10 et 11, CF₃Br étant un gaz, il est introduit pas barbotage dans le milieu réactionnel sous une pression de 10⁵Pa (1 bar).
  • La cathode est en nickel pour les exemples 10 et 11, en acier inoxy­dable pour les exemples 1 à 6, 8, 9 à 12, en plomb pour l'exemple 7.
  • L'anode est en zinc pour l'exemple 10, en aluminium pour les exem­ples 1 à 4, 6 à 9 et 12.
  • Le volume de formamide, ou du mélange de formamides, est de 36cm³. Ce volume comprend le co-solvant lorque celui-ci est présent.
  • Le formamide est le DMF pour les exemples 1 à 5 et 7 à 12, un mélan­ge 1/1 en volumes DMF/N-méthylformanilide pour l'exemple 6.
  • Les exemples 2 et 4 sont réalisés en présence d'un co-solvant. Pour l'exemple 2 le co-solvant est le THF et le rapport volumique DMF/THF est respectivement 2/1. Pour l'exemple 4 le co-solvant est la TMU et le rapport volumique DMF/TMU est respectivement 1/1.
  • La densité de courant sur la cathode est de 2A/dm² pour les exem­ples 1, 2, 7 à 11, 1,5 A/dm² pour l'exemple 12, 1 A/dm² pour les exemples 3 et 4 et 0,5 A/dm² pour les exemples 5 et 6.
  • La température de la réaction est 25°C pour les exemples 1 à 9 et 0°C pour les exemples 10 à 12.
  • Pour les exemples 10 et 11, le trifluoroacétaldéhyde est isolé sous forme d'hydrate et le rendement indiqué dans le tableau 1 est un rendement faradique calculé à partir de la quantité d'électricité mise en oeuvre.
    Figure imgb0003
  • Exemple 13
  • Les conditions expérimentales pour cet exemple sont les mêmes que celles de l'exemple 1 mais la concentration initiale en chlorure de benzyle est de 0,125 M. Après électrolyse correspondant au passage de 2 Faraday (193 10³C) par mole de chlorure de benzyle, on ajoute une quantité de chlorure de benzyle égale à celle présente au dé­part. On poursuit alors l'électrolyse jusqu'à ce que la durée tota­le de celle-ci corresponde à 3 Faraday (290 10³C) par mole de chlo­rure de benzyle engagée. Le rendement en aldéhyde pur isolé est de 50%.
  • Exemples 14 à 38
  • Pour ces exemples la cathode, en acier inoxydable ou en nickel, est recouverte d'un dépôt électrolytique d'un métal M.
  • L'électrodéposition du métal M sur la cathode, préalablement à l'é­lectrosynthèse de l'aldéhyde, a été effectuée selon plusieurs métho­des :
  • Méthode A :
  • Dans le DMF contenant du bromure de tétrabutylammonium comme élec­trolyte support à la concentration de 10⁺²M, on ajoute MBr₂ à une concentration de l'ordre de 5 10⁻²M à 10-¹M. La cellule est équi­pée d'une anode en métal M et on impose durant 0,5 à 1h un courant de 0,1 à 0,2 A, ce qui permet d'assurer le transport de M de l'ano­de vers la cathode.
    L'anode M est ensuite remplacée par un barreau de magnésium et l'é­lectrolyse est poursuivie à intensité constante pendant le temps né­cessaire à l'épuisement presque complet des ions M²⁺ présents dans la solution. On ajoute alors l'halogénure organique à cette solu­tion.
  • Méthode B :
  • Dans le DMF contenant du bromure de tétrabutylammonium comme élec­trolyte support à la concentration de 10⁻²M, on ajoute MBr₂ à une concentration de l'ordre de 5 10⁻²M à 10⁻¹M. La cellule est équi­pée d'une anode en magnésium et on impose un courant de 0,1 à 0,2 A pendant le temps nécessaire à l'électrodéposition des ions M²⁺ sur la cathode. On ajoute ensuite l'halogénure organique.
  • Méthode C :
  • Lorsque M est le cadmium, le plomb ou l'étain, on peut opérer en une seule étape. Dans le DMF contenant du bromure de tétrabutylammo­nium comme électrolyte support à la concentration de 10⁻²M, on ajou­te CdBr₂, Pb(CH₃CO₂)₂ ou SnCl₂, à une concentration de l'ordre de 5 10⁻² à 10⁻¹M, ainsi que l'halogénure organique.
    La cellule est équipée d'une anode en magnésium et on impose un cou­rant d'intensité constante.
    L'électrodéposition du cadmium, du plomb ou de l'étain sur la catho­de précède l'électrosynthèse de l'aldéhyde.
  • Méthode D :
  • La cathode revêtue selon l'une des méthodes précitées A, B ou C puis ayant servi pour l'électrosynthèse d'un aldéhyde selon l'in­vention est réutilisée sans modification dans une nouvelle électro­synthèse d'aldéhyde avec une anode en magnésium, en milieu DMF con­tenant du bromure de tétrabutylammonium à la concentration de 10⁻²M comme électrolyte support.
  • Pour tous ces exemples 14 à 38, l'électrosynthèse est conduite à température ambiante, en imposant un courant d'intensité constante telle que la densité de courant sur la cathode soit de 1 A/dm².
  • La durée de l'électrolyse est choisie de façon à engager 2,1 Fara­day (203 10³ C) par mole d'halogénure organique.
  • Avant l'électrolyse, on dégaze le milieu réactionnel pour barbota­ ge d'argon, puis on maintient le milieu sous atmosphère d'argon.
  • Après l'électrolyse, on hydrolyse le milieu, puis on isole, puri­fie, identifie et dose l'aldéhyde formé selon la méthode décrite pour les exemples 1 à 14.
  • Pour l'exemple 37, l'aldéhyde est récupéré sous forme d'hydrate.
  • On peut aussi doser l'halogénure organique n'ayant pas réagi et l'aldéhyde formé par chromatographie en phase gazeuse (CPG) à par­tir d'un prélèvement d'une partie aliquote de la solution après hy­drolyse acide (HCl 6 N) et extraction à l'éther diéthylique.
    Le dosage de l'halogénure organique n'ayant pas réagi permet le cal­cul du taux de conversion de cet halogénure.
  • Le tableau 2 suivant précise pour chaque exemple la nature et la concentration dans le DMF de l'halogénure organique, la nature de la cathode ainsi que la méthode utilisée pour électrodéposer le mé­tal M.
  • Le tableau 3 suivant précise pour chaque exemple le taux de conver­sion de l'halogénure organique ainsi que la nature et le rendement par rapport à l'halogénure organique de départ, de l'aldéhyde for­mé. Pour certains exemples, le rendement en aldéhyde pur isolé est également indiqué entre parenthèses.
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
  • Exemple 39
  • On opère selon les conditions générales relatives aux exemples 14 à 38 mais :
    - La densité de courant sur la cathode est de 0,1 A/dm².
    - On utilise une cathode en acier inox revêtue d'un dépôt électrolytique de cadmium selon la méthode D.
    - Le milieu réactionnel est un mélange 75/25 en volumes de N-­méthylformanilide et de TMU respectivement, contenant du bro­mure de tétrabutylammonium comme électrolyte support à la concentration de 10⁻²M et pCF₃C₆H₄Cl comme halogénure organi­que à la concentration de 0,50 mol/l.
  • Le taux de conversion de l'halogénure organique est de 100 %. On ob­tient pCF₃C₆H₄CHO avec un rendement de 15 %.
  • Exemple 40
  • Après dégazage par barbotage d'argon et maintien de la cellule sous atmosphère d'argon, on électrolyse une solution de 9 g de parachlo­rotrifluorotoluène, 200 mg de bromure de tétrabutylammonium et 500 mg de bromure de cadmium anhydre dans 35 ml de DMF pendant 1h sous un courant d'intensité 0,1 A puis pendant 5h et 30 min sous un cou­rant d'intensité 0,5 A en maintenant la température du milieu réac­tionnel à environ 40°C.
    L'anode est en magnésium et la cathode en acier inoxydable.
    Le milieu réactionnel est ensuite traité comme pour les exemples 14 à 38. On obtient le trifluorométhylbenzaldéhyde avec un rende­ment de 85%. Il faut noter dans cet exemple la concentration parti­culièrement élevée en halogénure organique (environ 1,5 M).

Claims (9)

1. Procédé d'électrosynthèse d'un aldéhyde par électrolyse dans une cellule électrolytique munie d'électrodes, d'un halogénure organi­que et d'un formamide N,N-disubstitué, puis hydrolyse du milieu réactionnel caractérisé en ce que la cellule n'a qu'un seul compar­timent et en ce qu'on utilise une anode consommable en un métal choisi dans le groupe constitué par les métaux réducteurs et leurs alliages.
2. Procédé selon la revendication 1 caractérisé en ce que l'anode est en un métal réducteur choisi dans le groupe constitué par le ma­gnésium, l'aluminium, le zinc et leurs alliages.
3. Procédé selon l'une quelconque des revendications précédentes ca­ractérisé en ce que l'aldéhyde répond à la formule générale RCHO dans laquelle R représente un radical organique, en ce que l'halogé­nure organique répond à la formule générale RX dans laquelle R a la signification précitée et X représente un atome d'halogène, de pré­férence le chlore ou le brome et en ce que le formamide N,N-disubs­titué répond à la formule générale
Figure imgb0007
dans laquelle R¹ et R², identiques ou différents, représentent une chaîne aliphatique ou aromatique, substituée ou non substituée, de préférence soit une chaîne alkyle comportant 1 à 8 atomes de carbone soit un cycle phé­nyle substitué ou non substitué, ou bien encore R¹ et R² forment un cycle.
4. Procédé selon la revendication 3 caractérisé en ce que R repré­sente un radical organique aliphatique, arylaliphatique, aromati­que, alkylaromatique ou hétérocyclique, substitué ou non substitué, de préférence un radical alkyle ou un groupe phényle, substitué ou non substitué.
5. Procédé selon l'une quelconque des revendications précédentes ca­ractérisé par la présente supplémentaire d'un solvant organique dans le milieu réactionnel.
6. Procédé selon l'une quelconque des revendications précédentes ca­ractérisé en ce que la cathode est recouverte d'un dépôt électroly­tique d'un métal M choisi dans le groupe constitué par le zinc, le cadmium, le plomb et l'étain.
7. Procédé selon l'une quelconque des revendications 1 à 5 caracté­risé par la présence supplémentaire d'un sel de cadmium, de plomb ou d'étain dans le milieu réactionnel.
8. Procédé selon l'une quelconque des revendications précédentes ca­ractérisé en ce que la concentration de l'halogénure organique est comprise entre 0,05 et 2 mol/l.
9. Procédé selon l'une quelconque des revendications 1 à 7 caracté­risé en ce qu'on ajoute progressivement l'halogénure organique dans le milieu réactionnel en cours d'électrolyse.
EP89403133A 1988-11-23 1989-11-15 Procédé d'électrosynthèse d'aldéhydes Expired - Lifetime EP0370866B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403133T ATE94590T1 (de) 1988-11-23 1989-11-15 Verfahren zur elektrosynthese von aldehyden.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815235 1988-11-23
FR8815235A FR2639364B1 (fr) 1988-11-23 1988-11-23 Procede d'electrosynthese d'aldehydes

Publications (2)

Publication Number Publication Date
EP0370866A1 true EP0370866A1 (fr) 1990-05-30
EP0370866B1 EP0370866B1 (fr) 1993-09-15

Family

ID=9372136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403133A Expired - Lifetime EP0370866B1 (fr) 1988-11-23 1989-11-15 Procédé d'électrosynthèse d'aldéhydes

Country Status (7)

Country Link
US (1) US4988416A (fr)
EP (1) EP0370866B1 (fr)
JP (1) JP2812748B2 (fr)
AT (1) ATE94590T1 (fr)
DE (1) DE68909184T2 (fr)
ES (1) ES2045513T3 (fr)
FR (1) FR2639364B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565252A1 (fr) * 1992-04-07 1993-10-13 United Kingdom Atomic Energy Authority Hydrolyse
EP0697472A1 (fr) 1994-08-16 1996-02-21 Hoechst Aktiengesellschaft Procédé d'électrosynthèse d'aldéhydes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756851A (en) * 1996-10-21 1998-05-26 Albemarle Corporation Production of nabumetone or precursors thereof
JP2004530044A (ja) * 2001-04-12 2004-09-30 アストラゼネカ アクチボラグ 微細工学的反応装置
PL2018446T3 (pl) * 2006-05-15 2020-06-29 Nouryon Chemicals International B.V. Proces elektrochemiczny do otrzymywania związku fluorowcowanego zawierającego grupę karbonylową

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219367A1 (fr) * 1985-09-05 1987-04-22 Societe Nationale Des Poudres Et Explosifs Cellule d'électrolyse organique à électrode consommable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547271A (en) * 1984-09-12 1985-10-15 Canada Packers Inc. Process for the electrochemical reduction of 7-ketolithocholic acid to ursodeoxycholic acid
US4582577A (en) * 1984-12-19 1986-04-15 Monsanto Company Electrochemical carboxylation of p-isobutylacetophenone
US4601797A (en) * 1984-12-19 1986-07-22 Monsanto Company Electrochemical carboxylation of p-isobutylacetophenone and other aryl ketones
FR2579627B1 (fr) * 1985-03-29 1987-05-15 Poudres & Explosifs Ste Nale Procede d'electrosynthese d'alcools
FR2579626B1 (fr) * 1985-03-29 1987-05-15 Poudres & Explosifs Ste Nale Procede d'electrosynthese de cetones et d'aldehydes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219367A1 (fr) * 1985-09-05 1987-04-22 Societe Nationale Des Poudres Et Explosifs Cellule d'électrolyse organique à électrode consommable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565252A1 (fr) * 1992-04-07 1993-10-13 United Kingdom Atomic Energy Authority Hydrolyse
EP0697472A1 (fr) 1994-08-16 1996-02-21 Hoechst Aktiengesellschaft Procédé d'électrosynthèse d'aldéhydes
US5571400A (en) * 1994-08-16 1996-11-05 Hoechst Aktiengesellschaft Process for the electrosynthesis of aldehydes

Also Published As

Publication number Publication date
ES2045513T3 (es) 1994-01-16
US4988416A (en) 1991-01-29
ATE94590T1 (de) 1993-10-15
DE68909184D1 (de) 1993-10-21
FR2639364B1 (fr) 1990-12-28
DE68909184T2 (de) 1994-04-07
FR2639364A1 (fr) 1990-05-25
JP2812748B2 (ja) 1998-10-22
EP0370866B1 (fr) 1993-09-15
JPH02185989A (ja) 1990-07-20

Similar Documents

Publication Publication Date Title
EP0323300B1 (fr) Procédé de synthèse électrochimique de cétones alpha saturées
US20180244668A1 (en) Method for the preparation of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and recovery of (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide by electrochemical methods
NO128490B (fr)
EP0277048B1 (fr) Procédé de synthèse électrochimique d'acides carboxyliques
CH624947A5 (fr)
FR2646441A1 (fr) Procede d'electrosynthese d'un ester beta gamma insature
JPH09286774A (ja) 2−アルキルメルカプト−4−(トリフルオルメチル) 安息香酸エステル及びこれの製造方法
EP0370866B1 (fr) Procédé d'électrosynthèse d'aldéhydes
EP0268526B1 (fr) Procédé d'électrosynthèse d'aryl alkyl phosphines tertiaires
EP0192931B1 (fr) Procédé pour la préparation d'isoxazoles
EP0198743B1 (fr) Procédé d'électrosynthése de cétones
Muller Synthesis of 5, 5, 5-trifluoro-DL-isoleucine and 5, 5, 5-trifluoro-DL-alloisoleucine
EP0201365B1 (fr) Procédé d'électrosynthèse d'alcools et de composés époxydes
CH664979A5 (fr) Procede d'electrosynthese d'acides carboxyliques.
JP2002105686A (ja) カソードおよびその製造方法
FR2623525A1 (fr) Procede d'electrosynthese de composes gem di ou tri halogenes
FR2542764A1 (fr) Nouveau procede electrochimique de dicarboxylation de composes organiques insatures
FR2688519A1 (fr) Procede d'electrosynthese de fluorobiphenyles symetriques.
WO2002033151A1 (fr) Procede electrochimique de transformation selective des composes alkylaromatiques en aldehydes
US4845267A (en) Alkyl 2-fluoro-1-methoxyethylcarbamates
US4014762A (en) Process for the preparation of hexafluoropropene epoxide
US4927508A (en) Alkyl 2-fluoro-1-methoxyethylcarbamates
SU836007A1 (ru) Способ получени бензилового спирта
EP0003446A1 (fr) Procédé de préparation d'amino-2 éthyl-2 thiophène par voie électrochimique
EP0100822A1 (fr) Procédé pour la préparation de cyclopentadéc-4-ynone et de son homologue 3-méthyle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901110

17Q First examination report despatched

Effective date: 19920703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 94590

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68909184

Country of ref document: DE

Date of ref document: 19931021

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930927

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3009140

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2045513

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89403133.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19971015

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971104

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971106

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971121

Year of fee payment: 9

Ref country code: AT

Payment date: 19971121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980209

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981115

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981115

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981116

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

BERE Be: lapsed

Owner name: SOC. NATIONALE DES POUDRES ET EXPLOSIFS

Effective date: 19981130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

EUG Se: european patent has lapsed

Ref document number: 89403133.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051115