EP0362101B1 - Ink controlling and regulating device for a continuous ink jet printer - Google Patents

Ink controlling and regulating device for a continuous ink jet printer Download PDF

Info

Publication number
EP0362101B1
EP0362101B1 EP89460031A EP89460031A EP0362101B1 EP 0362101 B1 EP0362101 B1 EP 0362101B1 EP 89460031 A EP89460031 A EP 89460031A EP 89460031 A EP89460031 A EP 89460031A EP 0362101 B1 EP0362101 B1 EP 0362101B1
Authority
EP
European Patent Office
Prior art keywords
ink
droplets
nozzle
drops
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89460031A
Other languages
German (de)
French (fr)
Other versions
EP0362101A1 (en
Inventor
Paul Bajeux
Alain Dunand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Priority to AT89460031T priority Critical patent/ATE96736T1/en
Publication of EP0362101A1 publication Critical patent/EP0362101A1/en
Application granted granted Critical
Publication of EP0362101B1 publication Critical patent/EP0362101B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/195Ink jet characterised by ink handling for monitoring ink quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/125Sensors, e.g. deflection sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor

Definitions

  • the present invention relates to devices for controlling and regulating an ink and its processing in a continuous inkjet printer.
  • the ink-jet writing technique using a continuous jet of calibrated droplets, supplied by a modulation system, consists in electrostatically charging these droplets, by means of an appropriate electrode.
  • the passage of these variably charged drops between two electrodes brought to a large difference in electric potential leads to a deflection of the drops proportional to their charge. This deflection combined with the displacement of the support allows the matrix printing of characters or graphics on said support.
  • All the parameters conditioning the operation of the printer must be controlled so as to ensure the constant quality of the printing despite the inevitable variations in the environment.
  • the speed of the drops constitutes the most influential parameter on the print quality, because it conditions the passage time of the charged drops in the deflector electric field (and therefore the trajectory of the printed drops), but also the phenomenon of formation and electric charge of the drops in the charging electrode.
  • the quality of the ink is also a very influencing factor in the operation of printers for several reasons.
  • the physical properties of the ink condition the flow of the ink in the nozzle, as well as the physical process of formation of the drops.
  • the main factors leading to a variation in the physical properties of the ink are the evaporation of the solvent from the ink, on the one hand, and temperature variations, on the other hand.
  • the chemical properties of the ink which result from the concentrations of the various constituents of the ink, must be kept constant over time.
  • the dye concentration must be controlled so as to ensure consistency in the optical quality of the markings on the printed medium (optical density, color, etc.).
  • the quantity of resin present in the ink must be controlled because it conditions, in certain formulations, the electrical conductivity of the ink, and therefore the electrical charge of the drops.
  • the quantity of resin must be particularly controlled for applications where a physicochemical treatment is applied to the printed deposit in a phase simultaneous or subsequent to marking, such as crosslinking under ultraviolet rays, reaction under radiation, etc., in order to give it specific chemical resistance properties.
  • the process of formation and electrical charge of the drops also conditions the quality of the print.
  • a spectacular characteristic of printer malfunction linked to a defect in the drop formation process is the pollution of the deflection electrodes by small parasitic droplets commonly called satellite drops.
  • the process of formation and electric charge of the drops results from the interaction of complex hydrodynamic and electrical phenomena, still poorly described by theory.
  • the parameters influencing this process are linked both to the physicochemical properties of the ink and to the operating characteristics of the machine: geometry, jet speed, frequency and amplitude of modulation.
  • the object of the invention is to allow control and regulation of the parameters most influencing the print quality of an inkjet printer: speed of the drops, quality of the ink and process of formation and charging. drops.
  • an important object of the invention consists in providing control and regulation devices which are simple and compact, therefore suitable for compact inkjet printers.
  • Another important object of the invention consists in providing control and regulation devices which can be used reliably under severe and highly variable environmental conditions (temperature, humidity, ventilation), as well as with types of 'different ink.
  • the speed of the drops is measured by means of a single detector comprising a conductive element in two parts symmetrical with respect to the trajectory of the drops, said detector being located between the charging electrode and the electrodes of deflection.
  • the conductive element of the detector is connected to ground via a resistor across which is connected a processing circuit.
  • a charged drop, or a charged drop train induces a charge of opposite sign in the detector element, and this charge varies according to the position of the charged drop, or of the charged drop train, in the detector.
  • the processing of the first derivative I (t) and of the second derivative J (t) with respect to the time of the charge Q (t) makes it possible to determine the instants of entry and exit of the charged drop, or of the train of charged drops, in the detector and, consequently, its speed, the length of the detector being known.
  • the length of the detector is greater than the distance between its two symmetrical parts relative to the trajectory of the drops.
  • the functioning of most of the ink circuits of inkjet printing machines consists, on the one hand , to continuously measure the viscosity of the ink in the ink circuit using a viscometer and, on the other hand, to regulate the viscosity of the ink supplying by adding solvent or fresh ink the nozzle.
  • a description of an ink circuit operating according to this principle is given in particular in US Patent No. 4,628,329 in the name of the present applicant.
  • the incorporation of the viscometer function into the ink circuit significantly increases the complexity of its operation and generally leads to significant additional bulk.
  • the place of viscosity measurement is generally far from the print head.
  • the viscosity measured in the ink circuit may not be representative of the actual viscosity at the print head. This is especially true when the temperature instead of viscosity measurement is different from the temperature at the print head.
  • various temperature control solutions of the ink in the print head have been proposed, generally incorporating a heating element (see U.S. Patent No. 4,337,468 of RICOH or US No. 4403 227 from IBM), which increases the complexity and energy consumption of the printer.
  • Another object of the present invention is to measure the "quality of the ink" at the print head, without using a viscometer function proper.
  • This object is achieved, according to the invention, by combining the use of a device for measuring the speed of the drops, an electronic circuit and a device for supplying ink to the nozzle cooperating in regulating the speed of the drops, of an ink pressure measurement in the ink circuit associated with rules for sizing the hydraulic conduits.
  • Another object of the invention consists in measuring a temperature representative of the temperature of the ink at the nozzle, and in correcting the quality of the ink by adding solvents or fresh ink, according to a law which takes account of temperature.
  • the speed of the regulation of the quality of the ink is also planned to optimize the speed of the regulation of the quality of the ink, on the one hand by taking into account the time of flow and homogenization of the ink between the place of the additions. ink (or solvents) and the nozzle and, on the other hand, using an extra ink cartridge containing an ink whose concentration is higher than the nominal use value.
  • the pressurized ink is ejected by a nozzle in the form a jet which is caused to fragment into a series of droplets to which a charge is then applied selectively and which are directed towards the printing medium or towards a gutter.
  • Various methods can be used to control and synchronize the formation of droplets, consisting of vibrating the nozzle, or causing disturbances of the ink pressure at the nozzle by incorporating in particular a resonator excited by a piezoelectric ceramic upstream nozzle. Due to the disturbance, the jet fragments, at the frequency of the disturbance, into uniform droplets, often accompanied by smaller droplets called satellite droplets.
  • the means used to apply the electric charge chosen at each droplet generally include a charging circuit and an electrode surrounding the jet at the place of formation of the drop.
  • the electrostatic charge of the drop is then obtained by applying a voltage of amplitude Vc between a point of electrical contact with the ink and the charging electrode.
  • the charge Qg acquired by the drop then depends on the value of the charge voltage Vc at the time of the formation of the drop, on the electric capacity Cg of the droplet formation / charge electrode assembly, and on the ratio of the period of droplet formation at the electrical characteristic time of the jet / electrode assembly, defined by Rj.Cj where Rj is the equivalent electrical resistance of the jet between the nozzle and the drop in formation, and Cj is the electrical capacity of the jet assembly /electrode.
  • the parameters Rj, Cj, Cg are in particular influenced by the shape of the jet during the period of formation and charge of the drop.
  • the electrical resistance of the jet Rj also depends on the electrical conductivity of the ink, which itself generally depends on the concentration and the temperature of the ink.
  • control and regulate the process of formation and charging of the drops by simultaneously regulating the speed of the drops, the quality of the ink, and the place of separation of the drops from the jet.
  • Control of the place of separation of the drops from the jet is obtained by controlling the time of flight of the drops between the place of charge of the drops and the position of the drop speed detector.
  • Regulation of the place of separation of the drops is obtained by modifying the amplitude of excitation of the resonator so as to maintain the place of separation of the drops at a place called operating point, which depends on the quality of the ink measured at the nozzle.
  • Fig. 1 illustrates the main mechanical and electrical elements of an ink jet print head 1 of the continuous jet type. It has in particular a nozzle 2 supplied with ink under pressure by an ink circuit 3 and creating a continuous jet J. Under the influence of the vibration of a resonator 4 supplied by a modulation circuit 5, the continuous jet J splits in the center of a charge electrode 6 into a continuous sequence of Equidistant and equidimensional G droplets.
  • the charging electrode 6 is connected to a charging circuit 7.
  • the drops G driven by a speed V substantially equal to the average speed of the liquid in the jet J, then pass through a detector 8 used as phase detector and jet speed, and connected to an electric drop speed detection circuit 9.
  • the charged drops are then deflected by a constant electric field maintained between deflection electrodes 10.
  • the uncharged or lightly charged drops are recovered by a gutter 11 , while the others continue their flight to a recording medium, not shown.
  • the drops recovered by the gutter 11 are recycled to the ink circuit 3.
  • Fig. 2 schematically illustrates the charged drop speed detection electrode 8, placed immediately downstream of the drop formation and charging site.
  • the speed detection electrode 8 comprises a central conducting element 8c, preferably protected from the influence of external electric charges (present on the charging electrode 6 in particular), thanks to a thickness d insulator 8i and to an external conductive element 8e, said guard electrode, electrically connected to ground.
  • the detector 8 has a plane symmetry and the drops G move in the axis of a slot made along the axis of symmetry of the detector.
  • any other configuration of the symmetrical detector with respect to the axis of the trajectory of the drops G may be suitable.
  • the droplets G have a substantially uniform translation speed V in the detector, and oriented along the axis of the detector.
  • the charged droplet Gc is shown in dark color and the other uncharged droplets located upstream and downstream are shown in clear.
  • V / f .
  • the proximity of the charged drop Gc leads by electrostatic influence to the appearance of electric charges of opposite sign on the surface of the detector (charges represented by signs + in Figs. 3a to 3d).
  • the quantity of electric charges present on the detector varies according to the axial distance x. If the influence of the insulator 8i is neglected, this amount of charge can be represented in the form of a linear charge density ⁇ (x) given diagrammatically on the ordinate for different positions x1 to x4 of the charged drop Gc.
  • the linear charge density can be approximated mathematically by the function:
  • the linear charge density curve is symmetrical with respect to the position x i of the drop.
  • the electric charges induced by the droplet on the detector are more concentrated near the drop and practically nonexistent at a long distance from the drop.
  • Q corresponds to the hatched areas in Figs. 3a to 3d.
  • Q varies with the position x of the drop in the detection electrode 8c.
  • the dimensions of the detection electrode 8c verify the relationship: S / 2 ⁇ Le, either, according to (3) R ⁇ The (5) This corresponds to a width R of the slot sufficiently small so that at least half of the zone of length S electrically influenced by the droplet Gc is contained in the effective length Le of the conductive element 8c.
  • the charged droplet Gc whose speed is to be measured is preceded downstream by at least n1 uncharged drops, where n1 checks the relationship: (n1 + 1)> (Le + R) / ⁇ or, taking into account (1) n1> (Le + R) / (5 ⁇ B) -1 approximately (6) This condition allows the charged drop to enter the speed detector 8 while the previously charged drops are far enough apart not to influence the measurement.
  • the number n2 of uncharged drops according to the drop used for the measurement of the speed checks for equality: (n2 + 1)> (Lt + Le - Lb) / ⁇ where Lt is the distance between the nozzle of the detection electrode 8c and Lb is the length of the jet J between the nozzle and the point of formation of the drops, these distances being shown in FIG. 2.
  • Condition (7) ensures that no drop is charged during the time that the detector 8 is influenced by the drop Gc used for the speed measurement. In fact, despite the shielding of the speed detection electrode 8c, it can be parasitized by the charging voltages applied to the charging electrode 6. It is moreover preferable, when charging the drops used for speed detection, to apply the charging voltage to the charging electrode for half, or less, the period of drop formation. This allows the drops to be loaded correctly, while minimizing interference from the measurement.
  • Le is the equivalent length of the electrode 8c, characteristic of the measurement obtained by calibration using another method of measurement of drop speed.
  • FIG. 5 A practical embodiment of the measurement is shown in Figs. 5 to 7.
  • a means of implementing the measurement of T2 - T1 is described in FIG. 7.
  • a count is triggered when simultaneously J (t) takes a negative value and I (t) is greater than a threshold + i o .
  • the counting is stopped when simultaneously J (t) takes a positive or zero value and I (t) is less than -i o .
  • the content of the counter then corresponds to the value T2 - T1 to be measured.
  • the representation of the digital processing is given by the diagrams of the digital signals F1, F2 and F3.
  • the counting lasts the time that the digital signal F3 is at the high logic level.
  • the digital signal F1 is at the high logic level when I (t) is greater than the threshold i o or less than the threshold -i o .
  • the digital signal F2 is at the high logic level when J (t) is positive or zero.
  • the signal F3 goes to the high logic level during the falling edge of F2, F1 being at 1.
  • F3 returns to zero during the
  • the method for measuring the speed of charged drops requires loading, and therefore deflecting, drops which are not useful for printing.
  • the drops loaded to perform the speed measurement are sufficiently light to be recovered by the gutter 11.
  • the linear density of charge ⁇ N on the electrode 8c of the detector 8 corresponds, in this case, to the sum of the contributions of the N charged drops of the train of drops (the case for three charged drops is represented in Fig. 8).
  • a variant of processing the measurement consists in counting the time elapsing between the instants corresponding to the rising edges of the logic signal F2 at the high level when J (t) is greater than a value J o or less than a value -J o , as shown in Fig. 9.
  • the signal is shaped using a suitable electrical circuit which makes it possible to overcome these drawbacks.
  • the electrical measurement circuit is described in more detail below, in relation to Figs. 10 and 11.
  • the processing of the signals necessary to carry out the measurement results in a shaping of the temporal variations of the electrical signals I (t), J (t).
  • the electric circuit for measuring the speed of drops 9 is schematically in the form described in FIG. 10.
  • the current I (t) resulting from the temporal variations of the electric charge Q (t) carried by the sensitive electrode 8c flows between this electrode and the ground through a resistor 12.
  • the voltage U (t) at the terminals of the resistor 12 is treated successively by a bypass then by filtering, giving a signal W (t).
  • the filtering solution adopted is a 5-fold filtering towards the high frequencies and of order 1 towards the low frequencies. This filtering towards high frequencies makes it possible in particular to eliminate in the processed signal W (t) the multiple zero crossing points present in the raw signal J (t), which result from the presence of several charged drops in the train of charged drops: compare J (t) in Fig. 9 and W (t) in FIG. 10.
  • the function of the circuit is to determine the difference of the two characteristic instants T2 and T1 corresponding to the zero crossings of the voltage W (t) of FIG. 10.
  • a preamplification of Q (t) is carried out using an amplifier with FET input 13 whose spectral density of input current noise is very low, of the order of 10 ⁇ 14 Amperes / ⁇ hertz .
  • the input resistor 12 determines a first derivation of the signal.
  • the components comprising the resistor 14 and the diodes 15 and 16 provide protection of the input.
  • the components comprising resistors 17, 18, 19 and the capacitors and 21 contribute to the filter function.
  • a capacitor 22 creates a second bypass of the signal.
  • the components comprising the resistors 23, 24, the capacitor 25 and the amplifier 26 constitute the continuation of the filter function.
  • a comparator 27 changes state by passing to a high level at its output when the first derivative of the charge of the electrode 8c exceeds an amplitude VL, determined by resistors 28 and 29.
  • the components comprising resistors 30 and 31 and diodes 32 and 33 adapt the output voltages of the comparators to the voltages of the logic circuits.
  • a comparator 34 changes state at its output at zero crossings of the voltage UH (t).
  • Resistors 35 and 36 create the shift.
  • a resistor 37 and a diode 38 create a voltage offset on W (t) in the waiting phase of the measurement, and a resistor 39 creates a voltage offset on W (t) in the measurement phase. It is necessary to use the "offset" function to prevent the comparators from changing state randomly at times when the amplitude of the load derivative is low, and to avoid bouncing of the logic signals in the search for zero crossings of the voltage UH (t).
  • the resistors 35, 36 and 39 are involved in the quality of the measurement, so the offset voltage generated must be sufficiently low and also distributed around the zero potential.
  • the measurement can only start if the voltage V (t) is sufficiently negative (-VL). Then, the signal E at the output of the comparator 27 is at the high level.
  • a flip-flop 40 has a high level on its input D. Via NAND gates 41 and 42, the level CL / goes to the high level and puts the flip-flop in operating state, the offset is reduced to that necessary for the measurement.
  • the flip-flop 40 copies the state present on the input D on the output QL, the output QL / takes the opposite state, ensuring the offset of the voltage UH (t) necessary for hysteresis during the measurement.
  • the instant T1 being thus defined, the counting of time begins. During the passage of the signal C at the low level, via the gates 41 and 42, an offset is defined for the measurement wait, the level CL / goes to the low level and puts the scale in frozen state with the output QL low. The QL / output takes the opposite state, ensuring the voltage offset UH (t) necessary during the measurement standby phase.
  • the instant T2 is thus defined. The time counting is stopped and the information T2 - T1 is made available to the computer.
  • Fig. 13 schematically represents the various mechanical and electrical elements constituting an ink jet printer, including a print head 1 and an ink supply circuit.
  • the various elements are also represented: sensors, electrical circuits, allowing the implementation of the ink quality control process, object of the present invention.
  • Fig. 13 illustrates in particular a print head 1 comprising a nozzle 2 making it possible to form a succession of droplets G, a charging electrode 6 and electrical means 7 making it possible to charge these droplets, a drop speed detector 8, deflection electrodes 10, and a gutter 11, already described in connection with FIG. 1.
  • An ink circuit comprises a constant ink flow generator 43, independent of variations in the environment, said generator 43 being hydraulically connected to the nozzle 2 by lines 44 and 45 in series, from a mixing tank 46 containing the ink intended for the nozzle.
  • Two tanks 47 and 48 respectively containing fresh ink and solvent are hydraulically connected to the tank 46, so as to adjust the quantities of ink and solvent of the latter.
  • a reservoir 49 contains the ink coming from the drops not used for printing and recovered in the gutter 11.
  • the constant flow generator 43 consists of a positive displacement pump 50 driven by a motor 51, a speed measuring device according to the invention, and a drop speed regulation circuit 52.
  • the positive displacement pump 50 may be a multifunction unit having a variable volume chamber, as described in the French patent application No. 2608225 in the name of the present applicant.
  • the drop speed regulation circuit 52 acts on the motor 51 driving the pump 50, so as to increase (or decrease) the flow rate of the pump 50, depending on whether the measured drop speed is lower (or higher) than a setpoint Vo.
  • a similar method drop of speed control is described in particular in US Patents No. 4,045,770 and US No. 4,063,252 for the case of a jet printer magnetic ink.
  • the generator 43 is connected to the nozzle 2 by a single line defined by the series of lines 44 and 45.
  • the regulation of the drop speed substantially amounts to regulating the flow of ink leaving the generator 43, circulating in the lines 44 and 45.
  • the height difference (zp - zj) is known (by construction or measurement on the site).
  • the pressure Pe * taking into account the difference in height, and defined below, then only depends on the characteristics (density and viscosity) of the ink circulating in the conduits (the pipe 45 and the nozzle 2) between the place of pressure measurement and the jet.
  • the viscosity ⁇ ink contributes to the pressure loss Pe * by the second term of the right member of the relation (11), which corresponds to a loss by friction; this depends (via the coefficient K2) on the diameter and lengths of the conduits located between the place of measurement of Pe * and the jet.
  • the pressure measurement Pe * then makes it possible, for a given type of ink and a nozzle, to control the quality of the ink circulating in the nozzle, immediately upstream from the place of formation of the drops.
  • the pressure Pe * measured using the principle described above results from a combined effect of the density ⁇ and the viscosity ⁇ of the ink flowing in the nozzle, as given by equation (12). These two parameters depend essentially on the solvent concentration in the ink and the temperature of the ink. They both decrease as the temperature of the ink increases and as the amount of solvent in the ink increases.
  • a nozzle 2 is preferably used, the slenderness (defined by the ratio of the length of the orifice to the diameter of the orifice) is at least equal to 1, in order to increase the value of the coefficient K2B in relation (12) and to obtain a measurement more sensitive to variations in ink quality, which mainly results from variations in viscosity.
  • the ink quality control device is schematically shown in FIG. 13.
  • a temperature sensor 54 is arranged in the ink circuit in order to carry out a temperature measurement representative of the temperature Te * of the ink at the nozzle.
  • the measurements of the pressure Pe * and of the temperature Te * of the ink are transmitted to a control circuit 55.
  • the latter according to a quality instruction of the ink to be maintained, which can in particular be defined by a curve Pe * (setpoint) -Te * as shown in FIG. 14, permanently regulates the quality of the ink by adding to the mixing tank 46 determined quantities of fresh ink coming from the tank 47, or of solvent coming from the tank 48, or of ink recycled to the gutter 11 coming from the tank 49, thanks to an action on one of the solenoid valves, respectively 56, 57 and 58.
  • the ink present in the fresh ink reservoir 47 is of a higher concentration than the nominal concentration of use.
  • the Pee curve characterizing the quality of this fresh ink as a function of temperature is shown in FIG. 14, as well as that of the solvent Pes.
  • the main advantages of using concentrated make-up ink are, on the one hand, a faster response time of the ink quality regulation and, on the other hand, a greater autonomy of the machine. in terms of new ink replenishment.
  • the positive displacement pump 50 consists of a variable volume chamber closed by a membrane, the latter being set in reciprocating motion by a motor of the stepping motor type.
  • the pump 50 continuously supplies the print head 1 with ink, through the mixing tank 46, the flow rate Qo being kept constant using of the regulating circuit 52.
  • the regulation of the quality of the ink is obtained by varying the opening times of the solenoid valves 56, 57 and 58, controlled by the regulating circuit 55.
  • the latter also functions d 'a sampled period period dt.
  • the regulation takes account, not only of the quality of the ink measured at the present moment, but of all the history of the ink quality measured from the moment the machine was started.
  • the ink quality control mode is then ensured as follows:
  • Fig. 13 also illustrates the operating diagram of the device for controlling the formation of drops, object of the invention.
  • the device implements the print head 1, comprising the nozzle 2, supplied by the ink circuit comprising the constant-flow generator 43.
  • the jet J coming from the nozzle 2, the speed of which is fixed (regulated), fragments at a distance Lb, Fig. 2, of the nozzle 2 in a succession of equidistant and equidimensional droplets G, under the action of the pressure disturbance applied by the resonator 4 placed upstream of the nozzle 2, and fed by the modulation circuit 5.
  • the circuit charge 7 cooperating with the charge electrode 6 makes it possible to charge the drops intended for printing.
  • an electrical circuit 59 measures a time of flight tv of the drops used for the speed measurement.
  • This flight time tv is defined by the duration between the instant of charge of these drops and the instant of detection of their passage at the input of the speed detector 8.
  • a chronogram of the operation of the detector 59 is presented in FIG. . 15.
  • the number of drops of the train used for speed detection being known (5 in Fig. 15)
  • a simple processing of the charge signals Vc (t) (the charge voltage Vc is applied to the charge electrode for half a drop period for the case shown in Fig. 15) and speed detection I (t), J (t) allows to obtain the time tv.
  • control means In the control means described above, all the parameters controlled are measured (or representative of the measurable values) at the level of the nozzle. This allows very precise regulation of the operation of the printer. The precision achievable by these control means allows their use in inkjet printers used for high quality marking applications. In general, it contributes to improving the quality of printing and the reliability of inkjet printers.
  • Example 1 Example 2
  • Example 3 f 125 kHz 83.33 kHz 62.5 kHz
  • Drop frequency R 0.6 mm 0.6 mm 0.6 mm
  • Detector length 8c Li 1 mm 1 mm 1.2mm Insulation length
  • Nozzle diameter Example 2
  • Example 3 f 125 kHz 83.33 kHz 62.5 kHz
  • Drop frequency R 0.6 mm 0.6 mm 0.6 mm
  • Electrode slot width L 2 mm 2 mm 2.8mm
  • Detector length 8c Li 1 mm 1 mm 1.2mm Insulation length
  • Effective length of 8c NOT 7 6 7 number of charged drops ⁇ B 40 ⁇ m 55 ⁇ m 70 ⁇ m

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

PCT No. PCT/FR89/00484 Sec. 371 Date May 17, 1990 Sec. 102(e) Date May 17, 1990 PCT Filed Sep. 11, 1989 PCT Pub. No. WO90/03271 PCT Pub. Date Apr. 5, 1990.A device for controlling and regulating a continuous ink jet printer wherein a jet (J) is fractionated into droplets charged in a charge electrode (6) and which then pass between deflection electrodes, a sensor (8) is provided which includes a conductor element (8c) having two parts which are symmetrical with respect to the trajectory of the droplets. The device includes a circuit (9) which determines and processes the first I(t) and second J(t) derivatives with respect to the time of the charge induced in the conductor element (8c) by charged droplets (Gc) in order to determine their speed. The device includes means for regulating the speed of droplets and means for regulating the ink quality.

Description

La présente invention concerne des dispositifs de contrôle et de régulation d'une encre et de son traitement dans une imprimante à jet d'encre continu.The present invention relates to devices for controlling and regulating an ink and its processing in a continuous inkjet printer.

La technique d'écriture par projection d'encre utilisant un jet continu de gouttelettes calibrées, fournies par un système de modulation, consiste à charger électrostatiquement ces gouttelettes, au moyen d'une électrode appropriée. Le passage de ces gouttes chargées de manière variable entre deux électrodes portées à une forte différence de potentiel électrique conduit à une déflexion des gouttes proportionnelle à leur charge. Cette déflexion combinée avec le déplacement du support permet l'impression matricielle de caractères ou de graphismes sur ledit support.The ink-jet writing technique using a continuous jet of calibrated droplets, supplied by a modulation system, consists in electrostatically charging these droplets, by means of an appropriate electrode. The passage of these variably charged drops between two electrodes brought to a large difference in electric potential leads to a deflection of the drops proportional to their charge. This deflection combined with the displacement of the support allows the matrix printing of characters or graphics on said support.

L'ensemble des paramètres conditionnant le fonctionnement de l'imprimante doit être contrôlé de manière à assurer la qualité constante de l'impression malgré les variations inévitables de l'environnement.All the parameters conditioning the operation of the printer must be controlled so as to ensure the constant quality of the printing despite the inevitable variations in the environment.

La vitesse des gouttes constitue le paramètre le plus influent sur la qualité d'impression, car elle conditionne le temps de passage des gouttes chargées dans le champ électrique déflecteur (et donc la trajectoire des gouttes imprimées), mais aussi le phénomène de formation et de charge électrique des gouttes dans l'électrode de charge.The speed of the drops constitutes the most influential parameter on the print quality, because it conditions the passage time of the charged drops in the deflector electric field (and therefore the trajectory of the printed drops), but also the phenomenon of formation and electric charge of the drops in the charging electrode.

La qualité de l'encre constitue également un facteur très influent sur le fonctionnement des imprimantes pour plusieurs raisons.The quality of the ink is also a very influencing factor in the operation of printers for several reasons.

En premier lieu, les propriétés physiques de l'encre (viscosité, densité, tension superficielle) conditionnent l'écoulement de l'encre dans la buse, ainsi que le processus physique de formation des gouttes. Les principaux facteurs conduisant à une variation des propriétés physiques de l'encre sont l'évaporation du solvant de l'encre, d'une part, et les variations de température, d'autre part.First, the physical properties of the ink (viscosity, density, surface tension) condition the flow of the ink in the nozzle, as well as the physical process of formation of the drops. The main factors leading to a variation in the physical properties of the ink are the evaporation of the solvent from the ink, on the one hand, and temperature variations, on the other hand.

En second lieu, les propriétés chimiques de l'encre, qui résultent des concentrations des différents constituants de l'encre doivent être maintenues constantes dans le temps. La concentration en colorant doit être contrôlée de manière à assurer une constance de la qualité optique des marquages sur le support imprimé (densité optique, couleur, etc.). La quantité de résine présente dans l'encre doit être contrôlée car elle conditionne, dans certaines formulations, la conductivité électrique de l'encre, et donc la charge électrique des gouttes. La quantité de résine doit être particulièrement contrôlée pour les applications où un traitement physico-chimique est appliqué au dépôt imprimé dans une phase simultanée ou ultérieure au marquage, tel qu'une réticulation sous rayons ultra-violets, une réaction sous rayonnement, etc., en vue de lui conférer des propriétés de résistance chimique particulières.Secondly, the chemical properties of the ink, which result from the concentrations of the various constituents of the ink, must be kept constant over time. The dye concentration must be controlled so as to ensure consistency in the optical quality of the markings on the printed medium (optical density, color, etc.). The quantity of resin present in the ink must be controlled because it conditions, in certain formulations, the electrical conductivity of the ink, and therefore the electrical charge of the drops. The quantity of resin must be particularly controlled for applications where a physicochemical treatment is applied to the printed deposit in a phase simultaneous or subsequent to marking, such as crosslinking under ultraviolet rays, reaction under radiation, etc., in order to give it specific chemical resistance properties.

Le processus de formation et de charge électrique des gouttes conditionne également la qualité de l'impression. Une caractéristique spectaculaire de disfonctionnement d'une imprimante lié à un défaut dans le processus de formation des gouttes est la pollution des électrodes de déflexion par des petites gouttelettes parasites communément appelées gouttes satellites. Le processus de formation et de charge électrique des gouttes résulte de l'interaction de phénomènes hydrodynamiques et électriques complexes, encore mal décrits par la théorie. Les paramètres influents sur ce processus sont liés à la fois aux propriétés physico-chimiques de l'encre et aux caractéristiques de fonctionnement de la machine : géométrie, vitesse de jet, fréquence et amplitude de modulation.The process of formation and electrical charge of the drops also conditions the quality of the print. A spectacular characteristic of printer malfunction linked to a defect in the drop formation process is the pollution of the deflection electrodes by small parasitic droplets commonly called satellite drops. The process of formation and electric charge of the drops results from the interaction of complex hydrodynamic and electrical phenomena, still poorly described by theory. The parameters influencing this process are linked both to the physicochemical properties of the ink and to the operating characteristics of the machine: geometry, jet speed, frequency and amplitude of modulation.

L'invention a pour but de permettre un contrôle et une régulation des paramètres les plus influents sur la qualité d'impression d'une imprimante à jet d'encre : vitesse des gouttes, qualité de l'encre et processus de formation et de charge des gouttes.The object of the invention is to allow control and regulation of the parameters most influencing the print quality of an inkjet printer: speed of the drops, quality of the ink and process of formation and charging. drops.

Plus particulièrement, un objet important de l'invention consiste à prévoir des dispositifs de contrôle et de régulation qui soient simples et peu encombrants, donc adaptés aux imprimantes à jet d'encre compactes.More particularly, an important object of the invention consists in providing control and regulation devices which are simple and compact, therefore suitable for compact inkjet printers.

Un autre objet important de l'invention consiste à prévoir des dispositifs de contrôle et de régulation qui soient utilisables de façon fiable dans des conditions sévères et très variables de l'environnement (température, humidité, ventilation), ainsi qu'avec des types d'encre différents.Another important object of the invention consists in providing control and regulation devices which can be used reliably under severe and highly variable environmental conditions (temperature, humidity, ventilation), as well as with types of 'different ink.

Un domaine d'application particulièrement visé par la présente invention est le domaine du marquage industriel, où les conditions d'environnement sont très différentes et très variables dans le temps :

  • températures ambiantes très différentes selon l'activité industrielle et grandes amplitudes de variations de cette température (impression en chambre froide, impression en extérieur);
  • utilisation de solvants très volatils (méthyléthylcétone, alcools, etc.), dont l'évaporation est très dépendante de l'environnement (température, ventilation, etc.);
  • utilisation de formulations d'encre très différentes, généralement choisies en fonction de la nature du support à imprimer (papier, métal, verre, matières plastiques, etc.)
A field of application particularly targeted by the present invention is the field of industrial marking, where the environmental conditions are very different and very variable over time:
  • very different ambient temperatures depending on industrial activity and large amplitudes of variations of this temperature (printing in a cold room, printing outside);
  • use of highly volatile solvents (methyl ethyl ketone, alcohols, etc.), the evaporation of which is very dependent on the environment (temperature, ventilation, etc.);
  • use of very different ink formulations, generally chosen according to the nature of the medium to be printed (paper, metal, glass, plastics, etc.)

Divers dispositifs ont été mis au point, qui permettent un contrôle et une régulation des paramètres les plus influents sur la qualité d'impression d'une imprimante à jet d'encre.Various devices have been developed which allow control and regulation of the parameters most influencing the print quality of an inkjet printer.

Concernant la vitesse des gouttes, dans les imprimantes électrostatiques, c'est-à-dire les imprimantes utilisant des gouttes chargées électrostatiquement, un élément conducteur permet de détecter la proximité des gouttes chargées. Dans le brevet US no 3 836 912, il est décrit une méthode de détection de gouttes chargées à l'aide d'un tel dispositif. Par ailleurs, dans les brevets US no 3 852 768 et JP 55 19514, l'imprimante utilise deux détecteurs inductifs distincts placés le long de la trajectoire de gouttes chargées, et la mesure de vitesse associée, donnée par la différence entre les temps de passage de ces gouttes en regard des détecteurs. Dans EP-A-0 124 465 au nom de la présente demanderesse, un mode de réalisation particulier d'un système de détection est décrit, dans lequel les deux détecteurs inductifs sont intégrés dans une seule électrode de détection, fendue, et placée dans l'axe de la trajectoire des gouttes.Concerning the speed of the drops, in electrostatic printers, that is to say printers using electrostatically charged drops, a conductive element makes it possible to detect the proximity of the charged drops. In US Patent No. 3,836,912, described a method of detecting charged drops using such a device. Furthermore, in US Patent No. 3,852,768 and JP 55 19 514, the printer uses two separate inductive sensors positioned along the path of drops charged, and measuring speed associated, given by the difference between the time passage of these drops opposite the detectors. In EP-A-0 124 465 in the name of the present applicant, a particular embodiment of a detection system is described, in which the two inductive detectors are integrated in a single detection electrode, split, and placed in the axis of the trajectory of the drops.

D'une manière générale, la plupart des inventions portant sur l'utilisation de détecteurs inductifs pour mesurer la vitesse de gouttes chargées mentionnent la nécessité d'utiliser au moins deux détecteurs. L'inconvénient majeur de ces dispositifs à double détecteurs réside dans leur encombrement.In general, most of the inventions relating to the use of inductive detectors to measure the speed of charged drops mention the need to use at least two detectors. The major drawback of these dual detector devices lies in their size.

On trouve dans le brevet US no 4 612 553 une description relative à l'utilisation d'un seul détecteur inductif pour mesurer la vitesse de gouttes chargées. Cependant, dans ce brevet, il n'est fait aucune mention des conditions portant sur la taille du détecteur et nécessaires à la mise en oeuvre du procédé. En outre, peu de précisions concernent le circuit de traitement du signal associé. Il est mentionné que ce dernier fournit une fréquence de signal alternatif "presque proportionnelle" à la vitesse des gouttes.Found in U.S. Patent No. 4,612,553 a description on the use of a single inductive sensor for measuring the speed of charged drops. However, in this patent, no mention is made of the conditions relating to the size of the detector and necessary for the implementation of the method. In addition, few details relate to the associated signal processing circuit. It is mentioned that the latter provides an alternating signal frequency "almost proportional" to the speed of the drops.

Selon l'invention, la vitesse des gouttes est mesurée au moyen d'un détecteur unique comportant un élément conducteur en deux parties symétriques par rapport à la trajectoire des gouttes, ledit détecteur se trouvant entre l'électrode de charge et les électrodes de déflexion. L'élément conducteur du détecteur est relié à la masse par l'intermédiaire d'une résistance aux bornes de laquelle est relié un circuit de traitement. Une goutte chargée, ou un train de gouttes chargées, induit une charge de signe opposé dans l'élément détecteur, et cette charge varie selon la position de la goutte chargée, ou du train de gouttes chargées, dans le détecteur. Le traitement de la dérivée première I(t) et de la dérivée seconde J(t) par rapport au temps de la charge Q(t) permet de déterminer les instants d'entrée et de sortie de la goutte chargée, ou du train de gouttes chargées, dans le détecteur et, par conséquent, sa vitesse, la longueur du détecteur étant connue.According to the invention, the speed of the drops is measured by means of a single detector comprising a conductive element in two parts symmetrical with respect to the trajectory of the drops, said detector being located between the charging electrode and the electrodes of deflection. The conductive element of the detector is connected to ground via a resistor across which is connected a processing circuit. A charged drop, or a charged drop train, induces a charge of opposite sign in the detector element, and this charge varies according to the position of the charged drop, or of the charged drop train, in the detector. The processing of the first derivative I (t) and of the second derivative J (t) with respect to the time of the charge Q (t) makes it possible to determine the instants of entry and exit of the charged drop, or of the train of charged drops, in the detector and, consequently, its speed, the length of the detector being known.

Pour cela, l'invention concerne plus particulièrement un dispositif de contrôle et de régulation d'une encre et de son traitement dans une imprimante à jet d'encre continu dans laquelle un jet d'encre continu sort d'une buse, comprenant :

  • des moyens de fractionnement du jet en gouttelettes équidistantes et équidimensionnelles;
  • une électrode de charge où lesdites gouttelettes sont sélectivement chargées électrostatiquement;
  • un détecteur de la vitesse des gouttes chargées;
  • des électrodes de déflexion où lesdites gouttelettes sont défléchies en fonction de leur charge, caractérisé en ce que :
  • le détecteur est unique et comprend un élément conducteur central réalisé en deux parties symétriques par rapport à la trajectoire des gouttelettes,
et en ce que le dispositif comprend de plus un circuit électronique de mesure de la vitesse des gouttes comportant :
  • des moyens de mesure du courant I(t) circulant entre le détecteur et la masse et correspondant à la dérivée première par rapport au temps de la charge totale induite dans le détecteur par une ou plusieurs gouttelettes chargées;
  • des moyens de calcul de la dérivée seconde J(t) par rapport au temps de ladite charge;
  • des moyens de traitement des dérivées première I(t) et seconde J(t) déterminant les instants T₁ et T₂ de passage à zéro de la dérivée J(t) pour une valeur suffisante du courant, qui correspondent respectivement aux instants d'entrée et de sortie de la ou des gouttelettes chargées dans le détecteur;
  • des moyens de calcul de la vitesse V des gouttelettes à partir des instants T1 et T2 et de la longueur de l'élément conducteur du détecteur.
For this, the invention relates more particularly to a device for controlling and regulating an ink and its processing in a continuous inkjet printer in which a continuous inkjet comes out of a nozzle, comprising:
  • means for splitting the jet into equidistant and equidimensional droplets;
  • a charging electrode where said droplets are selectively electrostatically charged;
  • a detector of the speed of the charged drops;
  • deflection electrodes where said droplets are deflected as a function of their charge, characterized in that:
  • the detector is unique and comprises a central conductive element produced in two parts symmetrical with respect to the path of the droplets,
and in that the device further comprises an electronic circuit for measuring the speed of the drops comprising:
  • means for measuring the current I (t) flowing between the detector and the mass and corresponding to the first derivative with respect to time of the total charge induced in the detector by one or more charged droplets;
  • means for calculating the second derivative J (t) with respect to the time of said charge;
  • means for processing the first I (t) and second J (t) derivatives determining the instants T₁ and T₂ of zero crossing of the derivative J (t) for a sufficient value of the current, which correspond respectively to the input instants and leaving the droplet (s) loaded in the detector;
  • means for calculating the speed V of the droplets from the instants T1 and T2 and the length of the conductive element of the detector.

Dans un mode de réalisation préféré de l'invention, la longueur du détecteur est supérieure à l'écartement entre ses deux parties symétriques par rapport à la trajectoire des gouttes.In a preferred embodiment of the invention, the length of the detector is greater than the distance between its two symmetrical parts relative to the trajectory of the drops.

Concernant le contrôle de la qualité de l'encre, pour compenser l'évaporation permanente du solvant dans l'environnement, le fonctionnement de la plupart des circuits d'encre des machines d'impression à jet d'encre consiste, d'une part, à mesurer en permanence à l'aide d'un viscosimètre la viscosité de l'encre dans le circuit d'encre et, d'autre part, à réguler par ajouts de solvant ou d'encre fraîche la viscosité de l'encre alimentant la buse. Une description d'un circuit d'encre fonctionnant selon ce principe est donnée en particulier dans le brevet US no 4 628 329 au nom de la présente demanderesse. L'incorporation de la fonction viscosimètre dans le circuit d'encre accroit notablement la complexité de son fonctionnement et conduit généralement à un encombrement supplémentaire important.With regard to ink quality control, to compensate for the permanent evaporation of the solvent in the environment, the functioning of most of the ink circuits of inkjet printing machines consists, on the one hand , to continuously measure the viscosity of the ink in the ink circuit using a viscometer and, on the other hand, to regulate the viscosity of the ink supplying by adding solvent or fresh ink the nozzle. A description of an ink circuit operating according to this principle is given in particular in US Patent No. 4,628,329 in the name of the present applicant. The incorporation of the viscometer function into the ink circuit significantly increases the complexity of its operation and generally leads to significant additional bulk.

Par ailleurs, le lieu de mesure de viscosité est généralement éloigné de la tête d'impression. A un instant donné, la viscosité mesurée dans le circuit d'encre peut ne pas être représentative de la viscosité réelle à la tête d'impression. ceci est particulièrement vrai lorsque la température au lieu de mesure de la viscosité est différente de la température à la tête d'impression. Pour pallier à cet inconvénient, diverses solutions de régulation de la température de l'encre dans la tête d'impression ont été proposées, incorporant généralement un élément chauffant (voir les brevets US no 4 337 468 de RICOH ou US no 4 403 227 d'IBM), ce qui accroît la complexité et la consommation énergétique de l'imprimante.In addition, the place of viscosity measurement is generally far from the print head. At a given time, the viscosity measured in the ink circuit may not be representative of the actual viscosity at the print head. this is especially true when the temperature instead of viscosity measurement is different from the temperature at the print head. To overcome this drawback, various temperature control solutions of the ink in the print head have been proposed, generally incorporating a heating element (see U.S. Patent No. 4,337,468 of RICOH or US No. 4403 227 from IBM), which increases the complexity and energy consumption of the printer.

Un autre objet de la présente invention consiste à mesurer la "qualité de l'encre" à la tête d'impression, sans avoir recours à une fonction viscosimètre à proprement parler.Another object of the present invention is to measure the "quality of the ink" at the print head, without using a viscometer function proper.

Cet objet est atteint, selon l'invention, en combinant l'utilisation d'un dispositif de mesure de vitesse des gouttes, d'un circuit électronique et d'un dispositif d'alimentation en encre de la buse coopérant à la régulation de la vitesse des gouttes, d'une mesure de pression d'encre dans le circuit d'encre associée à des règles de dimensionnement des conduits hydrauliques.This object is achieved, according to the invention, by combining the use of a device for measuring the speed of the drops, an electronic circuit and a device for supplying ink to the nozzle cooperating in regulating the speed of the drops, of an ink pressure measurement in the ink circuit associated with rules for sizing the hydraulic conduits.

Un autre objet de l'invention consiste à mesurer une température représentative de la température de l'encre à la buse, et à corriger la qualité de l'encre par rajouts de solvants ou d'encre fraîche, selon une loi qui tient compte de la température.Another object of the invention consists in measuring a temperature representative of the temperature of the ink at the nozzle, and in correcting the quality of the ink by adding solvents or fresh ink, according to a law which takes account of temperature.

Selon l'invention, il est également prévu d'optimiser la rapidité de la régulation de la qualité de l'encre, d'une part en tenant compte du temps d'écoulement et d'homogénéisation de l'encre entre le lieu des ajouts d'encre (ou de solvants) et la buse et, d'autre part, en utilisant une cartouche d'encre d'appoint contenant une encre dont la concentration est plus forte que la valeur nominale d'utilisation.According to the invention, it is also planned to optimize the speed of the regulation of the quality of the ink, on the one hand by taking into account the time of flow and homogenization of the ink between the place of the additions. ink (or solvents) and the nozzle and, on the other hand, using an extra ink cartridge containing an ink whose concentration is higher than the nominal use value.

Concernant le contrôle de la formation des gouttes, dans les imprimantes à jet d'encre du type à jet continu, l'encre pressurisée est éjectée par une buse sous forme d'un jet dont on provoque la fragmentation en une suite de gouttelettes auxquelles une charge est ensuite appliquée de façon sélective et qui sont dirigées vers le support d'impression ou vers une gouttière. Divers procédés peuvent être employés pour commander et synchroniser la formation des gouttelettes, consistant à faire vibrer la buse, ou à provoquer des perturbations de la pression de l'encre au niveau de la buse en incorporant notamment un résonateur excité par une céramique piézoélectrique en amont de la buse. Du fait de la perturbation, le jet se fragmente, à la fréquence de la perturbation, en gouttelettes uniformes, souvent accompagnées de gouttelettes plus petites appelées gouttelettes satellites. La présence de ces gouttes satellites doit être contrôlée car, lors de l'application de la charge des gouttes, les satellites ont une charge massique plus élevée que les gouttes principales : si ceux-ci passent dans le champ de déflexion, ils subissent des déflexions importantes et provoquent, soit une salissure des électrodes de déflexion conduisant à des défauts d'isolation électrique, soit des impacts parasites sur le support imprimé.Regarding the control of the formation of drops, in inkjet printers of the continuous jet type, the pressurized ink is ejected by a nozzle in the form a jet which is caused to fragment into a series of droplets to which a charge is then applied selectively and which are directed towards the printing medium or towards a gutter. Various methods can be used to control and synchronize the formation of droplets, consisting of vibrating the nozzle, or causing disturbances of the ink pressure at the nozzle by incorporating in particular a resonator excited by a piezoelectric ceramic upstream nozzle. Due to the disturbance, the jet fragments, at the frequency of the disturbance, into uniform droplets, often accompanied by smaller droplets called satellite droplets. The presence of these satellite drops must be checked because, when the load of the drops is applied, the satellites have a higher mass load than the main drops: if these pass through the deflection field, they undergo deflections significant and cause, either a fouling of the deflection electrodes leading to electrical insulation faults, or parasitic impacts on the printed support.

L'art connu (voir l'article de BOGY dans Annual Review of Fluid Mechanics 1979) montre que si l'on fixe les propriétés physiques de l'encre, la buse, la fréquence de la perturbation, la vitesse du jet, le dispositif résonateur et la forme du signal d'excitation appliqué au résonateur, il est possible de contrôler la formation des gouttes par l'amplitude de la perturbation appliquée au résonateur. Il est possible, en particulier, d'inhiber la formation des gouttelettes satellites en choisissant une amplitude adaptée de la perturbation. Par ailleurs, la valeur de cette amplitude fixe le lieu de fragmentation du jet à une distance déterminée par rapport à la position de la buse (et donc par rapport à l'électrode de charge).Known art (see the article by BOGY in Annual Review of Fluid Mechanics 1979) shows that if one fixes the physical properties of the ink, the nozzle, the frequency of the disturbance, the speed of the jet, the device resonator and the shape of the excitation signal applied to the resonator, it is possible to control the formation of the drops by the amplitude of the disturbance applied to the resonator. It is possible, in particular, to inhibit the formation of satellite droplets by choosing an appropriate amplitude for the disturbance. Furthermore, the value of this amplitude fixes the place of fragmentation of the jet at a determined distance from the position of the nozzle (and therefore from the charging electrode).

Les moyens employés pour appliquer la charge électrique choisie à chaque gouttelette comprennent généralement un circuit de charge et une électrode entourant le jet à l'endroit de formation de la goutte. La charge électrostatique de la goutte est alors obtenue en appliquant une tension d'amplitude Vc entre un point de contact électrique avec l'encre et l'électrode de charge. La charge Qg acquise par la goutte dépend alors de la valeur de la tension de charge Vc au moment de la formation de la goutte, de la capacité électrique Cg de l'ensemble goutte en formation/électrode de charge, et du rapport de la période de formation des gouttes au temps caractéristique électrique de l'ensemble jet/électrode, défini par Rj.Cj où Rj est la résistance électrique équivalente du jet entre la buse et la goutte en formation, et Cj est la capacité électrique de l'ensemble jet/électrode. Les paramètres Rj, Cj, Cg sont en particulier influencés par la forme du jet pendant la période de formation et de charge de la goutte. La résistance électrique du jet Rj dépend en outre de la conductivité électrique de l'encre, elle-même généralement fonction de la concentration et de la température de l'encre.The means used to apply the electric charge chosen at each droplet generally include a charging circuit and an electrode surrounding the jet at the place of formation of the drop. The electrostatic charge of the drop is then obtained by applying a voltage of amplitude Vc between a point of electrical contact with the ink and the charging electrode. The charge Qg acquired by the drop then depends on the value of the charge voltage Vc at the time of the formation of the drop, on the electric capacity Cg of the droplet formation / charge electrode assembly, and on the ratio of the period of droplet formation at the electrical characteristic time of the jet / electrode assembly, defined by Rj.Cj where Rj is the equivalent electrical resistance of the jet between the nozzle and the drop in formation, and Cj is the electrical capacity of the jet assembly /electrode. The parameters Rj, Cj, Cg are in particular influenced by the shape of the jet during the period of formation and charge of the drop. The electrical resistance of the jet Rj also depends on the electrical conductivity of the ink, which itself generally depends on the concentration and the temperature of the ink.

Pour une tête d'impression et une encre données, l'expérience montre qu'il est possible de déterminer une relation entre les propriétés physiques de l'encre à la buse (rhéologie, tension superficielle) et l'amplitude d'excitation du résonateur, de manière à obtenir une formation correcte des gouttes, c'est-à-dire de manière à ce que le point de séparation des gouttes du jet soit proche du centre de l'électrode de charge, et que la formation de gouttes satellites soit inhibée.For a given printhead and ink, experience shows that it is possible to determine a relationship between the physical properties of the ink at the nozzle (rheology, surface tension) and the amplitude of excitation of the resonator. , so as to obtain a correct drop formation, that is to say so that the point of separation of the drops from the jet is close to the center of the charging electrode, and that the formation of satellite drops is inhibited.

Selon l'invention, il est prévu de contrôler et réguler le processus de formation et de charge des gouttes en régulant simultanément la vitesse des gouttes, la qualité de l'encre, et le lieu de séparation des gouttes du jet. Le contrôle du lieu de séparation des gouttes du jet est obtenu par un contrôle du temps de vol des gouttes entre le lieu de charge des gouttes et la position du détecteur de vitesse de gouttes. La régulation du lieu de séparation des gouttes est obtenue en modifiant l'amplitude d'excitation du résonateur de manière à maintenir le lieu de séparation des gouttes en un lieu appelé point de fonctionnement, qui dépend de la qualité de l'encre mesurée à la buse.According to the invention, provision is made to control and regulate the process of formation and charging of the drops by simultaneously regulating the speed of the drops, the quality of the ink, and the place of separation of the drops from the jet. Control of the place of separation of the drops from the jet is obtained by controlling the time of flight of the drops between the place of charge of the drops and the position of the drop speed detector. Regulation of the place of separation of the drops is obtained by modifying the amplitude of excitation of the resonator so as to maintain the place of separation of the drops at a place called operating point, which depends on the quality of the ink measured at the nozzle.

Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation préféré, faite en relation avec les dessins joints, parmi lesquels :

  • la Fig. 1 est une vue schématique représentant les éléments principaux d'une tête d'impression dans une imprimante à jet d'encre continu selon l'invention,
  • la Fig. 2 est une vue schématique, à échelle agrandie, représentant la buse, une électrode de charge et le détecteur pour mesurer la vitesse des gouttes de la tête d'impression de la Fig. 1,
  • les Figs. 3a à 3d sont des vues de structure associées à des diagrammes de la densité de charge linéique induite dans le détecteur par une goutte chargée en fonction de sa position par rapport audit détecteur,
  • la Fig. 4 est un diagramme représentant la charge Q(t) induite dans le détecteur par une goutte chargée par rapport au temps,
  • la Fig. 5 est un diagramme représentant la dérivée première I(t) de Q(t) par rapport au temps,
  • la Fig. 6 est un diagramme représentant la dérivée seconde J(t) de Q(t) par rapport au temps,
  • la Fig. 7 regroupe en superposition les diagrammes de I(t), J(t), Q(t), ainsi que deux diagrammes représentant les valeurs de trois signaux numériques F1, F2 et F3 fonction de I(t) et de J(t) et servant à déterminer les instants d'entrée et de sortie d'une goutte chargée dans le détecteur,
  • la Fig. 8 est une vue semblable à la Fig. 3b, à la différence près qu'un train de gouttes chargées au lieu d'une goutte chargée unique est utilisé pour la mesure de vitesse,
  • la Fig. 9 est une vue regroupant les diagrammes de I(t), de J(t) et des signaux F1, F2 et F3 pour le cas où un train de gouttes chargées est utilisé pour la mesure de vitesse,
  • la Fig. 10 est une vue schématique représentant sous forme de blocs le circuit associé au détecteur pour déterminer la vitesse des gouttes,
  • la Fig. 11 est une vue détaillée du circuit de la Fig. 10,
  • la Fig. 12 est une vue regroupant des diagrammes concernant le fonctionnement du circuit de la Fig. 11,
  • la Fig. 13 est une vue schématique illustrant le dispositif de contrôle et de régulation de l'invention dans son ensemble,
  • la Fig. 14 est un diagramme représentant des pressions de référence en fonction de la température concernant les composants de l'encre et un mélange approprié desdits composants, et
  • la Fig. 15 regroupe les diagrammes de I(t), J(t) et un diagramme du chargement des gouttes Vc(t) illustrant comment est mesuré le temps de vol des gouttes entre le lieu de leur formation et l'entrée du détecteur et, par suite, la longueur entre la buse et ledit lieu de formation des gouttes.
The characteristics of the invention mentioned above, as well as others, will appear more clearly on reading the following description of a preferred embodiment, made in relation to the accompanying drawings, among which:
  • Fig. 1 is a schematic view showing the main elements of a print head in a continuous ink jet printer according to the invention,
  • Fig. 2 is a diagrammatic view, on an enlarged scale, showing the nozzle, a charging electrode and the detector for measuring the speed of the drops of the print head of FIG. 1,
  • Figs. 3a to 3d are structural views associated with diagrams of the linear charge density induced in the detector by a charged drop as a function of its position relative to said detector,
  • Fig. 4 is a diagram representing the charge Q (t) induced in the detector by a charged drop with respect to time,
  • Fig. 5 is a diagram representing the first derivative I (t) of Q (t) with respect to time,
  • Fig. 6 is a diagram representing the second derivative J (t) of Q (t) with respect to time,
  • Fig. 7 superimposes the diagrams of I (t), J (t), Q (t), as well as two diagrams representing the values of three digital signals F1, F2 and F3 as a function of I (t) and J (t) and used to determine the instants of entry and exit of a drop charged in the detector,
  • Fig. 8 is a view similar to FIG. 3b, at difference is that a train of charged drops instead of a single charged drop is used for speed measurement,
  • Fig. 9 is a view grouping together the diagrams of I (t), J (t) and of the signals F1, F2 and F3 for the case where a train of charged drops is used for the speed measurement,
  • Fig. 10 is a schematic view representing in the form of blocks the circuit associated with the detector for determining the speed of the drops,
  • Fig. 11 is a detailed view of the circuit of FIG. 10,
  • Fig. 12 is a view grouping together diagrams relating to the operation of the circuit of FIG. 11,
  • Fig. 13 is a schematic view illustrating the control and regulation device of the invention as a whole,
  • Fig. 14 is a diagram representing reference pressures as a function of the temperature relating to the components of the ink and an appropriate mixture of said components, and
  • Fig. 15 groups together the diagrams of I (t), J (t) and a diagram of the loading of the drops Vc (t) illustrating how the time of flight of the drops is measured between the place of their formation and the entry of the detector and, by next, the length between the nozzle and said place of formation of the drops.

La Fig. 1 illustre les principaux éléments mécaniques et électriques d'une tête d'impression à jet d'encre 1 du type à jet continu. Elle présente notamment une buse 2 alimentée en encre sous pression par un circuit d'encre 3 et créant un jet continu J. Sous l'influence de la vibration d'un résonateur 4 alimenté par un circuit de modulation 5, le jet continu J se fractionne au centre d'une électrode de charge 6 en une suite continue de gouttelettes G équidistantes et équidimensionnelles. L'électrode de charge 6 est connectée à un circuit de charge 7. Les gouttes G, animées d'une vitesse V sensiblement égale à la vitesse moyenne du liquide dans le jet J, passent ensuite dans un détecteur 8 utilisé comme détecteur de phase et de vitesse du jet, et connecté à un circuit électrique de détection de vitesse de goutte 9. Les gouttes chargées sont ensuite défléchies par un champ électrique constant maintenu entre des électrodes de déflexion 10. Les gouttes non ou peu chargées sont récupérées par une gouttière 11, alors que les autres poursuivent leur vol vers un support d'enregistrement, non montré. Les gouttes récupérées par la gouttière 11 sont recyclées au circuit d'encre 3.Fig. 1 illustrates the main mechanical and electrical elements of an ink jet print head 1 of the continuous jet type. It has in particular a nozzle 2 supplied with ink under pressure by an ink circuit 3 and creating a continuous jet J. Under the influence of the vibration of a resonator 4 supplied by a modulation circuit 5, the continuous jet J splits in the center of a charge electrode 6 into a continuous sequence of Equidistant and equidimensional G droplets. The charging electrode 6 is connected to a charging circuit 7. The drops G, driven by a speed V substantially equal to the average speed of the liquid in the jet J, then pass through a detector 8 used as phase detector and jet speed, and connected to an electric drop speed detection circuit 9. The charged drops are then deflected by a constant electric field maintained between deflection electrodes 10. The uncharged or lightly charged drops are recovered by a gutter 11 , while the others continue their flight to a recording medium, not shown. The drops recovered by the gutter 11 are recycled to the ink circuit 3.

La Fig. 2 illustre schématiquement l'électrode de détection de vitesse de goutte chargée 8, placée immédiatement en aval du lieu de formation et de charge des gouttes. Sur la figure, on a illustré le passage d'une seule goutte chargée Gc, de charge Qg, représentée en noir et se trouvant à proximité de l'élément conducteur actif 8c du détecteur 8. Ce dernier est connecté électriquement au circuit électrique de détection de vitesse de goutte 9. L'électrode de détection de vitesse 8 comporte un élément central conducteur 8c, de préférence protégé de l'influence de charges électriques extérieures (présentes sur l'électrode de charge 6 en particulier), grâce à une épaisseur d'isolant 8i et à un élément conducteur extérieur 8e dit électrode de garde, électriquement relié à la masse. Dans un mode préféré de réalisation, le détecteur 8 a une symétrie plane et les gouttes G se déplacent dans l'axe d'une fente réalisée selon l'axe de symétrie du détecteur. Toutefois, toute autre configuration du détecteur symétrique par rapport à l'axe de la trajectoire des gouttes G peut convenir. Les gouttelettes G sont animées d'une vitesse de translation sensiblement uniforme V dans le détecteur, et orientée suivant l'axe du détecteur.Fig. 2 schematically illustrates the charged drop speed detection electrode 8, placed immediately downstream of the drop formation and charging site. In the figure, the passage of a single charged drop Gc, of charge Qg, shown in black and being close to the active conducting element 8c of the detector 8, is illustrated. The latter is electrically connected to the electric detection circuit. of speed of drop 9. The speed detection electrode 8 comprises a central conducting element 8c, preferably protected from the influence of external electric charges (present on the charging electrode 6 in particular), thanks to a thickness d insulator 8i and to an external conductive element 8e, said guard electrode, electrically connected to ground. In a preferred embodiment, the detector 8 has a plane symmetry and the drops G move in the axis of a slot made along the axis of symmetry of the detector. However, any other configuration of the symmetrical detector with respect to the axis of the trajectory of the drops G may be suitable. The droplets G have a substantially uniform translation speed V in the detector, and oriented along the axis of the detector.

Dans la partie de représentation schématique des Figs. 3a à 3d, ou partie supérieure des figures, la gouttelette chargée est représentée à quatre différentes positions relatives vis-à-vis du détecteur 8, notées x1, x2, x3 et x4, et correspondant aux temps t1 = x1/V

Figure imgb0001
, t2 = x2/V
Figure imgb0002
, t3 = x3/V
Figure imgb0003
, t4 = x4/V
Figure imgb0004
, où les temps et les abscisses sont comptés positivement à partir de l'entrée du détecteur 8 et sont liés par la relation x = Vt
Figure imgb0005
Figure imgb0006
. Sur ces figures, la gouttelette chargée Gc est représentée en couleur foncée et les autres gouttelettes non chargées situées en amont et en aval sont représentées en clair. La distance entre les gouttelettes G, notée λ, est par ailleurs liée à la vitesse V et à la fréquence de modulation f par la relation λ = V/f
Figure imgb0007
. D'autre part, l'art connu montre que pour des conditions de fonctionnement nominales d'une imprimante, cette distance est liée au diamètre de la buse par une relation du type :

λ = 4,5 à 6 ⌀B
Figure imgb0008


où ⌀B est le diamètre de la buse. Pour simplifier, on retiendra la valeur 5 ⌀B.In the schematic representation part of Figs. 3a to 3d, or upper part of the figures, the charged droplet is represented at four different relative positions with respect to the detector 8, denoted x1, x2, x3 and x4, and corresponding to the times t1 = x1 / V
Figure imgb0001
, t2 = x2 / V
Figure imgb0002
, t3 = x3 / V
Figure imgb0003
, t4 = x4 / V
Figure imgb0004
, where the times and the abscissa are counted positively from the input of the detector 8 and are linked by the relation x = Vt
Figure imgb0005
Figure imgb0006
. In these figures, the charged droplet Gc is shown in dark color and the other uncharged droplets located upstream and downstream are shown in clear. The distance between the droplets G, denoted λ, is moreover linked to the speed V and to the modulation frequency f by the relation λ = V / f
Figure imgb0007
. On the other hand, known art shows that for nominal operating conditions of a printer, this distance is linked to the diameter of the nozzle by a relation of the type:

λ = 4.5 to 6 ⌀B
Figure imgb0008


where ⌀B is the diameter of the nozzle. For simplicity, we will retain the value 5 ⌀B.

La proximité de la goutte chargée Gc (les charges sont représentées par des signes - autour de la goutte chargée Gc aux Figs. 3a à 3d) conduit par influence électrostatique à l'apparition de charges électriques de signe opposé sur la surface du détecteur (charges représentées par des signes + aux Figs. 3a à 3d). La quantité de charges électriques présentes sur le détecteur varie selon la distance axiale x. Si l'on néglige l'influence de l'isolant 8i, cette quantité de charge peut être représentée sous forme d'une densité linéique de charge σ(x) donnée schématiquement en ordonnées pour différentes positions x1 à x4 de la goutte chargée Gc. En réalité, au voisinage de l'isolant 8i, la distribution de charges électriques se trouve sensiblement modifiée et ne peut être calculée en toute rigueur qu'avec des méthodes de calcul numériques lourdes à mettre en oeuvre. Cependant, pour simplifier les explications qui suivent (texte et figures), le procédé objet de l'invention sera décrit en faisant abstraction des effets de la présence de l'isolant 8i sur la distribution de charges électriques. En pratique, on prendra en compte l'influence de l'isolant en remplaçant la longueur L de l'élément actif 8c du détecteur par une longueur efficace Le = L + Li/2

Figure imgb0009
Figure imgb0010
où Li est la longueur totale d'isolant mesurée suivant la trajectoire des gouttes. Avec les simplifications ci-dessus, dans le cas d'une goutte de petite taille par rapport à la dimension transversale R du détecteur 8 (largeur de la fente du détecteur), la densité linéique de charge peut être approchée mathématiquement par la fonction :
Figure imgb0011

   La courbe de densité linéique de charge est symétrique par rapport à la position xi de la goutte. Comme l'indique la relation (2), les charges électriques induites par la gouttelette sur le détecteur sont plus concentrées à proximité de la goutte et pratiquement inexistantes à grande distance de la goutte. La longueur S de la zone influencée électriquement par la goutte Gc est représentée sur les Figs. 3a à 3d. D'après la relation (2), la longueur S de ladite zone vérifie la relation :

S = 2R   (3)
Figure imgb0012


   A un instant donné, la charge totale portée par l'élément actif 8c de longueur efficace Le est notée Q. Elle est définie par :
Figure imgb0013

   Q correspond aux surfaces hachurées dans les Figs. 3a à 3d. Q varie avec la position x de la goutte dans l'électrode de détection 8c. L'évolution de la charge Q est représentée à la Fig. 4 en fonction du temps t = x/V
Figure imgb0014
compté le long de la trajectoire de la gouttelette chargée Gc. Selon l'invention, les dimensions de l'électrode de détection 8c vérifient la relation :

S/2 < Le, soit, d'après   (3)
Figure imgb0015


R < Le   (5)
Figure imgb0016


   Ceci correspond à une largeur R de la fente suffisamment faible pour que la moitié au moins de la zone de longueur S influencée électriquement par la gouttelette Gc soit contenue dans la longueur efficace Le de l'élément conducteur 8c. Selon l'invention, la gouttelette chargée Gc dont on veut mesurer la vitesse est précédée en aval par au moins n1 gouttes non chargées, où n1 vérifie la relation :

(n1+1) > (Le+ R)/λ
Figure imgb0017


ou encore, compte tenu de (1)

n1 > (Le + R)/(5 ⌀B) -1 environ   (6)
Figure imgb0018


   Cette condition permet à la goutte chargée d'entrer dans le détecteur de vitesse 8 alors que les gouttes précédemment chargées sont suffisamment éloignées pour ne pas influencer la mesure.The proximity of the charged drop Gc (the charges are represented by signs - around the charged drop Gc in Figs. 3a to 3d) leads by electrostatic influence to the appearance of electric charges of opposite sign on the surface of the detector (charges represented by signs + in Figs. 3a to 3d). The quantity of electric charges present on the detector varies according to the axial distance x. If the influence of the insulator 8i is neglected, this amount of charge can be represented in the form of a linear charge density σ (x) given diagrammatically on the ordinate for different positions x1 to x4 of the charged drop Gc. In reality, in the vicinity of the insulator 8i, the distribution of electrical charges is significantly modified and cannot be calculated in all rigor only with cumbersome numerical calculation methods to be implemented. However, to simplify the explanations which follow (text and figures), the process which is the subject of the invention will be described while ignoring the effects of the presence of the insulator 8i on the distribution of electrical charges. In practice, the influence of the insulator will be taken into account by replacing the length L of the active element 8c of the detector with an effective length. Le = L + Li / 2
Figure imgb0009
Figure imgb0010
where Li is the total length of insulation measured along the trajectory of the drops. With the above simplifications, in the case of a small drop compared to the transverse dimension R of the detector 8 (width of the detector slot), the linear charge density can be approximated mathematically by the function:
Figure imgb0011

The linear charge density curve is symmetrical with respect to the position x i of the drop. As indicated in relation (2), the electric charges induced by the droplet on the detector are more concentrated near the drop and practically nonexistent at a long distance from the drop. The length S of the area electrically influenced by the drop Gc is shown in Figs. 3a to 3d. According to the relation (2), the length S of said zone verifies the relation:

S = 2R (3)
Figure imgb0012


At a given instant, the total charge carried by the active element 8c of effective length Le is denoted Q. It is defined by:
Figure imgb0013

Q corresponds to the hatched areas in Figs. 3a to 3d. Q varies with the position x of the drop in the detection electrode 8c. The evolution of the charge Q is shown in FIG. 4 as a function of time t = x / V
Figure imgb0014
counted along the trajectory of the charged droplet Gc. According to the invention, the dimensions of the detection electrode 8c verify the relationship:

S / 2 <Le, either, according to (3)
Figure imgb0015


R <The (5)
Figure imgb0016


This corresponds to a width R of the slot sufficiently small so that at least half of the zone of length S electrically influenced by the droplet Gc is contained in the effective length Le of the conductive element 8c. According to the invention, the charged droplet Gc whose speed is to be measured is preceded downstream by at least n1 uncharged drops, where n1 checks the relationship:

(n1 + 1)> (Le + R) / λ
Figure imgb0017


or, taking into account (1)

n1> (Le + R) / (5 ⌀B) -1 approximately (6)
Figure imgb0018


This condition allows the charged drop to enter the speed detector 8 while the previously charged drops are far enough apart not to influence the measurement.

Encore selon l'invention, le nombre n2 de gouttes non chargées suivant la goutte utilisée pour la mesure de la vitesse vérifie l'égalité :

(n2 + 1) > (Lt + Le - Lb)/λ

Figure imgb0019


où Lt est la distance qui sépare la buse de l'électrode de détection 8c et Lb est la longueur du jet J entre la buse et le point de formation des gouttes, ces distances étant représentées à la Fig. 2. On en déduit :

n2 > (Lt + Le - Lb)/5 ⌀B -1 environ   (7)
Figure imgb0020


   La condition (7) permet de s'assurer qu'aucune goutte n'est chargée pendant la durée où le détecteur 8 est influencé par la goutte Gc utilisée pour la mesure de vitesse. En effet, malgré le blindage de l'électrode de détection de vitesse 8c, celle-ci peut être parasitée par les tensions de charge appliquées sur l'électrode de charge 6. Il est d'ailleurs préférable, lors de la charge des gouttes utilisées pour la détection de vitesse, d'appliquer la tension de charge sur l'électrode de charge pendant la moitié, ou moins, de la période de formation des gouttes. Ceci permet de charger correctement les gouttes, tout en minimisant le parasitage de la mesure.Still according to the invention, the number n2 of uncharged drops according to the drop used for the measurement of the speed checks for equality:

(n2 + 1)> (Lt + Le - Lb) / λ
Figure imgb0019


where Lt is the distance between the nozzle of the detection electrode 8c and Lb is the length of the jet J between the nozzle and the point of formation of the drops, these distances being shown in FIG. 2. We deduce:

n2> (Lt + Le - Lb) / 5 ⌀B -1 approximately (7)
Figure imgb0020


Condition (7) ensures that no drop is charged during the time that the detector 8 is influenced by the drop Gc used for the speed measurement. In fact, despite the shielding of the speed detection electrode 8c, it can be parasitized by the charging voltages applied to the charging electrode 6. It is moreover preferable, when charging the drops used for speed detection, to apply the charging voltage to the charging electrode for half, or less, the period of drop formation. This allows the drops to be loaded correctly, while minimizing interference from the measurement.

Si les conditions (5), (6) et (7) sont respectées, on obtient alors la vitesse de goutte V en mesurant la durée entre les instants T1 et T2 correspondant aux deux points d'inflexion de la fonction Q(t), soit la relation :

V = Le/(T2 - T1)   (8)

Figure imgb0021


   Dans la relation 8, Le est la longueur équivalente de l'électrode 8c, caractéristique de la mesure obtenue par calibration en utilisant une autre méthode de mesure de vitesse de goutte.If conditions (5), (6) and (7) are respected, the drop speed V is then obtained by measuring the duration between the instants T1 and T2 corresponding to the two inflection points of the function Q (t), either the relation:

V = Le / (T2 - T1) (8)
Figure imgb0021


In relation 8, Le is the equivalent length of the electrode 8c, characteristic of the measurement obtained by calibration using another method of measurement of drop speed.

Une réalisation pratique de la mesure est représentée aux Figs. 5 à 7. Le circuit électronique de mesure 9 détecte le courant I(t) circulant entre le détecteur 8e et la masse. Ce courant est représenté à la Fig. 5 et correspond à la dérivée par rapport au temps de Q(t), soit I(t) = dQ(t)/dt

Figure imgb0022
. Le même circuit électronique 9 mesure aussi la dérivée J(t) = d(I)/dt
Figure imgb0023
de ce courant, donc la dérivée seconde de Q(t) représentée à la Fig. 6. J(t) s'annule aux temps T1 et T2 définis plus haut.A practical embodiment of the measurement is shown in Figs. 5 to 7. The electronic measurement circuit 9 detects the current I (t) flowing between the detector 8e and the ground. This current is shown in FIG. 5 and corresponds to the derivative with respect to the time of Q (t), that is I (t) = dQ (t) / dt
Figure imgb0022
. The same electronic circuit 9 also measures the derivative J (t) = d (I) / dt
Figure imgb0023
of this current, so the second derivative of Q (t) shown in Fig. 6. J (t) is canceled at times T1 and T2 defined above.

Un moyen de mise en oeuvre de la mesure de T2 - T1 est décrit à la Fig. 7. Un comptage est déclenché lorsque simultanément J(t) prend une valeur négative et I(t) est supérieur à un seuil +io. Le comptage est stoppé lorsque simultanément J(t) prend une valeur positive ou nulle et I(t) est inférieur à -io. Le contenu du compteur correspond alors à la valeur T2 - T1 à mesurer. La représentation du traitement numérique est donnée par les diagrammes des signaux numériques F1, F2 et F3. Le comptage dure le temps que le signal numérique F3 est au niveau logique haut. Le signal numérique F1 est au niveau logique haut lorsque I(t) est supérieur au seuil io ou inférieur au seuil -io. Le signal numérique F2 est au niveau logique haut lorsque J(t) est positif ou nul. Le signal F3 passe au niveau logique haut lors du front descendant de F2, F1 étant à 1. F3 repasse à zéro lors du front montant suivant de F2 alors que F1 est à 1.A means of implementing the measurement of T2 - T1 is described in FIG. 7. A count is triggered when simultaneously J (t) takes a negative value and I (t) is greater than a threshold + i o . The counting is stopped when simultaneously J (t) takes a positive or zero value and I (t) is less than -i o . The content of the counter then corresponds to the value T2 - T1 to be measured. The representation of the digital processing is given by the diagrams of the digital signals F1, F2 and F3. The counting lasts the time that the digital signal F3 is at the high logic level. The digital signal F1 is at the high logic level when I (t) is greater than the threshold i o or less than the threshold -i o . The digital signal F2 is at the high logic level when J (t) is positive or zero. The signal F3 goes to the high logic level during the falling edge of F2, F1 being at 1. F3 returns to zero during the next rising edge of F2 while F1 is at 1.

Le procédé de mesure de vitesse de gouttes chargées, décrit plus haut pour le cas d'une goutte chargée, nécessite de charger, et donc de défléchir, des gouttes non utiles pour l'impression. De manière à ne pas imprimer de gouttes inutiles sur le support d'enregistrement, les gouttes chargées pour effectuer la mesure de vitesse sont suffisamment peu chargées pour être récupérées par la gouttière 11. Compte tenu du faible niveau de charge de ces gouttes, il est nécessaire, afin d'augmenter le rapport signal/bruit du dispositif, d'effectuer la mesure sur un train de N gouttelettes équichargées et équidistantes. La densité linéique de charge σN sur l'électrode 8c du détecteur 8 correspond, dans ce cas, à la somme des contributions des N gouttes chargées du train de gouttes (le cas pour trois gouttes chargées est représenté à la Fig. 8). La somme des contributions des N gouttes chargées est symétrique par rapport au centre du train de gouttes. D'une manière générale, le procédé de mesure de vitesse est similaire à celui exposé précédemment pour le cas d'une seule goutte chargée. La généralisation au cas de N gouttes de la relation (5) peut en première approximation s'écrire :

SN = (N - 1)λ + 2R < 2Le ou

Figure imgb0024

N < 1 + 2(Le - R)/5 ⌀B, environ   (9)
Figure imgb0025


   Cette condition stipule que la longueur SN du détecteur influencée électriquement par la train de N gouttes doit être inférieure à deux longueurs Le de l'électrode.The method for measuring the speed of charged drops, described above for the case of a charged drop, requires loading, and therefore deflecting, drops which are not useful for printing. In order not to print unnecessary drops on the recording medium, the drops loaded to perform the speed measurement are sufficiently light to be recovered by the gutter 11. Given the low level of charge of these drops, it is necessary, in order to increase the signal / noise ratio of the device, to carry out the measurement on a train of N equally charged and equidistant droplets. The linear density of charge σN on the electrode 8c of the detector 8 corresponds, in this case, to the sum of the contributions of the N charged drops of the train of drops (the case for three charged drops is represented in Fig. 8). The sum of the contributions of the N charged drops is symmetrical with respect to the center of the train of drops. In general, the speed measurement method is similar to that described above for the case of a single charged drop. The generalization to the case of N drops of the relation (5) can be written as a first approximation:

SN = (N - 1) λ + 2R <2Le or
Figure imgb0024

N <1 + 2 (Le - R) / 5 ⌀B, around (9)
Figure imgb0025


This condition stipulates that the length SN of the detector electrically influenced by the train of N drops must be less than two lengths Le of the electrode.

Par ailleurs, les autres relations (6) et (7) caractéristiques de la mise en oeuvre du procédé deviennent :

n1 > (Le + SN/2)/λ - 1   (6′)

Figure imgb0026


n2 > (Lt + Le - Lb)/λ - 1/2 - N/2   (7′)
Figure imgb0027


   En fonction du rapport λ/R, la densité linéique σN peut présenter plusieurs maxima, comme le montre la Fig. 8. On a représenté à la Fig. 9 les évolutions des grandeurs I(t) et J(t) correspondantes et utilisées pour faire la mesure. On remarque que la grandeur I(t) présente une allure similaire à la densité linéique σN. Il en résulte que les points de passage à zéro de la fonction J(t) peuvent être multiples. Une variante de traitement de la mesure consiste à effectuer un comptage du temps s'écoulant entre les instants correspondant aux fronts montants du signal logique F2 au niveau haut lorsque J(t) est supérieur à une valeur Jo ou inférieur à une valeur -Jo, comme représenté à la Fig. 9. Cependant, dans un mode de réalisation préféré de l'invention, on effectue à l'aide d'un circuit électrique adapté une mise en forme du signal qui permette de s'affranchir de ces inconvénients. Le circuit électrique de mesure est décrit plus en détail ci-dessous, en relation avec les Figs. 10 et 11.Furthermore, the other relationships (6) and (7) characteristic of the implementation of the method become:

n1> (Le + SN / 2) / λ - 1 (6 ′)
Figure imgb0026


n2> (Lt + Le - Lb) / λ - 1/2 - N / 2 (7 ′)
Figure imgb0027


Depending on the ratio λ / R, the linear density σN can have several maxima, as shown in Fig. 8. There is shown in FIG. 9 the evolutions of the quantities I (t) and J (t) corresponding and used to make the measurement. We note that the quantity I (t) has a shape similar to the linear density σN. It follows that the zero crossing points of the function J (t) can be multiple. A variant of processing the measurement consists in counting the time elapsing between the instants corresponding to the rising edges of the logic signal F2 at the high level when J (t) is greater than a value J o or less than a value -J o , as shown in Fig. 9. However, in a preferred embodiment of the invention, the signal is shaped using a suitable electrical circuit which makes it possible to overcome these drawbacks. The electrical measurement circuit is described in more detail below, in relation to Figs. 10 and 11.

Le traitement des signaux nécessaire pour effectuer la mesure se traduit par une mise en forme des variations temporelles des signaux électriques I(t), J(t). En pratique, il s'avère nécessaire de filtrer le signal électrique délivré par l'électrode 8c, pour maîtriser la transmission du signal et minimiser l'influence de signaux aléatoires parasites. Le circuit électrique de mesure de vitesse de gouttes 9 se présente schématiquement sous la forme décrite à la Fig. 10. Le courant I(t) résultant des variations temporelles de la charge électrique Q(t) portée par l'électrode sensible 8c circule entre cette électrode et la masse à travers une résistance 12. La tension U(t) aux bornes de la résistance 12 est traitée successivement par une dérivation puis par un filtrage, donnant un signal W(t). La solution du filtrage retenue est un filtrage d'ordre 5 vers les hautes fréquences et d'ordre 1 vers les basses fréquences. Ce filtrage vers les hautes fréquences permet en particulier d'éliminer dans le signal traité W(t) les multiples point de passage à zéro présents dans le signal brut J(t), qui résultent de la présence de plusieurs gouttes chargées dans le train de gouttes chargées : comparer J(t) à la Fig. 9 et W(t) à la Fig. 10.The processing of the signals necessary to carry out the measurement results in a shaping of the temporal variations of the electrical signals I (t), J (t). In practice, it turns out to be necessary to filter the electrical signal delivered by the electrode 8c, in order to control the transmission of the signal and minimize the influence of parasitic random signals. The electric circuit for measuring the speed of drops 9 is schematically in the form described in FIG. 10. The current I (t) resulting from the temporal variations of the electric charge Q (t) carried by the sensitive electrode 8c flows between this electrode and the ground through a resistor 12. The voltage U (t) at the terminals of the resistor 12 is treated successively by a bypass then by filtering, giving a signal W (t). The filtering solution adopted is a 5-fold filtering towards the high frequencies and of order 1 towards the low frequencies. This filtering towards high frequencies makes it possible in particular to eliminate in the processed signal W (t) the multiple zero crossing points present in the raw signal J (t), which result from the presence of several charged drops in the train of charged drops: compare J (t) in Fig. 9 and W (t) in FIG. 10.

Une description détaillée du fonctionnement du circuit est donnée ci-dessous, en relation avec la Fig. 11. La fonction du circuit est de déterminer la différence des deux instants caractéristiques T2 et T1 correspondant aux passages à zéro de la tension W(t) de la Fig. 10.A detailed description of the operation of the circuit is given below, in relation to FIG. 11. The function of the circuit is to determine the difference of the two characteristic instants T2 and T1 corresponding to the zero crossings of the voltage W (t) of FIG. 10.

Une préamplification de Q(t) est réalisée à l'aide d'un amplificateur à entrée F.E.T. 13 dont la densité spectrale de bruit de courant d'entrée est très faible, de l'ordre de 10⁻¹⁴ Ampères/√hertz. La résistance d'entrée 12 détermine une première dérivation du signal. Les composants comprenant la résistance 14 et les diodes 15 et 16 réalisent la protection de l'entrée. Les composants comprenant les résistances 17, 18, 19 et les condensateurs et 21 contribuent à la fonction filtre.A preamplification of Q (t) is carried out using an amplifier with FET input 13 whose spectral density of input current noise is very low, of the order of 10⁻¹⁴ Amperes / √ hertz . The input resistor 12 determines a first derivation of the signal. The components comprising the resistor 14 and the diodes 15 and 16 provide protection of the input. The components comprising resistors 17, 18, 19 and the capacitors and 21 contribute to the filter function.

Un condensateur 22 crée une seconde dérivation du signal. Les composants comprenant les résistances 23, 24, le condensateur 25 et l'amplificateur 26 constituent la suite de la fonction filtre.A capacitor 22 creates a second bypass of the signal. The components comprising the resistors 23, 24, the capacitor 25 and the amplifier 26 constitute the continuation of the filter function.

Un comparateur 27 change d'état en passant à un niveau haut en sa sortie quand la dérivée première de la charge de l'électrode 8c dépasse une amplitude VL, déterminée par des résistances 28 et 29.A comparator 27 changes state by passing to a high level at its output when the first derivative of the charge of the electrode 8c exceeds an amplitude VL, determined by resistors 28 and 29.

Les composants comprenant les résistances 30 et 31 et les diodes 32 et 33 adaptent les tensions de sortie des comparateurs aux tensions des circuits logiques.The components comprising resistors 30 and 31 and diodes 32 and 33 adapt the output voltages of the comparators to the voltages of the logic circuits.

Un comparateur 34 change d'état en sa sortie aux passages à zéro de la tension UH(t). Des résistances 35 et 36 créent le décalage. Une résistance 37 et une diode 38 créent un décalage de tension sur W(t) dans la phase d'attente de la mesure, et une résistance 39 crée un décalage de tension sur W(t) dans la phase de mesure. Il est nécessaire d'utiliser la fonction "décalage" pour éviter que les comparateurs soient en changement d'état de façon aléatoire dans les moments où l'amplitude de la dérivée de charge est faible, et pour éviter les rebonds des signaux logiques dans la recherche des passages à zéro de la tension UH(t). A ce sujet, les résistances 35, 36 et 39 interviennent dans la qualité de la mesure, ainsi la tension de décalage engendrée doit être suffisamment faible et également répartie autour du potentiel nul.A comparator 34 changes state at its output at zero crossings of the voltage UH (t). Resistors 35 and 36 create the shift. A resistor 37 and a diode 38 create a voltage offset on W (t) in the waiting phase of the measurement, and a resistor 39 creates a voltage offset on W (t) in the measurement phase. It is necessary to use the "offset" function to prevent the comparators from changing state randomly at times when the amplitude of the load derivative is low, and to avoid bouncing of the logic signals in the search for zero crossings of the voltage UH (t). In this regard, the resistors 35, 36 and 39 are involved in the quality of the measurement, so the offset voltage generated must be sufficiently low and also distributed around the zero potential.

Le fonctionnement dans le temps peut être suivi sur la Fig. 12. On remarque que la mesure ne peut débuter que si la tension V(t) est suffisamment négative (-VL). Alors, le signal E à la sortie du comparateur 27 est au niveau haut. A ce stade, une bascule 40 a un niveau haut sur son entrée D. Par l'intermédiaire de portes NON-ET 41 et 42, le niveau CL/ passe au niveau haut et met la bascule en état de fonctionnement, le décalage se réduit à celui nécessaire à la mesure. Lors de la venue du front montant du signal C provenant du comparateur 34, la bascule 40 recopie l'état présent sur l'entrée D sur la sortie QL, la sortie QL/ prend l'état opposé, en assurant le décalage de la tension UH(t) nécessaire à l'hystérésis durant la mesure. L'instant T1 étant ainsi défini, on débute le comptage du temps. Lors du passage du signal C au niveau bas, par l'intermédiaire des portes 41 et 42, on définit un décalage pour l'attente de mesure, le niveau CL/ passe au niveau bas et met la bascule en état figé avec la sortie QL à l'état bas. La sortie QL/ prend l'état opposé, en assurant le décalage de tension UH(t) nécessaire en phase d'attente de mesure. L'instant T2 est ainsi défini. On arrête le comptage du temps et on rend disponible l'information T2 - T1 au calculateur.The operation over time can be followed in FIG. 12. Note that the measurement can only start if the voltage V (t) is sufficiently negative (-VL). Then, the signal E at the output of the comparator 27 is at the high level. At this stage, a flip-flop 40 has a high level on its input D. Via NAND gates 41 and 42, the level CL / goes to the high level and puts the flip-flop in operating state, the offset is reduced to that necessary for the measurement. When the rising edge of the signal C coming from the comparator 34 comes, the flip-flop 40 copies the state present on the input D on the output QL, the output QL / takes the opposite state, ensuring the offset of the voltage UH (t) necessary for hysteresis during the measurement. The instant T1 being thus defined, the counting of time begins. During the passage of the signal C at the low level, via the gates 41 and 42, an offset is defined for the measurement wait, the level CL / goes to the low level and puts the scale in frozen state with the output QL low. The QL / output takes the opposite state, ensuring the voltage offset UH (t) necessary during the measurement standby phase. The instant T2 is thus defined. The time counting is stopped and the information T2 - T1 is made available to the computer.

La Fig. 13 représente schématiquement les différents éléments mécaniques et électriques constitutifs d'une imprimante à jet d'encre, incluant une tête d'impression 1 et un circuit d'alimentation en encre. Sont représentés également les différents éléments : capteurs, circuits électriques, permettant la mise en oeuvre du procédé de contrôle de la qualité de l'encre, objet de la présente invention. La Fig. 13 illustre notamment une tête d'impression 1 comportant une buse 2 permettant de former une succession de gouttelettes G, une électrode de charge 6 et des moyens électriques 7 permettant de charger ces gouttelettes, un détecteur de vitesse des gouttes 8, des électrodes de déflexion 10, et une gouttière 11, déjà décrits à propos de la Fig. 1. Un circuit d'encre comporte un générateur de débit d'encre constant 43, indépendant des variations de l'environnement, ledit générateur 43 étant connecté hydrauliquement à la buse 2 par des canalisations 44 et 45 en série, à partir d'un réservoir de mélange 46 contenant l'encre destinée à la buse. Deux réservoirs 47 et 48 contenant respectivement de l'encre fraîche et du solvant sont reliés hydrauliquement au réservoir 46, de manière à ajuster les quantités d'encre et de solvant de ce dernier. Enfin, un réservoir 49 contient l'encre provenant des gouttes non utilisées pour l'impression et récupérées dans la gouttière 11.Fig. 13 schematically represents the various mechanical and electrical elements constituting an ink jet printer, including a print head 1 and an ink supply circuit. The various elements are also represented: sensors, electrical circuits, allowing the implementation of the ink quality control process, object of the present invention. Fig. 13 illustrates in particular a print head 1 comprising a nozzle 2 making it possible to form a succession of droplets G, a charging electrode 6 and electrical means 7 making it possible to charge these droplets, a drop speed detector 8, deflection electrodes 10, and a gutter 11, already described in connection with FIG. 1. An ink circuit comprises a constant ink flow generator 43, independent of variations in the environment, said generator 43 being hydraulically connected to the nozzle 2 by lines 44 and 45 in series, from a mixing tank 46 containing the ink intended for the nozzle. Two tanks 47 and 48 respectively containing fresh ink and solvent are hydraulically connected to the tank 46, so as to adjust the quantities of ink and solvent of the latter. Finally, a reservoir 49 contains the ink coming from the drops not used for printing and recovered in the gutter 11.

Dans le cas particulier de l'exemple de réalisation montré à la Fig. 13, le générateur de débit constant 43 est constitué d'une pompe volumétrique 50 entrainée par un moteur 51, d'un dispositif de mesure de vitesse selon l'invention, et d'un circuit de régulation de vitesse de goutte 52.In the particular case of the exemplary embodiment shown in FIG. 13, the constant flow generator 43 consists of a positive displacement pump 50 driven by a motor 51, a speed measuring device according to the invention, and a drop speed regulation circuit 52.

En particulier, la pompe volumétrique 50 peut consister en une cellule multifonction comportant une chambre à volume variable, telle que décrite dans la demande de brevet français no 2 608 225 au nom de la présente demanderesse. Le circuit de régulation de vitesse de goutte 52 vient agir sur le moteur 51 entraînant la pompe 50, de manière à augmenter (ou diminuer) le débit de la pompe 50, selon que la vitesse de goutte mesurée est inférieure (ou supérieure) à une valeur de consigne Vo. Un procédé similaire de régulation de vitesse de goutte est décrit en particulier dans les brevets US no 4 045 770 et US no 4 063 252 pour le cas d'une imprimante à jet d'encre magnétique.In particular, the positive displacement pump 50 may be a multifunction unit having a variable volume chamber, as described in the French patent application No. 2608225 in the name of the present applicant. The drop speed regulation circuit 52 acts on the motor 51 driving the pump 50, so as to increase (or decrease) the flow rate of the pump 50, depending on whether the measured drop speed is lower (or higher) than a setpoint Vo. A similar method drop of speed control is described in particular in US Patents No. 4,045,770 and US No. 4,063,252 for the case of a jet printer magnetic ink.

Le générateur 43 est relié à la buse 2 par une seule canalisation définie par la mise en série des canalisations 44 et 45. La régulation de la vitesse de goutte revient sensiblement à réguler le débit d'encre en sortie du générateur 43, circulant dans les canalisations 44 et 45.The generator 43 is connected to the nozzle 2 by a single line defined by the series of lines 44 and 45. The regulation of the drop speed substantially amounts to regulating the flow of ink leaving the generator 43, circulating in the lines 44 and 45.

Selon l'invention, on dispose d'un dispositif de mesure 53 de la pression de l'encre Pe délivrée par la pompe 50, placé entre le générateur 43 et la buse 2, et divisant la canalisation en une partie amont et une partie aval par rapport au sens de circulation du fluide, déjà référencées respectivement 44 et 45. La pression Pe nécessaire pour maintenir un débit de jet fixe Qo (ou une vitesse de goutte Vo) dépend des paramètres suivants :

  • du dénivelé (zp - zj) existant entre le lieu de mesure de pression et le jet J;
  • des caractéristiques géométriques (sections, longueurs et formes) de la canalisation 45 située entre le lieu de mesure de pression et le jet J, et de la buse 2;
  • des caractéristiques de l'encre présente dans la canalisation 45 entre le lieu de mesure de pression et le jet J (viscosité, densité), et dans la buse 2.
According to the invention, there is a device 53 for measuring the pressure of the ink Pe delivered by the pump 50, placed between the generator 43 and the nozzle 2, and dividing the pipe into an upstream part and a downstream part with respect to the direction of circulation of the fluid, already referenced respectively 44 and 45. The pressure Pe necessary to maintain a fixed jet flow rate Qo (or a drop speed Vo) depends on the following parameters:
  • the difference in height (zp - zj) existing between the pressure measurement location and the jet J;
  • geometric characteristics (sections, lengths and shapes) of the pipe 45 located between the place of pressure measurement and the jet J, and of the nozzle 2;
  • characteristics of the ink present in line 45 between the place of pressure measurement and the jet J (viscosity, density), and in nozzle 2.

La relation entre la pression de l'encre et ces différents paramètres peut, en particulier, s'écrire sous la forme suivante :

Pe = K1 ρ ¯ .Qo²+ K2 η ¯ Qo - ρ ¯ g(zp - zj)   (10)

Figure imgb0028


ρ représente la densité moyenne de l'encre dans la canalisation 45 et dans la buse 2;
η représente la viscosité moyenne de l'encre dans la canalisation 45 et dans la buse 2,
g représente l'accélération de la pesanteur,
K1 et K2 sont des coefficients caractérisant la géométrie de l'écoulement d'encre le long de la canalisation 45 et dans la buse 2.The relationship between the ink pressure and these different parameters can, in particular, be written in the following form:

Pe = K1 ρ ¯ .Qo² + K2 η ¯ Qo - ρ ¯ g (zp - zj) (10)
Figure imgb0028


or ρ represents the average density of the ink in line 45 and in nozzle 2;
η represents the average viscosity of the ink in line 45 and in nozzle 2,
g represents the acceleration of gravity,
K1 and K2 are coefficients characterizing the geometry of the ink flow along the pipe 45 and in the nozzle 2.

Pour une installation donnée, le dénivelé (zp - zj) est connu (par construction ou mesure sur le site). La pression Pe* tenant compte du dénivelé, et définie ci-dessous, ne dépend alors que des caractéristiques (densité et viscosité) dé l'encre circulant dans les conduits (la canalisation 45 et la buse 2) entre le lieu de mesure de pression et le jet.

Pe* = Pe + ρ ¯ g(zp - zj) = K1 ρ ¯ Qo² + K2 η ¯ Qo   (11)

Figure imgb0029


   la densité de l'encre ρ contribue à la perte de pression Pe* par le premier terme du membre de droite de la relation (11), qui correspond à une perte par inertie; celui-ci dépend (par l'intermédiaire du coefficient K1) de l'amplitude des changements de sections de l'écoulement de l'encre dans les conduits situés entre le lieu de mesure de pression et le jet. La viscosité η de l'encre contribue à la perte de pression Pe* par le second terme du membre de droite de la relation (11), qui correspond à une perte par frottement; celui-ci dépend (par l'intermédiaire du coefficient K2) du diamètre et des longueurs des conduits situés entre le lieu de mesure de Pe* et le jet.For a given installation, the height difference (zp - zj) is known (by construction or measurement on the site). The pressure Pe * taking into account the difference in height, and defined below, then only depends on the characteristics (density and viscosity) of the ink circulating in the conduits (the pipe 45 and the nozzle 2) between the place of pressure measurement and the jet.

Pe * = Pe + ρ ¯ g (zp - zj) = K1 ρ ¯ Qo² + K2 η ¯ Qo (11)
Figure imgb0029


ink density ρ contributes to the pressure loss Pe * by the first term of the right member of the relation (11), which corresponds to a loss by inertia; this depends (via the coefficient K1) on the amplitude of the changes in cross-sections of the flow of the ink in the conduits located between the place of pressure measurement and the jet. The viscosity η ink contributes to the pressure loss Pe * by the second term of the right member of the relation (11), which corresponds to a loss by friction; this depends (via the coefficient K2) on the diameter and lengths of the conduits located between the place of measurement of Pe * and the jet.

Dans un mode préféré de réalisation, le diamètre de la canalisation 45 est beaucoup plus grand (plus de dix fois) que le diamètre 0̸B de la buse 2 située à l'extrémité, et la longueur de la canalisation est relativement faible, de telle sorte que la perte de pression dans ces conduits est négligeable devant la perte de pression dans la buse, et ainsi la relation (11) peut s'écrire :

Pe* = K 1B Qo² + K 2B Qo   (12)

Figure imgb0030


où K1B et K2B sont des paramètres représentatifs de la géométrie de la buse 2, caractérisée par un diamètre d'orifice ⌀B et une longueur d'orifice LB. Dans ce cas, la viscosité η et la densité de l'encre ρ apparaissant dans la relation (12) sont représentatives des valeurs à la buse. La mesure de la pression Pe* permet alors, pour un type d'encre et une buse donnés, de contrôler la qualité de l'encre circulant dans la buse, immédiatement en amont du lieu de formation des gouttes. La pression Pe* mesurée à l'aide du principe décrit plus haut résulte d'un effet combiné de la densité ρ et de la viscosité η de l'encre en écoulement dans la buse, tel que donné par la relation (12). Ces deux paramètres dépendent essentiellement de la concentration en solvant dans l'encre et de la température de l'encre. Ils diminuent tous deux lorsque la température de l'encre augmente et lorsque la quantité de solvant dans l'encre augmente.In a preferred embodiment, the diameter of the pipe 45 is much larger (more than ten times) than the diameter 0̸B of the nozzle 2 located at the end, and the length of the pipe is relatively small, so that the pressure loss in these conduits is negligible compared to the pressure loss in the nozzle, and thus the relation (11) can be written:

Pe * = K 1B Qo² + K 2B Qo (12)
Figure imgb0030


where K 1B and K 2B are parameters representative of the nozzle 2 geometry, characterized by an orifice diameter ⌀B and an orifice length LB. In this case, the viscosity η and the density of the ink ρ appearing in relation (12) are representative of the values at the nozzle. The pressure measurement Pe * then makes it possible, for a given type of ink and a nozzle, to control the quality of the ink circulating in the nozzle, immediately upstream from the place of formation of the drops. The pressure Pe * measured using the principle described above results from a combined effect of the density ρ and the viscosity η of the ink flowing in the nozzle, as given by equation (12). These two parameters depend essentially on the solvent concentration in the ink and the temperature of the ink. They both decrease as the temperature of the ink increases and as the amount of solvent in the ink increases.

Pour une variation de concentration de l'encre donnée de 1 %, par exemple, on constate généralement une variation relative plus grande de la viscosité (30 %) que de la densité (1 %). Afin d'augmenter la sensibilité de la mesure de Pe* à une variation de concentration de l'encre, on utilise, de préférence, une buse 2 dont l'élancement (défini par le rapport de la longueur de l'orifice sur le diamètre de l'orifice) est au moins égal à 1, afin d'augmenter la valeur du coefficient K2B dans la relation (12) et d'obtenir une mesure plus sensible aux variation de qualité de l'encre, qui résulte principalement des variations de viscosité.For a given variation in ink concentration of 1%, for example, there is generally a greater relative variation in viscosity (30%) than in density (1%). In order to increase the sensitivity of the measurement of Pe * to a variation in concentration of the ink, a nozzle 2 is preferably used, the slenderness (defined by the ratio of the length of the orifice to the diameter of the orifice) is at least equal to 1, in order to increase the value of the coefficient K2B in relation (12) and to obtain a measurement more sensitive to variations in ink quality, which mainly results from variations in viscosity.

Le dispositif de régulation de la qualité de l'encre est schématiquement représenté à la Fig. 13. Selon l'invention, un capteur de température 54 est disposé dans le circuit d'encre afin de réaliser une mesure de température représentative de la température Te* de l'encre à la buse. Avec les hypothèses faites plus haut sur le diamètre de la canalisation 45, la vitesse moyenne de l'encre dans la canalisation est faible (de l'ordre de quelques cm/s), de sorte que la température de l'encre est identique à la température ambiante dès que la longueur du conduit est supérieure à 50 cm, environ. Une simple mesure de la température ambiante est alors suffisante pour mettre en oeuvre le procédé décrit dans la suite.The ink quality control device is schematically shown in FIG. 13. According to the invention, a temperature sensor 54 is arranged in the ink circuit in order to carry out a temperature measurement representative of the temperature Te * of the ink at the nozzle. With the assumptions made above on the diameter of the pipe 45, the average speed of the ink in the pipe is low (of the order of a few cm / s), so that the ink temperature is identical to room temperature as soon as the length of the conduit is more than approximately 50 cm. A simple measurement of the ambient temperature is then sufficient to implement the method described below.

Les mesures de la pression Pe* et de la température Te* de l'encre sont transmises à un circuit de contrôle 55. Ce dernier, en fonction d'une consigne de qualité de l'encre à maintenir, qui peut être en particulier définie par une courbe Pe*(consigne)-Te* telle que représentée à la Fig. 14, régule en permanence la qualité de l'encre en ajoutant dans le réservoir de mélange 46 des quantités déterminées d'encre fraîche provenant du réservoir 47, ou de solvant provenant du réservoir 48, ou d'encre recyclée à la gouttière 11 provenant du réservoir 49, grâce à une action sur l'une des électrovannes, respectivement 56, 57 et 58.The measurements of the pressure Pe * and of the temperature Te * of the ink are transmitted to a control circuit 55. The latter, according to a quality instruction of the ink to be maintained, which can in particular be defined by a curve Pe * (setpoint) -Te * as shown in FIG. 14, permanently regulates the quality of the ink by adding to the mixing tank 46 determined quantities of fresh ink coming from the tank 47, or of solvent coming from the tank 48, or of ink recycled to the gutter 11 coming from the tank 49, thanks to an action on one of the solenoid valves, respectively 56, 57 and 58.

Selon l'invention, l'encre présente dans le réservoir d'encre fraîche 47 est d'une concentration plus élevée que la concentration nominale d'utilisation. La courbe Pee caractérisant la qualité de cette encre fraîche en fonction de la température est représentée à la Fig. 14, ainsi que celle du solvant Pes. Les avantages principaux de l'utilisation d'encre d'appoint concentrée sont, d'une part, un temps de réponse plus rapide de la régulation de la qualité de l'encre et, d'autre part, une autonomie supérieure de la machine en terme de réapprovisionnement en encre neuve.According to the invention, the ink present in the fresh ink reservoir 47 is of a higher concentration than the nominal concentration of use. The Pee curve characterizing the quality of this fresh ink as a function of temperature is shown in FIG. 14, as well as that of the solvent Pes. The main advantages of using concentrated make-up ink are, on the one hand, a faster response time of the ink quality regulation and, on the other hand, a greater autonomy of the machine. in terms of new ink replenishment.

Dans un exemple de réalisation particulier, la pompe volumétrique 50 est constituée d'une chambre à volume variable fermée par une membrane, cette dernière étant mise en mouvement alternatif par un moteur de type moteur pas à pas. La pompe 50 alimente en permanence la tête d'impression 1 avec de l'encre, à travers le réservoir de mélange 46, le débit Qo étant maintenu constant à l'aide du circuit de régulation 52. La régulation de la qualité de l'encre s'obtient en jouant sur les durées d'ouverture des électrovannes 56, 57 et 58, commandées par le circuit de régulation 55. Ce dernier fonctionne, en outre, d'une manière échantillonnée de période dt. Afin de tenir compte du temps de mélange et de transit de l'encre entre le réservoir de mélange 46 et la buse 2, la régulation tient compte, non seulement de la qualité de l'encre mesurée à l'instant présent, mais de tout l'historique de la qualité de l'encre mesurée depuis l'instant de mise en route de la machine. Le mode de régulation de la qualité de l'encre est alors assuré de la manière suivante :In a particular embodiment, the positive displacement pump 50 consists of a variable volume chamber closed by a membrane, the latter being set in reciprocating motion by a motor of the stepping motor type. The pump 50 continuously supplies the print head 1 with ink, through the mixing tank 46, the flow rate Qo being kept constant using of the regulating circuit 52. The regulation of the quality of the ink is obtained by varying the opening times of the solenoid valves 56, 57 and 58, controlled by the regulating circuit 55. The latter also functions d 'a sampled period period dt. In order to take into account the time of mixing and transit of the ink between the mixing tank 46 and the nozzle 2, the regulation takes account, not only of the quality of the ink measured at the present moment, but of all the history of the ink quality measured from the moment the machine was started. The ink quality control mode is then ensured as follows:

On définit sur une période dt d'échantillonnage du circuit de régulation 55 les valeurs moyennes suivantes, sur la ième période d'échantillonnage :

  • la durée d'ouverture De(i) de l'électrovanne d'encre fraîche 56,
  • la durée d'ouverture Ds(i) de l'électrovanne de solvant 57,
  • la durée d'ouverture Dg(i) de l'électrovanne 58 d'encre recyclée provenant de la gouttière 11,
  • la température mesurée de l'encre Te*(i),
  • la pression mesurée Pe*(i) à la température Te*(i),
  • la courbe de consigne Pec(T) en fonction de la température T (Fig. 14);
  • la courbe Pee(T) caractéristique de l'encre fraîche (Fig. 14);
  • la courbe Pes(T) caractéristique du solvant (Fig. 14);
  • le temps de réponse tr du circuit compris entre les réservoirs 47, 48, 49 et la buse 2 défini par le rapport volume de la canalisation sur le débit volumique du jet Qo.
The following average values are defined over a sampling period dt of the regulation circuit 55, over the ith sampling period:
  • the opening time De (i) of the fresh ink solenoid valve 56,
  • the opening time Ds (i) of the solvent solenoid valve 57,
  • the opening time Dg (i) of the solenoid valve 58 of recycled ink coming from the gutter 11,
  • the measured temperature of the ink Te * (i),
  • the pressure measured Pe * (i) at the temperature Te * (i),
  • the setpoint curve Pec (T) as a function of the temperature T (Fig. 14);
  • the Pee curve (T) characteristic of fresh ink (Fig. 14);
  • the Pes (T) curve characteristic of the solvent (Fig. 14);
  • the response time tr of the circuit between the tanks 47, 48, 49 and the nozzle 2 defined by the ratio of the volume of the pipe to the volume flow rate of the jet Qo.

Soit DP(i) l'écart instantané de qualité de l'encre par rapport à la valeur de consigne :

DP(i) = Pe*(i) - Pec(Te*(i))

Figure imgb0031


   On définit l'écart dynamique de la qualité de l'encre H(i) :
Figure imgb0032

où n = 0 correspond à l'instant de mise en route du circuit d'encre de l'imprimante. La régulation s'écrit :

si |H(i)| < Ho
encre de qualité satisfaisante
alors De(i) = 0
Ds(i) = 0
Dg(i) = dt
si H(i) > Ho
encre trop concentrée
alors De(i) = 0
Ds(i) = dt.Ks.|H(i) - Ho|
Figure imgb0033

Dg(i) = dt.(1 - Ks).|H(i) - Ho|
Figure imgb0034
si H(i) < - Ho
encre trop peu concentrée
alors De(i) = dt.Ke.|H(i) - Ho|
Figure imgb0035

Ds(i) = 0
Dg(i) = dt.(1 - Ke).|H(i) - Ho|
Figure imgb0036



Ke est proportionnel à |Pec(To) - Pee(To)|
Ks est proportionnel à |Pec(To) - Pes(To)|
To est une température moyenne d'utilisation,
Tp est de l'ordre de 3tr.Let DP (i) the instantaneous ink quality deviation from the set value:

DP (i) = Pe * (i) - Pec (Te * (i))
Figure imgb0031


We define the dynamic difference in the quality of the ink H (i):
Figure imgb0032

where n = 0 corresponds to the time when the printer's ink circuit starts up. The regulation is written:
if | H (i) | <Ho
ink of satisfactory quality
then De (i) = 0
Ds (i) = 0
Dg (i) = dt
if H (i)> Ho
ink too concentrated
then De (i) = 0
Ds (i) = dt.Ks. | H (i) - Ho |
Figure imgb0033

Dg (i) = dt. (1 - Ks). | H (i) - Ho |
Figure imgb0034
if H (i) <- Ho
too little concentrated ink
so De (i) = dt.Ke. | H (i) - Ho |
Figure imgb0035

Ds (i) = 0
Dg (i) = dt. (1 - Ke). | H (i) - Ho |
Figure imgb0036


or
Ke is proportional to | Pec (To) - Pee (To) |
Ks is proportional to | Pec (To) - Pes (To) |
To is an average usage temperature,
Tp is around 3tr.

La Fig. 13 illustre également le schéma de fonctionnement du dispositif de contrôle de la formation de gouttes, objet de l'invention. Le dispositif met en oeuvre la tête d'impression 1, comportant la buse 2, alimenté par le circuit d'encre comportant le générateur à débit constant 43. Le jet J issu de la buse 2, dont la vitesse est fixe (régulée), se fragmente à une distance Lb, Fig. 2, de la buse 2 en une succession de gouttelettes équidistantes et équidimensionnelles G, sous l'action de la perturbation de pression appliquée par le résonateur 4 placé en amont de la buse 2, et alimenté par le circuit de modulation 5. Le circuit de charge 7 coopérant avec l'électrode de charge 6 permet de charger les gouttes destinées à l'impression.Fig. 13 also illustrates the operating diagram of the device for controlling the formation of drops, object of the invention. The device implements the print head 1, comprising the nozzle 2, supplied by the ink circuit comprising the constant-flow generator 43. The jet J coming from the nozzle 2, the speed of which is fixed (regulated), fragments at a distance Lb, Fig. 2, of the nozzle 2 in a succession of equidistant and equidimensional droplets G, under the action of the pressure disturbance applied by the resonator 4 placed upstream of the nozzle 2, and fed by the modulation circuit 5. The circuit charge 7 cooperating with the charge electrode 6 makes it possible to charge the drops intended for printing.

Selon l'invention, un circuit électrique 59 mesure un temps de vol tv des gouttes utilisées pour la mesure de vitesse. Ce temps de vol tv est défini par la durée entre l'instant de charge de ces gouttes et l'instant de détection de leur passage à l'entrée du détecteur de vitesse 8. Un chronogramme du fonctionnement du détecteur 59 est présenté à la Fig. 15. Le nombre de gouttes du train utilisé pour la détection de vitesse étant connu (5 à la Fig. 15), un simple traitement des signaux de charge Vc(t) (la tension de charge Vc est appliquée sur l'électrode de charge pendant une demi-période goutte pour le cas représenté à la Fig. 15) et de détection de vitesse I(t), J(t) permet d'obtenir le temps tv. La distance Lt, Fig. 2, entre la buse 2 et l'entrée du détecteur 8 étant connue par construction, la distance Lb séparant la buse du lieu de formation et charge des gouttes s'obtient par la relation ci-dessous, qui met en oeuvre à la fois la vitesse de goutte V et le temps de vol tv, tous deux contrôlés par l'imprimante :

Lb = Lt - V.(tv - Tf)   (13)

Figure imgb0037


où Tf est un temps de retard caractéristique du filtrage électronique et indépendant des autres paramètres.According to the invention, an electrical circuit 59 measures a time of flight tv of the drops used for the speed measurement. This flight time tv is defined by the duration between the instant of charge of these drops and the instant of detection of their passage at the input of the speed detector 8. A chronogram of the operation of the detector 59 is presented in FIG. . 15. The number of drops of the train used for speed detection being known (5 in Fig. 15), a simple processing of the charge signals Vc (t) (the charge voltage Vc is applied to the charge electrode for half a drop period for the case shown in Fig. 15) and speed detection I (t), J (t) allows to obtain the time tv. The distance Lt, Fig. 2, between the nozzle 2 and the input of the detector 8 being known by construction, the distance Lb separating the nozzle from the place of formation and charging of the drops is obtained by the relationship below, which implements both the drop speed V and time of flight tv, both controlled by the printer:

Lb = Lt - V. (tv - Tf) (13)
Figure imgb0037


where Tf is a delay time characteristic of the electronic filtering and independent of the other parameters.

L'expérience montre par ailleurs que, la vitesse des gouttes étant fixée par la régulation décrite précédemment, il existe une relation unique liant la qualité de l'encre à la buse (mesurée par la pression Pe*) et la longueur de brisure Lb, permettant d'assurer une formation et une charge de gouttes optimales. Le circuit de régulation de la formation des gouttes 59 agit sur l'amplitude du signal d'excitation du résonateur 4, afin de maintenir le lieu de brisure Lbopt, assurant une formation optimale des gouttes, fonction du type d'encre utilisé et de la qualité de l'encre circulant à la buse. Un autre avantage de l'invention réside dans le fait qu'on s'affranchit par un tel procédé de disparités éventuelles dans les caractéristiques des résonateurs, d'une machine à une autre.Experience also shows that, the speed of the drops being fixed by the regulation described above, there is a unique relationship between the quality of the ink at the nozzle (measured by the pressure Pe *) and the length of breakage Lb, ensuring optimal formation and charge of drops. The circuit for regulating the formation of the drops 59 acts on the amplitude of the excitation signal of the resonator 4, in order to maintain the breaking point Lbopt, ensuring optimal formation of the drops, depending on the type of ink used and the quality of the ink circulating at the nozzle. Another advantage of the invention lies in the fact that, by such a method, it overcomes possible disparities in the characteristics of the resonators, from one machine to another.

Dans les moyens de contrôle décrits ci-dessus, tous les paramètres contrôlés sont mesurés (ou représentatifs des valeurs mesurables) au niveau de la buse. Ceci permet une régulation du fonctionnement de l'imprimante très précise. La précision atteignable par ces moyens de contrôle permet leur utilisation dans les imprimantes à jet d'encre utilisées pour les applications de marquage de haute qualité. Elle contribue, d'une manière générale, à améliorer la qualité de l'impression et la fiabilité des imprimantes à jet d'encre.In the control means described above, all the parameters controlled are measured (or representative of the measurable values) at the level of the nozzle. This allows very precise regulation of the operation of the printer. The precision achievable by these control means allows their use in inkjet printers used for high quality marking applications. In general, it contributes to improving the quality of printing and the reliability of inkjet printers.

Le tableau suivant donne à titre indicatif des valeurs pour trois modèles de tête d'impression selon l'invention : Exemple 1 Exemple 2 Exemple 3 f 125 kHz 83,33 kHz 62,5 kHz Fréquence goutte R 0,6 mm 0,6 mm 0,6 mm Largeur fente électrode L 2 mm 2 mm 2,8 mm Longueur détecteur 8c Li 1 mm 1 mm 1,2 mm Longueur isolant Le 2,39 mm 2,375 mm 3,25 mm Longueur efficace de 8c N 7 6 7 nombre de gouttes chargées ⌀B 40 µm 55 µm 70 µm Diamètre de buse The following table gives indicative values for three models of printhead according to the invention: Example 1 Example 2 Example 3 f 125 kHz 83.33 kHz 62.5 kHz Drop frequency R 0.6 mm 0.6 mm 0.6 mm Electrode slot width L 2 mm 2 mm 2.8mm Detector length 8c Li 1 mm 1 mm 1.2mm Insulation length The 2.39 mm 2.375 mm 3.25mm Effective length of 8c NOT 7 6 7 number of charged drops B 40 µm 55 µm 70 µm Nozzle diameter

Claims (18)

  1. Device for checking and regulating an ink and for processing it in a continuous ink jet printer in which a continuous ink jet (J) exits from a nozzle (2), comprising:
    - means (4, 5) for dividing the jet (J) into droplets (G) an equal distance apart and of equal dimensions;
    - a charging electrode (6) at which the said droplets are selectively charged electrostatically;
    - a velocity detector (8) for the charged drops;
    - deflection electrodes (10) at which the said droplets (G) are deflected in dependence upon their charge,
    characterised in that:
    - the detector (8) is a single detector and comprises a central conductive element (8c) having a length (L) and being manufactured in two parts which are symmetrical relative to the trajectory of the droplets (G),
    and in that the device further comprises an electronic circuit (9) for measuring the velocity of the drops comprising:
    - means for measuring the current I(t) flowing between the detector (8) and earth and corresponding to the first derivative, with respect to time, of the total charge Q(t) induced in the detector (8) by one or more charged droplets;
    - means for calculating the second derivative J(t) of the said charge Q(t) with respect to time;
    - means for processing the first derivative I(t) and second derivative J(t) determining the moments T₁ and T₂ when the derivative J(t) changes to zero, for a sufficient value of the current I(t), which correspond to the respective moments when the charged droplet or droplets enter and leave the detector (8);
    - means for calculating the velocity V of the droplets from the moments T1 and T2 and from the length (L) of the conductive element (8c) of the detector (8).
  2. Device according to claim 1, characterised in that the charging voltage at the charging electrode (6) is only applied during part of the period of formation of the droplets used for measuring velocity.
  3. Device according to claim 2, characterised in that the charging voltage at the charging electrode (6) is only applied during at most half of the period of formation of the droplets used for measuring velocity.
  4. Device according to one of claims 1 to 4, characterised in that the conductive element (8c) of the detector (8) is protected from the influence of external electrical charges by an insulating element (8i) having a total length (Li) measured along the trajectory of the droplets, and by a guard electrode (8e) electrically connected to earth.
  5. Device according to claim 4, characterised in that the conductive element (8c) of the detector (8), having the length (L), with the distance separating the two parts thereof being (R), satisfies the condition:

    R < Le
    Figure imgb0044


    in which Le is the effective length of the detector, defined by the relationship:

    Le = L + Li/2
    Figure imgb0045
  6. Device according to claim 4 or 5, characterised in that it comprises a means for dividing a charged droplet (Gc) serving to carry out a measurement of velocity, relative to other charged droplets, so that the said charged droplet (Gc) is preceded by at least n1 uncharged droplets and is followed by at least n2 uncharged droplets, with n1 and n2 satisfying the relationships:

    n1 > (Le + R)/(5 ⌀B) - 1, approximately
    Figure imgb0046

    n2 > (Lt + Le - Lb)/(5 ⌀B) - 1, approximately,
    Figure imgb0047


    in which ⌀B is the diameter of the nozzle (2),
    Lt is the distance between the nozzle (2) and the entrance to the detector (8), and
    Lb is the distance between the nozzle (2) and the place where the drops (G) are formed.
  7. Device according to claim 4 or 5, characterised in that it comprises a means for dividing a series of N successive charged droplets serving to carry out a measurement of velocity, relative to other charged droplets, so that the said series of N successive charged droplets is preceded by at least n1 uncharged droplets and followed by at least n2 uncharged droplets, with n1 and n2 satisfying the relationships:

    n1 > ((Le + SN/2)/λ) - 1
    Figure imgb0048

    n2 > ((Lt + Le - Lb)/λ) - 1/2 - N/2
    Figure imgb0049


    in which λ is the distance between two successive droplets and S is the length of the zone electrically influenced by a charged drop (Gc).
  8. Device according to one of claims 1 to 7, characterised in that, with the means for measuring the velocity of the droplets, there is associated a means for controlling the charge of the droplets (Gc) which are used for measuring velocity, so that the said droplets have a sufficiently low charge for them to be recovered in the gutter (11) of the printer.
  9. Device according to one of claims 1 to 8, characterised in that it comprises a means (52) for regulating the velocity of the drops, this means acting on a motor (51) which drives a pump (50) in the ink supply circuit to the nozzle (2), according to whether the measured velocity of the drop is less (or greater) than a reference value (Vo).
  10. Device according to claim 9, characterised in that it comprises a sensor for the ink pressure (Pe*) on the pipes (44, 45) between the constant ink flow generator (43), formed by the pump (50) and the motor (51), and the nozzle (2), immediately upstream from the nozzle (2), in order to derive the ink concentration in dependence upon the said pressure, a pre-determined operating temperature and the velocity of the drops.
  11. Device according to claim 10, characterised in that the pipes between the flow generator (43) and the nozzle (2) have a diameter which is approximately ten times greater than the diameter of the nozzle (2).
  12. Device according to claim 10 or 11, characterised in that the ratio between the length and the diameter of the opening of the nozzle (2) is at least equal to 1.
  13. Device according to one of claims 10 to 12, characterised in that it comprises a further temperature sensor (54) for measuring a temperature representative of the temperature (Te*) of the ink at the nozzle (2).
  14. Device according to claim 13, characterised in that it comprises a further means (55) for constantly regulating the quality of the ink in dependence upon measurements of pressure (Pe*), temperature (Te*) and a reference curve of the pressure in dependence upon temperature, for a given drop velocity (Vo).
  15. Device according to claim 14, characterised in that the ink quality regulation takes place in a mixing reservoir (46), from a fresh ink reservoir (47), a solvent reservoir (48) and a reservoir (49) of ink recycled at the gutter (11), with the regulating means (55) selectively actuating respective solenoid valves (56, 57, 58) on the pipes between, on the one hand, the reservoirs (47, 48, 49) and, on the other hand, the reservoir (46).
  16. Device according to claim 15, characterised in that the ink in the reservoir (47) has a higher concentration than the nominal operating value.
  17. Device according to one of claims 14 to 16, characterised in that the regulating means (55) comprises a processing circuit taking into account the quality of the ink at the present moment and the history of the quality of the ink since the moment when the machine started up.
  18. Device according to one of claims 1 to 17, characterised in that it comprises a further means (59) for determining the distance between the place where the drops (G) are formed and the nozzle (2), and for acting on the amplitude of the excitation signal of the means (5) serving to form the said drops (G) so that the distance (Lb) ensures an optimum formation of drops in dependence upon the type of ink used and the quality of the ink flowing at the nozzle.
EP89460031A 1988-09-29 1989-09-22 Ink controlling and regulating device for a continuous ink jet printer Expired - Lifetime EP0362101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89460031T ATE96736T1 (en) 1988-09-29 1989-09-22 INK CONTROL AND REGULATOR DEVICE FOR A CONTINUOUS INK JET PRINTER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812935 1988-09-29
FR8812935A FR2636884B1 (en) 1988-09-29 1988-09-29 DEVICE FOR MONITORING AND REGULATING AN INK AND ITS TREATMENT IN A CONTINUOUS INK JET PRINTER

Publications (2)

Publication Number Publication Date
EP0362101A1 EP0362101A1 (en) 1990-04-04
EP0362101B1 true EP0362101B1 (en) 1993-11-03

Family

ID=9370643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89460031A Expired - Lifetime EP0362101B1 (en) 1988-09-29 1989-09-22 Ink controlling and regulating device for a continuous ink jet printer

Country Status (11)

Country Link
US (1) US5160939A (en)
EP (1) EP0362101B1 (en)
JP (1) JPH0667621B2 (en)
KR (1) KR900701538A (en)
AT (1) ATE96736T1 (en)
AU (1) AU615803B2 (en)
CA (1) CA1313972C (en)
DE (1) DE68910459T2 (en)
ES (1) ES2045529T3 (en)
FR (1) FR2636884B1 (en)
WO (1) WO1990003271A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012641A1 (en) 2009-07-30 2011-02-03 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
WO2011076810A1 (en) 2009-12-23 2011-06-30 Markem-Imaje Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8888209B2 (en) 2009-12-23 2014-11-18 Markem-Imaje System for determining the autonomy in consumable fluids of a continuous ink jet printer
US8998391B2 (en) 2011-02-11 2015-04-07 Markem-Imaje Method for stimulation range detection in a continuous ink jet printer

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396274A (en) * 1992-05-20 1995-03-07 Videojet Systems International, Inc. Variable frequency ink jet printer
US5517216A (en) * 1992-07-28 1996-05-14 Videojet Systems International, Inc. Ink jet printer employing time of flight control system for ink jet printers
FR2695704B1 (en) * 1992-09-15 1994-10-14 Imaje Pneumatic pressure regulator with electronic control and method for regulating the pressure of a fluid using such a regulator.
US5424766A (en) * 1993-11-08 1995-06-13 Videojet Systems International, Inc. Ink jet printer control system responsive to acoustical properties of ink
EP0668165B1 (en) * 1994-02-23 2000-12-27 Hewlett-Packard Company Method for optimizing printer operation
CA2200086A1 (en) * 1994-09-16 1996-03-21 Marconi Data Systems Inc. Continuous ink jet printing system for use with hot-melt inks
GB9610796D0 (en) 1996-05-23 1996-07-31 Videojet Systems Int Charged droplet position determining apparatus
US6509917B1 (en) 1997-10-17 2003-01-21 Eastman Kodak Company Continuous ink jet printer with binary electrostatic deflection
US6012805A (en) * 1997-10-17 2000-01-11 Eastman Kodak Company Continuous ink jet printer with variable contact drop deflection
US6079821A (en) * 1997-10-17 2000-06-27 Eastman Kodak Company Continuous ink jet printer with asymmetric heating drop deflection
US6254225B1 (en) 1997-10-17 2001-07-03 Eastman Kodak Company Continuous ink jet printer with asymmetric heating drop deflection
US5963235A (en) * 1997-10-17 1999-10-05 Eastman Kodak Company Continuous ink jet printer with micromechanical actuator drop deflection
US6402305B1 (en) 1997-10-17 2002-06-11 Eastman Kodak Company Method for preventing ink drop misdirection in an asymmetric heat-type ink jet printer
FR2801836B1 (en) 1999-12-03 2002-02-01 Imaje Sa SIMPLIFIED MANUFACTURING PRINTER AND METHOD OF MAKING
US6631971B2 (en) 2001-07-18 2003-10-14 Lexmark International, Inc. Inkjet printer and method for use thereof
US6616261B2 (en) 2001-07-18 2003-09-09 Lexmark International, Inc. Automatic bi-directional alignment method and sensor for an ink jet printer
US6626513B2 (en) 2001-07-18 2003-09-30 Lexmark International, Inc. Ink detection circuit and sensor for an ink jet printer
US6843547B2 (en) 2001-07-18 2005-01-18 Lexmark International, Inc. Missing nozzle detection method and sensor for an ink jet printer
US6655777B2 (en) 2001-07-18 2003-12-02 Lexmark International, Inc. Automatic horizontal and vertical head-to-head alignment method and sensor for an ink jet printer
US6769756B2 (en) * 2001-07-25 2004-08-03 Hewlett-Packard Development Company, L.P. Ink drop detector configurations
US6883904B2 (en) * 2002-04-24 2005-04-26 Eastman Kodak Company Apparatus and method for maintaining constant drop volumes in a continuous stream ink jet printer
US7121642B2 (en) * 2002-08-07 2006-10-17 Osram Opto Semiconductors Gmbh Drop volume measurement and control for ink jet printing
US7131372B2 (en) * 2003-12-01 2006-11-07 Lockheed Martin Corporation Miniature fluid dispensing end-effector for geometrically constrained areas
EP1879938B1 (en) * 2005-05-02 2012-04-18 Cytec Surface Specialties, S.A. Radiation curable urethane (meth)acrylate polymer and adhesives formulated with them
FR2934809A1 (en) * 2008-08-11 2010-02-12 Imaje Sa INJECTOR INJECTOR INK JET PRINTING DEVICE, AIR INJECTOR, AND LARGE-WIDE PRINT HEAD
FR2934810A1 (en) * 2008-08-11 2010-02-12 Imaje Sa INKJET PRINTING DEVICE COMPRISING JET SPEED COMPENSATION
FR2956061B1 (en) 2010-02-11 2012-12-21 Markem Imaje INDUSTRIAL INK JET PRINTER WITH DIGITAL COMMUNICATION
DE102011113664A1 (en) 2011-09-20 2013-03-21 Simaco GmbH Method and device for homogenizing ink for inkjet devices
US9975326B2 (en) 2014-06-05 2018-05-22 Videojet Technologies Inc. Continuous ink jet print head with zero adjustment embedded charging electrode
WO2015187926A1 (en) 2014-06-05 2015-12-10 Videojet Technologies Inc. An ink buildup sensor arrangement
KR101966649B1 (en) 2014-06-05 2019-04-09 비디오제트 테크놀러지즈 인코포레이티드 A self-sealing filter module for inkjet printing
FR3025454B1 (en) 2014-09-04 2016-12-23 Markem-Imaje Holding METHOD FOR MANAGING THE QUALITY OF THE INK OF AN INK JET PRINTER BASED ON TEMPERATURE.
FR3036650A1 (en) * 2015-05-29 2016-12-02 Dover Europe Sarl METHOD AND DEVICE FOR MANAGING THE INK QUALITY OF AN INKJET PRINTER
FR3045459B1 (en) * 2015-12-22 2020-06-12 Dover Europe Sarl PRINTHEAD OR INK JET PRINTER WITH REDUCED SOLVENT CONSUMPTION
FR3048200B1 (en) * 2016-02-26 2019-07-12 Dover Europe Sarl METHOD AND DEVICE FOR ADDING SOLVENT BY SMALL QUANTITIES
FR3048199B1 (en) * 2016-02-26 2019-09-06 Dover Europe Sarl SIMPLIFIED FEEDER OF AN INK CIRCUIT
US10926470B2 (en) 2016-10-17 2021-02-23 Wacker Chemie Ag Method for producing silicone elastomer articles with elevated print quality

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852768A (en) * 1973-08-17 1974-12-03 Ibm Charge detection for ink jet printers
JPS5519514A (en) * 1978-07-28 1980-02-12 Ricoh Co Ltd Method of detecting drop interval for charge deflecting ink-jet photoprinter
US4417256A (en) * 1980-05-09 1983-11-22 International Business Machines Corporation Break-off uniformity maintenance
US4323908A (en) * 1980-08-01 1982-04-06 International Business Machines Corp. Resonant purging of drop-on-demand ink jet print heads
ATE36136T1 (en) * 1984-01-20 1988-08-15 Codi Jet Markierungs Systeme G METHOD AND ARRANGEMENT FOR THE INK DELIVERY SYSTEM OF AN INK-JET PRINTER.
JPS60255443A (en) * 1984-06-01 1985-12-17 Ricoh Co Ltd Deflection control type ink jet recording apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 130 (M-478)[2187], 14 mai 1986, page 31; JP-A-60 255 443 (RICOH K.K.) 17-12-1985 *
PATENT ABSTRACTS OF JAPAN, vol. 4, no. 49 (M-7)[531], page 135; JP-A-55 19 514 (RICOH K.K.) 12-02-1980 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011012641A1 (en) 2009-07-30 2011-02-03 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US8511802B2 (en) 2009-07-30 2013-08-20 Markem-Imaje Directly detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US8814330B2 (en) 2009-07-30 2014-08-26 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
US9044941B2 (en) 2009-07-30 2015-06-02 Markem-Imaje Directivity detection device of trajectories of drops issuing from liquid jet, associated electrostatic sensor, print head and continuous ink jet printer
WO2011076810A1 (en) 2009-12-23 2011-06-30 Markem-Imaje Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8888209B2 (en) 2009-12-23 2014-11-18 Markem-Imaje System for determining the autonomy in consumable fluids of a continuous ink jet printer
US9102157B2 (en) 2009-12-23 2015-08-11 Markem-Imaje Holding Measuring system in a fluid circuit of a continuous inkjet printer, related fluid circuit and block designed to implement said measuring system
US8998391B2 (en) 2011-02-11 2015-04-07 Markem-Imaje Method for stimulation range detection in a continuous ink jet printer

Also Published As

Publication number Publication date
AU4323689A (en) 1990-04-18
FR2636884A1 (en) 1990-03-30
CA1313972C (en) 1993-03-02
EP0362101A1 (en) 1990-04-04
DE68910459D1 (en) 1993-12-09
ATE96736T1 (en) 1993-11-15
US5160939A (en) 1992-11-03
JPH0667621B2 (en) 1994-08-31
DE68910459T2 (en) 1994-03-03
WO1990003271A1 (en) 1990-04-05
KR900701538A (en) 1990-12-03
JPH02504375A (en) 1990-12-13
ES2045529T3 (en) 1994-01-16
FR2636884B1 (en) 1990-11-02
AU615803B2 (en) 1991-10-10

Similar Documents

Publication Publication Date Title
EP0362101B1 (en) Ink controlling and regulating device for a continuous ink jet printer
EP0048689B1 (en) Quartz thermometer
FR3027669A1 (en) DEVICE FOR MEASURING LEVEL IN A RESERVOIR
EP0949077B1 (en) Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method
EP0108671B1 (en) Apparatus for measuring temperature and/or electric intensity using the faraday effect
EP0521764B1 (en) Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process
EP1628832A2 (en) Inkjet printer
FR2934810A1 (en) INKJET PRINTING DEVICE COMPRISING JET SPEED COMPENSATION
FR2801836A1 (en) SIMPLIFIED MANUFACTURING PRINTER AND METHOD OF MAKING
FR2906755A1 (en) Liquid jet e.g. ink jet, deflecting method for use during ink-jet printing, involves generating variable electric field along hydraulic path, and deflecting liquid jet by field by mobilization of charges within jet
FR2647898A1 (en) DEVICE FOR MEASURING THE LEVEL AND / OR VOLUME OF A CAPACITIVE PROBE LIQUID
FR2892052A1 (en) Inkjet printing method in which an inket&#39;s hydraulic trajectory is controlled by the application of an electric field upstream of a point at which a continuous jet is broken up into jet sections
EP2167950B9 (en) Method for measuring the threshold thickness of a layer of a purely resistive material, device for implementing same and use of said device in an exhaust pipe
FR2752294A1 (en) METHOD AND DEVICE FOR CONTINUOUS MEASUREMENT OF INSULATION COATING THICKNESS
CA2000016C (en) High resolution printing process using satellite ink droplets and implemented in a continuous ink jet printer
FR3049343A1 (en) DEVICE FOR MEASURING FLOW AND VISCOSITY AND ITS USE IN A PRINTER
FR2499744A1 (en) MATRIX DISPLAY DEVICE COMPRISING TWO FAMILIES OF LINEAR ELECTRODES AND ITS CONTROL METHOD
FR2594541A1 (en) METHOD FOR CONTROLLING THE FLOW RATE IN A VALVE AND APPARATUS FOR IMPLEMENTING SAID METHOD
EP1934559B1 (en) Sensor and method for measuring position and speed
FR2765335A1 (en) Following consumption of ink in printer reservoir
FR2699281A1 (en) Device and method for characterizing a medium comprising at least one conductive part
FR3059941A1 (en) METHOD AND DEVICE FOR DETECTING THE PRESENCE OF JETS
Kandaurova et al. Effect of a near-surface nanolayer formation on the magnetic fluid electrical properties
EP0124465A1 (en) Charge control device and its application to ink droplets speed control.
FR2971452A1 (en) NOVEL STIMULATION RANGE DETECTION METHOD IN A CONTINUOUS INK JET PRINTER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19900911

17Q First examination report despatched

Effective date: 19920408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931103

Ref country code: AT

Effective date: 19931103

REF Corresponds to:

Ref document number: 96736

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 68910459

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2045529

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89460031.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950912

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960930

Year of fee payment: 8

BERE Be: lapsed

Owner name: S.A. IMAJE

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990929

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010401

EUG Se: european patent has lapsed

Ref document number: 89460031.1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010401

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040929

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050824

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080924

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090921