EP0362101B1 - Tintensteuer- und -regelvorrichtung für einen kontinuierlich arbeitenden Tintenstrahldrucker - Google Patents

Tintensteuer- und -regelvorrichtung für einen kontinuierlich arbeitenden Tintenstrahldrucker Download PDF

Info

Publication number
EP0362101B1
EP0362101B1 EP89460031A EP89460031A EP0362101B1 EP 0362101 B1 EP0362101 B1 EP 0362101B1 EP 89460031 A EP89460031 A EP 89460031A EP 89460031 A EP89460031 A EP 89460031A EP 0362101 B1 EP0362101 B1 EP 0362101B1
Authority
EP
European Patent Office
Prior art keywords
ink
droplets
nozzle
drops
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89460031A
Other languages
English (en)
French (fr)
Other versions
EP0362101A1 (de
Inventor
Paul Bajeux
Alain Dunand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Priority to AT89460031T priority Critical patent/ATE96736T1/de
Publication of EP0362101A1 publication Critical patent/EP0362101A1/de
Application granted granted Critical
Publication of EP0362101B1 publication Critical patent/EP0362101B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/195Ink jet characterised by ink handling for monitoring ink quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/125Sensors, e.g. deflection sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor

Definitions

  • the present invention relates to devices for controlling and regulating an ink and its processing in a continuous inkjet printer.
  • the ink-jet writing technique using a continuous jet of calibrated droplets, supplied by a modulation system, consists in electrostatically charging these droplets, by means of an appropriate electrode.
  • the passage of these variably charged drops between two electrodes brought to a large difference in electric potential leads to a deflection of the drops proportional to their charge. This deflection combined with the displacement of the support allows the matrix printing of characters or graphics on said support.
  • All the parameters conditioning the operation of the printer must be controlled so as to ensure the constant quality of the printing despite the inevitable variations in the environment.
  • the speed of the drops constitutes the most influential parameter on the print quality, because it conditions the passage time of the charged drops in the deflector electric field (and therefore the trajectory of the printed drops), but also the phenomenon of formation and electric charge of the drops in the charging electrode.
  • the quality of the ink is also a very influencing factor in the operation of printers for several reasons.
  • the physical properties of the ink condition the flow of the ink in the nozzle, as well as the physical process of formation of the drops.
  • the main factors leading to a variation in the physical properties of the ink are the evaporation of the solvent from the ink, on the one hand, and temperature variations, on the other hand.
  • the chemical properties of the ink which result from the concentrations of the various constituents of the ink, must be kept constant over time.
  • the dye concentration must be controlled so as to ensure consistency in the optical quality of the markings on the printed medium (optical density, color, etc.).
  • the quantity of resin present in the ink must be controlled because it conditions, in certain formulations, the electrical conductivity of the ink, and therefore the electrical charge of the drops.
  • the quantity of resin must be particularly controlled for applications where a physicochemical treatment is applied to the printed deposit in a phase simultaneous or subsequent to marking, such as crosslinking under ultraviolet rays, reaction under radiation, etc., in order to give it specific chemical resistance properties.
  • the process of formation and electrical charge of the drops also conditions the quality of the print.
  • a spectacular characteristic of printer malfunction linked to a defect in the drop formation process is the pollution of the deflection electrodes by small parasitic droplets commonly called satellite drops.
  • the process of formation and electric charge of the drops results from the interaction of complex hydrodynamic and electrical phenomena, still poorly described by theory.
  • the parameters influencing this process are linked both to the physicochemical properties of the ink and to the operating characteristics of the machine: geometry, jet speed, frequency and amplitude of modulation.
  • the object of the invention is to allow control and regulation of the parameters most influencing the print quality of an inkjet printer: speed of the drops, quality of the ink and process of formation and charging. drops.
  • an important object of the invention consists in providing control and regulation devices which are simple and compact, therefore suitable for compact inkjet printers.
  • Another important object of the invention consists in providing control and regulation devices which can be used reliably under severe and highly variable environmental conditions (temperature, humidity, ventilation), as well as with types of 'different ink.
  • the speed of the drops is measured by means of a single detector comprising a conductive element in two parts symmetrical with respect to the trajectory of the drops, said detector being located between the charging electrode and the electrodes of deflection.
  • the conductive element of the detector is connected to ground via a resistor across which is connected a processing circuit.
  • a charged drop, or a charged drop train induces a charge of opposite sign in the detector element, and this charge varies according to the position of the charged drop, or of the charged drop train, in the detector.
  • the processing of the first derivative I (t) and of the second derivative J (t) with respect to the time of the charge Q (t) makes it possible to determine the instants of entry and exit of the charged drop, or of the train of charged drops, in the detector and, consequently, its speed, the length of the detector being known.
  • the length of the detector is greater than the distance between its two symmetrical parts relative to the trajectory of the drops.
  • the functioning of most of the ink circuits of inkjet printing machines consists, on the one hand , to continuously measure the viscosity of the ink in the ink circuit using a viscometer and, on the other hand, to regulate the viscosity of the ink supplying by adding solvent or fresh ink the nozzle.
  • a description of an ink circuit operating according to this principle is given in particular in US Patent No. 4,628,329 in the name of the present applicant.
  • the incorporation of the viscometer function into the ink circuit significantly increases the complexity of its operation and generally leads to significant additional bulk.
  • the place of viscosity measurement is generally far from the print head.
  • the viscosity measured in the ink circuit may not be representative of the actual viscosity at the print head. This is especially true when the temperature instead of viscosity measurement is different from the temperature at the print head.
  • various temperature control solutions of the ink in the print head have been proposed, generally incorporating a heating element (see U.S. Patent No. 4,337,468 of RICOH or US No. 4403 227 from IBM), which increases the complexity and energy consumption of the printer.
  • Another object of the present invention is to measure the "quality of the ink" at the print head, without using a viscometer function proper.
  • This object is achieved, according to the invention, by combining the use of a device for measuring the speed of the drops, an electronic circuit and a device for supplying ink to the nozzle cooperating in regulating the speed of the drops, of an ink pressure measurement in the ink circuit associated with rules for sizing the hydraulic conduits.
  • Another object of the invention consists in measuring a temperature representative of the temperature of the ink at the nozzle, and in correcting the quality of the ink by adding solvents or fresh ink, according to a law which takes account of temperature.
  • the speed of the regulation of the quality of the ink is also planned to optimize the speed of the regulation of the quality of the ink, on the one hand by taking into account the time of flow and homogenization of the ink between the place of the additions. ink (or solvents) and the nozzle and, on the other hand, using an extra ink cartridge containing an ink whose concentration is higher than the nominal use value.
  • the pressurized ink is ejected by a nozzle in the form a jet which is caused to fragment into a series of droplets to which a charge is then applied selectively and which are directed towards the printing medium or towards a gutter.
  • Various methods can be used to control and synchronize the formation of droplets, consisting of vibrating the nozzle, or causing disturbances of the ink pressure at the nozzle by incorporating in particular a resonator excited by a piezoelectric ceramic upstream nozzle. Due to the disturbance, the jet fragments, at the frequency of the disturbance, into uniform droplets, often accompanied by smaller droplets called satellite droplets.
  • the means used to apply the electric charge chosen at each droplet generally include a charging circuit and an electrode surrounding the jet at the place of formation of the drop.
  • the electrostatic charge of the drop is then obtained by applying a voltage of amplitude Vc between a point of electrical contact with the ink and the charging electrode.
  • the charge Qg acquired by the drop then depends on the value of the charge voltage Vc at the time of the formation of the drop, on the electric capacity Cg of the droplet formation / charge electrode assembly, and on the ratio of the period of droplet formation at the electrical characteristic time of the jet / electrode assembly, defined by Rj.Cj where Rj is the equivalent electrical resistance of the jet between the nozzle and the drop in formation, and Cj is the electrical capacity of the jet assembly /electrode.
  • the parameters Rj, Cj, Cg are in particular influenced by the shape of the jet during the period of formation and charge of the drop.
  • the electrical resistance of the jet Rj also depends on the electrical conductivity of the ink, which itself generally depends on the concentration and the temperature of the ink.
  • control and regulate the process of formation and charging of the drops by simultaneously regulating the speed of the drops, the quality of the ink, and the place of separation of the drops from the jet.
  • Control of the place of separation of the drops from the jet is obtained by controlling the time of flight of the drops between the place of charge of the drops and the position of the drop speed detector.
  • Regulation of the place of separation of the drops is obtained by modifying the amplitude of excitation of the resonator so as to maintain the place of separation of the drops at a place called operating point, which depends on the quality of the ink measured at the nozzle.
  • Fig. 1 illustrates the main mechanical and electrical elements of an ink jet print head 1 of the continuous jet type. It has in particular a nozzle 2 supplied with ink under pressure by an ink circuit 3 and creating a continuous jet J. Under the influence of the vibration of a resonator 4 supplied by a modulation circuit 5, the continuous jet J splits in the center of a charge electrode 6 into a continuous sequence of Equidistant and equidimensional G droplets.
  • the charging electrode 6 is connected to a charging circuit 7.
  • the drops G driven by a speed V substantially equal to the average speed of the liquid in the jet J, then pass through a detector 8 used as phase detector and jet speed, and connected to an electric drop speed detection circuit 9.
  • the charged drops are then deflected by a constant electric field maintained between deflection electrodes 10.
  • the uncharged or lightly charged drops are recovered by a gutter 11 , while the others continue their flight to a recording medium, not shown.
  • the drops recovered by the gutter 11 are recycled to the ink circuit 3.
  • Fig. 2 schematically illustrates the charged drop speed detection electrode 8, placed immediately downstream of the drop formation and charging site.
  • the speed detection electrode 8 comprises a central conducting element 8c, preferably protected from the influence of external electric charges (present on the charging electrode 6 in particular), thanks to a thickness d insulator 8i and to an external conductive element 8e, said guard electrode, electrically connected to ground.
  • the detector 8 has a plane symmetry and the drops G move in the axis of a slot made along the axis of symmetry of the detector.
  • any other configuration of the symmetrical detector with respect to the axis of the trajectory of the drops G may be suitable.
  • the droplets G have a substantially uniform translation speed V in the detector, and oriented along the axis of the detector.
  • the charged droplet Gc is shown in dark color and the other uncharged droplets located upstream and downstream are shown in clear.
  • V / f .
  • the proximity of the charged drop Gc leads by electrostatic influence to the appearance of electric charges of opposite sign on the surface of the detector (charges represented by signs + in Figs. 3a to 3d).
  • the quantity of electric charges present on the detector varies according to the axial distance x. If the influence of the insulator 8i is neglected, this amount of charge can be represented in the form of a linear charge density ⁇ (x) given diagrammatically on the ordinate for different positions x1 to x4 of the charged drop Gc.
  • the linear charge density can be approximated mathematically by the function:
  • the linear charge density curve is symmetrical with respect to the position x i of the drop.
  • the electric charges induced by the droplet on the detector are more concentrated near the drop and practically nonexistent at a long distance from the drop.
  • Q corresponds to the hatched areas in Figs. 3a to 3d.
  • Q varies with the position x of the drop in the detection electrode 8c.
  • the dimensions of the detection electrode 8c verify the relationship: S / 2 ⁇ Le, either, according to (3) R ⁇ The (5) This corresponds to a width R of the slot sufficiently small so that at least half of the zone of length S electrically influenced by the droplet Gc is contained in the effective length Le of the conductive element 8c.
  • the charged droplet Gc whose speed is to be measured is preceded downstream by at least n1 uncharged drops, where n1 checks the relationship: (n1 + 1)> (Le + R) / ⁇ or, taking into account (1) n1> (Le + R) / (5 ⁇ B) -1 approximately (6) This condition allows the charged drop to enter the speed detector 8 while the previously charged drops are far enough apart not to influence the measurement.
  • the number n2 of uncharged drops according to the drop used for the measurement of the speed checks for equality: (n2 + 1)> (Lt + Le - Lb) / ⁇ where Lt is the distance between the nozzle of the detection electrode 8c and Lb is the length of the jet J between the nozzle and the point of formation of the drops, these distances being shown in FIG. 2.
  • Condition (7) ensures that no drop is charged during the time that the detector 8 is influenced by the drop Gc used for the speed measurement. In fact, despite the shielding of the speed detection electrode 8c, it can be parasitized by the charging voltages applied to the charging electrode 6. It is moreover preferable, when charging the drops used for speed detection, to apply the charging voltage to the charging electrode for half, or less, the period of drop formation. This allows the drops to be loaded correctly, while minimizing interference from the measurement.
  • Le is the equivalent length of the electrode 8c, characteristic of the measurement obtained by calibration using another method of measurement of drop speed.
  • FIG. 5 A practical embodiment of the measurement is shown in Figs. 5 to 7.
  • a means of implementing the measurement of T2 - T1 is described in FIG. 7.
  • a count is triggered when simultaneously J (t) takes a negative value and I (t) is greater than a threshold + i o .
  • the counting is stopped when simultaneously J (t) takes a positive or zero value and I (t) is less than -i o .
  • the content of the counter then corresponds to the value T2 - T1 to be measured.
  • the representation of the digital processing is given by the diagrams of the digital signals F1, F2 and F3.
  • the counting lasts the time that the digital signal F3 is at the high logic level.
  • the digital signal F1 is at the high logic level when I (t) is greater than the threshold i o or less than the threshold -i o .
  • the digital signal F2 is at the high logic level when J (t) is positive or zero.
  • the signal F3 goes to the high logic level during the falling edge of F2, F1 being at 1.
  • F3 returns to zero during the
  • the method for measuring the speed of charged drops requires loading, and therefore deflecting, drops which are not useful for printing.
  • the drops loaded to perform the speed measurement are sufficiently light to be recovered by the gutter 11.
  • the linear density of charge ⁇ N on the electrode 8c of the detector 8 corresponds, in this case, to the sum of the contributions of the N charged drops of the train of drops (the case for three charged drops is represented in Fig. 8).
  • a variant of processing the measurement consists in counting the time elapsing between the instants corresponding to the rising edges of the logic signal F2 at the high level when J (t) is greater than a value J o or less than a value -J o , as shown in Fig. 9.
  • the signal is shaped using a suitable electrical circuit which makes it possible to overcome these drawbacks.
  • the electrical measurement circuit is described in more detail below, in relation to Figs. 10 and 11.
  • the processing of the signals necessary to carry out the measurement results in a shaping of the temporal variations of the electrical signals I (t), J (t).
  • the electric circuit for measuring the speed of drops 9 is schematically in the form described in FIG. 10.
  • the current I (t) resulting from the temporal variations of the electric charge Q (t) carried by the sensitive electrode 8c flows between this electrode and the ground through a resistor 12.
  • the voltage U (t) at the terminals of the resistor 12 is treated successively by a bypass then by filtering, giving a signal W (t).
  • the filtering solution adopted is a 5-fold filtering towards the high frequencies and of order 1 towards the low frequencies. This filtering towards high frequencies makes it possible in particular to eliminate in the processed signal W (t) the multiple zero crossing points present in the raw signal J (t), which result from the presence of several charged drops in the train of charged drops: compare J (t) in Fig. 9 and W (t) in FIG. 10.
  • the function of the circuit is to determine the difference of the two characteristic instants T2 and T1 corresponding to the zero crossings of the voltage W (t) of FIG. 10.
  • a preamplification of Q (t) is carried out using an amplifier with FET input 13 whose spectral density of input current noise is very low, of the order of 10 ⁇ 14 Amperes / ⁇ hertz .
  • the input resistor 12 determines a first derivation of the signal.
  • the components comprising the resistor 14 and the diodes 15 and 16 provide protection of the input.
  • the components comprising resistors 17, 18, 19 and the capacitors and 21 contribute to the filter function.
  • a capacitor 22 creates a second bypass of the signal.
  • the components comprising the resistors 23, 24, the capacitor 25 and the amplifier 26 constitute the continuation of the filter function.
  • a comparator 27 changes state by passing to a high level at its output when the first derivative of the charge of the electrode 8c exceeds an amplitude VL, determined by resistors 28 and 29.
  • the components comprising resistors 30 and 31 and diodes 32 and 33 adapt the output voltages of the comparators to the voltages of the logic circuits.
  • a comparator 34 changes state at its output at zero crossings of the voltage UH (t).
  • Resistors 35 and 36 create the shift.
  • a resistor 37 and a diode 38 create a voltage offset on W (t) in the waiting phase of the measurement, and a resistor 39 creates a voltage offset on W (t) in the measurement phase. It is necessary to use the "offset" function to prevent the comparators from changing state randomly at times when the amplitude of the load derivative is low, and to avoid bouncing of the logic signals in the search for zero crossings of the voltage UH (t).
  • the resistors 35, 36 and 39 are involved in the quality of the measurement, so the offset voltage generated must be sufficiently low and also distributed around the zero potential.
  • the measurement can only start if the voltage V (t) is sufficiently negative (-VL). Then, the signal E at the output of the comparator 27 is at the high level.
  • a flip-flop 40 has a high level on its input D. Via NAND gates 41 and 42, the level CL / goes to the high level and puts the flip-flop in operating state, the offset is reduced to that necessary for the measurement.
  • the flip-flop 40 copies the state present on the input D on the output QL, the output QL / takes the opposite state, ensuring the offset of the voltage UH (t) necessary for hysteresis during the measurement.
  • the instant T1 being thus defined, the counting of time begins. During the passage of the signal C at the low level, via the gates 41 and 42, an offset is defined for the measurement wait, the level CL / goes to the low level and puts the scale in frozen state with the output QL low. The QL / output takes the opposite state, ensuring the voltage offset UH (t) necessary during the measurement standby phase.
  • the instant T2 is thus defined. The time counting is stopped and the information T2 - T1 is made available to the computer.
  • Fig. 13 schematically represents the various mechanical and electrical elements constituting an ink jet printer, including a print head 1 and an ink supply circuit.
  • the various elements are also represented: sensors, electrical circuits, allowing the implementation of the ink quality control process, object of the present invention.
  • Fig. 13 illustrates in particular a print head 1 comprising a nozzle 2 making it possible to form a succession of droplets G, a charging electrode 6 and electrical means 7 making it possible to charge these droplets, a drop speed detector 8, deflection electrodes 10, and a gutter 11, already described in connection with FIG. 1.
  • An ink circuit comprises a constant ink flow generator 43, independent of variations in the environment, said generator 43 being hydraulically connected to the nozzle 2 by lines 44 and 45 in series, from a mixing tank 46 containing the ink intended for the nozzle.
  • Two tanks 47 and 48 respectively containing fresh ink and solvent are hydraulically connected to the tank 46, so as to adjust the quantities of ink and solvent of the latter.
  • a reservoir 49 contains the ink coming from the drops not used for printing and recovered in the gutter 11.
  • the constant flow generator 43 consists of a positive displacement pump 50 driven by a motor 51, a speed measuring device according to the invention, and a drop speed regulation circuit 52.
  • the positive displacement pump 50 may be a multifunction unit having a variable volume chamber, as described in the French patent application No. 2608225 in the name of the present applicant.
  • the drop speed regulation circuit 52 acts on the motor 51 driving the pump 50, so as to increase (or decrease) the flow rate of the pump 50, depending on whether the measured drop speed is lower (or higher) than a setpoint Vo.
  • a similar method drop of speed control is described in particular in US Patents No. 4,045,770 and US No. 4,063,252 for the case of a jet printer magnetic ink.
  • the generator 43 is connected to the nozzle 2 by a single line defined by the series of lines 44 and 45.
  • the regulation of the drop speed substantially amounts to regulating the flow of ink leaving the generator 43, circulating in the lines 44 and 45.
  • the height difference (zp - zj) is known (by construction or measurement on the site).
  • the pressure Pe * taking into account the difference in height, and defined below, then only depends on the characteristics (density and viscosity) of the ink circulating in the conduits (the pipe 45 and the nozzle 2) between the place of pressure measurement and the jet.
  • the viscosity ⁇ ink contributes to the pressure loss Pe * by the second term of the right member of the relation (11), which corresponds to a loss by friction; this depends (via the coefficient K2) on the diameter and lengths of the conduits located between the place of measurement of Pe * and the jet.
  • the pressure measurement Pe * then makes it possible, for a given type of ink and a nozzle, to control the quality of the ink circulating in the nozzle, immediately upstream from the place of formation of the drops.
  • the pressure Pe * measured using the principle described above results from a combined effect of the density ⁇ and the viscosity ⁇ of the ink flowing in the nozzle, as given by equation (12). These two parameters depend essentially on the solvent concentration in the ink and the temperature of the ink. They both decrease as the temperature of the ink increases and as the amount of solvent in the ink increases.
  • a nozzle 2 is preferably used, the slenderness (defined by the ratio of the length of the orifice to the diameter of the orifice) is at least equal to 1, in order to increase the value of the coefficient K2B in relation (12) and to obtain a measurement more sensitive to variations in ink quality, which mainly results from variations in viscosity.
  • the ink quality control device is schematically shown in FIG. 13.
  • a temperature sensor 54 is arranged in the ink circuit in order to carry out a temperature measurement representative of the temperature Te * of the ink at the nozzle.
  • the measurements of the pressure Pe * and of the temperature Te * of the ink are transmitted to a control circuit 55.
  • the latter according to a quality instruction of the ink to be maintained, which can in particular be defined by a curve Pe * (setpoint) -Te * as shown in FIG. 14, permanently regulates the quality of the ink by adding to the mixing tank 46 determined quantities of fresh ink coming from the tank 47, or of solvent coming from the tank 48, or of ink recycled to the gutter 11 coming from the tank 49, thanks to an action on one of the solenoid valves, respectively 56, 57 and 58.
  • the ink present in the fresh ink reservoir 47 is of a higher concentration than the nominal concentration of use.
  • the Pee curve characterizing the quality of this fresh ink as a function of temperature is shown in FIG. 14, as well as that of the solvent Pes.
  • the main advantages of using concentrated make-up ink are, on the one hand, a faster response time of the ink quality regulation and, on the other hand, a greater autonomy of the machine. in terms of new ink replenishment.
  • the positive displacement pump 50 consists of a variable volume chamber closed by a membrane, the latter being set in reciprocating motion by a motor of the stepping motor type.
  • the pump 50 continuously supplies the print head 1 with ink, through the mixing tank 46, the flow rate Qo being kept constant using of the regulating circuit 52.
  • the regulation of the quality of the ink is obtained by varying the opening times of the solenoid valves 56, 57 and 58, controlled by the regulating circuit 55.
  • the latter also functions d 'a sampled period period dt.
  • the regulation takes account, not only of the quality of the ink measured at the present moment, but of all the history of the ink quality measured from the moment the machine was started.
  • the ink quality control mode is then ensured as follows:
  • Fig. 13 also illustrates the operating diagram of the device for controlling the formation of drops, object of the invention.
  • the device implements the print head 1, comprising the nozzle 2, supplied by the ink circuit comprising the constant-flow generator 43.
  • the jet J coming from the nozzle 2, the speed of which is fixed (regulated), fragments at a distance Lb, Fig. 2, of the nozzle 2 in a succession of equidistant and equidimensional droplets G, under the action of the pressure disturbance applied by the resonator 4 placed upstream of the nozzle 2, and fed by the modulation circuit 5.
  • the circuit charge 7 cooperating with the charge electrode 6 makes it possible to charge the drops intended for printing.
  • an electrical circuit 59 measures a time of flight tv of the drops used for the speed measurement.
  • This flight time tv is defined by the duration between the instant of charge of these drops and the instant of detection of their passage at the input of the speed detector 8.
  • a chronogram of the operation of the detector 59 is presented in FIG. . 15.
  • the number of drops of the train used for speed detection being known (5 in Fig. 15)
  • a simple processing of the charge signals Vc (t) (the charge voltage Vc is applied to the charge electrode for half a drop period for the case shown in Fig. 15) and speed detection I (t), J (t) allows to obtain the time tv.
  • control means In the control means described above, all the parameters controlled are measured (or representative of the measurable values) at the level of the nozzle. This allows very precise regulation of the operation of the printer. The precision achievable by these control means allows their use in inkjet printers used for high quality marking applications. In general, it contributes to improving the quality of printing and the reliability of inkjet printers.
  • Example 1 Example 2
  • Example 3 f 125 kHz 83.33 kHz 62.5 kHz
  • Drop frequency R 0.6 mm 0.6 mm 0.6 mm
  • Detector length 8c Li 1 mm 1 mm 1.2mm Insulation length
  • Nozzle diameter Example 2
  • Example 3 f 125 kHz 83.33 kHz 62.5 kHz
  • Drop frequency R 0.6 mm 0.6 mm 0.6 mm
  • Electrode slot width L 2 mm 2 mm 2.8mm
  • Detector length 8c Li 1 mm 1 mm 1.2mm Insulation length
  • Effective length of 8c NOT 7 6 7 number of charged drops ⁇ B 40 ⁇ m 55 ⁇ m 70 ⁇ m

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Claims (18)

  1. Einrichtung für die Prüfung und die Regulierung einer Tinte und ihrer Handhabung in einem Drucker mit kontinuierlichem Tintenstrahl, in dem ein kontinuierlicher Tintenstrahl (J) aus einer Düse (2) austritt, mit:
    - Mitteln zur Fraktionierung (4, 5) des Strahls (J) in Tröpfchen (G), die gleiche Abstände und gleiche Abmessungen besitzen;
    - einer Aufladungselektrode (6), wo die Tröpfchen wahlweise elektrostatisch aufgeladen werden;
    - einem Detektor (8) für die Geschwindigkeit der aufgeladenen Tropfen;
    - Ablenkelektroden (10), wo die Tröpfchen (G) in Abhängigkeit von ihrer Ladung abgelenkt werden, dadurch gekennzeichnet, daß:
    - der Detektor (8) einzeln vorgesehen ist und ein mittiges Leiterelement (8c) mit der Länge (L) aufweist, das in zwei Teilen verwirklicht ist, die in bezug auf die Bahn der Tröpfchen (G) symmetrisch sind,
    und daß die Einrichtung darüber hinaus eine elektronische Schaltung zum Messen (9) der Geschwindigkeit der Tropfen aufweist, die versehen ist mit:
    - Mitteln zum Messen des Stroms I(t), der zwischen dem Detektor (8) und Masse fließt und der ersten zeitlichen Ableitung der Gesamtladung Q(t) entspricht, die in den Detektor durch eines oder mehrere aufgeladene Tröpfchen eingeleitet wird;
    - Mitteln für die Berechnung der zweiten zeitlichen Ableitung J(t) der Ladung Q(t);
    - Mitteln zum Verarbeiten der ersten Ableitung I(t) und der zweiten Ableitung J(t), die die Zeitpunkte T₁ und T₂ des Nulldurchgangs der Ableitung J(t) für einen ausreichenden Wert des Stroms I(t) bestimmen, die den Zeitpunkten des Eintritts bzw. des Austritts des oder der aufgeladenen Tröpfchen in den Detektor (8) bzw. aus dem Detektor (8) entsprechen;
    - Mitteln zum Berechnen der Geschindigkeit V der Tröpfchen anhand der Zeitpunkte T₁ und T₂ und der Länge (L) des Leiterelements (8c) des Detektors (8).
  2. Einrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Ladespannung an der Aufladungselektrode (6) nur während eines Teils des Zeitintervalls angelegt wird, in dem die für die Geschwindigkeitsmessung verwendeten Tröpfchen gebildet werden.
  3. Einrichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Ladespannung an der Aufladungselektrode (6) nur höchstens während des halben Zeitintervalls angelegt wird, in dem die für die Geschwindigkeitsmessung verwendeten Tröpfchen gebildet werden.
  4. Einrichtung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Leiterelement (8c) des Detektors (8) gegenüber dem Einfluß der äußeren elektrischen Ladungen durch ein Isolationselement (8i) mit der Gesamtlänge (Li), die entlang der Bahn der Tröpfchen gemessen wird, sowie durch eine Schutzelektrode (8e) geschützt ist, die mit Masse elektrisch verbunden ist.
  5. Einrichtung gemäß Anspruch 4, dadurch gekennzeichnet, daß das Leiterelement (8c) des Detektors (8), das die Länge (L) besitzt und bei dem der Abstand zwischen den beiden Teilen (R) ist, die folgende Bedingung erfüllt:

    R < Le
    Figure imgb0050


    wobei Le die Wirklänge des Detektors ist, die durch die Beziehung:

    Le = L + Li/2
    Figure imgb0051


    definiert ist.
  6. Einrichtung gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, daß sie ein Mittel zum Absondern eines der Ausführung einer Geschwindigkeitsmessung dienenden aufgeladenen Tröpfchens (Gc) von anderen aufgeladenen Tröpfchen aufweist, derart, daß dem aufgeladenen Tröpfchen (Gc) wenigstens n1 nicht aufgeladene Tröpfchen vorhergehen und wenigstens n2 nicht aufgeladene Tröpfchen folgen, wobei n1 und n2 die Beziehungen:

    ungefähr n1 > (Le + R)/(5 φB) - 1,
    Figure imgb0052

    ungefähr n2 > (Lt + Le - Lb)/(5 φB) - 1
    Figure imgb0053


    erfüllen, wobei φB der Durchmesser der Düse (2) ist,
    Lt der Abstand zwischen der Düse (2) und dem Eingang des Detektors (8) ist und Lb der Abstand zwischen der Düse (2) und dem Ort der Bildung der Tropfen (G) ist.
  7. Einrichtung gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, daß er ein Mittel zum Absondern einer Folge von N aufeinanderfolgenden, der Ausführung einer Geschwindigkeitsmessung dienenden aufgeladenen Tröpfchen von anderen aufgeladenen Tröpfchen aufweist, derart, daß der Folge von N aufeinanderfolgenden aufgeladenen Tröpfchen wenigstens n1 nicht aufgeladene Tröpfchen vorhergehen und wenigstens n2 nicht aufgeladene Tröpfchen folgen, wobei n1 und n2 die Beziehungen:

    n1 > ((Le + SN/2)/λ) - 1,
    Figure imgb0054

    n2 > ((Lt + Le - Lb)/λ) - 1/2 - N/2
    Figure imgb0055


    erfüllen, wobei λ der Abstand zwischen zwei aufeinanderfolgenden Tröpfchen ist und S die Länge der Zone ist, die durch einen aufgeladenen Tropfen (Gc) elektrisch beeinflußt wird.
  8. Einrichtung gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß dem Mittel zum Messen der Geschwindigkeit der Tröpfchen ein Mittel zum Steuern der Aufladung der für die Geschwindigkeitsmessung verwendeten Tröpfchen (Gc) zugeordnet ist, damit sie ausreichend wenig aufgeladen werden, um in der Rinne (11) des Druckers gesammelt zu werden.
  9. Einrichtung gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie ein Mittel zum Regulieren (52) der Geschwindigkeit der Tropfen aufweist, das auf einen Motor (51) einwirkt, der eine Pumpe (50) im Kreis für die Versorgung der Düse (2) mit Tinte antreibt, je nachdem, ob die gemessene Tropfengeschwindigkeit Kleiner (oder größer) als ein Schwellenwert (Vo) ist.
  10. Einrichtung gemäß Anspruch 9, dadurch gekennzeichnet, daß sie einen Meßwertaufnehmer für den Tintendruck (Pe*) in der Rohrleitung (44, 45) zwischen dem Generator für konstanten Tintendurchsatz (43), der von der Pumpe (50) und dem Motor (51) gebildet ist, und der Düse (2) direkt stromaufseitig zur Düse (2) aufweist, um aus einer bestimmten Betriebstemperatur und der Geschwindigkeit der Tropfen die Konzentration der Tinte in Abhängigkeit vom Druck abzuleiten.
  11. Einrichtung gemäß Anspruch 10, dadurch gekennzeichnet, daß die Rohrleitung zwischen dem Durchsatzgenerator (43) und der Düse (2) einen Durchmesser besitzt, der ungefähr zehnmal größer als der Durchmesser der Düse (2) ist.
  12. Einrichtung gemäß Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Verhältnis zwischen der Länge und dem Durchmesser der Mündung der Düse (2) wenigstens gleich 1 ist.
  13. Einrichtung gemäß einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß sie außerdem einen Temperaturmeßwertaufnehmer (54) aufweist, um eine für die Temperatur (Te*) der Tinte an der Düse (2) repräsentative Temperatur zu messen.
  14. Einrichtung gemäß Anspruch 13, dadurch gekennzeichnet, daß sie weiterhin ein Mittel (55) zum ununterbrochenen Regulieren der Qualität der Tinte in Abhängigkeit von den Messungen des Drucks (Pe*), der Temperatur (Te*) und einer Sollwert-Kurve des Drucks in Abhängigkeit von der Temperatur für eine gegebene Tropfengeschwindigkeit (Vo) aufweist.
  15. Einrichtung gemäß Anspruch 14, dadurch gekennzeichnet, daß die Regulierung der Qualität der Tinte in einem Mischungsbehälter (46) unter Rückgriff auf einen Behälter für frische Tinte (47), einen Lösungsmittel-Behälter (48) und einen Behälter (49) für in die Rinne (11) wiedereingeleitete Tinte ausgeführt wird, wobei das Regulierungsmittel (55) selektiv auf Elektroventile (56, 57, 58) einwirkt, die sich in den jeweiligen Leitungen zwischen den Behältern (47, 48, 49) einerseits und dem Behälter (46) andererseits befinden.
  16. Einrichtung gemäß Anspruch 15, dadurch gekennzeichnet, daß die Tinte im Behälter (47) eine Konzentration besitzt, die höher als der Betriebsnennwert ist.
  17. Einrichtung gemäß einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß das Regulierungsmittel (55) eine Verarbeitungsschaltung aufweist, die die Qualität der Tinte im momentanen Zeitpunkt und die Vorgeschichte der Qualität der Tinte seit dem Zeitpunkt des Einschaltens der Maschine berücksichtigt.
  18. Einrichtung gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß sie außerdem ein Mittel (59) aufweist, um den Abstand zwischen dem Ort der Bildung der Tropfen (G) und der Düse (2) zu bestimmen und um auf die Amplitude des Signals zur Erregung des Mittels (5), das der Bildung der Tropfen (G) dient, einzuwirken, damit der Abstand (Lb) in Abhängigkeit vom verwendeten Tintentyp und von der Qualität der zur Düse fließenden Tinte eine optimale Bildung der Tropfen gewährleistet.
EP89460031A 1988-09-29 1989-09-22 Tintensteuer- und -regelvorrichtung für einen kontinuierlich arbeitenden Tintenstrahldrucker Expired - Lifetime EP0362101B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89460031T ATE96736T1 (de) 1988-09-29 1989-09-22 Tintensteuer- und -regelvorrichtung fuer einen kontinuierlich arbeitenden tintenstrahldrucker.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812935 1988-09-29
FR8812935A FR2636884B1 (fr) 1988-09-29 1988-09-29 Dispositif de controle et de regulation d'une encre et de son traitement dans une imprimante a jet d'encre continu

Publications (2)

Publication Number Publication Date
EP0362101A1 EP0362101A1 (de) 1990-04-04
EP0362101B1 true EP0362101B1 (de) 1993-11-03

Family

ID=9370643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89460031A Expired - Lifetime EP0362101B1 (de) 1988-09-29 1989-09-22 Tintensteuer- und -regelvorrichtung für einen kontinuierlich arbeitenden Tintenstrahldrucker

Country Status (11)

Country Link
US (1) US5160939A (de)
EP (1) EP0362101B1 (de)
JP (1) JPH0667621B2 (de)
KR (1) KR900701538A (de)
AT (1) ATE96736T1 (de)
AU (1) AU615803B2 (de)
CA (1) CA1313972C (de)
DE (1) DE68910459T2 (de)
ES (1) ES2045529T3 (de)
FR (1) FR2636884B1 (de)
WO (1) WO1990003271A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012641A1 (en) 2009-07-30 2011-02-03 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
WO2011076810A1 (en) 2009-12-23 2011-06-30 Markem-Imaje Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8888209B2 (en) 2009-12-23 2014-11-18 Markem-Imaje System for determining the autonomy in consumable fluids of a continuous ink jet printer
US8998391B2 (en) 2011-02-11 2015-04-07 Markem-Imaje Method for stimulation range detection in a continuous ink jet printer

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396274A (en) * 1992-05-20 1995-03-07 Videojet Systems International, Inc. Variable frequency ink jet printer
US5517216A (en) * 1992-07-28 1996-05-14 Videojet Systems International, Inc. Ink jet printer employing time of flight control system for ink jet printers
FR2695704B1 (fr) * 1992-09-15 1994-10-14 Imaje Régulateur de pression pneumatique à commande électronique et procédé de régulation de pression d'un fluide utilisant un tel régulateur.
US5424766A (en) * 1993-11-08 1995-06-13 Videojet Systems International, Inc. Ink jet printer control system responsive to acoustical properties of ink
EP0668165B1 (de) * 1994-02-23 2000-12-27 Hewlett-Packard Company Verfahren zur Optimierung der Wirkungsweise eines Druckers
AU3186795A (en) * 1994-09-16 1996-03-29 Videojet Systems International, Inc. Continuous ink jet printing system for use with hot-melt inks
GB9610796D0 (en) 1996-05-23 1996-07-31 Videojet Systems Int Charged droplet position determining apparatus
US6402305B1 (en) 1997-10-17 2002-06-11 Eastman Kodak Company Method for preventing ink drop misdirection in an asymmetric heat-type ink jet printer
US5963235A (en) * 1997-10-17 1999-10-05 Eastman Kodak Company Continuous ink jet printer with micromechanical actuator drop deflection
US6254225B1 (en) 1997-10-17 2001-07-03 Eastman Kodak Company Continuous ink jet printer with asymmetric heating drop deflection
US6012805A (en) * 1997-10-17 2000-01-11 Eastman Kodak Company Continuous ink jet printer with variable contact drop deflection
US6079821A (en) * 1997-10-17 2000-06-27 Eastman Kodak Company Continuous ink jet printer with asymmetric heating drop deflection
US6509917B1 (en) 1997-10-17 2003-01-21 Eastman Kodak Company Continuous ink jet printer with binary electrostatic deflection
FR2801836B1 (fr) 1999-12-03 2002-02-01 Imaje Sa Imprimante a fabrication simplifiee et procede de realisation
US6655777B2 (en) 2001-07-18 2003-12-02 Lexmark International, Inc. Automatic horizontal and vertical head-to-head alignment method and sensor for an ink jet printer
US6631971B2 (en) 2001-07-18 2003-10-14 Lexmark International, Inc. Inkjet printer and method for use thereof
US6626513B2 (en) 2001-07-18 2003-09-30 Lexmark International, Inc. Ink detection circuit and sensor for an ink jet printer
US6843547B2 (en) 2001-07-18 2005-01-18 Lexmark International, Inc. Missing nozzle detection method and sensor for an ink jet printer
US6616261B2 (en) 2001-07-18 2003-09-09 Lexmark International, Inc. Automatic bi-directional alignment method and sensor for an ink jet printer
US6769756B2 (en) * 2001-07-25 2004-08-03 Hewlett-Packard Development Company, L.P. Ink drop detector configurations
US6883904B2 (en) * 2002-04-24 2005-04-26 Eastman Kodak Company Apparatus and method for maintaining constant drop volumes in a continuous stream ink jet printer
US7121642B2 (en) * 2002-08-07 2006-10-17 Osram Opto Semiconductors Gmbh Drop volume measurement and control for ink jet printing
US7131372B2 (en) * 2003-12-01 2006-11-07 Lockheed Martin Corporation Miniature fluid dispensing end-effector for geometrically constrained areas
ATE554118T1 (de) * 2005-05-02 2012-05-15 Cytec Surface Specialties Sa Strahlungshärtbares urethan (meth)-acrylatpolymer und damit formulierte haftmittel
FR2934809A1 (fr) * 2008-08-11 2010-02-12 Imaje Sa Dispositif d'impression a jet d'encre a injecteur d'air, injecteur d'air et tete d'impression grande largeur associes
FR2934810A1 (fr) * 2008-08-11 2010-02-12 Imaje Sa Dispositif d'impression a jet d'encre a compensation de vitesse de jet
FR2956061B1 (fr) 2010-02-11 2012-12-21 Markem Imaje Imprimante a jet d'encre industrielle a communication numerique
DE102011113664A1 (de) 2011-09-20 2013-03-21 Simaco GmbH Verfahren und Vorrichtung zur Homogenisierung von Tinte für Inkjet-Geräte
US9975326B2 (en) 2014-06-05 2018-05-22 Videojet Technologies Inc. Continuous ink jet print head with zero adjustment embedded charging electrode
WO2015187926A1 (en) 2014-06-05 2015-12-10 Videojet Technologies Inc. An ink buildup sensor arrangement
JP6768523B2 (ja) 2014-06-05 2020-10-14 ヴィデオジェット テクノロジーズ インコーポレイテッド 連続インクジェットプリンター用のフィルターモジュール及び連続インクジェットプリンター
FR3025454B1 (fr) 2014-09-04 2016-12-23 Markem-Imaje Holding Procede de gestion de la qualite de l'encre d'une imprimante a jet d'encre en fonction de la temperature.
FR3036650A1 (fr) * 2015-05-29 2016-12-02 Dover Europe Sarl Procede et dispositif de gestion de la qualite d'encre d'une imprimante a jet d'encre
FR3045459B1 (fr) * 2015-12-22 2020-06-12 Dover Europe Sarl Tete d'impression ou imprimante a jet d'encre a consommation de solvant reduite
FR3048199B1 (fr) * 2016-02-26 2019-09-06 Dover Europe Sarl Dispositif simplifie d'alimentation d'un circuit d'encre
FR3048200B1 (fr) 2016-02-26 2019-07-12 Dover Europe Sarl Procede et dispositif d'ajout de solvant par petites quantites
WO2018072809A1 (de) 2016-10-17 2018-04-26 Wacker Chemie Ag Verfahren zur herstellung von siliconelastomerteilen mit erhöhter druckqualität

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852768A (en) * 1973-08-17 1974-12-03 Ibm Charge detection for ink jet printers
JPS5519514A (en) * 1978-07-28 1980-02-12 Ricoh Co Ltd Method of detecting drop interval for charge deflecting ink-jet photoprinter
US4417256A (en) * 1980-05-09 1983-11-22 International Business Machines Corporation Break-off uniformity maintenance
US4323908A (en) * 1980-08-01 1982-04-06 International Business Machines Corp. Resonant purging of drop-on-demand ink jet print heads
EP0149739B1 (de) * 1984-01-20 1988-08-03 Codi-Jet Markierungs Systeme GmbH Verfahren und Anordnung für das Tintenzuführsystem eines Tintenstrahldruckers
JPS60255443A (ja) * 1984-06-01 1985-12-17 Ricoh Co Ltd 偏向制御インクジエツト記録装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 130 (M-478)[2187], 14 mai 1986, page 31; JP-A-60 255 443 (RICOH K.K.) 17-12-1985 *
PATENT ABSTRACTS OF JAPAN, vol. 4, no. 49 (M-7)[531], page 135; JP-A-55 19 514 (RICOH K.K.) 12-02-1980 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012641A1 (en) 2009-07-30 2011-02-03 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US8511802B2 (en) 2009-07-30 2013-08-20 Markem-Imaje Directly detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US8814330B2 (en) 2009-07-30 2014-08-26 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US9044941B2 (en) 2009-07-30 2015-06-02 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
WO2011076810A1 (en) 2009-12-23 2011-06-30 Markem-Imaje Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8888209B2 (en) 2009-12-23 2014-11-18 Markem-Imaje System for determining the autonomy in consumable fluids of a continuous ink jet printer
US9102157B2 (en) 2009-12-23 2015-08-11 Markem-Imaje Holding Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8998391B2 (en) 2011-02-11 2015-04-07 Markem-Imaje Method for stimulation range detection in a continuous ink jet printer

Also Published As

Publication number Publication date
ES2045529T3 (es) 1994-01-16
CA1313972C (fr) 1993-03-02
DE68910459D1 (de) 1993-12-09
FR2636884B1 (fr) 1990-11-02
FR2636884A1 (fr) 1990-03-30
KR900701538A (ko) 1990-12-03
EP0362101A1 (de) 1990-04-04
DE68910459T2 (de) 1994-03-03
JPH0667621B2 (ja) 1994-08-31
ATE96736T1 (de) 1993-11-15
AU4323689A (en) 1990-04-18
JPH02504375A (ja) 1990-12-13
AU615803B2 (en) 1991-10-10
US5160939A (en) 1992-11-03
WO1990003271A1 (fr) 1990-04-05

Similar Documents

Publication Publication Date Title
EP0362101B1 (de) Tintensteuer- und -regelvorrichtung für einen kontinuierlich arbeitenden Tintenstrahldrucker
EP0048689B1 (de) Quarzthermometer
FR3027669A1 (fr) Dispositif de mesure de niveau dans un reservoir
EP0108671B1 (de) Gerät zur Temperaturmessung und/oder elektrischen Intensitätsmessung mit dem Faraday-Effekt
EP1106371B1 (de) Drucker mit vereinfachtem Herstellungsverfahren und Herstellungsverfahren
WO2005070676A2 (fr) Imprimante a jet d’encre continu
FR2934810A1 (fr) Dispositif d&#39;impression a jet d&#39;encre a compensation de vitesse de jet
FR2678549A1 (fr) Procede et dispositif d&#39;impression haute-resolution dans une imprimante a jet d&#39;encre continu.
FR2906755A1 (fr) Impression par deflexion d&#39;un jet d&#39;encre par un champ variable.
FR2892052A1 (fr) Impression par deflexion differentielle de jet d&#39;encre
EP2167950B9 (de) Verfahren zur messung der schwellendicke einer schicht aus einem rein resistiven material, vorrichtung zur anwendung dieses verfahrens und verwendung besagter vorrichtung in einem auspuffrohr
CA2000016C (fr) Procede d&#39;impression haute resolution au moyen de gouttes d&#39;encre satellites, mis en oeuvre dans une imprimante a jet d&#39;encre continu
FR3049343A1 (fr) Dispositif de mesure de debit et de viscosite et son utilisation dans une imprimante
FR2499744A1 (fr) Dispositif d&#39;affichage matriciel comprenant deux familles d&#39;electrodes lignes et son procede de commande
FR2594541A1 (fr) Procede de controle du debit d&#39;un fluide dans une vanne et appareil pour la mise en oeuvre de ce procede
EP1934559B1 (de) Sensor und verfahren zur messung von position und geschwindigkeit
FR2765335A1 (fr) Procede et dispositif de suivi de consommation d&#39;un produit tel qu&#39;une encre, contenu dans un reservoir
FR2699281A1 (fr) Dispositif et méthode de caractérisation d&#39;un milieu comportant au moins une partie conductrice.
FR3059941A1 (fr) Procede et dispositif pour detection de la presence de jets
Kandaurova et al. Effect of a near-surface nanolayer formation on the magnetic fluid electrical properties
FR3060449A1 (fr) Procede et dispositif pour detection de la vitesse de jets
EP0124465A1 (de) Ladungskontrollvorrichtung und deren Verwendung zur Tintentropfengeschwindigkeitskontrolle eines Tintenstrahldruckers.
FR2971452A1 (fr) Nouveau procede de detection de plage de stimulation dans une imprimante a jet d&#39;encre continu
EP0349360B1 (de) Verfahren zur magnetischen Charakterisierung der Registrierungsschicht eines magnetischen Informationsträgers
FR2718680A1 (fr) Dispositif de modification de la tension d&#39;un ruban enroulé sur une bobine réceptrice en cas de collage du ruban sur un support à imprimer.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19900911

17Q First examination report despatched

Effective date: 19920408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931103

Ref country code: AT

Effective date: 19931103

REF Corresponds to:

Ref document number: 96736

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 68910459

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2045529

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89460031.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950912

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960930

Year of fee payment: 8

BERE Be: lapsed

Owner name: S.A. IMAJE

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990929

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010401

EUG Se: european patent has lapsed

Ref document number: 89460031.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010401

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040929

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050824

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080924

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090921