EP0354731B1 - Procédé et dispositif pour la pyrolyse à plasma de déchets liquides - Google Patents

Procédé et dispositif pour la pyrolyse à plasma de déchets liquides Download PDF

Info

Publication number
EP0354731B1
EP0354731B1 EP19890307930 EP89307930A EP0354731B1 EP 0354731 B1 EP0354731 B1 EP 0354731B1 EP 19890307930 EP19890307930 EP 19890307930 EP 89307930 A EP89307930 A EP 89307930A EP 0354731 B1 EP0354731 B1 EP 0354731B1
Authority
EP
European Patent Office
Prior art keywords
gases
waste material
chamber
water
scrubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19890307930
Other languages
German (de)
English (en)
Other versions
EP0354731A1 (fr
Inventor
Robert Chrong-Wen Chang
Michael Fraser Joseph
Steven Christian Vorndran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of EP0354731A1 publication Critical patent/EP0354731A1/fr
Application granted granted Critical
Publication of EP0354731B1 publication Critical patent/EP0354731B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Definitions

  • This invention relates to an apparatus and to a method for pyrolytically decomposing waste material, and in particular, it pertains to apparatus and method for disposing of toxic and hazardous materials by pyroplasmic decomposition.
  • waste material is a growing problem due primarily to the fact that the volume of waste material is growing faster than existing disposal equipment and methods can handle it economically.
  • Most attempts to dispose of waste materials by combustion have included furnaces or rotary kilns.
  • apparatus and methods for waste destruction have included plasma pyrolysis, such as disclosed in the specification of U.S. Patent No. 4,644,877, by which waste materials are fed into a plasma arc burner where they are atomized, ionized, and subsequently discharged into a reaction chamber to be cooled and recombined into product gases and particulate matter.
  • a method for pyrolytically decomposing waste material includes the steps of producing a plasma by use of oxygen as the torch gas, atomizing waste material and a source of hydrogen and oxygen, then injecting the atomized waste material and source of hydrogen and oxygen into the plasma, having a temperature in excess of 5000°C to form a mixture of produce gases and solid particulate, separating the gases and particulate mixture in a recombination chamber into separate phases of gases and solid particulate, transferring the solid particulate to a separate compartment and subjecting the particulate to a partial vacuum to separate any carryover gases from the particulate which carryover gases are combined with the gases from the recombination chamber, transferring the gas from the recombination chamber to a scrubber and subjecting the gas to a water spray to eliminate any carryover solid particulate from the gases, and removing the scrubbed gases from the scrubber.
  • the invention includes an apparatus for pyrolytically decomposing waste material
  • a plasma torch productive of a plasma having an operating temperature of at least 5000°C to destroy a solution of a waste material to form a mixture of gases and solid particulate, said torch in co-operation with means for introducing the waste material in an atomized state, a recombination chamber adapted to receive and separate the mixture of gases and solid particulate, a separator to provide a partial vacuum to remove any carryover gases from the solid particulate, a transfer chamber to receive gases from the recombination chamber, a scrubber to clean the gases from the chamber by passing the gases through a water spray, and storage means for gases from the scrubber.
  • the invention involves a method for the pyrolytic destruction of waste material including the steps of mixing the waste material, water, and/or methanol into a plasma arc having a temperature in excess of 5000°C to form a mixture of product gases and solid particulate, separating the gases and the particulate mixture in a recombination chamber into separate phases of gases and solid particulate; transferring the solid particulate to a separate compartment and subjecting the particulate to a partial vacuum to separate any carry-over gases from the particulate which carry-over gases are combined with the gases from the recombination chamber; transferring the gas from the recombination chamber to a scrubber and subjecting the gas to a water spray to eliminate any carry-over solid particulate from the gases; and removing the scrubbed gases from the product gas stream.
  • the apparatus for pyrolytically decomposing waste material comprises a plasma torch productive of an electric arc having an operating temperature of at least 5000°C for incinerating a solution of waste material to form a mixture of gases and solid particulate; a recombination chamber for receiving and separating the mixture of gases and solid particulate; a solid separator for providing a partial vacuum for removing any carry-over gases from the solid particulate; a transfer chamber for receiving gases from the recombination chamber; a scrubber for cleaning the gas from the transfer chamber by passing the gas through a water spray; and storage means for gases from the scrubber.
  • the transfer chamber is a combustion chamber for the gases and the burned gases are directed to a draft means, such as a stack, for delivery of the burned gases into the atmosphere.
  • An advantage of this method and apparatus is that there is at least a threefold increase in the feed throughput with a reduction of the flue gas volume compared with prior art procedures.
  • This process removes the free carbon directly from the recombination chamber and flares the product gases in the combustion chamber.
  • the high heating values of the product gases can bypass the combustion process for other use by closing the combustion air stream.
  • Figure 1 is a flow diagram of a pyroplasma unit of prior art structure.
  • Figure 2 is a sectional view through a pyroplasma unit of prior art construction.
  • FIG. 3 is a flow diagram of the pyroplasma system of this invention.
  • Figure 4 is a sectional view through a pyroplasma unit of this invention.
  • a system for pyrolytically decomposing waste material of an existing, or prior art, method is shown diagrammatically in Figure 1. It comprises a plasma torch 5, a recombination chamber 7, a scrubber 9, a draft fan 11, an inertial trap 13, and a stack 15.
  • the plasma torch by which the process of this invention is preferably performed includes a so-called arc heater which is similar in construction and operation to that disclosed in the specifications of U.S. Patent Nos. 3,765,870; 3,791,949; and 4,644,877 in which an electric arc extends between spaced electrodes with the generation of heat for the destruction of hazardous and toxic wastes.
  • Waste material is fed into the torch 15 at inlet 17 together with a solvent at an inlet 19.
  • a typical waste material is hazardous and toxic and contains a mixture of about 60% polychlorinated biphenyls (PCB) and of about 40% trichlorobenzene (TCB) which is derived from the operation of electric transformers and is commonly referred to as Askarel.
  • Liquid waste material is introduced into the torch feed inlet 17 which together with a solvent comprising a mixture of methyl ethyl ketone (MEK) (50% by weight) and methanol (50%) is introduced (Fig. 1) to supply the hydrogen source to produce hydrogen chloride (HCl).
  • MEK methyl ethyl ketone
  • the mixture of the feed and solvent is processed at the high temperatures of operation of the plasma arc, typically ranging from 5000°C to 15,000°C, forming a mixture of product gases and solid particulate, which is directed into the recombination chamber 7, where in the presence of air introduced at inlet 21, produces a gaseous mixture consisting of H2O, H2, CO, CO2, N2, and HCl.
  • the gaseous mixture is then directed into the scrubber 9 where a caustic solution of water (NaOH + H2O) sprays at 22 the gaseous mixture to eliminate solid particulates and to convert the HCl to NaCl mixed with water.
  • the resulting blow-down water containing NaCl and carbon particulate is drained from the scrubber at outlet 23.
  • the draft fan 11 transfers the gas from the scrubber 9 to the inertial trap 13 where it is subjected to additional water spray 25 to further eliminate carbon particulate. Blow-down water is drained at 26. From the inertial trap 13 the gas products are flared and vented into the atmosphere through the stack 27.
  • the torch 15 (Fig. 2) provides a high temperature ionized, conductive gas that is created within the torch.
  • the torch comprises a pair of cylindrical electrodes 28, 29 that are longitudinally spaced by a gap 31, into which a pressurized gas, such as air, is injected to blow an electric arc 33 into the interior of the torch.
  • a pressurized gas such as air
  • the upstream and downstream ends of the arc are located on the electrodes 28, 29.
  • An annular nozzle 35 is located between the electrode 29 and a burner chamber 37 that is contained within a cylindrical insulation 39 through which the plasma plume 41 extends.
  • the nozzle 35 includes a plurality of peripherally spaced, radially extending inlets 43.
  • the solution is water, which is immiscible with non-polar type waste material, such as PCB and TCB.
  • the water which is mixed with the waste material before introduction into the plasma torch. Pure oxygen (not air) is used as the torch gas. Water supplies hydrogen and oxygen that allows for an increased throughput of waste at a rate of up to twelve times that which is possible in the prior art system of Fig 1.
  • the waste material or feed is the Askarel fluid.
  • An alternate method to preliminary mixing the feed and water is to inject the feed and water separately through an air atomizing nozzle into the torch.
  • the amount of water mixed with waste is from about 30% to 200% by wt.
  • the preferred amount of water is about 50% that of waste.
  • the system of pyrolytically decomposing waste material of this invention preferably involves the use of the flow diagram of Figure 3.
  • the apparatus includes a plasma torch 43′, a recombination chamber 45, a combustion chamber 47, a scrubber 49, a draft fan 51, a stack 53, and a storage tank 55.
  • the torch 43′ ( Figure 4) provides a high temperature ionized, conductive gas which is created within the torch by the interaction of a gas with an electric or plasma arc 57 produced by the torch 43′.
  • the interaction within the torch 43 disassociates the gas into electrons and ions which cause the gas to become both thermally and electrically conductive.
  • the conductive properties of the ionized gas in the arc region provides a means to transfer energy from the arc to the incoming process gas. This state is called a "plasma" and exists within the immediate confines of the arc in the torch and is superheated to an extremely high temperature having a typical range of from 5000°C to 15,000°C.
  • the extremely high temperatures and the ultraviolet radiation associated with the ionized superheated gases provides sufficient bond breaking energy to destroy the hazardous and toxic wastes.
  • This pyrolytic process is designed to destroy pumpable liquid/solid mixtures with the pyroplasma arc torch 43′.
  • the feed is injected through a plurality of air atomizing nozzles 59 (Fig. 4) into a manifold 61 where it is mixed with air before it encounters with the plasma plume 57 at temperatures in excess of 5000°C.
  • the compounds in the feed are reformed into compounds which are more stable at reactor temperatures according to basic thermodynamic equilibrium principles.
  • the water (without methanol) and feed are mixed homogeneously and introduced through a feed inlet 63 and air enters through an air inlet 65.
  • the air atomizing nozzle 59 receives the waste feed that is mixed with water and/or methanol (up to 25%) and conducted through a static mixer 67, after which it is combined with compressed air at 69.
  • the waste feed 63 is introduced into the manifold 61 which is secured to the recombination chamber 45 by a mounting flange 71.
  • the manifold 61 is annular and is disposed between an outer housing 72 and a sleeve 73 which is comprised of refractory or silicon carbide coated graphite.
  • the waste feed 63 is mixed with the air 65 and is emitted through outlets to form a flame zone 77 with the plasma which zone is the result of partial combustion of waste feed mixtures.
  • the plasma results from the combination of the electric arc 57 and torch gas 81 introduced through a gap between cylindrical electrodes of the plasma torch 43. The resulting products are projected into the recombination chamber 45.
  • the plasma system of this invention usually operates in a slightly reducing atmosphere and the resulting flue gases are mostly H2, CO, CO2, C, N2, H2O, and HCl. From a thermodynamic standpoint all of the chlorine forms HCl because of the high concentrations of H2 and low concentrations of 02. Therefore, there are no free or very low Cl2, O2, Cl, and OH radicals to form dioxins and furans.
  • the product gases together with solid particulate, such as carbon enter the recombination chamber 45 which is an air filter such as a cyclone separator.
  • the product gases and solid particulate entering the recombination chamber 45 have temperatures ranging from 1000° to 1500°C with a preferred temperature of 1200°C.
  • the product gases exit through an outlet 89 and through a valve 91 to the combustion chamber 47.
  • the dominant portion of the solid particulate 93 settles at the bottom of the chamber 45. There it accumulates until it is dumped.
  • a high temperature dump valve 95 is provided in the bottom wall of the chamber 45 which valve comprises an elongated tube 97 in which a sliding stopper rod 99 is slidably mounted.
  • a rod actuator 101 is provided for lowering the rod in order to open the tube 97 to enable the accumulated solid particulate 93 to drop through the tube and through a conduit 103 into a separator 105.
  • the purpose of the separator is to remove any carry-over gases which are mixed with the particulate in the recombination chamber 45.
  • the separator 105 is a cyclone separator into which the solid particulate enters from the conduit 103 with sufficient centrifugal force to throw the solid particulate out against the wall and drop into the lower portion of the separator tank.
  • the separated gas exits from the separator 105 through a filter 107 and through a conduit 109 and a valve 111 from where it is conducted to the combustion chamber 47.
  • a heat exchanger having a coolant inlet 113 and a coolant outlet 115 is provided to cool the accumulated gas-free solid particulate 93 .
  • the solid particulate 93 is discharged from the separator 105 through a discharge valve.
  • the purpose of the filter 107 is to filter out any remaining solid particulate that may be carried by the gas as it exits from the separator 105.
  • the gases exit from the chamber through a filter 119 and into the outlet 89.
  • the filter 119 like the filter 107 eliminates most of the particulate that may be carried by the gas into the outlet 89 and therefrom into the combustion chamber 47.
  • the valve 91 is open and the valve 111 in the conduit 109 is closed. Inasmuch as the entire system is closed, the draft fan 51 sustains a partial vacuum through the several parts 45, 47, 49, and the interconnecting conduits therebetween. Accordingly, the gas moves from the recombination chamber 45 through the conduit 119 when valve 91 is opened.
  • valve 91 is closed and valve 111 is opened, whereby the gas leaving the separator 105 is carried through the conduit 109 to the combustion chamber 47 in response to the partial vacuum created by the draft fan 51.
  • the combustion chamber 47 has a primary function of burning the process gases (H2, CO, CO2, N2, H2O, HCl) which enter the chamber.
  • process gases H2, CO, CO2, N2, H2O, HCl
  • an air inlet 123 is provided to convert those gases to a gas mixture comprising CO2, H2O, N2, and HCl. Thereafter the gas mixture moves through the scrubber 49.
  • a secondary function of the combustion chamber 47 is to act as a conduit for the product gases leaving the recombination chamber 45.
  • the gas leaves the combustion chamber 47 through a conduit 125 into the scrubber where it is subjected to a water spray having an inlet 127 in order to eliminate any solid particulate which lingers in the gas.
  • the resulting blow-down water 129 containing particulate accumulates in the lower portion of the scrubber 49 from where it is periodically drained through an outlet 131.
  • a caustic solution is introduced into the water at 133 for the purpose of converting the HCl in the gas to a chloride compound.
  • a preferred caustic solution is sodium hydroxide (NaOH) which reacts with the HCl in accordance with the following formula: NaOH + HCl ⁇ NaCl + H2O.
  • NaOH sodium hydroxide
  • the resulting compound (NaCl) is drained from the scrubber with the blow-down water 129.
  • the resulting gas mixture includes CO2, H2O, and N2 which move through a conduit 135 through the draft fan and through a conduit 137 to the stack 53 where it is dissipated into the atmosphere as a non-toxic gas and devoid of solid particulate.
  • the combustion chamber 47 serves as a mere conduit for the product gases entering through the conduit 109, without being burned, the gases pass through the scrubber 49. Again the gases are subjected to the caustic solution to eliminate the HCl and exit from the scrubber via the conduit 135 as combustable fuel consisting of H2, CO, CO2, N2, and H2O. From the draft fan 51 the fuel is diverted by a valve 139 and through a conduit 141 to the storage tank 55 from which the fuel is withdrawn as required.
  • the foregoing system includes a recycle means for reintroducing the water into the scrubber at 127.
  • some of the blow-down water is eliminated at outlet 143 with the remaining blow-down water moving through a liquid solid separator 143 and a heat exchanger 145.
  • the liquid solid separator 143 functions to eliminate any lingering solid particulate.
  • the heat exchanger 145 functions to adjust the water to the desired temperature. Manifestly, any caustic solution remaining in the blow-down water in the scrubber tank is recirculated to the scrubber tank for the purpose intended.
  • the system of this invention increases the feed throughput at least three gallons/minute (11.36 liters per minute) and dramatically reduces the fuel gas volume over the system shown in Figure 1.
  • the system of this invention also removes the free carbon directly from the recombination chamber and flares the product gas in the combustion chamber.
  • the high heating values of the product gases can bypass the combustion process for other usage by closing the combustion air inlet 123.
  • the principle of the solid removal system is initially based on high temperature dump valve 95 which is opened at designated intervals. When the dump valve is closed, valve 91 is opened while valve 111 is closed. Conversely, when the dump valve 95 is opened, valve 91 is closed and valve 111 is opened.
  • the feed system of prior art injects the waste feed solution directly into the plasma arc to produce a lot of undesirable carbon especially when processing the chlorinated aromatic compounds.
  • the feed system of the system of Fig. 4 alleviates the carbon formation by mixing air or oxygen before it contacts with the plasma plume.
  • the recombination chamber 45 of this method removes most of the solid before entering the combustion chamber. Because the recombination chamber separates most of the particulate, a higher feed throughout the plasma torch is possible compared to the prior art. At the same time larger particles of particulate can be fed because it is readily eliminated through the solid separator.
  • combustion chamber may be used as a conduit for the product gases from the recombustion chamber without burning the gases so that the gases may be used as a fuel instead of being flared and discarded through the stack.
  • water consumption can be reduced by recycling the blowdown water from the scrubber.
  • alternate torch gases such as oxygen
  • HCN cyanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)

Claims (18)

1. Un procédé de décomposition pyrolytique de déchets, comprenant les étapes consistant à produire un plasma par utilisation d'oxygène comme gaz de torche, à atomiser les déchets et une source d'hydrogène et d'oxygène, à injecter ensuite les déchets atomisés et la source d'hydrogène et d'oxygène dans le plasma, ayant une température supérieure à 5000°C pour former un mélange de produits gazeux et de particules solides, à séparer le mélange de gaz et de particules dans une chambre de recombinaison sous forme de phases séparées de gaz et de particules solides, à transférer les particules solides dans un compartiment séparé et à soumettre les particules à un vide partiel pour séparer tout gaz entraîné des particules, ces gaz entraînés étant combinés avec les gaz provenant de la chambre de recombinaison, à transférer les gaz de la chambre de recombinaison dans un laveur et à soumettre les gaz à une pulvérisation d'eau pour éliminer toute particule solide entraînée des gaz, et à extraire les gaz lavés du laveur.
2. Un procédé tel que revendiqué à la revendication 1, dans lequel, avant l'atomisation des déchets et de l'hydrogène et l'oxygène, les sources d'hydrogène et d'oxygène sont mélangées de façon homogène.
3. Un procédé tel que revendiqué dans la revendication 1 ou 2, dans lequel la source d'hydrogène et d'oxygène est un composé choisi dans le groupe comprenant l'eau et le méthanol.
4. Un procédé tel que revendiqué dans l'une quelconque des revendications 1 à 3, dans lequel la source d'hydrogène et d'oxygène est de l'eau.
5. Un procédé tel que revendiqué à la revendication 4, dans lequel la quantité d'eau ajoutée aux déchets est comprise entre environ 30% et 200% en poids.
6. Un procédé tel que revendiqué à la revendication 5, dans lequel la quantité d'eau ajoutée aux déchets est d'environ 50%.
7. Un procédé tel que revendiqué à la revendication 3, dans lequel la quantité de méthanol ajoutée aux déchets est d'environ 25%.
8. Un procédé tel que revendiqué à la revendication 2, dans lequel les gaz, après séparation dans la chambre de recombinaison, contiennent du HCl et, dans lequel à l'étape suivante, une solution caustique est ajoutée dans le pulvérisat d'eau pour neutraliser une partie du HCl.
9. Un procédé tel que revendiqué dans la revendication 8, dans lequel les gaz formés par séparation dans la chambre de recombinaison, comprennent également H₂, H₂O, CO, CO₂, N₂.
10. Un procédé tel que revendiqué dans la revendication 9, dans lequel, avant un transfert des gaz dans un laveur, les gaz sont transférés dans une chambre de combustion et sont brûlés pour former un mélange gazeux contenant CO₂, H₂O, N₂ et HCl.
11. Un procédé tel que revendiqué dans l'une quelconque des revendications 1 à 10, dans lequel, après le lavage et la pulvérisation avec l'eau, les gaz lavés sont déchargés dans l'atmosphère.
12. Un procédé tel que revendiqué dans la revendication 11, dans lequel l'eau pulvérisée est recyclée dans le laveur.
13. Un procédé tel que revendiqué dans la revendication 1, dans lequel les déchets comprennent une substance pompable.
14. Un procédé tel que revendiqué dans l'une quelconque des revendications 1 à 13, dans lequel l'atomisation des déchets, de l'hydrogène et de l'oxygène est effectuée par injection d'air comprimé dans un mélange de déchets liquides et d'eau.
15. Installation de décomposition pyrolytique de déchets, comprenant une torche à plasma génératrice d'un plasma ayant une température de service d'au moins 5000°C pour détruire une solution de déchets afin de former un mélange de gaz et de particules solides, ladite torche coopérant avec des moyens d'introduction des déchets dans un état atomisé, une chambre de recombinaison adaptée pour recevoir et séparer le mélange de gaz et de particules solides, un séparateur pour produire un vide partiel afin de séparer tout gaz entraîné des particules solides, une chambre de transfert pour recevoir des gaz provenant de la chambre de recombinaison, un laveur pour épurer les gaz provenant de ladite chambre en faisant passer les gaz à travers un pulvérisat d'eau, et un moyen de stockage pour les gaz provenant du laveur.
16. Une installation telle que revendiquée dans la revendication 15, dans laquelle la chambre de transfert est une chambre de combustion.
17. Une installation telle que revendiquée selon la revendication 15 ou 16, dans laquelle la chambre de recombinaison, le séparateur, la chambre de transfert et le laveur sont interconnectés avec un moyen formant ventilateur de tirage.
18. Une installation telle que revendiquée selon l'une quelconque des revendications 15 à 17, dans laquelle ledit moyen permettant l'introduction des déchets dans un état atomisé comprend un moyen pour injecter de l'air comprimé dans un mélange de déchets et d'eau.
EP19890307930 1988-08-10 1989-08-03 Procédé et dispositif pour la pyrolyse à plasma de déchets liquides Expired EP0354731B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22988488A 1988-08-10 1988-08-10
US229884 1988-08-10

Publications (2)

Publication Number Publication Date
EP0354731A1 EP0354731A1 (fr) 1990-02-14
EP0354731B1 true EP0354731B1 (fr) 1992-05-20

Family

ID=22863053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890307930 Expired EP0354731B1 (fr) 1988-08-10 1989-08-03 Procédé et dispositif pour la pyrolyse à plasma de déchets liquides

Country Status (4)

Country Link
EP (1) EP0354731B1 (fr)
JP (1) JP2756505B2 (fr)
CA (1) CA1324823C (fr)
DE (1) DE68901592D1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD299613A7 (de) * 1990-02-26 1992-04-30 �������@������������@��k�� Verfahren zum stabilen betrieb von plasmatrons mit wasserdampf als plasmagas
GB9017146D0 (en) * 1990-08-03 1990-09-19 Tioxide Group Services Ltd Destruction process
PT629138E (pt) * 1992-03-04 2001-01-31 Commw Scient Ind Res Org Processamento de material
AU669158B2 (en) * 1992-03-04 1996-05-30 Srl Plasma Pty Ltd Material processing
PL172323B1 (pl) * 1992-09-07 1997-09-30 Friends Of Freesia Co Lej samowyladowczy do urzadzen z lejami samowyladowczymi PL PL
DE4231771A1 (de) * 1992-09-23 1994-03-24 Bayer Ag Verfahren zur Verstromung von Kunststoffabfällen
US5793013A (en) * 1995-06-07 1998-08-11 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
WO1997022556A1 (fr) * 1995-12-20 1997-06-26 Alcan International Limited Reacteur thermique a plasma et procede de traitement d'eau de decharge
FR2866414B1 (fr) * 2004-02-18 2006-03-17 Commissariat Energie Atomique Dispositif et procede de destruction de dechets liquides, pulverulents ou gazeux par plasma inductif
JP4827520B2 (ja) * 2005-12-21 2011-11-30 出光興産株式会社 樹脂ペレット貯蔵装置及びその清掃方法
JP2007296415A (ja) * 2006-03-14 2007-11-15 Nippon Steel Corp ポリ塩化ビフェニル汚染物の処理方法及びその処理システム
GB2490175A (en) * 2011-04-21 2012-10-24 Tetronics Ltd Treatment of waste
CN109737430A (zh) * 2019-01-03 2019-05-10 鲁西化工集团股份有限公司硅化工分公司 一种危险废物处理系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1301303B (de) * 1964-10-01 1969-08-21 Ppg Industries Inc Verfahren zur Herstellung von feinverteilten Metalloxyd-Pigmenten
WO1982000509A1 (fr) * 1980-07-25 1982-02-18 I Faeldt Procede et appareil de decomposition thermique de composes stables
SE451033B (sv) * 1982-01-18 1987-08-24 Skf Steel Eng Ab Sett och anordning for omvandling av avfallsmaterial med plasmagenerator
CA1225441A (fr) * 1984-01-23 1987-08-11 Edward S. Fox Incineration des dechets par pyrolyse avec apport de plasma

Also Published As

Publication number Publication date
CA1324823C (fr) 1993-11-30
DE68901592D1 (de) 1992-06-25
JP2756505B2 (ja) 1998-05-25
EP0354731A1 (fr) 1990-02-14
JPH0283079A (ja) 1990-03-23

Similar Documents

Publication Publication Date Title
US4886001A (en) Method and apparatus for plasma pyrolysis of liquid waste
US4582004A (en) Electric arc heater process and apparatus for the decomposition of hazardous materials
AU682313B2 (en) Municipal solid waste disposal process
EP0354731B1 (fr) Procédé et dispositif pour la pyrolyse à plasma de déchets liquides
US20200048568A1 (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
RU2286837C2 (ru) Способ и система для обработки опасных отходов
JP6416804B2 (ja) 誘導プラズマによる有機化合物の熱破壊装置
US5108718A (en) Method for the destruction of toxic waste products and a plasma chemical reactor
JPS60154200A (ja) プラズマ熱分解による廃棄物の熱分解法およびその装置
US5615627A (en) Method and apparatus for destruction of waste by thermal scission and chemical recombination
DE602005001614T2 (de) Vorrichtung und verfahren zum zerstören von flüssigem, pulverförmigem oder gasförmigem abfall unter verwendung von induktiv gekoppeltem plasma
RU2088631C1 (ru) Установка для термической обработки отходов и способ термической обработки отходов
JPH11501864A (ja) 分散した熔融物の液滴を用いる供給材料の処理
KR20010043559A (ko) 처리장치, 처리방법 및 토양의 처리방법
US6952997B2 (en) Incineration process using high oxygen concentrations
JP3442720B2 (ja) 活性炭化物の製造方法及び装置
JPH0638862B2 (ja) ハロゲン含有化合物の転化方法
KR101456258B1 (ko) 플라즈마 열분해를 이용한 폐기물 처리방법
JPH0730904B2 (ja) 汚泥の浄化処理方法
KR0139224B1 (ko) 플라스마를 이용하는 유독성 폐기물 처리 장치
JP2000205529A (ja) 廃棄物処理装置
KR19980021760U (ko) 연속 건류식 열분해 소각 장치
JPH10103630A (ja) 廃棄物熱分解溶融システム
JPH03295569A (ja) 有機廃棄物の分離処理方法および装置
JP2001208306A (ja) 廃棄物溶融処理設備

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900730

17Q First examination report despatched

Effective date: 19910228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 68901592

Country of ref document: DE

Date of ref document: 19920625

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980702

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020830

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030804

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050803