EP0350883B1 - Combinaison d'éléments photosensibles pour utilisation ou radiographie - Google Patents

Combinaison d'éléments photosensibles pour utilisation ou radiographie Download PDF

Info

Publication number
EP0350883B1
EP0350883B1 EP89112708A EP89112708A EP0350883B1 EP 0350883 B1 EP0350883 B1 EP 0350883B1 EP 89112708 A EP89112708 A EP 89112708A EP 89112708 A EP89112708 A EP 89112708A EP 0350883 B1 EP0350883 B1 EP 0350883B1
Authority
EP
European Patent Office
Prior art keywords
silver halide
screen
group
layer
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89112708A
Other languages
German (de)
English (en)
Other versions
EP0350883A2 (fr
EP0350883A3 (en
Inventor
Sergio Pesce
John M. Winslow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of EP0350883A2 publication Critical patent/EP0350883A2/fr
Publication of EP0350883A3 publication Critical patent/EP0350883A3/en
Application granted granted Critical
Publication of EP0350883B1 publication Critical patent/EP0350883B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • G03C5/17X-ray, infrared, or ultraviolet ray processes using screens to intensify X-ray images

Definitions

  • the present invention relates to a combination of photosensitive elements for use in radiography and, more in particular, to a combinaticn of a fluorescent phosphor screen pair and a double-side coated silver halide radiographic element for use in industrial or medical radiography.
  • double-side coated silver halide elements In radiography, and particularly in medical radiography, light-sensitive elements having silver halide emulsion layers coated on both faces of a transparent support (called double-side coated silver halide elements) are used. Said double coated silver halide elements are generally used in combination with fluorescent phosphor screens in order to reduce the X radiation exposure necessary to obtain the required image. Generally, one fluorescent phosphor screen is used in association with each silver halide emulsion layer of the double coated element. The silver halide emulsions used in the double coated element are sensitized to a region of the electromagnetic spectrum corresponding to the wave length of the light emitted by the phosphor materials used in the fluorescent phosphor screens, thus obtaining a significant amplification factor.
  • crossover exposure causes poor definition even if light-sensitive elements are used which employ reduced silver halide coverages to lower the costs or increase the processing speed of the element.
  • the decrease of the emulsion turbidity increases the amount of light available for crossover and therefore worsens the image.
  • dyes or pigments can be used within the radiographic element.
  • the absorption of said dyes or pigments is in a region of the electromagnetic spectrum corresponding to the wavelength of the light emitted by the fluorescent phosphor screens.
  • the dyes or pigments absorb some of the light emitted by the fluorescent phosphor screen so that imaging of a silver halide emulsion layer by the opposite screen is reduced by absorbance of the light from the opposite screen by the anticrossover dyes or pigments.
  • These dyes or pigments are eliminated during the photographic developing, fixing and washing process of the exposed material; they can be for instance washed away or, more preferably, bleached while processing the radiographic element.
  • the dyes can be incorporated in any layer of the light-sensitive element: in the emulsion layer, in an intermediate layer between the emulsion and the base, or in the subbing layer of the support base. It is preferred to incorporate the dyes in a layer different from that containing the emulsion to avoid possible desensitization phenomena.
  • Minnesota Mining and Manufacturing Company has sold a radiographic element under the name of 3M TrimaxTM Type XUD X-Ray Film to be used in combination with 3M TrimaxTM Intensifying Screens.
  • Such radiographic element comprises a transparent polyester base, each surface of which has a silver halide emulsion layer sensitized to the light emitted by the screens.
  • US Patent 3,923,515 discloses a relatively lower speed silver halide emulsion between the support and a higher speed silver halide emulsion layer to reduce crossover.
  • US Patent 4,639,411 discloses a photographic element, to be used with blue emitting intensifying screens,having reduced crossover, said element comprising coated on both sides of a transparent support a blue sensitive silver halide emulsion layer and, interposed between the support and the emulsion layer, a blue absorbing layer comprising bright yellow silver iodide grains of a specific crystal structure.
  • Japanese Patent Application 62-52546 discloses a radiographic element of improved image quality comprising coated on both sides of a transparent support a light sensitive silver halide emulsion layer and, interposed between the support and the emulsion layer, a layer containing water insoluble metal salt particles having adsorbed on their surface a dye.
  • Said dye has a maximum absorption within the range of ⁇ 20 nm of the maximum absorption of said silver halide and corresponds to the light emitted by intensifying screens.
  • Silver halides are disclosed as preferred metal salt particles.
  • Japanese Patent Application 62-99748 discloses a radiographic element of improved image quality comprising coated on both sides of a transparent support a light-sensitive silver halide emulsion layer and, interposed between the support and the emulsion layer, a silver halide emulsion layer having substantially no light-sensitivity.
  • US 4,130,428 discloses a combination of two fluorescent screens and a double ccated silver halide element wherein the maximum emission of the screens is in the wavelength range of 450-570 nm and silver halide layers are sensitive to light in the same wavelength range.
  • US 3,795,814, 4,070,583 and GB 2,119,396 disclose rare earth oxyhalide phosphors activated with terbium and/or thulium employed in fluorescent screens having UV emission.
  • FR 2,264,306 discloses a combination of a silver halide element and fluorescent screen comprising a rare earth activated rare earth oxyhalide phosphor having it maximum emission in the wavelength range of 400-500 nm.
  • JP 60175-000 discloses a combination of a double coated silver halide element and a screen pair wherein the fluorescent layers of the two screens have different wavelength region emissions and each screen comprises an organic dye to absorb the light emitted by the opposite screen.
  • EP 232,888 discloses a combination of a double coated silver halide element and a pair of front and back intensifying screens wherein said front and back screens, emitting light in the same wavelength region, have different modulation transfer factors to be used in low energy radiography.
  • US 4,480,024 discloses the combination of a silver halide photothermographic element and a rare-earth intensifying screen which are uniquely adapted to one another for the purpose of industrial radiographic imaging.
  • the photothermographic element is dye-sensitized to the spectral emission of the screen and the combination of screen and element has an amplification factor greater or equal to at least 50.
  • a single screen is used in combination with a single-side coated photothermographic element , or double screens with either single-side or a double-side coated photothermographic elements, the latter without any significant benefit and at increased cost of film.
  • the present invention provides a combination of a pair of radiographic fluorescent screens and a double coated silver halide radiographic element.
  • Each screen is arranged adjacent to each silver halide layer and each screen is capable of imagewise emitting radiation to which the adjacent silver halide layer is sensitive when imagewise exposed to X radiation.
  • the present invention relates to a combination of photosensitive elements for use in radiography comprising two separate front and back X-ray fluorescent screens and a silver halide radiographic element comprising a support base and front and back silver halide emulsion layers each coated on one surface of said support, wherein said front screen is arranged adjacent to said front silver halide layer and said back screen is arranged adjacent to said back silver halide layer, wherein said front screen comprises a first radiation emitting phosphor and said front silver halide layer comprises silver halide grains sensitive to said first radiation emitted by said front screen, and said back screen comprises a second radiation emitting phosphor and said back silver halide layer comprises silver halide grains sensitive to said second radiation emitted by said back screen, and wherein (a) said front screen comprises a green emitting phosphor having more than 80% of its spectral emission in the green portion of the electromagnetic spectrum, and said back screen comprises a UV-blue emitting phosphor having more than 80% of its spectral emission in
  • the combination of screen pair and double coated silver halide element for use in radiography provides images having superior image quality, particularly less crossover, as compared to conventional radiographic screen pair and double silver halide element combinations without causing negative effects, such as significant loss of sensitivity, residual stain, image instability upon storage, excessive element thickening and increased silver coverage.
  • the combination may be used in industrial or medical radiography.
  • Figure 1 is a schematic diagram of a radiographic element and screen pair combination of the present invention.
  • Figures 2 and 4 are graphs illustrating emission spectra of radiographic fluorescent screens of the present invention.
  • Figures 3 and 5 are graphs illustrating spectral sensitivity of a double-side coated silver halide radiographic element of the present invention.
  • Figures 6 and 7 are graphs illustrating sharpness and granularity versus sensitivity of radiographic double ccated silver halide element and screen pair combinations.
  • Figure 1 shows in greater detail a combination of the screen pair and the double silver halide element of this invention.
  • the combination comprises three separate photosensitive elements: a double coated silver halide radiographic element 10, a front screen 21 and a back screen 20.
  • the double coated silver halide radiographic element 10 comprises a support 11 and coated on its opposite faces are the subbing layers 12 and 13.
  • a front silver halide emulsion layer 15 is coated over the subbing layer 13 and a back silver halide emulsion layer 14 is coated over the subbing layer 12 on the opposite face of the support.
  • Protective layers 16 and 17 are coated over the silver halide emulsion layers 14 and 15, respectively.
  • the front radiographic fluorescent screen 21 comprises a support 29, a reflective layer 27, a fluorescent phosphor layer 25 and a protective layer 23.
  • the back radiographic fluorescent screen 20 comprises a support 28, a reflective layer 26, a fluorescent phosphor layer 24 and a protective layer 22.
  • the screen pair and the silver halide element are compressed in a radiographic cassette with the front screen arranged adjacent and in close contact with the front silver halide emulsion layer and the back screen is arranged adjacent and in close contact with the back silver emulsion halide layer.
  • Imagewise X radiation enters the screen pair and silver halide element combination through the front screen support 29 and reflective layer 27 and passes the front screen fluorescent phosphor layer 25. A portion of the X radiation is absorbed in the phosphor layer 25. The remaining X radiation passes through the protective layers 23 and 17. A small portion of the X radiation is absorbed in the front silver halide emulsion layer 15, thereby contributing directly to the formation of a latent image in said front silver halide emulsion layer 15.
  • the major portion of the X radiation passes through the subbing layer 13, the support 11 and the subbing layer 12. Again, a small portion of the X radiation is absorbed in the back silver halide emulsion layer 14, thereby contributing directly to the formation of a latent image in said back silver halide emulsion layer 14. Again, the major portion of the X radiation passes through the protective layers 16 and 22 and is absorbed in the back fluorescent phosphor layer 24. The imagewise X radiation is principally absorbed in the fluorescent phosphor layers 24 and 25, thereby producing the emission of longer wavelength radiation.
  • the first radiation emitted by the front fluorescent phosphor layer 25 exposes the adjacent front silver halide emulsion layer 15, and the second radiation emitted by the back fluorescent phosphor layer 24 exposes the adjacent back silver halide emulsion layer 14.
  • the silver halide emulsions are substantially insensitive to the radiation emitted by the opposite fluorescent phosphor layer. Said radiation emitted by a fluorescent phosphor layer passing to at least some extent beyond the adjacent silver halide emulsion layer penetrates the subbing layers and the support to expose the opposite silver halide emulsion layer. This fact, while increasing to some extent the speed of the screen pair and silver halide element combination, would have the effect of impairing the image sharpness by crossover exposure.
  • actinic and non-actinic radiation are used to indicate, respectively, radiation of wavelenght from 300 to less than 500 nm (Ultraviolet and blue radiation), and radiation of wavelength from 500 to 600 nm (Green radiation).
  • insensitive describes either primary or intrinsic insensitivity of the silver halide grain emulsion (or layer including it) to a certain range of wavelengths, as defined, or secondary or induced insensitivity (or unreachability) of the silver halide emulsion (or layer including it) in the double silver halide element because of filter action excercised by a further emulsion layer or layers interposed between the considered “insensitive” layer and the radiation emitting screen or by filter dyes or agents included in the considered layer or in such interposed layers.
  • the latent image formed by radiation (preferably comprised between 300 and 1200 nm) exposure in each silver halide emulsion layer is primarily formed by exposure to the radiation emitted by the adjacent fluorescent phosphor layer, with no significant contribution by opposite screen.
  • the radiation exposure necessary to produce a Dmax of 1.0 on said front silver halide layer will produce a Dmax of less than 0.2 on the back silver halide emulsion layer under the same development conditions.
  • an exposure at the ⁇ max of the back layer that produces a Dmax of 1.0 will produce a Dmax of less than 0.2 on the front layer.
  • X radiation may enter the unsymmetrical screen pair and double-side coated silver halide element through either the front fluorescent phosphor screen or the back fluorescent phosphor screen.
  • silver halide element in the present invention includes both silver halide “photographic” elements which use liquid development to produce the final image and silver halide “photothermographic” elements, often referred to as “dry silver” elements, which do not use liquid development to produce the final image, as described thereinafter.
  • exposure of the silver halide to radiation produces small clusters of silver ions. The imagewise distribution of these clusters is known in the art as the latent image.
  • This latent image generally is not visible by ordinary means and the light-sensitive element must be further processed in order to produce a visual image. This visual image is produced by the catalytic reduction of silver which is in catalytic proximity to the specks of the latent image.
  • the photographic silver halide element is preferably used in medical radiography and the photothermographic silver halide element is preferably used in industrial radiography.
  • the present invention relates to a combination of photosensitive elements for use in radiography comprising two separate front and back X-ray fluorescent screens and a silver halide radiographic element comprising a support base and front and back silver halide emulsion layers each coated on one surface of said support, wherein said front screen is arranged adjacent to said front silver halide layer and said back screen is arranged adjacent to said back silver halide layer, and wherein
  • the phosphors used in the front fluorescent screens applied in the present invention emit radiation having more than about 80% of its spectral emission above 480 nm and its maximum of emission in the wavelength range of 530-570 nm.
  • Green emitting phosphors which may be used in the front fluorescent screens of the present invention include rare earth activated rare earth oxysulfide phosphors of at least one rare earth element selected from yttrium, lanthanum, gadolinium and lutetium, rare earth activated rare earth oxyhalide phosphors of the same rare earth elements, a phosphor composed of a borate of the above rare earth elements, a phosphor composed of a phosphate of the above rare earth elements and a phosphor composed of tantalate of the above rare earth elements.
  • rare earth green emitting phosphors have been extensively described in the patent literature, for example in US Patents 4,225,653, 3,418,246, 3,418,247, 3,725,704, 3,617,743, 3,974,389, 3,591,516, 3,607,770, 3,666,676, 3,795,814, 4,405,691, 4,311,487 and 4,387,141.
  • These rare earth phosphors have a high X-ray stopping power and high efficiency of light emission when excited with X radiation and enable radiologists to use substantially lower X radiation dosage levels.
  • Particularly suitable phosphors for use in the front fluorescent screens of the present invention are terbium or terbium-thulium activated rare earth oxysulfide phosphors represented by the general formula (I) (Ln 1-a-b , Tb a , Tm b )2O2S (I) wherein Ln is at least one rare earth element selected from lanthanum, gadolinium and lutetium, and a and b are numbers such as to meet the conditions 0.0005 ⁇ a ⁇ 0.09 and 0 ⁇ b ⁇ 0.01, respectively, and terbium or terbium-thulium activated rare earth oxysulfide phosphors represented by the general formula (II) (Y 1-c-a-b , Ln c , Tb a , Tm b )2O2S (II) wherein Ln is at least one rare earth element selected from lanthanum, gadolinium and lutetium, and a,
  • Figure 2 shows an emission spectrum of a front fluorescent screen comprising a fluorescent layer of (Gd 1-0.05 , Tb 0.05 )2O2S phosphor as green emitting phosphor, expressed as fluorescence (F) versus wavelengths (nm).
  • the front silver halide emulsion layer to be arranged according to this invention adjacent to the front fluorescent screen, comprises silver halide grains which are optically sensitized to the spectral region of the radiation emitted by the screens, preferably to a spectral region of an interval comprised within 25 nm from the wavelength of the maximum emission of the screen, more preferably within 15 nm, and most preferably within 10 nm.
  • the silver halide grains of the front silver halide layer have adsorbed on their surface spectral sensitizing dyes that exhibit absorption maxima in the regions of the visible spectrum where the front fluorescent screen emits.
  • spectral sensitizing dyes used in this invention are those which exhibit J aggregates if adsorbed on the surface of the silver halide grains and a sharp absorption band (J-band) with a bathochromic shifting with respect to the absorption maximum of the free dye in aqueous solution.
  • Spectral sensitizing dyes producing J aggregates are well known in the art, as illustrated by F. M. Hamer, Cyanine Dyes and Related Compounds, John Wiley and Sons, 1964, Chapter XVII and by T. H. James, The Theory of the Photographic Process, 4th edition, Macmillan, 1977, Chapter 8.
  • J-band exhibiting dyes are cyanine dyes.
  • Such dyes comprise two basic heterocyclic nuclei joined by a linkage of methine groups.
  • the heterocyclic nuclei preferably include fused benzene rings to enhance J aggregation.
  • the heterocyclic nuclei are preferably quinolinium, benzoxazolium, benzothiazolium, benzoselenazolium, benzimidazolium, naphthoxazolium, naphthothiazolium and naphthoselenazolium quaternary salts.
  • J-band type dyes preferably used in the present invention have the following general formula (III): wherein
  • said optical sensitizing dyes adsorbed on said silver halide grains of the front silver halide layer are represented by the following general formula (IV): wherein
  • alkyl groups included in said substituents R6, R7, R8, R9, R10, and R11 and, more particularly, the alkyl portions of said alkoxy, alkoxycarbonyl, alkoxycarbonylamino, hydroxyalkyl, acetoxyalkyl groups and of the alkyl groups associated with a carboxy or sulfo group each preferably contain from 1 to 12, more preferably from 1 to 4 carbon atoms, the total number of carbon atoms included in said groups preferably being no more than 20.
  • the aryl groups included in said substituents R6, R7, R8 and R9 each preferably contain from 6 to 18, more preferably from 6 to 10 carbon atoms, the total number of carbon atoms included in said groups arriving up to 20 carbon atoms.
  • J-band sensitizing dyes belonging to those represented by the general formula (IV) above:
  • Figure 3 shows the sensitivity spectrum of a front silver halide layer comprising silver bromoiodide grains comprising 2.3 mole percent iodide and having adsorbed on their surface the optical sensitizing dye A above, expressed as sensitivity (S) versus wavelengths (nm).
  • the phosphors used in the back fluorescent screens applied in the present invention emit radiation having more than about 80% of their spectral emission below 410 nm and their maximum of emission in the wavelength range of 300-360 nm.
  • Ultraviolet emitting phosphors which may be used in the back fluorescent screens of the present invention include ultraviolet emitting phosphors known in the art such as lead or lanthanum activated barium sulfate phosphors, barium fluorohalide phosphors, lead activated barium silicate phosphors, gadolinium activated yttrium oxide phosphors, barium fluoride phosphors, alkali metal activated rare earth niobate or tantalate phosphors etc.
  • Ultraviolet emitting phosphors are described for example in BE 703,998 and 757,815, in EP 202,875 and by Buchanan et al., J. Applied Physics, vol. 9, 4342-4347, 1968,and by Clapp and Ginther, J. of the Optical Soc. of America, vol. 37, 355-362, 1947.
  • Particularly suitable ultraviolet emitting phosphors for use in the back fluorescent screens of the present invention are those represented by the general formula (V) (Y 1-2/3x-1/3y , Sr x , Li y ) TaO4 wherein x and y are numbers such as to meet the conditions 10 ⁇ 5 x ⁇ 1 and 10 ⁇ 4 ⁇ y ⁇ 0.1as described in EP 202,875.
  • Figure 4 shows an emission spectrum of a back fluorescent screen comprising a fluorescent layer of (Y, Sr, Li)TaO4 phosphor as ultraviolet emitting phosphor, expressed as fluorescence (F) versus wavelengths (nm).
  • the back silver halide emulsion layer arranged according to this invention adjacent to the back actinic light emitting phosphor screen, comprises silver halide grains which are not optically sensitized but possess the inherent spectral sensitivity of the known types of photosensitive silver halides. Said inherent spectral sensitivity of the conventional silver halide emulsions used in photographic films as known ranges in the ultraviolet and blue region of the electromagnetic spectrum.
  • Figure 5 shows the sensitivity spectrum of a back silver halide emulsion layer comprising silver bromoiodide grains comprising 2.3 percent mole iodide and having no optical sensitizing dye adsorbed on their surface, expressed as sensitivity (S) versus wavelenghts (nm).
  • the non-actinic radiation (preferably green light) emitted by the front screen imagewise exposes the adjacent front silver halide layer comprising silver halide grains optically sensitized to the radiation emitted by said screens.
  • Part of said non-actinic radiation reaches the opposite back silver halide layer but does not crossover expose the silver halide grains of the back silver halide layer as those grains are not optically sensitized to the radiation emitted by said front screen.
  • the ultraviolet or blue emission of the back fluorescent screen undergoes absorption by the adjacent back silver halide layer and imagewise exposes the silver halide grains which are not optically sensitized, rather than crossover passing to the opposite front silver halide layer.
  • the crossover exposure reduction attained with the screen pair and double silver halide element combination of this invention is preferably at least 10 percent, more preferably at least 20 percent in comparison with a conventional combination of green emitting fluorescent screens and double coated green sensitized silver halide radiographic element. Accordingly, the image sharpness is improved by reducing crossover exposure using a unique combination of conventional silver halide emulsion layers and fluorescent screens.
  • the light-sensitive double-side coated silver halide radiographic element comprises a transparent polymeric base of the type commonly used in radiography, for instance a polyester base, and in particular a polyethylene terephthalate base.
  • the silver halide emulsions coated on the two surfaces of the support, the front optically sensitized silver halide emulsion and the back optically unsensitized silver halide emulsion may be similar or different and comprise emulsions commonly used in photographic elements, such as silver chloride, silver iodide, silver chloro-bromide, silver chloro-bromo-iodide, silver bromide and silver bromo-iodide, the silver bromoiodide being particularly useful for radiographic elements.
  • the silver halide grains may have different shapes, for instance cubic, octahedrical, tabular shapes, and may have epitaxial growths; they generally have mean sizes ranging from 0.1 to 3 ⁇ m, more preferably from 0.4 to 1.5 ⁇ m.
  • the emulsion are coated on the support at a total silver coverage comprised in the range from about 3 to 6 grams per square meter.
  • the silver halide binding material used is a water-permeable hydrophilic colloid, which preferably is gelatin, but other hydrophilic colloids, such as gelatin derivatives, albumin, polyvinyl alcohols, alginates, hydrolized cellulose esters, hydrophilic polyvinyl polymers, dextrans, polyacrylamides, hydrophilic acrylamide copolymers and alkylacrylates can also be used alone or in combination with gelatin.
  • hydrophilic colloids such as gelatin derivatives, albumin, polyvinyl alcohols, alginates, hydrolized cellulose esters, hydrophilic polyvinyl polymers, dextrans, polyacrylamides, hydrophilic acrylamide copolymers and alkylacrylates can also be used alone or in combination with gelatin.
  • the silver halide photothermographic elements of this invention basically comprise a light insensitive, reducible silver source, a light sensitive material which generates silver when irradiated, and a reducing agent for the silver source.
  • the light sensitive material is generally photographic silver halide which must be in catalytic proximity to the light insensitive silver source. Catalytic proximity is an intimate physical association of these two materials so that when silver specks or nuclei are generated by the irradiation or light exposure of the photographic silver halide, those nuclei are able to catalyze the reduction of the silver source by the reducing agent.
  • silver is a catalyst for the reduction of silver ions and the silver-generating light sensitive silver halide catalyst progenitor may be placed into catalytic proximity with the silver source in a number of different fashions, such as partial metathesis of the silver source with a halogen-containing source (e.g. US Pat. No. 3,457,075), coprecipitation of the silver halide and silver source material (e.g. US Pat. No. 3,839,049), and any other method which intimately associates the silver halide and the silver source.
  • a halogen-containing source e.g. US Pat. No. 3,457,075
  • coprecipitation of the silver halide and silver source material e.g. US Pat. No. 3,839,049
  • the silver source used in this area of technology is a material which contains a reducible source of silver ions.
  • the earliest and still preferred source comprises silver salts of long chain fatty carboxylic acids, usually of from 10 to 30 carbon atoms.
  • the silver salt of behenic acid or mixtures of acids of like molecular weight have been primarily used. Salts of other organic acids or other organic materials such as silver imidazolates have been proposed, and British Pat. No. 1,110,046 discloses the use of complexes of inorganic or organic silver salts as image source materials.
  • Silver salts of long chain (10 to 30, preferably 15 to 28 carbon atoms) fatty carboxylic acids are preferred in the practice of the present invention.
  • Photothermographic emulsions are usually constructed as one or two layers per side of the support.
  • Single layer construction must contain the silver source material, the silver halide, the developer and binder as well as optional additional materials such as toners, coating aids and other adjuvants.
  • Two-layer constructions must contain the silver source and the silver halide in an emulsion layer (usually the layer adjacent the support) and the other ingredients in the second layer or both layers.
  • the silver source material should constitute from about 20 to 70 percent by weight of the imaging layer. Preferably it is present as 30 to 55 percent by weight.
  • the second layer in a two-layer construction would not affect the percentage of the silver source material desired in the single imaging layer.
  • the silver halide may be any photosensitive silver halide as silver bromide, silver iodide, silver chloride, silver bromoiodide, silver chlorobromoiodide, silver chlorobromide, etc., and may be added to the emulsion layer in any fashion which places it in catalytic proximity to the silver source.
  • the silver halide is generally present as 0.75 to 15 percent by weight of the imaging layer, although larger amounts are useful. It is preferred to use from 1 to 10 percent by weight silver halide in the imaging layer and most preferred to use from 1.5 to 7.0 percent.
  • the vast list of photographic adjuvants and processing aids may be used in silver halide emulsion preparation.
  • These materials include chemical sensitizers (including sulfur and gold compounds), development accelerators (e.g. onium and polyonium compounds), alkylene oxide polymer accelerators, antifoggant compounds, stabilizers (e.g. azaindenes, especially the tetra- and pentaazaindenes), surface active agents (particularly fluorinated surfactants), antistatic agents (particularly fluorinated compounds), plasticizers, matting agents, and the like.
  • chemical sensitizers including sulfur and gold compounds
  • development accelerators e.g. onium and polyonium compounds
  • alkylene oxide polymer accelerators e.g. ethylene oxide polymer accelerators
  • antifoggant compounds e.g. azaindenes, especially the tetra- and pentaazaindenes
  • stabilizers e.g. azaindenes, especially the tetra- and pentaazaindenes
  • surface active agents particularly fluorinated surfactants
  • antistatic agents particularly
  • the reducing agent for the silver ion may be any material, preferably organic material, which will reduce silver ion to metallic silver.
  • Conventional photographic developers such as phenidone, hydroquinones, and catechol are useful, but hindered phenol reducing agents are preferred.
  • the reducing agents should be present as 1 to 20 percent by weight of the imaging layer. In a two-layer construction, if the reducing agent is in the second layer, slightly higher proportions, of from about 2 to 20 percent tend to be more desirable.
  • Toners such as phthalazinone, phthalazine and phthalic acid are not essential to the construction, but highly desirable. These materials may be present, for example, in amounts of from 0.2 to 5 percent by weight.
  • the binder may be selected from any of the well known natural and synthetic resins such as gelatin, polyvinyl acetals, polyvinyl chloride, polyvinyl acetate, cellulose acetate, polyolefins, polyesters, polystyrene, polyacrylonitrile, polycarbonates, and the like. Copolymers and terpolymers are, of course, included in these definitions.
  • the polyvinyl acetals, such as polyvinyl butyral and polyvinyl formal, and vinyl copolymers, such as polyvinyl acetate/chloride are particularly desirable.
  • the binders are generally used in a range of 20 to 75 percent by weight of each layer, and preferably about 30 to 55 percent by weight.
  • toners, accelerators, acutance dyes, sensitizers, stabilizers, surfactants, lubricants, coating aids, antifoggants, leuco dyes, chelating agents, and various other well known additives may be usefully incorporated.
  • acutance dyes matched to the spectral emission of the intensifying screen is particularly desirable.
  • the balance in properties of the photothermographic emulsion must be precisely restricted by the proportions of materials in the emulsion.
  • the proportions of the silver salt and organic acid are particularly critical in obtaining necessary sensitometric properties in the photothermographic element for radiographic use.
  • minor amounts or larger amounts of the acid component are included in the emulsion.
  • the molar ratio of organic silver salt to organic acid must be in the range of 1.5/1 to 6.2/1 (salt/acid). Below that range, the contrast has been found to be too low, and above that range the speed and background stability of the emulsion drop off unacceptably. It is preferred that the ratio be in the range of 2.0/1 to 3.50/1.
  • the silver halide may be provided by in situ halidization or by use of pre-formed silver halide.
  • the process of industrial radiography would be performed by using a conventional X-ray projection source or other high energy particle radiation sources including gamma and neutron sources.
  • the particular phosphors used have a high absorption coefficient for the radiation emitted from the source.
  • this radiation is high energy particle radiation which is defined as any of X-rays, neutrons and gamma radiation.
  • the industrial material would be placed between the controllable source of X-rays and the industrial radiographic system of the present invention.
  • a controlled exposure of X-rays would be directed from the source and through the industrial material so as to enter and impact the radiographic system at an angle approximately perpendicular to the plane or surface of the intensifying screens and the photothermographic film contiguous to the inside surface of the screens.
  • the radiation absorbed by the phosphors of the screens would cause light to be emitted by the screens which in turn would generate a latent image in the silver halide grains of the two emulsion layers.
  • Conventional thermal development would then be used on the exposed film.
  • the X radiation image converting screens of this invention have a fluorescent layer comprising a binder and a phosphor dispersed therein.
  • the fluorescent layer is formed by dispersing the phosphor in the binder to prepare a coating dispersion, and then applying the coating dispersion by a conventional coating method to form a uniform layer.
  • the fluorescent layer itself can be a radiation image converting screen when the fluorescent layer is self-supporting, the fluorescent layer is generally provided on a substrate to form a radiation image converting screen.
  • a protective layer for physically and chemically protecting the fluorescent layer is usually provided on the surface of the fluorescent layer.
  • a primer layer is sometimes provided between the fluorescent layer and the substrate to closely bond the fluorescent layer to the substrate, and a reflective layer is sometimes provided between the substrate (or the primer) and the fluorescent layer.
  • the binder employed in the fluorescent layer of the X radiation image converting screens of the present invention can be, for example, one of the binders commonly used in forming layers: gum arabic, protein such as gelatin, polysaccharides such as dextran, organic polymer binders such as polyvinylbutyral, polyvinylacetate, nitrocellulose, ethylcellulose, vinylidene-chloride-vinylchloride copolymer, polymethylmethacrylate, polybutylmethacrylate, vinylchloride-vinylacetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, and the like.
  • binders commonly used in forming layers: gum arabic, protein such as gelatin, polysaccharides such as dextran, organic polymer binders such as polyvinylbutyral, polyvinylacetate, nitrocellulose, ethylcellulose, vinylidene-chloride-vinylchloride copolymer,
  • the binder is used in an amount of 0.01 to 1 part by weight per one part by weight of the phosphor.
  • the amount of the binder should preferably be small. Accordingly, in consideration of both the sensitivity and the sharpness of the screen and the easiness of application of the coating dispersion, the binder is preferably used in an amount of 0.03 to 0.2 parts by weight per one part by weight ot the phosphor.
  • the thickness of the fluorescent layer is generally within the range of 10 ⁇ m to 1 mm.
  • the fluorescent layer is generally coated on a substrate.
  • the substrate various materials such as polymer material, glass, wool, cotton, paper, metal, or the like can be used. From the viewpoint of handling the screen, the substrate should preferably be processed into a sheet or a roll having flexibility.
  • the substrate is preferably either a plastic film (such as a cellulose triacetate film, polyester film, polyethylene terephthalate film, polyamide film, polycarbonate film, or the like), or ordinary paper or processed paper (such as a photographic paper, baryta paper, resin-coated paper, pigment-containing paper which contains a pigment such as titanium dioxide, or the like).
  • the substrate may have a primer layer on one surface thereof (the surface on which the fluorescent layer is provided) for the purpose of holding the fluorescent layer tightly.
  • a primer layer on one surface thereof (the surface on which the fluorescent layer is provided) for the purpose of holding the fluorescent layer tightly.
  • an ordinary adhesive can be used as the material of the primer layer.
  • a coating dispersion comprising the phosphor dispersed in a binder may be directly applied to the substrate (or to the primer layer or to the reflective layer).
  • a protective layer for physically and chemically protecting the fluorescent layer is generally provided on the surface of the fluorescent layer intended for exposure (on the side opposite the substrate).
  • the protective layer may be provided on both surfaces of the fluorescent layer.
  • the protective layer may be provided on the fluorescent layer by directly applying thereto a coating dispersion to form the protective layer thereon, or may be provided thereon by bonding thereto the protective layer formed beforehand.
  • a conventional material for a protective layer such a nitrocellulose, ethylcellulose, cellulose acetate, polyester, polyethylene terephthalate, and the like can be used.
  • the X radiation image converting screens of the present invention may be colored with a colorant. Further, the fluorescent layer of the radiation image converting screen of the present invention may contain a white powder dispersed therein. By using a colorant or a white powder, a radiation image converting screen which provides an image of high sharpness can be obtained.
  • a high resolution green emitting phosphor screen, screen GRS1 was prepared consisting of a (Gd 1-0.05 , Tb 0.05 )2O2S phosphor with average particle grain size of 3 ⁇ m coated in a hydrophobic polymer binder at a phosphor coverage of 270 g/m and a thickness of 70 ⁇ m on a polyester support. Between the phosphor layer and the support a reflective layer of TiO2 particles in a poly(urethane) binder was coated. The screen was overcoated with a cellulose triacetate layer.
  • a medium resolution green emitting phosphor screen, screen GRS2 was prepared consisting of a (Gd 1-0.05 , Tb 0.05 )2O2S phosphor with average particle grain size of 4 ⁇ m coated in a hydrophobic polymer binder at a phosphor coverage of 480 g/m and a thickness of 120 ⁇ m on a polyester support. Between the phosphor layer and the support a reflective layer of TiO2 particles in a poly(urethane) binder was coated. The screen was overcoated with a cellulose triacetate layer.
  • An UV emitting phosphor screen, screen UVS3, was prepared consisting of the type NP-3040 (Y, Sr, Li)TaO4 phosphor of Nichia Kagaku Kogyo K.K. with average particle grain size of 5.1 ⁇ m coated in a hydrophobic polymer binder at a phosphor coverage of 450 g/m and a thickness of 110 ⁇ m on a polyester support. Between the phosphor layer and the support a reflective layer of TiO2 particles in a poly(urethane) binder was coated. The screen was overcoated with a cellulose triacetate layer.
  • the emulsion was sulfur and gold chemically sensitized and spectrally sensitized with 1,070 mg/ mole Ag of the green sensitizing Dye A, anhydro-5,5'-dichloro-9-ethyl-3,3'-bis(3-sulfopropyl)-oxacarbocyanine hydroxyde triethylamine salt.
  • a protective overcoat containing 0.9 g/m gelatin was applied to said silver bromoiodide front layer.
  • a spectrally unsensitized silver halide silver halide gelatin emulsion layer containing cubic silver bromoiodide grains comprising a 1:1 by weight blend of silver bromoiodide grains having 2 mole percent iodide and an average grain size of 1.3 ⁇ m and silver bromoiodide grains having 2.3 mole percent iodide and an average grain size of 0.65 ⁇ m) at 2.51 g/m Ag and 1.8 g/m gelatin.
  • the emulsion was sulfur and gold chemically sensitized.
  • a protective overcoat containing 0.9 g/m gelatin was applied to said silver bromoiodide back layer.
  • the emulsion was sulfur and gold chemically sensitized and spectrally sensitized with 1,070 mg/Ag mole of the green sensitizing Dye A, anhydro-5,5'-dichloro-9-ethyl-3,3'-bis(3-sulfopropyl)-oxacarbocyanine hydroxyde triethylamine salt.
  • a protective overcoat containing 0.9 g/m gelatin was applied to said silver bromoiodide front layer.
  • the emulsion was sulfur and gold chemically sensitized.
  • a protective overcoat containing 0.9 g/m gelatin was applied to said silver bromoiodide back layer.
  • the emulsion was sulfur and gold chemically sensitized.
  • a protective overcoat containing 0.9 g/m gelatin was applied to each silver bromoiodide layer.
  • the emulsion was sulfur and gold chemically sensitized and spectrally sensitized with 1,070 mg/ mole Ag of the green sensitizing Dye A, anhydro-5,5'-dichloro-9-ethyl-3,3'-bis(3-sulfopropyl)- oxacarbocyanine hydroxyde triethylamine salt.
  • a protective overcoat containing 0.9 g/m gelatin was applied to each silver bromoiodide layer.
  • Pairs of screens in combination with double coated light-sensitive photographic films described above were exposed as follows. Referring to Figure 1, film-screens combinations were made in which the front screen was in contact with the front emulsion layer and the back screen was in contact with the back emulsion layer. Each screen pair-film combination was exposed to X-rays from a tungsten target tube operated at 80 kVp and 25 mA from a distance of 120 cm. The X-rays passed through an aluminium step wedge before reaching the screen-film combination. Following exposure the films were processed in a 3M TrimaticTM XP507 processor using 3M XAD/2 developer replenisher and 3M XAF/2 fixer replenisher.
  • Percent crossover 1 antilog ⁇ logE x 100 wherein ⁇ logE is the difference in speed between the two emulsion layers of the same film when exposed with a single screen (the lower the percent crossover, the better the image quality).
  • Sharpness and granularity of the screen pair-film combinations were determined as follows. Each screen pair-film combination was exposed to X-rays from a tungsten tube operated at 80 kVp and 25 mA from a distance of 150 cm. The X-rays passed through a 100 ⁇ thick lead Funk target sold by Huttner Ccmpany before reaching the screen-film combination. Following exposure the films were processed in the 3M TrimaticTM XP507 processor using 3M XAD/2 developer replenisher and 3M XAF/2 fixer replenisher. Sharpness and granularity of the praccessed films were determined by visual examination of ten observers skilled in making image comparisons.
  • Figures 6 and 7 are graphs illustrating the sharpness (SH) and granularity (GR) versus the difference of sensitivity ⁇ S of the double coated silver halide element and fluorescent screen pair combinations and that of green sensitive double coated element combined with green emitting fluorescent screen pair taken as reference.
  • Sharpness and granularity of the UV and blue light sensitive double coated silver halide element combined with UV emitting fluorescent screen pair are the best but at the lower level of sensitivity, while sharpness and granularity of the double coated element and screen pair combinations of this invention are better or comparable to that of green sensitive double coated element combined with green emitting fluorescent screen pair at comparable or higher level of sensitivity.
  • Humbo acid 9022 a long chain fatty carboxylic acid comprising 90% C20 + C22, 5% C18 and 5% other acid
  • Humbo acid 9718 a long chain fatty carboxylic acid comprising 95% C18 and 5% C16
  • 0.44 moles of a 0.08 ⁇ m cubic silver bromoiodide (6% mole iodide) emulsion While stirring, were added 89.18 g NaOH dissolved in 1.25 l water, then 19 ml of conc. HNO3 diluted with 50 ml water.
  • At 55°C were added 364.8 g AgNO3 dissolved in 2.5 l water at 55°C. The mixture was heated at 55°C for one hour while stirring slowly, centrifugated while spray washing until 20,000 ohms resistance of water was obtained and dried.
  • the blue sensitized dispersion above was coated on a clear 4 mil (1x10 ⁇ 4 m) polyethyleneterephthalate support at 5 mils over the support and dried for 3 minutes at 87°C.
  • the green sensitized dispersion above was coated at 5 mils over the support and dried for 3 minutes at 87°C.
  • a through H were added to a container and mixed until solids were dissolved. I was then added and mixed for one hour until was dissolved.
  • the second trip was coated over the first at 2.25 mils and dried for 3 minutes at 87°C.
  • the film was turned over and, on the green sensitized coating previously applied, the second trip was coated at 2.25 mils and dried for 3 minutes at 87°C.
  • a sample of the finished double-side coated photothermographic film was exposed with a xenon flash sensitometer through a 460 nanometer narrow band filter at a setting of 10 ⁇ 3 seconds through a 0-4 continous density wedge.
  • the exposed sample was processed for four seconds at 131°C in a roller driven thermal processor.
  • Another sample was exposed and processed as above but using a 560 nanometer narrow band filter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Radiography Using Non-Light Waves (AREA)

Claims (24)

  1. Combinaison d'éléments photosensibles utilisable en radiographie comprenant deux écrans fluorescents de rayons X avant et arrière séparés et un élément radiographique à halogénure d'argent comprenant une base de support et des couches d'émulsion d'halogénure d'argent avant et arrière appliquées chacune sur une surface dudit support, dans laquelle l'écran avant est agencé d'une manière adjacente à la couche d'halogénure d'argent avant et l'écran arrière est agencé d'une manière adjacente à la couche d'halogénure d'argent arrière, et dans laquelle
    1) l'écran avant comprend une substance luminescente émettant un premier rayonnement et la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibles au premier rayonnement émis par l'écran avant, et
    2) l'écran arrière comprend une substance luminescente émettant un second rayonnement et la couche d'halogénure d'argent arrière comprend des grains d'halogénure d'argent sensibles au second rayonnement émis par l'écran arrière, caractérisée en ce que
    a) l'écran avant comprend une substance luminescente émettant dans le vert ayant plus de 80 % de son émission spectrale dans la partie verte du spectre électromagnétique, l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu ayant plus de 80 % de son émission spectrale dans la partie U.V.-bleue du spectre électromagnétique,
    b) le premier rayonnement émis par l'écran avant a une longueur d'onde qui diffère du second rayonnement émis par l'écran arrière d'au moins 50 nm,
    c) la couche d'émulsion d'halogénure d'argent avant est essentiellement insensible au second rayonnement émis par l'écran arrière, et
    d) la couche d'émulsion d'halogénure d'argent arrière est essentiellement insensible au premier rayonnement émis par l'écran avant,
    la différence de région de longueurs d'onde du premier et du second rayonnements et l'insensibilité de chaque couche d'halogénure d'argent au rayonnement émis par l'écran opposé étant telles que pour réduire l'exposition de traversée d'au moins 10 % comparativement à une combinaison symétrique d'une paire d'écrans fluorescents émettant de la lumière verte et d'un élément radiographique à halogénure d'argent sensibilisé au vert à double revêtement.
  2. Combinaison suivant la revendication 1, dans laquelle l'écran avant comprend une substance luminescente émettant dans le vert ayant plus de 80 % de son émission spectrale au-dessus de 480 nm et son maximum d'émission dans la gamme de longueurs d'onde de 530-570 nm.
  3. Combinaison suivant la revendication 1, dans laquelle l'écran avant comprend une substance luminescente émettant dans le vert représentée par la formule générale :

            (Ln1-a-b, Tba, Tmb)₂O₂S     (I)

    dans laquelle Ln est au moins une terre rare choisie parmi le lanthane, le gadolinium et le lutécium et a et b sont des nombres tels qu'ils satisfont aux conditions respectivement de 0,0005 ≤ a ≤0,09 et 0 ≤ b ≤ 0,01, ou de la formule générale (II) :

            (Y1-c-a-b, Lnc, Tba, Tmb)₂O₂S     (II)

    dans laquelle Ln est au moins une terre rare choisie parmi le lanthane, le gadolinium et le lutécium et a, b et c sont des nombres tels qu'ils satisfont aux conditions respectivement de 0,0005 ≤ a ≤ 0,09, 0 ≤ b ≤ 0,01 et 0,65 ≤ c ≤ 0,95.
  4. Combinaison suivant la revendication 1, dans laquelle l'écran avant comprend une substance luminescente d'oxysulfure de gadolinium ou de lanthane activé au terbium ayant des pics d'émission essentiellement à 487 et 545 nm.
  5. Combinaison suivant la revendication 1, dans laquelle la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent spectralement sensibilisés avec des colorants de sensibilisation spectrale des colorants de cyanine ou de mérocyanine.
  6. Combinaison suivant la revendication 2, dans laquelle la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent spectralement sensibilisés avec des colorants de sensibilisation d'une manière telle qu'elle soit photosensible dans la gamme de longueurs d'onde de 530-570 nm.
  7. Combinaison suivant la revendication 2, dans laquelle la couche d'émulsion d'halogénure d'argent avant comprend des grains d'halogénure d'argent spectralement sensibilisés avec des colorants de sensibilisation représentés par la formule générale :
    Figure imgb0013
    dans laquelle R₁₀ représente un atome d'hydrogène ou un groupe alkyle, R₆, R₇, R₈ et R₉ représentent chacun un atome d'hydrogène, un atome d'halogène, un groupe hydroxy, un groupe alcoxy, un groupe amino, un groupe acylamino, un groupe acyloxy, un groupe alcoxycarbonyle, un groupe alkyle, un groupe alcoxycarbonylamino ou un groupe aryle ou bien, pris ensemble R₆ et R₇ et, respectivement, R₈ et R₉ peuvent être les atomes nécessaires pour former un cycle benzénique, R₁₁ et R₁₂ représentent chacun un groupe alkyle, un groupe hydroxyalkyle, un groupe acétoxyalkyle, un groupe alcoxyalkyle, un groupe alkyle contenant un groupe carboxyle, un groupe alkyle contenant un groupe sulfo, un groupe benzyle, un groupe phénéthyle ou un groupe vinylméthyle, X⁻ représente un anion d'acide et n représente 1 ou 2.
  8. Combinaison suivant la revendication 1, dans laquelle l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu ayant plus de 80 % de son émission spectrale en dessous de 410 nm et son maximum d'émission dans la gamme de longueurs d'onde de 300-360 nm.
  9. Combinaison suivant la revendication 1, dans laquelle l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu choisie dans la classe comprenant les substances luminescentes de sulfate de baryum activé au plomb ou lanthane, les substances luminescentes de fluorohalogénure de baryum, les substances fluorescentes de silicate de baryum activé au plomb, les substances luminescentes d'oxyde d'yttrium activé au gadolinium, les substances luminescentes de fluorure de baryum et les substances luminescentes de niobate ou de tantalate de terres rares activé aux métaux alcalins.
  10. Combinaison suivant la revendication 1, dans laquelle l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu correspondant à la formule générale :

            (Y1-2/3x-1/3ySrxLiy) TaO₄

    dans laquelle x et y sont des nombres tels qu'ils satisfont aux conditions 10⁻⁵ ≤ x ≤ 1 et 10⁻⁴ ≤ y ≤ 0,1.
  11. Combinaison suivant la revendication 1, dans laquelle la couche d'halogénure d'argent arrière comprend des grains de bromoiodure d'argent spectralement insensibilisés, chimiquement sensibilisés.
  12. Procédé d'enregistrement d'une image de rayonnement comprenant les étapes (i) d'exposition selon un mode de formation d'une image à des rayonnements X d'une combinaison d'éléments photosensibles comprenant deux écrans fluorescents de rayons X avant et arrière séparés et un élément radiographique à halogénure d'argent comprenant une base de support et des couches d'émulsion d'halogénure d'argent avant et arrière appliquées chacune sur une surface dudit support, dans laquelle l'écran avant est agencé d'une manière adjacente à la couche d'halogénure d'argent avant et l'écran arrière est agencé d'une manière adjacente à la couche d'halogénure d'argent arrière, et dans laquelle :
    1) l'écran avant comprend une substance luminescente émettant un premier rayonnement et la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibles au premier rayonnement émis par l'écran avant, et
    2) l'écran arrière comprend une substance luminescente émettant un second rayonnement et la couche d'halogénure d'argent arrière comprend des grains d'halogénure d'argent sensibles au second rayonnement émis par l'écran arrière,
    et (ii) de développement de l'élément radiographique à halogénure d'argent, caractérisé en ce que
    a) l'écran avant comprend une substance luminescente émettant dans le vert ayant plus de 80 % de son émission spectrale dans la partie verte du spectre électromagnétique et l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu ayant plus de 80 % de son émission spectrale dans la partie U.V.-bleue du spectre électromagnétique, le premier rayonnement émis par l'écran avant ayant une longueur d'onde qui diffère du second rayonnement émis par l'écran arrière d'au moins 50 nm,
    b) la couche d'émulsion d'halogénure d'argent avant est essentiellement insensible au second rayonnement émis par l'écran arrière, et
    c) la couche d'émulsion d'halogénure d'argent arrière est essentiellement insensible au premier rayonnement émis par l'écran avant,
    la différence de région de longueurs d'onde du premier et du second rayonnements et l'insensibilité de chaque couche d'halogénure d'argent au rayonnement émis par l'écran opposé étant telles que pour réduire l'exposition de traversée d'au moins 10 % comparativement à une combinaison symétrique d'une paire d'écrans émettant de la lumière verte et d'un élément radiographique à halogénure d'argent sensibilisé au vert à double revêtement.
  13. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran avant comprend une substance luminescente émettant dans le vert ayant plus de 80 % de son émission spectrale au-dessus de 480 nm et son maximum d'émission dans la gamme de longueurs d'onde de 530-570 nm.
  14. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran avant comprend une substance luminescente émettant dans le vert représentée par la formule générale :

            (Ln1-a-b, Tba, Tmb)₂O₂S

    dans laquelle Ln est au moins une terre rare choisie parmi le lanthane, le gadolinium et le lutécium et a et b sont des nombres tels qu'ils satisfont aux conditions respectivement de 0,0005 ≤ a ≤ 0,09 et 0 ≤ b ≤ 0,01, ou de la formule générale :

            (Y1-c'-a'-b' Lnc' Tba' Tmb')₂O₂S

    dans laquelle Ln est au moins une terre rare choisie parmi le lanthane, le gadolinium et le lutécium et a', b' et c' sont des nombres tels qu'ils satisfont aux conditions respectivement de 0,0005 ≤ a' ≤ 0,09, 0 ≤ b' ≤ 0,01 et 0,65 ≤ c' ≤ 0,95.
  15. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran avant comprend une substance luminescente d'oxysulfure de gadolinium ou de lanthane activé au terbium ayant des pics d'émission à 487 et 545 nm.
  16. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibilisés spectralement avec des colorants de sensibilisation spectrale des colorants de cyanine ou de mérocyanine.
  17. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibilisés spectralement avec des colorants de sensibilisation d'une manière telle qu'elle soit photosensible dans la gamme de longueurs d'onde de 530-570 nm.
  18. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel la couche d'émulsion d'halogénure d'argent comprend des grains d'halogénure d'argent sensibilisés spectralement avec des colorants de sensibilisation représentés par la formule générale :
    Figure imgb0014
    dans laquelle R₁₀ représente un atome d'hydrogène ou un groupe alkyle, R₆, R₇, R₈ et R₉ représentent chacun un atome d'hydrogène, un atome d'halogène, un groupe hydroxy, un groupe alcoxy, un groupe amino, un groupe acylamino, un groupe acyloxy, un groupe alcoxycarbonyle, un groupe alkyle, un groupe alcoxycarbonylamino ou un groupe aryle ou bien, pris ensemble R₆ et R₇ et, respectivement, R₈ et R₉ peuvent être les atomes nécessaires pour former un cycle benzénique, R₁₁ et R₁₂ représentent chacun un groupe alkyle, un groupe hydroxyalkyle, un groupe acétoxyalkyle, un groupe alcoxyalkyle, un groupe alkyle contenant un groupe carboxyle, un groupe alkyle contenant un groupe sulfo, un groupe benzyle, un groupe phénéthyle ou un groupe vinylméthyle, X⁻ représente un anion d'acide et n représente 1 ou 2.
  19. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu ayant plus de 80 % de son émission spectrale en dessous de 410 nm et son maximum d'émission dans la gamme de longueurs d'onde de 300-360 nm.
  20. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu choisie dans la classe comprenant les substances luminescentes de sulfate de baryum activé au plomb ou lanthane, les substances luminescentes de fluorohalogénure de baryum, les substances fluorescentes de silicate de baryum activé au plomb, les substances luminescentes d'oxyde d'yttrium activé au gadolinium, les substances luminescentes de fluorure de baryum et les substances luminescentes de niobate ou de tantalate de terres rares activé aux métaux alcalins.
  21. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu correspondant à la formule générale :

            (Y1-2/3x-1/3y, Sry, Liz) TaO₄

    dans laquelle x et y sont des nombres tels qu'ils satisfont aux conditions 10⁻⁵ ≤ x ≤ 1 et 10⁻⁴ ≤ y ≤ 0,1.
  22. Procédé d'enregistrement d'une image de rayonnement suivant la revendication 12, dans lequel la couche d'halogénure d'argent arrière comprend des grains de bromoiodure d'argent insensibilisés spectralement sensibilisés chimiquement.
  23. Elément radiographique à halogénure d'argent comprenant une base de support et des couches d'émulsion d'halogénure d'argent avant et arrière appliquées chacune sur une surface dudit support, caractérisé en ce que la couche d'émulsion d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibles à la partie verte du spectre électromagnétique et la couche d'émulsion d'halogénure d'argent arrière comprend des grains d'halogénure d'argent sensibles à l'U.V. ou au bleu, la couche d'émulsion d'halogénure d'argent avant est essentiellement insensible au rayonnement U.V. ou bleu et la couche d'émulsion d'halogénure d'argent arrière est essentiellement insensible au rayonnement vert et l'exposition de traversée est réduite d'au moins 10 % comparativement à un élément radiographique à halogénure d'argent sensibilisé au vert à double revêtement.
  24. Utilisation d'une combinaison d'éléments photosensibles radiographiques comprenant deux écrans fluorescents de rayons X avant et arrière et un élément radiographique à halogénure d'argent comprenant une base de support et des couches d'émulsion d'halogénure d'argent avant et arrière appliquées chacune sur une surface dudit support, dans laquelle l'écran avant est agencé d'une manière adjacente à la couche d'halogénure d'argent arrière, et dans laquelle
    1) l'écran avant comprend une substance luminescente émettant un premier rayonnement et la couche d'halogénure d'argent avant comprend des grains d'halogénure d'argent sensibles au premier rayonnement émis par l'écran avant, et
    2) l'écran arrière comprend une substance luminescente émettant un second rayonnement et la couche d'halogénure d'argent arrière comprend des grains d'halogénure d'argent sensibles au second rayonnement émis par l'écran arrière,
    3) l'écran avant comprend une substance luminescente émettant dans le vert ayant plus de 80 % de son émission spectrale dans la partie verte du spectre électromagnétique et l'écran arrière comprend une substance luminescente émettant dans l'U.V.-bleu ayant plus de 80 % de son émission spectrale dans la partie U.V.-bleue du spectre électromagnétique,
    4) le premier rayonnement émis par l'écran avant a une longueur d'onde qui diffère du second rayonnement émis par l'écran arrière d'au moins 50 nm,
    5) la couche d'émulsion d'halogénure d'argent avant est essentiellement insensible au second rayonnement émis par l'écran arrière, et
    6) la couche d'émulsion d'halogénure d'argent arrière est essentiellement insensible au premier rayonnement émis par l'écran avant,
    pour réduire l'exposition de traversée d'au moins 10 % comparativement à une combinaison symétrique d'une paire d'écrans fluorescents émettant de la lumière verte et d'un élément radiographique à halogénure d'argent sensibilisé au vert à double revêtement.
EP89112708A 1988-07-14 1989-07-12 Combinaison d'éléments photosensibles pour utilisation ou radiographie Expired - Lifetime EP0350883B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2136188 1988-07-14
IT8821361A IT1226917B (it) 1988-07-14 1988-07-14 Combinazione di elementi fotosensibili da usare in radiografia.

Publications (3)

Publication Number Publication Date
EP0350883A2 EP0350883A2 (fr) 1990-01-17
EP0350883A3 EP0350883A3 (en) 1990-10-31
EP0350883B1 true EP0350883B1 (fr) 1996-01-17

Family

ID=11180676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89112708A Expired - Lifetime EP0350883B1 (fr) 1988-07-14 1989-07-12 Combinaison d'éléments photosensibles pour utilisation ou radiographie

Country Status (7)

Country Link
EP (1) EP0350883B1 (fr)
JP (1) JP2837878B2 (fr)
AU (1) AU619309B2 (fr)
BR (1) BR8903451A (fr)
CA (1) CA1337852C (fr)
DE (1) DE68925440T2 (fr)
IT (1) IT1226917B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997750A (en) * 1989-02-23 1991-03-05 Eastman Kodak Company Radiographic elements with selected speed relationships
IT1230335B (it) * 1989-07-12 1991-10-18 Minnesota Mining & Mfg Cassetta con schermi di rinforzo per uso con un film radiografico.
JP2847574B2 (ja) * 1990-01-23 1999-01-20 コニカ株式会社 鮮鋭性並びに迅速処理性が改良されたハロゲン化銀写真感光材料及びその撮影方法
IT1256070B (it) * 1992-07-28 1995-11-27 Combinazione di elementi fotosensibili da usare in radiografia
IT1256597B (it) * 1992-10-05 1995-12-12 Assemblaggio di film e schermi radiografici a contrasto multiplo
DE69321584T2 (de) * 1993-07-08 1999-05-27 Agfa-Gevaert N.V., Mortsel Medizinisches Röntgenaufnahmesystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141144A (ja) * 1984-07-31 1986-02-27 Fuji Photo Film Co Ltd 放射線増感スクリ−ンおよび放射線像形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR787017A (fr) * 1934-05-02 1935-09-16 Ig Farbenindustrie Ag Procédé de production d'épreuves radiographiques, en utilisant des feuilles de renforcement radiographiques
GB1414456A (en) * 1971-11-05 1975-11-19 Agfa Gevaert Combination of photosensitive element suited for use in radiography
CA1196733A (fr) * 1981-05-26 1985-11-12 Thomas D. Lyons Emulsions de radiographie
US4639411A (en) * 1986-03-11 1987-01-27 Eastman Kodak Company Radiographic elements exhibing reduced crossover
US4803150A (en) * 1986-12-23 1989-02-07 Eastman Kodak Company Radiographic element exhibiting reduced crossover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141144A (ja) * 1984-07-31 1986-02-27 Fuji Photo Film Co Ltd 放射線増感スクリ−ンおよび放射線像形成方法

Also Published As

Publication number Publication date
CA1337852C (fr) 1996-01-02
DE68925440T2 (de) 1996-08-14
EP0350883A2 (fr) 1990-01-17
AU619309B2 (en) 1992-01-23
JPH02110538A (ja) 1990-04-23
EP0350883A3 (en) 1990-10-31
BR8903451A (pt) 1990-03-06
JP2837878B2 (ja) 1998-12-16
DE68925440D1 (de) 1996-02-29
IT8821361A0 (it) 1988-07-14
IT1226917B (it) 1991-02-22
AU3712189A (en) 1990-01-18

Similar Documents

Publication Publication Date Title
US5070248A (en) Cassette with intensifying screens to be used with an x-ray film
US5380636A (en) Multicontrast radiographic film-screen assembly
US5432351A (en) X-ray intensifying screen
US4893021A (en) Process for the production of multiple radiographic images
US4172730A (en) Radiographic silver halide sensitive materials
EP0412730B1 (fr) Combinaison de cassette et film radiographique ameliorée
US4040833A (en) Radiographic process and sensitive material for the same
EP0581065B1 (fr) Combinaison d'éléments sensibles à la lumière pour emploi en radiographie
EP0350883B1 (fr) Combinaison d'éléments photosensibles pour utilisation ou radiographie
US4707435A (en) Industrial X-ray system
EP0065877B1 (fr) Système industriel à rayons X
EP0403874B1 (fr) Eléments photosensibles pour l'utilisation radiographique et procédé de production d'une radiographie
EP0345483B1 (fr) Eléments sensibles à la lumière pour usage radiographique et procédé de formation d'une image de rayons X
EP0661592B1 (fr) Assemblage radiographique pour examen de la poitrine
JPS599891B2 (ja) 放射線写真用ハロゲン化銀感光材料
Bussi et al. Light-sensitive elements for radiographic use and process for the formation of an X-ray image

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19901224

17Q First examination report despatched

Effective date: 19940128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 68925440

Country of ref document: DE

Date of ref document: 19960229

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970808

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

BERE Be: lapsed

Owner name: MINNESOTA MINING AND MFG CY

Effective date: 19980731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990707

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990730

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000712

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050712