EP0368093B1 - Herstellung von nadelförmigem, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Material - Google Patents

Herstellung von nadelförmigem, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Material Download PDF

Info

Publication number
EP0368093B1
EP0368093B1 EP89119964A EP89119964A EP0368093B1 EP 0368093 B1 EP0368093 B1 EP 0368093B1 EP 89119964 A EP89119964 A EP 89119964A EP 89119964 A EP89119964 A EP 89119964A EP 0368093 B1 EP0368093 B1 EP 0368093B1
Authority
EP
European Patent Office
Prior art keywords
chromium
iii
chromate
chromium dioxide
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89119964A
Other languages
English (en)
French (fr)
Other versions
EP0368093A2 (de
EP0368093A3 (de
Inventor
Michael Wolfgang Dr. Mueller
Ekkehard Dr. Schwab
Helmut Dr. Auweter
Rainer Dr. Feser
Rudi Dr. Lehnert
Norbert Dr. Mueller
Manfred Dr. Ohlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emtec Magnetics GmbH
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0368093A2 publication Critical patent/EP0368093A2/de
Publication of EP0368093A3 publication Critical patent/EP0368093A3/de
Application granted granted Critical
Publication of EP0368093B1 publication Critical patent/EP0368093B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70636CrO2

Definitions

  • the invention relates to a needle-shaped, ferromagnetic material consisting essentially of iron-containing chromium dioxide, which is characterized in particular by a high coercive field strength, and to a method for its production.
  • Magnetic recording media containing chromium dioxide generally show superior magnetic properties compared to recording media based on other magnetic oxides, which are based on the high values for the coercive field strength, the specific remanent magnetization and saturation magnetization, and in particular on the uniform shape and the small dimensions of the acicular chromium dioxide Particles are attributable.
  • the resulting product has a coercive field strength that is too low for the now common recording media, which drops even further with the higher values for n.
  • the CrOOH which then arises at the same time also reduces the remanent magnetization and the saturation magnetization.
  • An improvement in the magnetic properties can be achieved with a process according to DE-A 23 32 854, in which a substance which decomposes under the given reaction conditions is admixed with chromium (III) chromate.
  • the modification of the chromium dioxide with lanthanum, yttrium, barium or strontium is also intended, as stated in DE-A 23 19 572, to increase the magnetic characteristics.
  • modified chromium dioxide can also be produced from chromium (III) chromates with a higher water content (degree of hydration n 8 to 12) (DE-B 25 20 030 and DE-B 26 48 305).
  • the object of the invention was therefore to provide a method for producing a needle-shaped, ferromagnetic chromium dioxide material which, without the addition of iridium and without cobalt coating, leads in a simple manner to a ferromagnetic chromium dioxide material which has a very high coercive field strength and at the same time high values for the saturation magnetization.
  • the invention thus relates to a method for producing a needle-shaped, ferromagnetic material consisting essentially of iron-containing chromium dioxide, which, based on the chromium dioxide content, contains less than 2 ppm iridium and less than 50 ppm cobalt and a coercive field strength of greater than 61 kA / m with a magnetization of more than 70 nTm3 / g, measured in a magnetic field of 380 kA / m, by decomposing a water-containing chromium (III) chromate at temperatures of 200 to 500 ° C and under a pressure between 50 and 700 bar, a water-containing chromium (III) chromate of the formula Cr2 (CrO4) 3 ⁇ nH2O with a degree of hydration n of at least 13, which contains iron and / or an iron compound as a modifying agent, is used and this water-containing chromium (III) chromate is heated to a temperature between
  • the process according to the invention can be carried out particularly advantageously if the chromium (III) chromate with a degree of hydration n of at least 13 and preferably of 14 to 20 is obtained by adding only as much water to the chromium (VI) oxide (CrO3), that after the partial reduction of CrO3 with organic material, the required water content of chromium (III) chromate is established. The amount of water that forms during the reduction must be taken into account.
  • the CrO3 Since in the preparation of the water-rich chromium (III) chromates the CrO3 is usually not mixed with a sufficient amount of water to completely dissolve it, it is advantageous to use the CrO3 / H2O starting suspension together with the modifiers of an intensive dispersion, e.g. with a dissolver stirrer.
  • the reduction of CrO3 is associated with a strong heat. In order to prevent the reaction suspension from heating up too much, it is advisable to cool the reaction vessel during the reduction. To mitigate the mostly violent reaction between organic material and CrO3, it has proven to be advantageous to dilute the reducing agent with water.
  • reducing agents can be used as reducing agents for chromium (III) chromate preparation, but preference is given to readily oxidizable organic compounds such as alcohols and aldehydes, in particular less volatile polyhydric alcohols such as glycol or glycerol.
  • the Cr6+ / Cr3+ molar ratio in chromium (III) chromate should be 1.5 if possible, it can also be worked with a Cr6+ excess or deficit.
  • Modified chromium dioxide materials are produced in the context of the method according to the invention, it being appropriate to use the known modifying agents, such as antimony, tellurium, iron and / or their compounds and combinations of these substances. Combinations of tellurium oxide and / or antimony oxide, optionally in the form of potassium antimonyl tartrate (EP-A 198 110) and iron oxide, are usually particularly suitable.
  • the modifiers are used in amounts between 0.05 and 10% by weight, calculated as oxide, based on the resulting chromium dioxide. If possible, the modifiers should be introduced into the CrO3 suspension before the reducing agent is added.
  • the process according to the invention is carried out, for example, in such a way that less water is added to the CrO3 than is necessary to set the given degree of hydration of chromium (III) chromate of at least 13.
  • the mixture is dispersed intensively using suitable devices.
  • the resulting suspension is then placed in a stirred container with a dropping funnel and reflux cooling, which can be cooled from the outside, with thorough mixing, by slowly adding an organic reducing agent, e.g., the remaining amount of water, which is required to adjust the final water content of the chromium (III) chromate. Glycerin, reduced.
  • the resulting pasty chromium (III) chromate is transferred to a stainless steel reaction beaker and then converted to chromium dioxide in a high-pressure reactor at a pressure between 50 to 700 bar and a temperature between 200 to 500 ° C. It is essential in the process according to the invention that the resulting material is cooled again immediately after the reaction temperature has been reached, the temperature in particular falling quickly below 220 to 250 ° C. A homogeneous incorporation of the iron ions into the crystal lattice of the chromium dioxide is thereby achieved.
  • the high-pressure reactor is depressurized simultaneously with or after cooling.
  • the chromium dioxide is mechanically removed from the reaction cup and ground.
  • thermal post-treatment under oxidative conditions at temperatures between 150 and 400 ° C. is known (DE-B 19 05 584).
  • the chromium dioxide obtained in the manner described can be further stabilized in a known manner, e.g. by the superficial action of reducing agents (DE-B 1 925 541), lye (DE-A 3 600 624), by tempering under inert gas (EP-A 29 687) or by treatment with water-insoluble organic compounds and a surfactant (DE -A-36 10 411).
  • the material consisting essentially of chromium dioxide according to the invention has a coercive field strength of more than 61 kA / m and preferably that of between 61 and 78 kA / m, the magnetization, measured in a magnetic field of 380 kA / m, more than 70 nTm3 / g is.
  • these high values for the coercive field strength are not achieved by doping the chromium dioxide with iridium or by coating with cobalt.
  • This chromium dioxide material is therefore particularly advantageously suitable for use with magnetic recording media which are to be used when recording high information densities.
  • the chromium dioxide according to the invention is processed into magnetic recording media by known methods.
  • 2 to 10 parts by weight of chromium dioxide are processed together with the binder and the suitable dispersing aids, lubricants and other customary additives in a total amount of up to 10% by weight of the chromium dioxide to form a dispersion.
  • the dispersion thus obtained is filtered and washed with a conventional coating machine, e.g. by means of a ruler, onto the non-magnetic carrier in one or more thin layers or onto a magnetogram carrier already provided with another magnetic layer in a thin layer.
  • the chromium dioxide particles may be magnetically aligned.
  • the coated foil webs are passed under pressure between heated, polished rollers. According to this, the thicknesses of the magnetic layers are usually between 1.5 and 12 »m.
  • the known polymer binders such as acrylate copolymers, polyvinyl acetates, such as polyvinyl formal or polyvinyl butyral, higher molecular weight epoxy resins, polyurethanes and mixtures of these and similar binders are used as binders for the magnetic layers.
  • the elastomeric and practically isocyanate-free linear polyester urethanes which have been found to be soluble in a volatile organic solvent, such as those obtained by reacting a polyester from an aliphatic dicarboxylic acid with 4 to 6 C atoms, such as adipic acid, and at least one aliphatic diol with 3 to 10 C.
  • -Atoms such as 1,2- and 1,3-propylene glycol, 1,4-butanediol, diethylene glycol, neopentyl glycol or 1,8-octanediol, with a diisocyanate having 6 to 24 and in particular 8 to 20 carbon atoms, such as tolylene diisocyanate or 4,4'-diisocyanatodiphenylmethane, preferably in the presence of a smaller amount of a glycol having 4 to 10 carbon atoms, such as 1,4-butanediol, which causes chain extension, can be prepared.
  • a diisocyanate having 6 to 24 and in particular 8 to 20 carbon atoms such as tolylene diisocyanate or 4,4'-diisocyanatodiphenylmethane
  • polyester urethanes of adipic acid, 1,4-butanediol and 4,4'-diisocyanatodiphenylmethane are preferred.
  • Preferred polyester urethanes have a Shore hardness A of 70 to 100, a tensile strength of 40 to 42 N / mm2 (according to DIN 53 455) and an elongation at break (according to DIN 53 455) of about 440 to 560%.
  • the K value according to H. Fikentscher (Cellulose-Chemie 13 (1932), page 58ff) is between 40 and 60 (1% in DMF) for the particularly suitable polymer binders.
  • the invention is illustrated by the following examples in comparison with those according to the prior art.
  • the specific surface SSA in [m2 / g] according to DIN 66132 was determined on the resulting chromium dioxide using a Ströhlein-Areameter from Ströhlein, Düsseldorf, using the single-point difference method according to Haul and Dümbgen, and the magnetic properties using an oscillating magnetometer in a measuring field of 380 kA / m determines, namely the coercive force H c in [kA / m] as well as the specific remanence Mr / ⁇ and the saturation magnetization M s / ⁇ in [nTm3 / g].
  • the amount of cobalt and iridium was determined by atomic absorption spectrometry.
  • the x-rays were taken with an automatic Siemens D 500 with copper K ⁇ radiation.
  • MICA MFS standard SRM No. 675
  • the position of the CrO2 (110) line was based on the theoretical value of the MICA line (theta 26.774 ° C) and the lattice constant a in [ ⁇ ] was calculated from the measured difference.
  • the length of the CrO2 particles represents an arithmetic mean value, which was determined by the statistical recording and measurement of about 200 particles on electron micrographs.
  • the Cr2 (CrO4) 3 ⁇ 16 H2O obtained in the above manner was poured into a cylindrical stainless steel beaker and heated to 350 ° C at a pressure of 350 bar in a high-pressure reactor and cooled again immediately after reaching the temperature. The reactor was also depressurized. After cooling to room temperature, the CrO2 formed was mechanically removed from the reaction beaker.
  • the reaction product was then annealed at 180 ° C for 80 minutes. It had a coercive force of 71.4 kA / m, a specific magnetization M s / ⁇ of 92 nTm3 / g and a remanence of 43 nTm3 / g.
  • the iridium content was less than 2 ppm and the cobalt content was less than 30 ppm.
  • the SSA was 20 m2 / g, the lattice constant a 4.430 ⁇ 0.0015 ⁇ and the mean particle length 300 nm.
  • the product obtained was transferred in portions of 170 g into cylindrical stainless steel beakers and reacted in a high-pressure reactor under the following conditions:
  • the product was removed from the reaction beaker, washed with water to a conductivity of the wash water of ⁇ 100 »S / cm and dried.
  • the products have the following magnetic properties:
  • the lattice constant a of the pigment from Example 2a was 4.432 ⁇ 0.0015 ⁇ , that of the pigment from Example 2b was 4.426 ⁇ 0.0015 ⁇ .
  • the average particle length of the pigment from Example 2a was 350 nm, that of the pigment from Example 2b was 300 nm.
  • Example 2 The procedure was as in Example 2, but with the difference that the dopants, 45.3 g ⁇ -Fe2O3 (3.6 wt.%), 3.28 g TeO2 (0.26 wt.%), Together with the Template from 1.5 kg CrO3 and 447.5 g H2O for 10 min. were dispersed with the dissolver.
  • Te / Fe modified chromium (III) chromate obtained with 16 water of crystallization was poured into a cylindrical stainless steel beaker and heated to 318 ° C. at a pressure of 240 bar in a high pressure reactor and cooled again immediately after the temperature had been reached. The pressure was then released and the CrO 2 formed was removed from the reactor.
  • the reaction product was 80 min. annealed at 180 ° C in air, then washed with water until the wash water had a conductivity of ⁇ 100 »S / m and finally surface-treated according to DE-B 19 25 541 with a sodium sulfite solution.
  • the dried end product had the following data:
  • the lattice constant a corresponds to 4.428 ⁇ 0.0015 ⁇ , the average needle length is 300 nm (Fig. 1).
  • Example 2 The procedure was as in Example 2, but with the difference that 45.3 g of ⁇ -Fe2O3 (3.6% by weight) and 4.42 g of TeO2 (0.35% by weight) were used as dopants.
  • Te / Fe-modified chromium (III) chromate obtained with 16 water of crystallization was poured into a cylindrical stainless steel beaker and heated in a high-pressure reactor to 340 ° C. at a pressure of 216 bar, and cooled again immediately after the temperature had been reached. Then the CrO2 formed was removed from the reactor and washed with water until the wash water had a conductivity of ⁇ 100 »S / m.
  • the end product had the following properties:
  • Example 2 After the work-up mentioned in Example 1, there was a coercive force of 59.8 kA / m, a specific magnetization of 92 nTm3 / g and a remanence of 42.1 nTm3 / g.
  • the iridium content was below 2 ppm, the cobalt content below 30 ppm.
  • the specific surface was determined to be 19 m2 / g, the lattice constant was 4.428 ⁇ 0.0015 ⁇ and the average particle size was 300 nm.
  • Example 2 The procedure was as described in Example 2, but the addition of dopants was dispensed with.
  • the products obtained after mashing were subjected to high pressure treatment and subjected to the following conditions.
  • the resulting powder was mechanically removed from the reaction vessels.
  • the following powder properties were determined:
  • the resulting powder was identified by X-ray analysis as ⁇ -CrOOH.
  • the lattice parameters a of the products were 4.427 ⁇ 0.0015 ⁇ in all three tests, the average needle lengths 280-300 nm.
  • the resulting CrO2 was mechanically removed from the reaction container.
  • the following powder properties were determined:
  • the average needle length was 250 nm, the lattice constant a was measured to be 4.424 ⁇ 0.0015 ⁇ .

Landscapes

  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)

Description

  • Die Erfindung betrifft ein nadelförmiges, im wesentlichen aus eisenhaltigem Chromdioxid bestehendes, ferromagnetisches Material, welches sich insbesondere durch eine hohe Koerzitivfeldstärke auszeichnet sowie ein Verfahren zu dessen Herstellung.
  • Nadelförmiges Chromdioxid, seine Herstellung sowie die Verwendung dieses Materials für magnetische Aufzeichnungsträger ist vielfach beschrieben. Magnetische Aufzeichnungsträger, die Chromdioxid enthalten, zeigen im allgemeinen gegenüber Aufzeichnungsträgern auf Basis anderer magnetischer Oxide überlegene magnetische Eigenschaften, welche auf die hohen Werte bei der Koerzitivfeldstärke, der spezifischen remanenten Magnetisierung und Sättigungsmagnetisierung sowie insbesondere auf die einheitliche Form und die geringen Abmessungen der nadelförmigen Chromdioxid-Teilchen zurückzuführen sind.
  • Neben der Synthese des Chromdioxids durch eine unter hydrothermalen Bedingungen ablaufenden Synproportionierung aus Chrom(III)- und Chrom(VI)oxiden (u.a. EP-A 27 640) ist auch die Herstellung von nadelförmigem Chromdioxid durch thermische Zersetzung von hydratisiertem Chrom(III)chromat bekannt. So wird in der DE-A 22 10 059 ein Verfahren beschrieben, bei dem Cr₂(CrO₄)₃·nH₂O, worin n 1 bis 8 bedeutet, bei Temperaturen zwischen 250 und 500°C und unter Drücken zwischen 30 und 1000 bar zum Chromdioxid zersetzt wird. Das dabei entstehende Produkt weist eine für die inzwischen üblichen Aufzeichnungsmedien zu geringe Koezitivfeldstärke auf, welche bei den höheren Werten für n sogar noch weiter abfällt. Für den Fall, daß die Werte für n größer als 8 sind, verringert sich durch das dann gleichzeitig entstehende CrOOH auch noch die remanente Magnetisierung und die Sättigungsmagnetisierung. Eine Verbesserung der magnetischen Eigenschaften läßt sich mit einem Verfahren gemäß der DE-A 23 32 854 erreichen, bei dem eine unter den gegebenen Reaktionsbedingungen sich exotherm zersetzende Substanz dem Chrom(III)chromat beigemischt wird. Auch die Modifizierung des Chromdioxids mit Lanthan, Yttrium, Barium oder Strontium soll, wie in der DE-A 23 19 572 angegeben, eine Anhebung der magnetischen Kenndaten bewirken. Des weiteren läßt sich modifiziertes Chromdioxid ebenfalls aus Chrom(III)chromaten mit einem höheren Wassergehalt (Hydratationsgrad n 8 bis 12) herstellen (DE-B 25 20 030 und DE-B 26 48 305).
  • Allen diesen Verfahren zur Chromdioxid-Herstellung aus Chrom(III)chromaten ist gemeinsam, daß zur Vermeidung eines durch die CrOOH-Bildung verursachten Abfalls der Sättigungsmagnetisierung nur relativ wasserarme Chrom(III)chromate mit einem Hydratationsgrad n von höchstens 12 eingesetzt werden können. Die wasserarmen Produkte sind weitgehend pulverförmig und erfordern deshalb einen erhöhten sicherheitstechnischen Aufwand, wie z.B. die Kapselung der Apparaturen oder das Anbringen von Absaugvorrichtungen. Es wurde deshalb schon vorgeschlagen zur Behebung dieser Probleme ein Chrom(III)chromat mit einem Hydratationsgehalt von größer 13 einzusetzen. Dieses Verfahren hatte zudem den Vorteil, daß sich entgegen den früheren Annahmen die magnetischen Eigenschaften des resultierenden Chromdioxids verbessern ließen.
  • Diese Verbesserungen sind im Rahmen der Bemühungen zu sehen, die magnetischen Eigenschaften des Chromdioxids und hierbei insbesondere die Koerzitivfeldstärke derart anzuheben, daß sich dieses Material auch zum Einsatz bei der Herstellung solcher magnetischer Aufzeichnungsträger verwenden läßt, welche für die neuentwickelten Aufzeichnungsverfahren mit hoher Aufzeichnungsdichte, vor allem auf dem Videogebiet, erforderlich sind. Es war zwar schon bekannt (FR-B-25 02 384), durch Dotierung mit Iridium ein Chromdioxid mit sehr hoher Koerzitivfeldstärke herzustellen, jedoch ließ sich dieses Verfahren aus wirtschaftlichen Gründen nicht realisieren. Gleiches gilt auch für die Beschichtung des Chromdioxids mit Kobaltverbindungen, wodurch sich die Koerzitivfeldstärke deutlich erhöhen ließ (Tatsuru Namikawa et al., Nippon Kugaku Kaishi 1980 (2), 194-8).
  • Aufgabe der Erfindung war es somit, ein Verfahren zur Herstellung eines nadelförmigen, ferromagnetischen Chromdioxidmaterials bereitzustellen, das ohne Zusatz von Iridium und ohne Kobaltbeschichtung in einfacher Weise zu einem ferromagnetischen Chromdioxidmaterial führt, das eine sehr hohe Koerzitivfeldstärke bei gleichzeitig hohen Werten für die Sättigungsmagnetisierung aufweist.
  • Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung eines nadelförmigen, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Materials, das, bezogen auf den Anteil an Chromdioxid, weniger als 2 ppm Iridium und weniger als 50 ppm Kobalt enthält und eine Koerzitivfeldstärke von größer 61 kA/m bei einer Magnetisierung von mehr als 70 nTm³/g, gemessen in einem Magnetfeld von 380 kA/m, aufweist, durch Zersetzung eines wasserhaltigen Chrom(III)chromats bei Temperaturen von 200 bis 500°C und unter einem Druck zwischen 50 und 700 bar, wobei ein wasserhaltiges Chrom(III)chromat der Formel Cr₂(CrO₄)₃ · nH₂O mit einem Hydratationsgrad n von mindestens 13, das Eisen und/oder eine Eisenverbindung als Modifizierungsmittel enthält, eingesetzt wird und dieses wasserhaltige Chrom(III)chromat in einem Hochdruckreaktor auf eine Temperatur zwischen 200 und 500°C aufgeheizt und unmittelbar nach Erreichen dieser Temperatur abgekühlt und der Hochdruckreaktor entspannt wird.
  • Das erfindungsgemäße Verfahren läßt sich besonders vorteilhaft durchführen, wenn das Chrom(III)chromat mit einem Hydratationsgrad n von mindestens 13 und vorzugsweise von 14 bis 20 dadurch erhalten wird, daß das Chrom(VI)oxid (CrO₃) nur mit soviel Wasser versetzt wird, daß nach der partiellen Reduktion des CrO₃ mit organischem Material der erforderliche Wassergehalt des Chrom(III)chromats sich einstellt. Hierbei ist die bei der Reduktion sich bildende Wassermenge zu berücksichtigen.
  • Da bei der Herstellung der wasserreichen Chrom(III)chromate das CrO₃ meist nicht mit einer zur vollständigen Auflösung ausreichenden Wassermenge versetzt wird, ist es von Vorteil, die CrO₃/H₂O-Ausgangssuspension zusammen mit den Modifizierungsmitteln einer intensiven Dispergierung, z.B. mit einem Dissolverrührer, zu unterziehen. Die Reduktion des CrO₃ ist mit einer starken Wärmetönung verbunden. Um zu verhindern, daß sich die Reaktionssuspension dabei zu stark erwärmt, empfiehlt es sich, das Reaktionsgefäß bei der Reduktion zu kühlen. Zur Abmilderung der meist heftigen Reaktion zwischen organischem Material und CrO₃ hat es sich als günstig erwiesen, das Reduktionsmittel mit Wasser zu verdünnen. Um bei diesem Vorgehen jedoch nicht den Gesamtwassergehalt des Chrom(III)chromats zu verändern, muß die zum Anlösen des CrO₃ herangezogene Wassermenge um die zur Verdünnung des Reduktionsmittels verwendete Wassermenge verringert werden. Am günstigsten erwies es sich, von den n Molen H₂O des Cr₂(CrO₄)₃ · n H₂O vier Mol zur Verdünnung des Reduktionsmittels und die restlichen (n-4) Mole zur Herstellung der CrO₃-Suspension zu verwenden.
  • Als Reduktionsmittel für die Chrom(III)chromat-Darstellung können alle gängigen Reduktionsmittel verwendet werden, bevorzugt werden jedoch leicht oxidierbare organische Verbindungen wie Alkohole und Aldehyde, insbesondere weniger flüchtige mehrwertige Alkohole wie Glykol oder Glycerin. Das Cr⁶⁺/Cr³⁺-Molverhältnis im Chrom(III)chromat sollte nach Möglichkeit 1,5 betragen, es kann auch mit einem Cr⁶⁺-Über- oder Unterschuß gearbeitet werden.
  • Im Rahmen des erfindungsgemäßen Verfahrens werden modifizierte Chromdioxid-Materialien hergestellt, wobei es angebracht ist, die bekannten Modifizierungsmittel, wie Antimon, Tellur, Eisen und/oder deren Verbindungen sowie Kombinationen dieser Stoffe, einzusetzen. Üblicherweise eignen sich besonders Kombinationen von Telluroxid und/oder Antimonoxid, ggf. in Form des Kaliumantimonyltartrats (EP-A 198 110) und Eisenoxid. Die Modifizierungsmittel werden in Mengen zwischen 0,05 und 10 Gew.% berechnet als Oxid, bezogen auf das resultierende Chromdioxid eingesetzt. Nach Möglichkeit sollten die Modifizierungsstoffe bereits vor der Reduktionsmittelzugabe in die CrO₃-Suspension eingeführt werden.
  • Die Durchführung des erfindungsgemäßen Verfahrens erfolgt beispielsweise derart, daß das CrO₃ mit weniger Wasser versetzt wird, als zur Einstellung des vorgegebenen Hydratationsgrads beim Chrom(III)chromat von mindestens 13 erforderlich ist. Nach Zugabe der Modifizierungsmittel in die zähe Masse wird die Mischung mit geeigneten Vorrichtungen intensiv dispergiert. Anschließend wird die resultierende Suspension in einem mit Tropftrichter und Rückflußkühlung versehenen, von außen kühlbaren Rührbehälter unter guter Durchmischung durch langsame Zugabe eines mit der restlichen, zur Einstellung des endgültigen Wassergehalts des Chrom(III)chromats erforderlichen Wassermenge versetzten organischen Reduktionsmittels, z.B. Glycerin, reduziert. Das entstehende pastöse Chrom(III)chromat wird in einen Reaktionsbecher aus Edelstahl überführt und anschließend in einem Hochdruckreaktor bei einem Druck zwischen 50 bis 700 bar und einer Temperatur zwischen 200 bis 500°C zu Chromdioxid umgesetzt. Wesentlich bei dem erfindungsgemäßen Verfahren ist, daß unmittelbar nach dem Erreichen der Reaktionstemperatur das resultierende Material wieder abgekühlt wird, wobei insbesondere die Temperatur von 220 bis 250°C schnell unterschritten werden muß. Dadurch wird ein homogener Einbau der Eisenionen in das Kristallgitter des Chromdioxids erreicht. Gleichzeitig mit oder nach dem Abkühlen wird auch der Hochdruckreaktor entspannt. Das Chromdioxid wird aus dem Reaktionsbecher mechanisch entfernt und aufgemahlen.
  • Zur weiteren Verbesserung der synthetisierten Chromdioxide ist die thermische Nachbehandlung unter oxidativen Bedingungen bei Temperaturen zwischen 150 und 400°C bekannt (DE-B 19 05 584). Gegebenenfalls kann das auf die geschilderte Weise gewonnene Chromdioxid in bekannter Weise noch weiter stabilisiert werden, z.B. durch die oberflächliche Einwirkung von Reduktionsmitteln (DE-B 1 925 541), von Laugen (DE-A 3 600 624), durch eine Temperung unter Inertgas (EP-A 29 687) oder durch Behandlung mit wasserunlöslichen organischen Verbindungen und einem Tensid (DE-A-36 10 411).
  • Das erfindungsgemäß, im wesentlichen aus Chromdioxid bestehende Material weist eine Koerzitivfeldstärke von mehr als 61 kA/m und vorzugsweise eine solche zwischen 61 und 78 kA/m auf, wobei die Magnetisierung, gemessen in einem Magnetfeld von 380 kA/m, mehr als 70 nTm³/g beträgt. Diese hohen Werte für die Koerzitivfeldstärke werden überraschenderweise weder durch eine Dotierung des Chromdioxids mit Iridium noch durch eine Beschichtung mit Kobalt erreicht.
  • Damit eignet sich dieses Chromdioxidmaterial in besonders vorteilhafter Weise für den Einsatz bei solchen magnetischen Aufzeichnungsträgern, welche bei der Aufzeichnung hoher Informationsdichten zur Anwendung gelangen sollen. Die Verarbeitung des erfindungsgemäßen Chromdioxids zu magnetischen Aufzeichnungsträgern erfolgt nach bekannten Methoden. Für die Herstellung der Magnetschicht werden 2 bis 10 Gew.-Teile Chromdioxid zusammen mit dem Bindemittel und den geeigneten Dispergierhilfsmitteln, Gleitmitteln und weiteren üblichen Zusatzstoffen in einer Gesamtmenge bis zu 10 Gew.% des Chromdioxids zu einer Dispersion verarbeitet. Die so erhaltene Dispersion wird filtriert und mit einer üblichen Beschichtungsmaschine, z.B. mittels eines Linealgießers, auf den unmagnetischen Träger in einer oder mehreren dünnen Schichten oder auf einen mit einer anderen Magnetschicht bereits versehenen Magnetogrammträger in dünner Schicht aufgetragen. Vor Trocknung der flüssigen Beschichtungsmischung bei Temperaturen zwischen 50 und 90°C wird gegebenenfalls eine magnetische Ausrichtung der Chromdioxidteilchen vorgenommen. Für eine spezielle Oberflächenvergütung der Magnetschicht werden die beschichteten Folienbahnen zwischen geheizten, polierten Walzen unter Druck hindurchgeführt. Danach betragen die Dicken der Magnetschichten üblicherweise zwischen 1,5 und 12 »m.
  • Als Bindemittel für die Magnetschichten werden die bekannten Polymerbindemittel verwendet, wie Acrylat-Copolymere, Polyvinylacetate, wie Polyvinylformal oder Polyvinylbutyral, höhermolekulare Epoxidharze, Polyurethane und Gemische dieser und ähnlicher Bindemittel. Als vorteilhaft haben sich die in einem flüchtigen organischen Lösungsmittel löslichen elastomeren und praktisch isocyanatgruppenfreien linearen Polyesterurethane erwiesen, wie sie durch Umsetzung eines Polyesters aus einer aliphatischen Dicarbonsäure mit 4 bis 6 C-Atomen, wie Adipinsäure, und mindestens einem aliphatischen Diol mit 3 bis 10 C-Atomen, wie 1,2- und 1,3-Propylenglykol, 1,4-Butandiol, Diethylenglykol, Neopentylglykol oder 1,8-Octandiol, mit einem Diisocyanat mit 6 bis 24 und insbesondere 8 bis 20 C-Atomen, wie Toluylendiisocyanat oder 4,4′-Diisocyanatodiphenylmethan, bevorzugt in Gegenwart einer kleineren Menge eines Glykols mit 4 bis 10 C-Atomen, wie 1,4-Butandiol, das eine Kettenverlängerung bewirkt, hergestellt werden können. Bevorzugt sind solche Polyesterurethane aus Adipinsäure, 1,4-Butandiol und 4,4′-Diisocyanatodiphenylmethan. Bevorzugte Polyesterurethane haben eine Shore-Härte A von 70 bis 100, eine Reißfestigkeit von 40 bis 42 N/mm² (nach DIN 53 455) und eine Reißdehnung (nach DIN 53 455) von etwa 440 bis 560 %. Der K-Wert nach H. Fikentscher (Cellulose-Chemie 13 (1932), Seite 58ff) liegt für die besonders geeigneten Polymerbindemittel zwischen 40 und 60 (1%ig in DMF).
  • Die Erfindung sei anhand folgender Beispiele im Vergleich zu solchen nach dem Stand der Technik näher erläutert. Dabei wurden an dem resultierenden Chromdioxid die spezifische Oberfläche SSA in [m²/g] gemäß DIN 66132 mittels eines Ströhlein-Areameters der Firma Ströhlein, Düsseldorf, nach dem Einpunkt-Differenzverfahren nach Haul und Dümbgen sowie die magnetischen Eigenschaften mittels eines Schwingmagnetometers in einem Meßfeld von 380 kA/m bestimmt, und zwar die Koerzitivfeldstärke Hc in [kA/m] sowie die spezifische Remanenz Mr/ρ und die Sättigungsmagnetisierung Ms/ρ in [nTm³/g]. Dabei betrug die mittlere Stopfdichte ρ = 1,3 g/cm³.
    Die Ermittlung der Kobalt- und Iridiummenge erfolgte durch Atomabsorptionsspektrometrie. Die Röntgenaufnahmen wurden mit einem automatischen Siemens D 500 mit Kupfer-Kα-Strahlung hergestellt. Zur Bestimmung der Gitterkonstanten wurden die CrO₂-Proben mit MICA (MBS-Standard SRM No. 675) als innerem Standard vermischt und die Messungen bei 20°C durchgeführt. Die Lage der CrO₂ (110)-Linie wurde auf den theoretischen Wert der MICA-Line (Theta 26,774°C) bezogen und aus der gemessenen Differenz die Gitterkonstante a in [Å] berechnet.
    Die Längenangabe der CrO₂-Teilchen stellt einen arithmetischen Mittelwert dar, der durch die statistische Erfassung und Ausmessung von etwa 200 Teilchen auf elektronenmikroskopischen Aufnahmen ermittelt wurde.
  • Beispiel 1
  • 1,5 kg CrO₃ wurden in einem zunächst oben offenen Rührbehälter aus Glas mit 447 g Wasser versetzt und 10 Minuten mit einem Dissolverrührer mit 1430 Umdrehungen/min dispergiert. Die vorgelegte Wassermenge reichte für eine vollständige Auflösung des CrO₃ nicht aus. Anschließend wurden 3,3 g TeO₂ (≙ 0,26 Gew.%, bezogen auf das sich bildende CrO₂) und 45,3 g Fe₂O₃ (≙ 3,6 Gew.%) in die Suspension gegeben und das Reaktionsgefäß mit einem mit Rückflußkühler und Tropftrichter versehenen Deckel verschlossen. Das Reaktionsgefäß wurde zudem mit einem, von einem starken Motor angetriebenen Rührer ausgestattet. Unter Rückflußkühlung, Eiskühlung der Reaktorwand sowie starkem Rühren der CrO₃-Suspension werden aus dem Tropftrichter in 120 Minuten 334 g Wasser und 118,4 g Glycerin langsam in die Reaktionssuspension eingeleitet. Es resultiert ein Te/Fe-modifiziertes Chrom(III)chromat mit einem H₂O-Gehalt n = 16.
  • Das auf die oben genannte Art gewonnene Cr₂(CrO₄)₃ · 16 H₂O wurde in einen zylindrischen Becher aus Edelstahl eingefüllt und in einem Hochdruckreaktor auf 350°C bei einem Druck von 350 bar aufgeheizt und sofort nach Erreichen der Temperatur wieder abgekühlt. Ebenfalls wurde der Reaktor entspannt. Nach Abkühlen auf Zimmertemperatur wurde das gebildete CrO₂ mechanisch aus dem Reaktionsbecher ausgeräumt.
  • Das Reaktionsprodukt wurde danach 80 Minuten lang bei 180°C getempert. Es wies eine Koerzitivfeldstärke von 71,4 kA/m, eine spezifische Magnetisierung Ms/ρ von 92 nTm³/g und eine Remanenz von 43 nTm³/g auf. Der Iridiumgehalt betrug weniger als 2 ppm und der Kobaltgehalt weniger als 30 ppm. Der SSA-Wert war 20 m²/g, die Gitterkonstante a 4,430 ± 0,0015 Å und die mittlere Teilchenlänge 300 nm.
  • Beispiel 2
  • 1500 g CrO₃ wurden in einem zunächst oben offenen Rührbehälter aus Glas mit 447 g Wasser versetzt und 10 min. mit einem Dissolverrührer dispergiert. Die vorgelegte Wassermenge reichte für eine vollständige Auflösung des CrO₃ nicht aus. Anschließend wurden 45,3 g Fe₂O₃ (3,6 Gew.%), 1,89 g TeO₂ (0,15 Gew.%) und 5,77 g Kaliumantimonyltartrat (0,2 Gew.%) zugegeben und die Mischung erneut 10 min. mit dem Dissolverrührer dispergiert. Danach wurde das Reaktionsgefäß mit einem mit Rückflußkühler und Tropftrichter ausgestatteten Deckel verschlossen.
  • Unter Rückflußkühlung, Eiskühlung der Reaktorwand sowie Rühren der CrO₃ Suspension wurden in 48 min. 117,3 g Glycerin in 924 g Wasser zugetropft. Es resultierte ein Te/Sb/Fe modifiziertes Chrom(III)chromat mit einem H₂O-Gehalt n = 16.
  • Das erhaltene Produkt wurde in Portionen von je 170 g in zylindrische Becher aus Edelstahl umgefüllt und in einem Hochdruckreaktor bei folgenden Bedingungen umgesetzt:
  • Beispiel 2a:
  • Aufheizen auf 320°C (max. Druck 176 bar), danach sofort abkühlen auf Raumtemperatur, Reaktor anschließend entspannt.
  • Beispiel 2b:
  • Aufheizen auf 340°C (max. Druck 224 bar), danach sofort abkühlen auf Raumtemperatur, Reaktor anschließend entspannt.
  • Das Produkt wurde aus dem Reaktionsbecher ausgeräumt, mit Wasser bis auf eine Leitfähigkeit des Waschwassers von < 100 »S/cm gewaschen und getrocknet. Die Produkte weisen folgende magnetische Eigenschaften auf:
    Figure imgb0001
  • Die Gitterkonstanten a des Pigments aus Beispiel 2a betrug 4,432 ± 0,0015 Å, die des Pigments aus Beispiel 2b 4,426 ± 0,0015 Å. Die mittlere Teilchenlänge des Pigments aus Beispiel 2a betrug 350 nm, die des Pigments aus Beispiel 2b 300 nm.
  • Beispiel 3
  • Es wurde wie in Beispiel 2 verfahren, jedoch mit dem Unterschied, daß die Dotierungsstoffe, 45,3 g γ-Fe₂O₃ (3,6 Gew.%), 3,28 g TeO₂ (0,26 Gew.%), gemeinsam mit der Vorlage aus 1,5 kg CrO₃ und 447,5 g H₂O für 10 min. mit dem Dissolverrührer dispergiert wurden.
  • Das erhaltene Te/Fe modifizierte Chrom (III)chromat mit 16 Kristallwasser wurde in einen zylindrischen Becher aus Edelstahl eingefüllt und in einem Hochdruckreaktor auf 318°C bei einem Druck von 240 bar aufgeheizt und sofort nach Erreichen der Temperatur wieder abgekühlt. Danach wurde entspannt und das gebildete CrO₂ aus dem Reaktor ausgeräumt.
  • Das Reaktionsprodukt wurde 80 min. lang bei 180°C an Luft getempert, anschließend mit Wasser solange gewaschen, bis das Waschwasser eine Leitfähigkeit von < 100 »S/m aufwies und schließlich gemäß DE-B 19 25 541 mit einer Natriumsulfitlösung oberflächenbehandelt.
  • Das getrocknete Endprodukt wies folgende Daten auf:
    Figure imgb0002
  • Die Gitterkonstante a entspricht 4,428 ± 0,0015 Å, die durchschnittliche Nadellänge beträgt 300 nm (Abb. 1).
  • Beispiel 4
  • Es wurde wie im Beispiel 2 verfahren, jedoch mit dem Unterschied, daß als Dotierungsstoffe 45,3 g γ-Fe₂O₃ (3,6 Gew.%) und 4,42 g TeO₂ (0,35 Gew.%) verwendet wurden.
  • Das erhaltene Te/Fe-modifizierte Chrom(III)chromat mit 16 Kristallwasser wurde in einem zylindrischen Becher aus Edelstahl eingefüllt und in einem Hochdruckreaktor auf 340°C bei einem Druck von 216 bar aufgeheizt, und sofort nach Erreichen der Temperatur wieder abgekühlt. Danach wurde das gebildete CrO₂ aus dem Reaktor ausgeräumt und mit Wasser solange gewaschen bis das Waschwasser eine Leitfähigkeit von < 100 »S/m aufwies.
  • Das Endprodukt wies folgende Eigenschaften auf:
    Figure imgb0003
  • Vergleichsversuch 1
  • Es wurde wie in Beispiel 1 beschrieben verfahren. Jedoch wurde das Reaktionsgemisch nach Erreichen der Reaktionstemperatur von 350°C noch 4 Stunden auf dieser Temperatur gehalten.
  • Nach der in Beispiel 1 genannten Aufarbeitung ergaben sich eine Koerzitivfeldstärke von 59,8 kA/m, eine spezifische Magnetisierung von 92 nTm³/g und eine Remanenz von 42,1 nTm³/g. Der Iridiumgehalt war unter 2 ppm, der Cobaltgehalt unter 30 ppm.
  • Die spezifische Oberfläche wurde mit 19 m²/g bestimmt, die Gitterkonstante betrug 4,428 ± 0,0015 Å und die mittlere Teilchengröße 300 nm.
  • Vergleichsversuch 2
  • Es wurde wie in Beispiel 2 beschrieben verfahren, jedoch auf die Zugabe von Dotierungsstoffen verzichtet. Die nach der Anmaischung erhaltenen Produkte wurden einer Hochdruckbehandlung unterworfen und folgenden Bedingungen ausgesetzt.
  • Vergleichsversuch 2a)
  • Aufheizen auf 350°C (max. Druck 320 bar) danach sofort abkühlen auf Raumtemperatur, Reaktor anschließend entspannen.
  • Vergleichsversuch 2b)
  • Aufheizen auf 330°C (max. Druck 232 bar) danach sofort abkühlen auf Raumtemperatur, Reaktor anschließend entspannen.
  • Das entstandene Pulver wurde mechanisch aus den Reaktionsgefäßen ausgeräumt. Folgende Pulvereigenschaften wurden bestimmt:
    Figure imgb0004
  • Röntgenographisch konnte das entstehende Pulver als α-CrOOH identifiziert werden.
  • Vergleichsversuch 3
  • In einem Reaktionsgefäß mit einem Volumen von 2 l wurden 380 g H₂O vorgelegt. Dann wurden unter Rühren zunächst 973 g CrO₃ zugegeben, anschließend 48,5 g γ-Fe₂O₃ (3,6 Gew.%, bezogen auf Chromdioxid) und 5,56 g Kaliumantimonyltartrat (0,18 Gew.%, bezogen auf Chromdioxid). Jetzt wurden unter ständigem Rühren 480 g Chrom(III)oxid eingetragen und weitere 30 min gerührt. Danach wurde die Reaktionsmaische in einem Autoklaven unter folgenden Bedingungen behandelt.
  • Vergleichsversuch 3 a)
  • Aufheizen auf 330°C, 4 h halten (max. Druck 380 bar), danach sofort auf Raumtemperatur abkühlen und anschließend Reaktor entspannen.
  • Vergleichsversuch 3 b)
  • Aufheizen auf 350°C, 4 h halten (max. Druck 310 bar), danach sofort abkühlen und anschließend den Reaktor entspannen.
  • Vergleichsversuch 3 c)
  • Aufheizen auf 320°C, 4 h halten (max. Druck 288 bar), danach sofort abkühlen und anschließend den Reaktor entspannen.
  • Die Produkte wurden 80 min bei 180°C an Luft getempert. Folgende Ergebnisse wurden erhalten:
    Figure imgb0005
  • Die Gitterparameter a der Produkte betrugen bei allen drei Versuchen 4,427 ± 0,0015 Å, die durchschnittlichen Nadellängen 280 - 300 nm.
  • Vergleichsbeispiel 4
  • Mit einem Dissolverrührer wurden 121,7 g CrO₃, 47.5 g H₂O sowie 60 g Cr₂O₃ unter Bildung einer zähviskosen dunklen Paste dispergiert. Die erhaltene Masse wurde in einen zylindrischen Behälter aus Edelstahl eingefüllt und in einem Hochdruckreaktor auf 350°C aufgeheizt (maximaler Druck 304 bar) und anschließend 4 h bei dieser Temperatur gehalten. Anschließend wurde abgekühlt und der Reaktor bei Raumtemperatur entspannt.
  • Das entstandene CrO₂ wurde mechanisch aus dem Reaktionsbehälter ausgeräumt. Folgende Pulvereigenschaften wurden bestimmt:
    Figure imgb0006
  • Die durchschnittliche Nadellänge betrug 250 nm, die Gitterkonstante a wurde zu 4,424 ± 0,0015 Å gemessen.
  • Beispiel B1
  • In einer 500 Volumenteile fassenden und mit 100 Volumenteilen Stahlkugeln mit einem Durchmesser von 1,5 mm gefüllten Mühle wurden 40 Teile des gemäß Beispiel 1 erhaltenen und einer Natriumsulfitlösung nachbehandelten Chromdioxids mit 175 Teilen einer 13 %igen Lösung eines thermoplastischen Polyesterurethans aus Adipinsäure, 1,4-Butandiol, 4,4′-Diisocyanatodiphenylmethan in einem Gemisch aus gleichen Teilen Tetrahydrofuran und Dioxan, 150 Teile einer 13 %gen Lösung eines handelsüblichen Polyvinylformals in einer Mischung aus gleichen Teilen Tetrahydrofuran und Dioxan, 24 Teile eines Lösungsmittelgemisches aus gleichen Teilen Tetrahydrofuran und Dioxan und 1 Teil Zinkstearat gemischt und 4 Stunden dispergiert. Danach wurden nocheinmal die gleichen Mengen der beiden Bindemittellösungen, 13,5 Teile des genannten Lösungsmittelgemisches sowie 0,1 Teile eines handelsüblichen Silikonöls zugefügt und weitere 30 Minuten dispergiert. Anschließend wurde die Dispersion filtriert und auf einer üblichen Beschichtungsmaschine mittels eines Linealgießers auf eine Polyethylenterephthalatfolie in einer solchen Dicke aufgebracht, daß sich nach dem Trocknen und Kalandrieren eine Trockenschichtdicke von 5,5 »m ergab. Unmittelbar nach dem Aufgießen der flüssigen Dispersion wurden die nadelförmigen Chromdioxidteilchen durch ein Magnetfeld längs der Aufzeichnungsrichtung orientiert. Die an den Bandproben gemessenen magnetischen Eigenschaften, die Koerzitivfeldstärke Hc in [kA/m], die remanente Magnetisierung Mr in [mT] sowie die relative Remanenz Mr/Ms, der Richtfaktor Rf, das Verhältnis der Remanenz längs längs zu der quer zur Orientierung und die Schaltfeldstärkenverteilung SFD nach Williams und Comstock (AIP Conf. Proc. 5 (1971), 738) sind in der Tabelle angegeben.
  • Beispiele B 2 - B 5
  • Es wurde wie in Beispiel B 1 beschrieben verfahren, jedoch wurden die in der Tabelle angegebenen Chromdioxidmaterialien eingesetzt.
    Figure imgb0007

Claims (6)

  1. Verfahren zur Herstellung eines nadelförmigen, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Materials, das, bezogen auf den Anteil an Chromdioxid, weniger als 2 ppm Iridium und weniger als 50 ppm Kobalt enthält, durch Zersetzung eines wasserhaltigen Chrom(III)chromats bei Temperaturen von 200 bis 500°C und unter einem Druck zwischen 50 und 700 bar, dadurch gekennzeichnet, daß man ein wasserhaltiges Chrom(III)chromat der Formel Cr₂(CrO₄)₃ · nH₂O mit einem Hydratationsgrad n von mindestens 13 einsetzt, welches Eisen und/oder eine Eisenverbindung als Modifizierungsmittel enthält, dieses wasserhaltige Chrom(III)chromat in einem Hochdruckreaktor auf eine Temperatur zwischen 200 und 500°C aufheizt und unmittelbar nach Erreichen dieser Temperatur abkühlt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das wasserhaltige Chrom(III)chromat als weitere(s) Modifizierungsmittel Antimon, Tellur und/oder eine Verbindung dieser Elemente enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das wasserhaltigen Chrom(III)chromat als Modifizierungsmittel Eisenoxid enthält.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man das oder die Modifizierungsmittel in Mengen zwischen 0,05 und 10 Gew.-%, berechnet als Oxid, bezogen auf das resultierende Chromdioxid, einsetzt.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man ein wasserhaltiges Chrom(III)chromat mit einem Hydratationsgrad n von 14 bis 20 einsetzt.
  6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man das resultierende Material unmittelbar nach Erreichen der Reaktionstemperatur schnell auf eine Temperatur unter 250°C abkühlt.
EP89119964A 1988-11-05 1989-10-27 Herstellung von nadelförmigem, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Material Expired - Lifetime EP0368093B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837646A DE3837646A1 (de) 1988-11-05 1988-11-05 Nadelfoermiges, im wesentlichen aus chromdioxid bestehendes, ferromagnetisches material
DE3837646 1988-11-05

Publications (3)

Publication Number Publication Date
EP0368093A2 EP0368093A2 (de) 1990-05-16
EP0368093A3 EP0368093A3 (de) 1991-05-15
EP0368093B1 true EP0368093B1 (de) 1995-03-15

Family

ID=6366596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119964A Expired - Lifetime EP0368093B1 (de) 1988-11-05 1989-10-27 Herstellung von nadelförmigem, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Material

Country Status (5)

Country Link
US (1) US5030371A (de)
EP (1) EP0368093B1 (de)
JP (1) JPH02256203A (de)
KR (1) KR0152981B1 (de)
DE (2) DE3837646A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142166A1 (de) * 1991-12-20 1993-06-24 Basf Magnetics Gmbh Magnetischer aufzeichnungstraeger
DE4339841A1 (de) * 1993-11-23 1995-05-24 Basf Magnetics Gmbh Feinteiliges nadfelförmiges magnetisches modifiziertes Chromdioxid
JP2001023145A (ja) * 1999-07-05 2001-01-26 Sony Corp 磁気記録媒体
WO2011044100A2 (en) * 2009-10-05 2011-04-14 University Of Delaware Ferromagnetic resonance and memory effect in magnetic composite materials

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529930A (en) * 1968-02-13 1970-09-22 Du Pont Process for improving ferromagnetic properties of chromium dioxide by heating in an oxidizing environment
US3512930A (en) * 1969-05-07 1970-05-19 Du Pont Stabilized ferromagnetic chromium dioxide
US3640871A (en) * 1969-10-27 1972-02-08 Matsushita Electric Ind Co Ltd Tellurium-iron modified chromium dioxides
AU452489B2 (en) * 1971-03-04 1974-08-16 Montecatini Edisons. P. A Process for preparing ferromagnetic chromium dioxide
US3778373A (en) * 1971-11-08 1973-12-11 Bell & Howell Co Iron containing ferromagnetic chromium oxide
SE389220B (sv) * 1972-06-30 1976-10-25 Montedison Spa Sett for framstellning av ferromagnetisk krondioxid med fin och homogen granulometri vilket sett medfor utvalda magnetiska egenskaper
IT1012202B (it) * 1974-05-09 1977-03-10 Montedison Spa Procedimento per la produzione di biossido di cromo ferromagnetico
IT1045191B (it) * 1975-10-31 1980-05-10 Montedison Spa Procedimento per la produzione di biossido di cromo ferromagnetico
IT1209139B (it) * 1979-11-16 1989-07-10 Montedison Spa Procedimento per stabilizzare il biossido di cromo ferromagnetico.
US4524008A (en) * 1983-12-16 1985-06-18 E. I. Du Pont De Nemours And Company Controlled initiation chromium dioxide synthesis

Also Published As

Publication number Publication date
KR900008551A (ko) 1990-06-04
JPH02256203A (ja) 1990-10-17
EP0368093A2 (de) 1990-05-16
DE3837646A1 (de) 1990-05-10
EP0368093A3 (de) 1991-05-15
DE58909109D1 (de) 1995-04-20
KR0152981B1 (ko) 1998-12-15
US5030371A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
EP0014363B1 (de) Kobalt-dotierte ferrimagnetische Eisenoxide und Verfahren zu deren Herstellung
EP0000749B1 (de) Verfahren zur Herstellung von nadelförmigen, ferrimagnetischen Eisenoxiden und deren Verwendung
DE2942646A1 (de) Verfahren zur herstellung von ferromagnetischem chromdioxid
DE3729497A1 (de) Magnetisches pulver fuer magnetische aufzeichnungen
EP0368093B1 (de) Herstellung von nadelförmigem, im wesentlichen aus eisenhaltigem Chromdioxid bestehenden, ferromagnetischen Material
DE2805405C2 (de)
EP0198110B1 (de) Verfahren zur Herstellung von ferromagnetischem Chromdioxid
DE2151471B2 (de) Stabilisierte, ferromagnetische chromdioxidteilchen und verfahren zu deren herstellung
EP0160877B1 (de) Verfahren zur Herstellung von feinteiligem isotropem kobalthaltigem Ferritpulver
EP0093966B1 (de) Verfahren zur Herstellung einer Magnetdispersion
EP0433838B1 (de) Verfahren zur Herstellung von stabilisiertem Chromdioxid und magnetischer Aufzeichnungsträger enthaltend dieses Material
EP0548642B1 (de) Magnetischer Aufzeichnungsträger
EP0304851B1 (de) Verfahren zur Herstellung von modifiziertem, ferromagnetischem Chromdioxid
EP0078950A2 (de) Verfahren zur Herstellung von nadelförmigen, ferrimagnetischen Eisenoxiden
DE2749757C2 (de)
DE3718299A1 (de) Verfahren zur herstellung von stabilisiertem nadelfoermigem ferromagnetischem chromdioxid
EP0201822B1 (de) Verfahren zur Herstellung nadelförmiger, kobalthaltiger ferrimagnetischer Eisenoxide
DE2648305C3 (de) Modifiziertes ferromagnetisches Chromdioxid und Verfahren zu seiner Herstellung
EP0200992B1 (de) Verfahren zur Herstellung isometrischer kobalt- und titanhaltiger magnetischer Eisenoxide
DE3438093A1 (de) Ferrimagnetische teilchen und verfahren zu ihrer herstellung
EP0110115A1 (de) Nadelförmige ferromagnetische Chromdioxidteilchen
EP0355755B1 (de) Chromdioxidmaterial, Verfahren zu dessen Herstellung sowie magnetische Aufzeichnungsträger enthaltend dieses Chromdioxidmaterial
DE3413752A1 (de) Verfahren zur herstellung isotroper magnetischer, kobalthaltiger eisenoxide
EP0421189A1 (de) Verfahren zur Herstellung von feinteiligem pulverförmigen hexagonalem Ferrit und seine Verwendung zur Herstellung von magnetischen Aufzeichnungsträgern
EP0198436B1 (de) Verfahren zur Herstellung isotroper magnetischer, kobalthaltiger Eisenoxide aus Eisen(III)-Salzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19901227

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19930625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 58909109

Country of ref document: DE

Date of ref document: 19950420

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950327

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: EMTEC MAGNETICS GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021024

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021025

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021114

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST