EP0352620B1 - Verfahren und Vorrichtung zur Regelung der Feuerungsleistung von Verbrennungsanlagen - Google Patents

Verfahren und Vorrichtung zur Regelung der Feuerungsleistung von Verbrennungsanlagen Download PDF

Info

Publication number
EP0352620B1
EP0352620B1 EP89113259A EP89113259A EP0352620B1 EP 0352620 B1 EP0352620 B1 EP 0352620B1 EP 89113259 A EP89113259 A EP 89113259A EP 89113259 A EP89113259 A EP 89113259A EP 0352620 B1 EP0352620 B1 EP 0352620B1
Authority
EP
European Patent Office
Prior art keywords
combustion
grate
zones
individual
primary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89113259A
Other languages
English (en)
French (fr)
Other versions
EP0352620A3 (de
EP0352620A2 (de
Inventor
Johannes Josef Edmund Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
Martin GmbH fuer Umwelt und Energietechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6359911&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0352620(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Martin GmbH fuer Umwelt und Energietechnik filed Critical Martin GmbH fuer Umwelt und Energietechnik
Publication of EP0352620A2 publication Critical patent/EP0352620A2/de
Publication of EP0352620A3 publication Critical patent/EP0352620A3/de
Application granted granted Critical
Publication of EP0352620B1 publication Critical patent/EP0352620B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners

Definitions

  • the invention relates to a method for controlling the fire output of combustion systems with a combustion grate, in which the primary air supply is regulated differently zone by zone over the grate length.
  • the invention also relates to an apparatus for performing the method.
  • the combustion process on a combustion grate is different over the length of the grate.
  • the fuel is dried and ignited near the task.
  • the fuel burns intensively, the intensity of which decreases towards the end of the grate, until shortly before the end of the grate only burned-out and cooled slag remains, which falls into an appropriately designed discharge. Due to these different phases, which the fuel passes along the grate, it is necessary to regulate the primary air supply differently. So far, this has been done by providing sub-wind zones which are divided in the longitudinal direction of the grate and to which different amounts of air are supplied in order to take account of the different combustion phases.
  • the regulation of the primary air supply to the individual underwind zones is carried out according to pre-calculated distribution curves and can also be adapted to the prevailing conditions by observing the fire bed. It is also known to regulate the fire output control as a function of the O 2 moisture content measured in the combustion gases and / or the combustion chamber temperature and / or the steam mass flow. Here, too, you have to rely on a mathematically and empirically obtained distribution of the primary air volume in relation to the individual downwind zones.
  • a disadvantage of this type of fire performance control is the fact that the setting and distribution of the primary air based on the grate width was based on an average value of the fuel quality and that no consideration was given to different fuel qualities and fuel quantities based on the width. The consequence of this are locally different combustion behavior and changing excess air figures, which conflict with the attempt to achieve a uniform temperature profile in the combustion chamber of the incineration plant. This can have an adverse effect not only on the thermal behavior (efficiency), but also on the emission of harmful gases.
  • EP-A 0 317 731 which claims an older priority but is not prepublished, describes a method for controlling the combustion of fuel with a strongly fluctuating calorific value, in which the primary air is supplied differently not only in the longitudinal direction but also in the transverse direction.
  • the water quantity measured in the evaporation and degassing zone serves as the guiding variable for the control of individual parameters, and is retained as the main variable for all parameters along the entire grate, with further measurements at other points, e.g. temperature and gas radiation, only being used for fine correction.
  • a disadvantage of this method is the fact that the basic variable for the control of the individual parameters influencing the combustion is recorded in a range which is largely, but not exclusively, influenced by the water content emitted by the fuel.
  • this basic variable determined in this way which is determined in the front area of the incineration plant, is used as the main variable for all subsequent combustion zones, even if a subsequent correction is carried out in the subsequent combustion zones.
  • JP-A-61-36612 discloses monitoring the state of combustion on the firing grate by means of a television camera, the television camera having the task of extracting that region of the state of combustion which is in the wave region of the color blue and in the shorter region, where in this area the temperature of the combustion air, which is fed to the grate from below, is then reduced.
  • the position and area of a combustion area with an abnormal temperature is determined on the basis of image information, after which the temperature is reduced only to that combustion air which is supplied to this area in order to prevent fire damage and high levels of toxic gas NO x from an abnormally high temperature.
  • the primary air volume is set by a known control unit C. However, no further details are available.
  • JP-A-36611 it is known to regulate the air quantities for the individual combustion zones, the feed speed of the fuel of different quality and the grate speed depending on the steam mass flow generated for a uniform heat and steam generation.
  • a television camera is provided which observes the displacement of the Ausbrandalia that primarily by the feed rate and the changing quality depends of the fuel.
  • the feed speed and the air volume for the individual zones are affected. Their regulation therefore depends on the steam mass flow generated and on the shift in the burnout limit. Different fuel qualities and amounts of fuel in the transverse direction of the combustion grate are not taken into account.
  • the object of the invention is to improve the fire performance control in such a way that, regardless of the fuel quality and amount of fuel present in each case, an optimal combustion behavior and thus lower emission values, i.e. a lower environmental impact and the highest possible constant thermal efficiency, that is to say a uniform one Steam production.
  • the primary air supply is also regulated differently in zones, in the transverse direction of the combustion grate, in order to achieve a uniformly optimal temperature profile in the combustion of fuels with locally different combustion behavior, and in that the individual combustion zones are monitored and the primary air quantities are supplied to the individual combustion zones in accordance with the combustion behavior of the fuel, as determined by the thermography camera, in the respective zones.
  • thermographic camera The use of a thermographic camera is known from JP-A-59-52105.
  • an incinerator with a fluidized bed in which inert material is converted into a fluidized state by air supply, fuel being introduced into this bed and ignited.
  • separately operable areas of the fluidized bed are switched off or re-ignited. These areas which can be switched off separately are observed by means of the thermography camera, on the one hand to avoid excessive cooling of the switched-off area of the fluidized bed below the ignition temperature for restarting, and on the other hand to prevent the area of the fluidized bed from being too high. There is no locally different combustion behavior due to the fuel material.
  • the device for carrying out the method with a combustion grate in which the primary air supply takes place via underwind zones divided in the longitudinal direction of the combustion grate, is characterized in that the underwind zones are also divided in the transverse direction of the combustion grate in that a thermographic camera for recording the combustion behavior of the fuel via the individual combustion zones assigned to the respective underwind zones are provided and that control devices are provided for the individual dimensioning of the air supply to the individual underwind zones in the longitudinal and transverse directions.
  • thermography camera is preferably connected to a monitor and a freely programmable computer, which resolves the received image into individual image lines and pixels and predefines the digital values thus obtained, which represent a measure of the combustion bed temperature in the respective combustion zone Compares standard values and triggers a corresponding control process in the event of a deviation.
  • This type of monitoring is particularly advantageous because the monitoring can be directed to each individual point on the combustion grate, which enables extremely sensitive control.
  • FIG. 1 shows a longitudinal section through a combustion grate, which is designated overall by 1.
  • a feed chute 2 is provided above a feed table 3, on which charging pistons 4 are provided for conveying the fuel onto the combustion grate 1.
  • the fuel is ignited on this, burned in the further course and finally the slag is discharged at the grate end by means of a slag chute 5, which opens into a discharge device, not shown.
  • the combustion chamber above the combustion grate 1 is designated 6.
  • the combustion air is supplied as primary air by means of a blower 7 via a channel designated 8 to an underwind distributor generally designated 9.
  • individual air supply pipes denoted overall by 10
  • individual underwind zones 11 to 15 which are not only divided in the longitudinal direction of the combustion grate according to FIG. 1, but also, as can be seen from FIG. 2, divided into individual underwind zones in the transverse direction of the combustion grate and with the letters a and b are designated.
  • the duct system 10 has a correspondingly large number of air supply pipes 16, in which the air throughput can be regulated by means of regulating devices which are shown schematically and provided with the reference number 17. This measure divides the combustion grate into individual combustion zones that correspond to the underwind zones. This makes it possible to regulate each individual combustion zone in accordance with the combustion behavior of the fuel there.
  • thermography camera In order to be able to carry out such a regulation, a thermography camera is required to monitor the combustion behavior on the combustion grate.
  • FIG. 3 shows the arrangement of a thermography camera 18 which is provided in the ceiling 19 of the accelerator cable 20.
  • the thermography camera 18 is oriented so that it can observe the combustion grate 1 from above through the combustion chamber 6. It is connected to a monitor 21 and to a freely programmable computer 22, which accordingly resolves the received image and compares the digital values thus obtained, which represent a measure of the brightness in the respective combustion zone, with predetermined guide values and, in the event of a deviation, a corresponding control process triggers a controller 23 which adjusts the control devices, which are designed as flaps or slides 17, in the air distribution tubes 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Regelung der Feuerleistung von Verbrennungsanlagen mit einem Verbrennungsrost, bei welchem die Primärluftzuführung über die Rostlänge zonenweise unterschiedlich geregelt wird. Die Erfindung betrifft auch eine Vorrichtung zur Durchführung des Verfahrens.
  • Der Verbrennungsablauf auf einem Verbrennungsrost ist über die Länge des Rostes gesehen unterschiedlich. In der Nähe der Aufgabe wird der Brennstoff getrocknet und gezündet. In einem daran sich anschließenden Bereich befindet sich der Brennstoff im intensiven Abbrand, dessen Intensität gegen das Rostende hin abnimmt, bis kurz vor dem Rostende nur noch ausgebrannte und abgekühlte Schlacke übrig bleibt, die in einen entsprechend ausgebildeten Austrag fällt. Aufgrund dieser unterschhiedlichen Phasen, die der Brennstoff auf dem Wege entlang des Rostes durchläuft, ist es erforderlich, die Primärluftzuführung unterschiedlich zu regeln. Dies erfolgt bisher dadurch, daß unterhalb des Rostes in Längsrichtung desselben unterteilte Unterwindzonen vorgesehen sind, denen unterschiedliche Luftmengen zugeführt werden, um den verschiedenen Abbrandphasen Rechnung zu tragen.
  • Die Regelung der Primärluftzuführung zu den einzelnen Unterwindzonen wird dabei nach vorausberechneten Verteilungskurven vorgenommen und kann zusätzlich durch Beobachtung des Feuerbettes den jeweils herrschenden Verhältnissen angepaßt werden. Es ist auch bekannt, die Feuerleistungsregelung in Abhängigkeit von dem in den Verbrennungsgasen gemessenen O2-feucht-Gehalt und/oder der Feuerraumtemperatur und/oder dem Dampfmassenstrom zu regeln. Auch hier ist man auf eine rechnerisch und empirisch gewonnene Verteilung der Primärluftmenge, bezogen auf die einzelnen Unterwindzonen, angewiesen.
  • Nachteilig bei dieser Art der Feuerleistungsregelung ist die Tatsache, daß die Einstellung und Verteilung der Primärluft bezogen auf die Rostbreite nach einem Mittelwert der Brennstoffqualität erfolgte und daß breitenbezogen keine Berücksichtigung unterschiedlicher Brennstoffqualitäten und Brennstoffmengen vorgenommen wurde. Die Folge hiervon sind örtlich unterschiedliches Abbrandverhalten und wechselnde Luftüberschußzahlen, die dem Bestreben entgegenstehen, ein gleichmäßiges Temperaturprofil im Feuerraum der Verbrennungsanlage zu erreichen. Dies kann sich nicht nur auf das thermische Verhalten (Wirkungsgrad), sondern auch auf den Ausstoß von Schadgasen nachteilig auswirken.
  • In der, eine ältere Priorität beanspruchenden, jedoch nicht vorveröffentlichten EP-A 0 317 731 ist ein Verfahren zum Steuern der Verbrennung von Brennstoff mit stark schwankendem Heizwert beschrieben, bei welchem die Primärluftzuführung nicht nur in Längsrichtung, sondern auch in Querrichtung zonenweise unterschiedlich erfolgt. Als Leitgröße für die Regelung einzelner Parameter dient der in der Verdampfungs- und Entgasungszone gemessene Wassergehalt, der als Hauptgröße für sämtliche Parameter entlang des gesamten Rostes beibehalten wird, wobei weitere Messungen an anderen Stellen, beispielsweise der Temperatur und der Gasstrahlung nur zur Feinkorrektur herangezogen werden. Nachteilig bei diesem Verfahren ist die Tatsache, daß die Grundgröße für die Regelung der einzelnen, die Verbrennung beeinflussenden Parameter, in einem Bereich erfaßt wird, der zwar weitgehend, aber nicht ausschließlich durch den vom Brennstoff abgegebenen Wassergehalt beeinflußt ist.
  • Weiterhin wird als nachteilig empfunden, daß diese so ermittelte Grundgröße, die im vorderen Bereich der Verbrennungsanlage ermittelt wird, als Hauptgröße für alle nachfolgenden Verbrennungszonen herangezogen wird, auch wenn in den nachfolgenden Verbrennungszonen eine Nachkorrektur erfolgt.
  • Aus der JP-A-61-36612 geht eine Überwachung des Verbrennungszustandes auf dem Feuerungsrost mittels einer Fernsehkamera hervor, wobei die Fernsehkamera die Aufgabe hat, jenen Bereich des Verbrennungszustandes zu extrahieren, welcher sich im Wellenbereich der Farbe Blau und im kürzeren Wellenbereich befindet, wobei in diesem Bereich dann die Temperatur der Verbrennungsluft, die dem Feuerungsrost von unten zugeführt wird, verringert wird. Hierdurch wird auf der Grundlage von Bildinformationen die Position und Fläche eines Verbrennungsbereiches mit abnormaler Temperatur bestimmt, wonach die Temperatur nur jener Verbrennungsluft herabgesetzt wird, die diesem Bereich zugeführt wird, um Brandschäden und hohe Giftgasanteile NOx durch eine abnormal hohe Temperatur zu verhindern. Die Primärluftmenge wird durch eine bekannte Regelungseinheit C eingestellt. Nähere Angaben hierzu fehlen jedoch.
  • Aus der JP-A-36611 ist es bekannt, die Luftmengen für die einzelnen Verbrennungszonen, die Aufgabegeschwindigkeit des Brennstoffes unterschiedlicher Qualität und die Rostgeschwindigkeit in Abhängigkeit von dem erzeugten Dampfmassenstrom für eine gleichmäßige Wärme- und Dampferzeugung zu regeln. Um wegen der sich aus dem unterschiedlichen Abbrandverhalten ergebenden Gefahr einer erhöhten NOx-Erzeugung aufgrund einer starken Temperaturerhöhung entgegenzuwirken, ist eine Fernsehkamera vorgesehen, die die Verschiebungen der Ausbrandgrenze beobachtet, die in erster Linie von der Aufgabegeschwindigkeit und der wechselnden Qualität des Brennstoffes abhängt. Bei kritischen Verschiebungen derselben wird auf die Aufgabegeschwindigkeit und auf die Luftmenge für die einzelnen Zonen eingewirkt. Deren Regelung hängt also vom erzeugten Dampfmassenstrom und von der Verschiebung der Ausbrandgrenze ab. Unterschiedliche Brennstoffqualitäten und Brennstoffmengen in Querrichtung des Verbrennungsrostes werden nicht berücksichtigt.
  • Aufgabe der Erfindung ist es, die Feuerleistungsregelung so zu verbessern, daß unabhängig von der jeweils vorliegenden Brennstoffqualität und Brennstoffmenge auf der gesamten Verbrennungsrostfläche ein optimales Abbrandverhalten und damit geringere Emissionswerte, das heißt eine geringere Umweltbelastung und ein möglichst hoher gleichbleibender thermischer Wirkungsgrad, das heißt eine gleichmäßige Dampfproduktion, erzielt werden.
  • Diese Aufgabe wird, ausgehend von einem Verfahren der im Oberbegriff des Anspruchs 1 angegebenen Art, erfindungsgemäß dadurch gelöst, daß die Primärluftzuführung auch in Querrichtung des Verbrennungsrostes zur Erzielung eines gleichmäßig optimalen Temperaturprofils bei der Verbrennung von Brennstoffen mit örtlich unterschiedlichem Abbrandverhalten zonenweise unterschiedlich geregelt wird und daß die einzelnen Verbrennungszonen überwacht und die Primärluftmengen den einzelnen Verbrennungszonen entsprechend dem in den jeweiligen Zonen herrschenden, durch Thermographiekamera festgestellten Abbrandverhalten des Brennstoffes zugeführt wird.
  • Die Verwendung einer Thermographiekamera ist aus der JP-A-59-52105 bekannt. Allerdings handelt es sich dort um einen Verbrennungsofen mit einem fluidisierten Bett, bei welchem inertes Material durch Luftzuführung in einen fluidisierten Zustand überführt wird, wobei Brennstoff in dieses Bett eingeführt und gezündet wird. Zum Zwecke der Leistungs-steuerung dieser Ofenanlage werden getrennt betreibbare Bereiche des fluidisierten Bettes abgeschaltet oder neu gezündet. Diese getrennt abschaltbaren Bereiche werden mittels der Thermographiekamera beobachtet, um einerseits eine zu starke Unterkühlung des abgeschalteten Bereiches des fluidisierten Bettes unter die Zündtemperatur für die Wiederinbetriebnahme, und andererseits eine zu hohe Temperatur eines Bereiches des fluidisierten Bettes zu vermeiden. Ein brennstoffmaterialbedingtes örtlich unterschiedliches Abbrandverhalten liegt dort nicht vor.
  • Durch dieses erfindungsgemäße Verfahren können unterschiedliche Brennstoffqualitäten und unterschiedliche Brennstoffverteilungen so berücksichtigt werden, daß an allen Stellen des Verbrennungsrostes ein optimaler Verbrennungszustand herrscht. Die Folge hiervon sind geringere Emissionswerte und ein hoher thermischer Wirkungsgrad der Anlage.
  • Die Vorrichtung zur Durchführung des Verfahrens mit einem Verbrennungsrost, bei dem die Primärluftzuführung über in Längsrichtung des Verbrennungsrostes unterteilte Unterwindzonen erfolgt, ist dadurch gekennzeichnet, daß die Unterwindzonen auch in Querrichtung des Verbrennungsrostes unterteilt sind, daß eine Thermographiekamera für die Erfassung des Abbrandverhaltens des Brennstoffes über den einzelnen, den jeweiligen Unterwindzonen zugeordneten Verbrennungszonen vorgesehen ist und daß Regeleinrichtungen zur individuellen Bemessung der Luftzufuhr auf die einzelnen Unterwindzonen in Längs- und Querrichtung vorgesehen sind.
  • Vorzugsweise ist in weiterer Ausgestaltung der Erfindung die Thermographiekamera an einen Monitor und einen freiprogrammierbaren Rechner angeschlossen, der das empfangene Bild in einzelne Bildzeilen und Bildpunkte auflöst und die so erhaltenen Digitalwerte, die ein Maß für die Brennbett-Temperatur auf der jeweiligen Verbrennungszone darstellen, mit vorgegebenen Richtwerten vergleicht und bei Abweichung einen entsprechenden Regelvorgang auslöst. Diese Art der Überwachung ist besonders vorteilhaft, weil die Überwachung auf jeden einzelnen Punkt des Verbrennungsrostes gerichtet werden kann, wodurch eine äußerst feinfühlige Regelung möglich ist.
  • Die Erfindung wird nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispieles einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens erläutert.
  • In der Zeichnung zeigen:
  • Figur 1:
    einen Längsschnitt durch einen Verbrennungsrost mit einzelnen Unterwindzonen;
    Figur 2:
    eine Draufsicht auf den Verbrennungsrost nach Figur 1; und
    Figur 3:
    einen teilweisen Längsschnitt durch eine Verbrennungsanlage mit Anordnung einer Thermographiekamera.
  • Die schematische Darstellung gemäß Figur 1 zeigt einen Längsschnitt durch einen Verbrennungsrost, der insgesamt mit 1 bezeichnet ist. Zur Aufgabe des Brennstoffes ist eine Aufgabeschurre 2 über einem Aufgabetisch 3 vorgesehen, auf dem Beschickkolben 4 zur Förderung des Brennstoffes auf den Verbrennungsrost 1 vorgesehen sind. Auf diesem wird der Brennstoff gezündet, im weiteren Verlauf verbrannt und schließlich wird am Rostende die Schlacke mittels eines Schlackenfallschachtes 5 ausgetragen, der in eine nicht dargestellte Austragvorrichtung mündet. Der Feuerraum über dem Verbrennungsrost 1 ist mit 6 bezeichnet.
  • Die Zuführung der Verbrennungsluft als Primärluft erfolgt mittels eines Gebläses 7 über einen mit 8 bezeichneten Kanal zu einem insgesamt mit 9 bezeichneten Unterwindverteiler. Von hier führen einzelne, insgesamt mit 10 bezeichnete Luft-Zuführungsrohre in einzelne Unterwindzonen 11 bis 15, die nicht nur in Längsrichtung des Verbrennungsrostes gemäß Figur 1 aufgeteilt sind, sondern auch wie aus Figur 2 ersichtlich, in Querrichtung des Verbrennungsrostes in einzelne Unterwindzonen unterteilt und mit den Buchstaben a und b bezeichnet sind. Entsprechend der Anzahl der Unterwindzonen 11a bis 15b weist das Kanalsystem 10 entsprechend viele Luftzuführungsrohre 16 auf, in denen der Luftdurchsatz mittels Regeleinrichtungen, die schematisch dargestellt und mit dem Bezugszeichen 17 versehen sind, geregelt werden kann. Durch diese Maßnahme ist der Verbrennungsrost in einzelne Verbrennungszonen, die mit den Unterwindzonen übereinstimmen, unterteilt. Hierdurch ist eine Regelung jeder einzelnen Verbrennungszone entsprechend des dort vorhandenen Abbrandverhaltens des Brennstoffes möglich.
  • Um eine solche Regelung durchführen zu können, bedarf es einer Thermographiekamera, um das Abbrandverhalten auf dem Verbrennungsrost zu überwachen.
  • Figur 3 zeigt die Anordnung einer Thermographiekamera 18, die in der Decke 19 des Gaszuges 20 vorgesehen ist. Die Thermographiekamera 18 ist so ausgerichtet, daß sie durch den Feuerraum 6 hindurch den Verbrennungsrost 1 von oben beobachten kann. Sie ist mit einem Monitor 21 und mit einem frei programmierbaren Rechner 22 verbunden, der das empfangene Bild entsprechend auflöst und die so erhaltenen Digitalwerte, die ein Maß für die Helligkeit auf der jeweiligen Verbrennungszone darstellen, mit vorgegebenen Richtwerten vergleicht und bei Abweichung einen entsprechenden Regelvorgang über einen Regler 23 auslöst, der die Regeleinrichtungen, die als Klappen oder Schieber 17 ausgebildet sind, in den Luftverteilungsrohren 16 verstellt.

Claims (3)

  1. Verfahren zur Regelung der Feuerleistung von Verbrennungsanlagen mit einem Verbrennungsrost, bei welchem die Primärluftzuführung über die Rostlänge zonenweise unterschiedlich geregelt wird, dadurch gekennzeichnet, daß die Primärluftzuführung auch in Querrichtung des Verbrennungsrostes zur Erzielung eines gleichmäßig optimalen Temperaturprofils bei der Verbrennung von Brennstoffen mit örtlich unterschiedlichem Abbrandverhalten zonenweise unterschiedlich geregelt wird und daß die einzelnen Verbrennungszonen überwacht und die Primärluftmengen den einzelnen Verbrennungszonen entsprechend dem in den jeweiligen Zonen herrschenden, durch Thermographiekamera festgestellten Abbrandverhalten des Brennstoffes zugeführt wird.
  2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, mit einem Verbrennungsrost, bei dem die Primärluftzuführung über in Längsrichtung des Verbrennungsrostes unterteilte Unterwindzonen erfolgt, dadurch gekennzeichnet, daß die Unterwindzonen (11 bis 15) auch in Querrichtung des Verbrennungsrostes (1) unterteilt (11 - 11b; 12 - 12b); 13 - 13b; 14 - 14b; 15 - 15b) sind, daß eine Thermographiekamera (18) für die Erfassung des Abbrandverhaltens des Brennstoffes auf den einzelnen, den jeweiligen Unterwindzonen zugeordneten Verbrennungszonen vorgesehen ist, und daß Regeleinrichtungen (17) zur individuellen Bemessung der Luftzufuhr auf die einzelnen Unterwindzonen in Längs- und Querrichtung vorgesehen sind.
  3. Vorrichtung nach Anspruch 2 zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß die Thermographiekamera (18) an einen Monitor (21) und einen frei programmierbaren Rechner (22) angeschlossen ist, der das empfangene Bild in einzelne Bildzeilen und Bildpunkte auflöst und die so erhaltenen Digitalwerte, die ein Maß für die Brennbett-Temperatur auf der jeweiligen Verbrennungszone darstellen, mit vorgegebenen Richtwerten vergleicht und bei Abweichung einen entsprechenden Regelvorgang auslöst.
EP89113259A 1988-07-29 1989-07-19 Verfahren und Vorrichtung zur Regelung der Feuerungsleistung von Verbrennungsanlagen Expired - Lifetime EP0352620B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3825931A DE3825931A1 (de) 1988-07-29 1988-07-29 Verfahren und vorrichtung zur regelung der feuerungsleistung von verbrennungsanlagen
DE3825931 1988-07-29

Publications (3)

Publication Number Publication Date
EP0352620A2 EP0352620A2 (de) 1990-01-31
EP0352620A3 EP0352620A3 (de) 1990-11-22
EP0352620B1 true EP0352620B1 (de) 1996-11-06

Family

ID=6359911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89113259A Expired - Lifetime EP0352620B1 (de) 1988-07-29 1989-07-19 Verfahren und Vorrichtung zur Regelung der Feuerungsleistung von Verbrennungsanlagen

Country Status (9)

Country Link
US (1) US4953477A (de)
EP (1) EP0352620B1 (de)
JP (1) JP2703808B2 (de)
BR (1) BR8903837A (de)
CA (1) CA1323801C (de)
DE (1) DE3825931A1 (de)
DK (1) DK172041B1 (de)
ES (1) ES2012438T3 (de)
SG (1) SG47789A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101488A1 (en) * 2000-10-12 2004-01-30 Martin Umwelt & Energietech Process for incinerating waste products

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930231A1 (de) * 1989-09-11 1991-03-14 Foppe Werner Verfahren zur direkten beobachtung von druckverbrennungsvorgaengen in der tiefsee zur brennstrahl-simulation von stoechiometrisch verbrennendem wasserstoff/sauerstoff in unter hohem druck stehender gesteinsschmelze
FR2661733B1 (fr) * 1990-05-04 1992-08-14 Perin Freres Ets Procede et dispositif de controle et de commande de la combustion d'un combustible solide qui se deplace en nappe dans un foyer.
US5139412A (en) * 1990-05-08 1992-08-18 Weyerhaeuser Company Method and apparatus for profiling the bed of a furnace
DE4220149C2 (de) * 1992-06-19 2002-06-13 Steinmueller Gmbh L & C Verfahren zum Regelung der Verbrennung von Müll auf einem Rost einer Feuerungsanlage und Vorrichtung zur Durchführung des Verfahrens
US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
AT402555B (de) * 1992-09-04 1997-06-25 August Dr Raggam Verbrennungseinrichtung
SG47890A1 (en) * 1993-04-20 1998-04-17 Martin Umwelt & Energietech Method for burning fuels particularly for incinerating garbage
NL9301826A (nl) * 1993-10-21 1995-05-16 Burnham Europa Bv Branderinrichting met regeling van de lucht/brandstof-verhouding en werkwijze voor het regelen van de lucht/brandstof-verhouding.
DE4344906C2 (de) * 1993-12-29 1997-04-24 Martin Umwelt & Energietech Verfahren zum Regeln einzelner oder sämtlicher die Verbrennung auf einem Feuerungsrost beeinflussender Faktoren
DE4404418C2 (de) * 1994-02-11 1997-10-23 Martin Umwelt & Energietech Verfahren zum Verbrennen von Brenngut, insbesondere Müll
DE4428159C2 (de) * 1994-08-09 1998-04-09 Martin Umwelt & Energietech Verfahren zur Regelung der Feuerung bei Verbrennungsanlagen, insbesondere Abfallverbrennungsanlagen
DE4445954A1 (de) * 1994-12-22 1996-06-27 Abb Management Ag Verfahren zur Verbrennung von Abfällen
EP0766080A1 (de) * 1995-09-29 1997-04-02 FINMECCANICA S.p.A. AZIENDA ANSALDO System und Verfahren zur Überwachung eines Verbrennungsvorgangs und von Schadstoffen mit Laserdioden
DE19615141A1 (de) * 1996-04-17 1997-10-23 Bfi Automation Gmbh Verfahren und Einrichtung zur Steuerung eines Verbrennungsprozesses in einem Kessel
TW352346B (en) * 1997-05-29 1999-02-11 Ebara Corp Method and device for controlling operation of melting furnace
US20010027737A1 (en) * 1998-08-21 2001-10-11 Stan E. Abrams Gasifier system and method
US7007616B2 (en) * 1998-08-21 2006-03-07 Nathaniel Energy Corporation Oxygen-based biomass combustion system and method
DE19917572A1 (de) 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Verfahren zur automatischen Einstellung der Feuerung einer Müllverbrennungsanlage
DE19919222C1 (de) * 1999-04-28 2001-01-11 Orfeus Comb Engineering Gmbh Verfahren zum Steuern der Verbrennung von Brennstoff mit variablem Heizwert
WO2001065178A1 (en) * 2000-02-28 2001-09-07 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System for continuous thermal combustion of matter, such as waste matter
DE10327471B3 (de) * 2003-06-18 2005-04-07 Sar Elektronic Gmbh Verfahren und Vorrichtung zum Regeln der Feuerleistung von Verbrennungsanlagen
SE527375C2 (sv) * 2004-10-14 2006-02-21 Sture Lindstroem Rost och brännare innefattande en sådan rost
NL1027661C2 (nl) * 2004-12-06 2006-06-07 Nem Energy Services B V Luchtregeling.
IT1395108B1 (it) * 2009-07-28 2012-09-05 Itea Spa Caldaia
FR3048278A1 (fr) * 2016-02-25 2017-09-01 La Bonne Chauffe Dispositif de regulation continue de la puissance d'un systeme de chauffage et procede associe
US10928066B2 (en) * 2019-02-13 2021-02-23 Eco Burn Inc. System and method for the advanced control of nitrogen oxides in waste to energy systems
DE102020000980A1 (de) * 2020-02-14 2021-08-19 Martin GmbH für Umwelt- und Energietechnik Verfahren zum Betreiben einer Feuerungsanlage
CN111947463B (zh) * 2020-08-11 2022-06-14 中冶长天国际工程有限责任公司 一种烧结机料面图像分析系统及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE30822C (de) * J. E. REINECKER in Chemnitz Drehbank zur Herstellung von Gewindeschneide-Bohrern
DD30822A (de) *
DE1000129B (de) * 1953-06-12 1957-01-03 Strebelwerk Ges Mit Beschraenk Feuerung mit selbsttaetiger Regelung der Brennstoffzufuhr durch einen Temperaturfuehler
JPS5216671B2 (de) * 1974-02-22 1977-05-11
JPS5837415A (ja) * 1981-08-28 1983-03-04 株式会社 タクマ 低NOx用ごみ焼却炉
US4473013A (en) * 1982-07-08 1984-09-25 Clear Air, Inc. Incinerator steam generation system
CH659121A5 (de) * 1983-06-08 1986-12-31 Tiba Kochherd & App Ag Brennkammer fuer feste brennstoffe.
JPS6136611A (ja) * 1984-07-25 1986-02-21 Kawasaki Heavy Ind Ltd ごみ焼却炉の燃焼制御方法
JPS6136612A (ja) * 1984-07-28 1986-02-21 Kawasaki Heavy Ind Ltd ごみ焼却炉の燃焼制御方法
FI79622C (fi) * 1986-01-27 1990-01-10 Nokia Oy Ab Foerfarande foer generering av i realtidsreglerparametrar med hjaelp av en videokamera foer roekgenererande foerbraenningsprocesser.
DE3616630A1 (de) * 1986-05-16 1987-11-19 Krupp Polysius Ag Kuehlvorrichtung
DE3834368A1 (de) * 1987-10-24 1989-05-03 Mindermann Kurt Henry Muellverbrennungsanlage
ES2031563T3 (es) * 1987-10-24 1992-12-16 Kurt-Henry Dipl.-Ing. Mindermann Procedimiento para gobernar la combustion de combustible con poder calorifico muy fluctante.
US4838183A (en) * 1988-02-11 1989-06-13 Morse Boulger, Inc. Apparatus and method for incinerating heterogeneous materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG101488A1 (en) * 2000-10-12 2004-01-30 Martin Umwelt & Energietech Process for incinerating waste products

Also Published As

Publication number Publication date
ES2012438T3 (es) 1996-12-16
US4953477A (en) 1990-09-04
EP0352620A3 (de) 1990-11-22
DK374489A (da) 1990-01-30
DK172041B1 (da) 1997-09-22
ES2012438A4 (es) 1990-04-01
DE3825931A1 (de) 1990-02-01
JPH0278819A (ja) 1990-03-19
EP0352620A2 (de) 1990-01-31
DK374489D0 (da) 1989-07-28
JP2703808B2 (ja) 1998-01-26
CA1323801C (en) 1993-11-02
BR8903837A (pt) 1990-03-20
SG47789A1 (en) 1998-04-17
DE3825931C2 (de) 1991-02-21

Similar Documents

Publication Publication Date Title
EP0352620B1 (de) Verfahren und Vorrichtung zur Regelung der Feuerungsleistung von Verbrennungsanlagen
DE69000870T2 (de) Verfahren und vorrichtung zur abfallbeseitigung.
DE69306714T2 (de) Ascheschmelzofen
EP1698827B1 (de) Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall
EP0661500B1 (de) Verfahren zum Regeln einzelner oder sämtlicher die Verbrennung auf einem Feuerungsrost beeinflussender Faktoren
EP1893721B1 (de) Zuführung von verbrennungsluft für verkokungsöfen
DE102014221150B3 (de) Koksofen mit verbesserter Abgasführung in den Sekundärheizräumen und ein Verfahren zur Verkokung von Kohle sowie die Verwendung des Koksofens
EP1621811B1 (de) Betriebsverfahren für eine Feuerungsanlage
EP0897086B1 (de) Verfahren zum Ermitteln der durchschnittlichen Strahlung eines Brennbettes in Verbrennungsanlagen und Regelung des Verbrennungsvorganges
EP0846917B1 (de) Verfahren und Vorrichtung zur Erzeugung und Nutzung von Gas aus Abfallstoffen
EP0621448A1 (de) Verfahren zum Verbrennen von Brennstoffen, insbesondere Abfall
DE3904272C3 (de) Verfahren zum Erfassen der von mindestens zwei räumlich getrennten Stellen mindestens einer Verbrennungszone auf einem Rost ausgehenden Strahlung und Vorrichtung zum Erfassen einer solchen Strahlung
DE19639487A1 (de) Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners
EP0839301B1 (de) Verfahren zur verbrennung von thermisch zu behandelnden stoffen
EP2210044B1 (de) Verfahren zur regelung einer festbrennstoff-befeuerungseinrichtung
DE2740537B2 (de) Brenner für einen Regenerativ-Winderhitzer
EP0499976B1 (de) Verfahren zum Betreiben einer Müllverbrennungsanlage
DE2047529A1 (de) Verfahren und Vorrichtung zur Re gelung eines Zement Drehrohrofens
EP0409790A1 (de) Feuerungsanlage
DE1955186A1 (de) Verfahren zur Steuerung der Verteilung der Waerme eines Brenners sowie Vorrichtung zur Durchfuehrung eines solchen Verfahrens
EP0667490B1 (de) Verfahren zum Verbrennen von Brenngut, insbesondere Müll
EP1489355A1 (de) Verfahren und Vorrichtung zum Regeln der Feuerleistung von Verbrennungsanlagen
EP3865771B1 (de) Verfahren zum betreiben einer feuerungsanlage
DE3831060C2 (de)
DE1458753C2 (de) Verfahren zur Regelung des Hochofenganges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH ES FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: STUDIO JAUMANN

GBC Gb: translation of claims filed (gb section 78(7)/1977)
TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19910522

17Q First examination report despatched

Effective date: 19930308

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2012438

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

Effective date: 19970801

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

Effective date: 19970801

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20000816

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080714

Year of fee payment: 20

Ref country code: ES

Payment date: 20080729

Year of fee payment: 20

Ref country code: CH

Payment date: 20080715

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080726

Year of fee payment: 20

Ref country code: FR

Payment date: 20080715

Year of fee payment: 20

Ref country code: NL

Payment date: 20080716

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080814

Year of fee payment: 20

Ref country code: SE

Payment date: 20080714

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090718

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090719

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090719

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090718