EP0342959B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0342959B1
EP0342959B1 EP89304992A EP89304992A EP0342959B1 EP 0342959 B1 EP0342959 B1 EP 0342959B1 EP 89304992 A EP89304992 A EP 89304992A EP 89304992 A EP89304992 A EP 89304992A EP 0342959 B1 EP0342959 B1 EP 0342959B1
Authority
EP
European Patent Office
Prior art keywords
tubes
refrigerant
heat exchangers
liquid
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89304992A
Other languages
English (en)
French (fr)
Other versions
EP0342959A1 (de
Inventor
Peter Neville Foley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
York International Ltd
Original Assignee
York International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by York International Ltd filed Critical York International Ltd
Priority to AT89304992T priority Critical patent/ATE84873T1/de
Publication of EP0342959A1 publication Critical patent/EP0342959A1/de
Application granted granted Critical
Publication of EP0342959B1 publication Critical patent/EP0342959B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention relates to a refrigerant evaporator liquid-to-refrigerant tube-in-tube heat exchanger for use in a heat pump refrigeration circuit comprising the features as indicated in the precharacterising part of claim 1.
  • So called "shell and tube” and “tube-in-tube” heat exchangers are both well known for use, for example, in heat pumps used for heating and/or cooling purposes, to carry out heat exchange between the refrigerant of the heat pump and a working medium such as water.
  • Shell and tube heat exchangers have the disadvantage that they require different materials in their construction (such as copper and steel) which require welding, thus increasing the cost of manufacture and in many cases necessitating pressure vessel authority code approval (TUV, ANCC, Service Des Mines).
  • TMV pressure vessel authority code approval
  • Tube-in-tube heat exchangers on the other hand can be fabricated entirely in copper, which means that simple brazing, rather than welding, can be used.
  • the outer tube is wound in the form of a helix and the inner tubes extend parallel to the helical axis of the outer tube. This helical construction ensures that the fluid flows are not laminar, thereby improving heat exchange, and reduces the space requirement of the heat exchanger.
  • a problem with a conventional tube-in-tube helical heat exchanger which would typically have a heat exchange capacity of the order of seven tons (refrigeration duty), is that if it is desired to cascade such heat exchangers to provide a multiple of that capacity, connecting them in series leads to unacceptable fluid pressure drops, while connecting them in parallel results in a construction occupying a great deal of space, because of the dead space inherent in the helical design.
  • a tube-in-tube heat exchanger according to the precharacterising part of claim 1 is disclosed in EP-A-0067799.
  • the present invention is intended to provide a modular heat exchanger which is simpler and cheaper to construct than conventional helical tube-in-tube heat exchangers while avoiding a configuration of the inner tubes which would promote laminar flow of the working medium through them.
  • a refrigerant evaporator liquid-to -refrigerant tube-in-tube heat exchanger for use in a heat pump refrigeration circuit, comprising an outer tube having an elongated internal chamber having extending therethrough a plurality of tubes to provide a flow path for the refrigerant, the tubes being mounted on, and extending through, a pair of longitudinally spaced end plates, the interiors of the tubes being isolated from the space within the chamber surrounding the tubes, which space provides a flow path for the liquid, characterised in that the tubes are twisted into a helical bundle by angular offset of the end plates, the angular twist of each tube being the same, the end plates are located in and sealed to the inner periphery of the outer tube, a pair of transfer tubes are provided for delivering liquid to, and receiving liquid from, the space within the chamber surrounding the tubes, the transfer tubes extending laterally of the outer tube part way into the space and having cutouts in the ends thereof, the cutouts
  • the chamber can thus be a simple straight tube having an internal diameter sufficient to accommodate the inner tubes and the desired flow capacity of the second working medium.
  • the pipework of the heat exchanger can be constructed entirely of copper.
  • the required twisted configuration of the inner tubes can be achieved very simply. First a pair of end plates can be provided with respective holes into which the inner tubes are fitted, at this stage the tubes are straight and parallel to one another. Then, in the course of fitting wthis sub-assembly into the chamber, one end plate is twisted relative to the other through a suitable angular distance around the axis of the sub-assembly and the sub-assembly (eg, 90° or 180°) is thereafter secured in position in the chamber in this twisted configuration.
  • a suitable angular distance around the axis of the sub-assembly eg, 90° or 180°
  • a second aspect of the present invention comprises a heat exchanger unit comprising a plurality of heat exchangers according to the first aspect of the present invention and respective manifolds for admitting the refrigerant and liquid to and removing them from their respective paths.
  • the heat exchangers, and preferably also the manifolds, can be encased in a block of heat insulating materials such as foamed plastics moulded around them.
  • US 1655086 shows a steam to water heat exchanger with a twisted bundle of tubes, though the twist is for a different purpose than in the present invention, namely to accommodate thermal expansion of the tubes. Further, the material necessary for such an application would preclude twisting of tube bundle as a whole, as in the present invention, due to the rigidity of the tubes.
  • the drawings show a heat exchange unit 1 according to the present invention for use in refrigerant to water heat exchange which provides two independent refrigerant flow paths and a common water flow path.
  • the heat exchange unit comprises four heat exchangers 3a-3d according to the present invention, the heat exchangers 3a and 3b providing one refrigerant flow path and heat exchangers 3c and 3d constituting the other.
  • the common water flow path is via inlet Tee 5 and outlet Tee 7. It will be seen from figure 2 that the heat exchangers 3 and the water inlet and outlet Tees 5 and 7 are arranged in a generally rectangular configuration.
  • each of the heat exchangers 3 incorporates a plurality, in this case, 16, tubes 9 through which the refrigerant flows.
  • a flow path for the water is provided by the space 11 between the inner surface of the outer tube 13 of each heat exchanger 3 and the outer surface of the tubes 9.
  • the spaces 11a and 11c are connected to one another and to the water inlet via the Tee 5 while the spaces 11b and 11d are connected to one another and to the water outlet via the Tee 7.
  • each of the heat exchangers 3 comprises two end tubes 23 and 25 interconnected via a central tube 27 to which they are brazed.
  • the tubes 9 are mounted on two end plates 29a and 29b.
  • the end plates 29a and 29b have a number of holes for the tubes 9 in the layout shown in figure 3.
  • the tubes 9, in a parallel condition are fitted into these holes and then the tubes are brazed to the end plates to provide a seal.
  • the end plate 29b is brazed to the end tube 23 in a condition such that two of the pipes 9 are accommodated in the cut-out 31 in the Tee 21a or 21b.
  • the end plate 29a Prior to brazing the other end plate 29a to the tube 23, the end plate 29a is twisted through a suitable angle, eg, 90° or 180°, relative to end plate 29b so that the tubes 9 assumes a helical configuration and so that another pair of tubes 9 are accommodated in a cut-out 33 provided in the relevant one of the Tees 5 and 7.
  • a suitable angle eg, 90° or 180°
  • each tube 25 can be in one piece; in those circumstances the left hand end of each tube 25 can simply be plugged.
  • Spacers can be placed between the tubes 9 at intervals along their lengths. These spaces can serve the dual functions of maintaining a desired spacing between the tubes and disrupting the laminar flow of medium over the surface of the associated tube.
  • the spacers can either be staggered at intervals along the tubes (ie, so that spacers of different tubes are at different longitudinal positions) or, if it is desired limit the peripheral bypass of medium around the outer ring of inner tubes, longitudinally aligned spacers may be provided at intervals on the tubes of that ring. In either case the spacers could be short annular sleeves fitted on individual tubes; these do not require to be secured in place because they will be held in situ by the realignment of the axes of the tubes 9 when they are twisted.
  • Refrigerant inlet and outlet manifolds 35 and 37 are provided by the space between the end plates 29a and the inner surface of the tubes 23.
  • a refrigerant transfer manifold is provided by the spaces between the interiors of the tubes 25 and the end plates 29b and a vertical tube 39.
  • refrigerant enters via an inlet pipe 43 into the inlet manifold 37, passes in flow parallel through the tubes 9 of the heat exchanger 3b and is then transferred to the heat exchanger 3a via the refrigerant transfer manifold 39 and exits the unit via the outlet manifold 35 and outlet pipe 41.
  • the water entering through the inlet Tee 5 flows in parallel into the spaces 11a and 11c in the heat exchangers 3a and 3c, passes along the lengths of these heat exchangers and is then returned to the outlet Tee 7 via the water transfer manifolds 21a and 21b, the spaces 11b and 11d lengths to the outlet Tee 7.
  • Mounting plates 51 and 53 are fitted to the heat exchange assemblies at each end to maintain the correct horizontal and vertical spacing of the individual heat exchangers 3. Straps 55 are applied to rigidify the assembly.
  • the unit may, if desired, be encased in heat insulating material such as expanded polyurethane foam moulded around it and the resulting assembly may then be adapted to environmental conditions for example by having an anti-vermin foil wrapped around it.
  • the above described heat exchangers may be used as either the evaporator or condenser heat exchanger of a heat pump, as well as for other heat exchange applications.
  • the inner end of the liquid refrigerant outlet tube 43 may be turned down to face the lower wall of the tube 23 to assist in collecting the condensed refrigerant or the outlet may be taken from the underside of the lower tube 23.
  • the heat exchange unit as shown is particularly well suited for use in the type of air/refrigerant - refrigerant/water types of heat pump in which two air to refrigerant heat exchangers are arranged in a "V" configuration on a bed; the heat exchange unit of the invention can readily be installed on the bed under the space between either limb of the "V" and the bed.
  • the capacity can be adjusted by varying the number of tubes 9 and the diameter of the pipes 11.
  • This modular construction provides for much flexibility in connecting the water and refrigerant circuits in series or parallel and combinations of these according to cooling or performance optimization goals, for example where it is desired to exceed the above capacity.
  • the water from one refrigerant circuit may be desirable to direct the water from one refrigerant circuit to the other after it passes through the first heat exchanger of each circuit. This assures that all the water is cooled to some extent even if one refrigerant circuit is shut down. Such circuiting prevents total by-pass of some unchilled water with the resultant deterioration of thermal performance. This option is not possible when using conventional shell and tube coolers in parallel with no means to cross-circuit the water flow within the exchanger.
  • the inlets and outlets for both media may be at the same end of the unit or opposite ends depending on the number of passes through the unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (12)

  1. Wärmetauscher, der als Kältemittelverdampfer-Flüssigkeits-zu-Kältemittel-Rohr-in-Rohr-Wärmetauscher aufgebaut ist, zur Benutzung in einem Wärmepumpen-Kälteerzeugungskreislauf, der ein äußeres Rohr (13) umfaßt, das eine längliche innere Kammer hat, durch die sich eine Vielzahl von Röhren (9) erstrecken, um einen Strömungsweg für das Kältemittel zu bilden, wobei die Röhren auf einem Paar von in Längsrichtung einen Abstand voneinander aufweisenden Endplatten (29a, 29b) montiert sind und sich durch diese erstrecken und wobei die Innenräume der Röhren (9) von dem Raum (11) innerhalb der Kammer, der die Röhren (9) umgibt, isoliert sind, welcher Raum einen Strömungsweg für die Flüssigkeit bildet, dadurch gekennzeichnet, daß die Röhren (9) zu einem wendelförmigen Bündel um einen Verdrehungswinkel gegenüber den Endplatten (29a, 29b) verdreht sind, der Verdrehungswinkel für jede Röhre der gleiche ist, die Endplatten (29a, 29b) in dem inneren Umfangsbereich des äußeren Rohrs angeordnet und dicht mit diesen verbunden sind, ein Paar von Übertragungsröhren (21a, 21b) zum Zuführen von Flüssigkeit zu dem Raum (11) und zum Aufnehmen von Flüssigkeit aus diesem vorgesehen sind, der Raum (11) innerhalb der Kammer die Röhren (9) umgibt, die Übertragungsrohre sich seitlich von dem äußeren Rohr (11) fort in den Raum (11) hinein erstrecken und Ausschnitte (31a, 31b, 33) in ihren Enden haben und die Ausschnitte (31a, 31b, 33) sich an die Röhren (9) in dem äußeren Umfangsbereich des wendelförmigen Bündels von Röhren (9) anpassen.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Röhren (9) Abstandshalter haben, die an deren äußeren Wandungen bei Intervallen längs der Längsausdehnung der Kammer befestigt sind.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das eine Ende der Kammer mit einem Verteilungsrohrstück (37) versehen ist, das einen Einlaß (43) für das Kältemittel und eine Vielzahl von Auslässen hat, die jeweils mit den Einlässen der Vielzahl von Röhren (9) in Verbindung stehen.
  4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß an dem anderen Ende der Kammer ein Sammelrohrstück (35) vorgesehen ist, das eine Vielzahl von Einlässen, die jeweils mit der Vielzahl von Röhren in Verbindung stehen, und einen gemeinsamen Auslaß (41) hat.
  5. Wärmetauscher nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, daß die Kammer (3) röhrenförmig ist und die Platten (29a, 29b) Scheiben sind, die dichtend gegen die Innenwandung der Kammer anliegen .
  6. Wärmetauscher-Einheit, die eine Vielzahl von Wärmetauschern nach einem der Ansprüche 1 bis 5 und betreffende Rohrverteiler zum Einfüllen des Kältemittels und von Flüssigkeit und zum Entnehmen derselben aus den betreffenden Strömungswegen hat.
  7. Einheit nach Anspruch 6, dadurch gekennzeichnet, daß eine Gruppe (3a, 3c) der Wärmetauscher besteht, die in einer Seite-an-Seite-Beziehung mit einem Verteilungsrohrstück (5) angeordnet sind, um die Flüssigkeit in einer Strömung parallel zu den betreffenden Flüssigkeits-Strömungswegen der Wärmetauscher der Gruppe zuzuführen.
  8. Einheit nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß eine Gruppe (3a, 3b) der Wärmetauscher in einer Seite-an-Seite-Beziehung mit einem Einlaß-Verteilungsrohrstück (37) an einem ersten Ende der Einheit zum verteilen des Kältemittels auf die betreffenden Kältemittel-Strömungswege, einem Übertragungsrohrstück (39) an dem anderen Ende der Einheit, das die Kältemittel-Strömungswege dieser zwei Wärmetauscher in einer Strömungsreihenschaltung miteinander verbindet, und einem Sammelrohrstück (35) an dem ersten Ende der Einheit zum Aufnehmen des Kältemittels aus dem Kältemittel-Strömungsweg des stromabwärtigen dieser zwei Wärmetauscher angeordnet sind.
  9. Einheit nach den Ansprüchen 7 u. 8, dadurch gekennzeichnet, daß die zwei Gruppen von Wärmetauschern in einer Seite-an-Seite-Beziehung mit den Flüssigkeits-Strömungswegen der zwei Gruppen in einer Strömungsreihenschaltung angeordnet sind, wobei Übertragungsrohre (21a, 21b) durch die Übertragungsröhren an dem anderen Ende der Einheit zum Zuführen der Flüssigkeit von den Flüssigkeits-Strömungswegen der Wärmetauscher der erstgenannten Gruppe zu den Flüssigkeits-Strömungswegen der Wärmetauscher der zweitgenannten Gruppe vorgesehen sind.
  10. Einheit nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Wämetauscher zusammengespannt sind.
  11. Einheit nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Wärmetauscher in einen Block aus wärme isolierendem Material eingebettet sind.
  12. Verfahren zum Herstellen eines Wärmetauscher nach einem der Ansprüche 1 bis 5, das umfaßt: das Bilden einer Untergruppe durch Anordnen der Röhren (9) in einer Seite-an-Seite-Beziehung mit Abständen zwischen diesen, Befestigen derselben an den Endplatten (29a, 29b), die betreffende und entsprechende Anordnungen von Öffnungen zum Aufnehmen der Enden der Röhren haben, Befestigen einer der Endplatten (29a, 29b) an dem äußeren Rohr (13), verdrehen der anderen Endplatte (29a, 29b) um die Achse des Röhrenbündels, um das Winkelversatz-Bauteil zu erzeugen, und dann Befestigen der anderen Endplatte (29a, 29b) an dem äußeren Rohr (13).
EP89304992A 1988-05-19 1989-05-17 Wärmetauscher Expired - Lifetime EP0342959B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89304992T ATE84873T1 (de) 1988-05-19 1989-05-17 Waermetauscher.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8811813 1988-05-19
GB888811813A GB8811813D0 (en) 1988-05-19 1988-05-19 Heat exchanger

Publications (2)

Publication Number Publication Date
EP0342959A1 EP0342959A1 (de) 1989-11-23
EP0342959B1 true EP0342959B1 (de) 1993-01-20

Family

ID=10637133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89304992A Expired - Lifetime EP0342959B1 (de) 1988-05-19 1989-05-17 Wärmetauscher

Country Status (7)

Country Link
US (1) US4989670A (de)
EP (1) EP0342959B1 (de)
AT (1) ATE84873T1 (de)
DE (1) DE68904469T2 (de)
GB (2) GB8811813D0 (de)
MX (1) MX170670B (de)
MY (1) MY104111A (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213156A (en) * 1989-12-27 1993-05-25 Elge Ab Heat exchanger and a method for its fabrication
ATE125033T1 (de) * 1989-12-27 1995-07-15 Elge Ab Wärmetauscher und verfahren zu dessen herstellung.
US5553662A (en) * 1993-12-10 1996-09-10 Store Heat & Producte Energy, Inc. Plumbed thermal energy storage system
US6059016A (en) * 1994-08-11 2000-05-09 Store Heat And Produce Energy, Inc. Thermal energy storage and delivery system
US6442105B1 (en) 1995-02-09 2002-08-27 Baker Hughes Incorporated Acoustic transmission system
DE19624937A1 (de) * 1996-06-22 1998-01-02 Dickgreber Johannes Wärmetauscher
US6938688B2 (en) * 2001-12-05 2005-09-06 Thomas & Betts International, Inc. Compact high efficiency clam shell heat exchanger
EP1498683A3 (de) * 2003-07-18 2007-03-07 Liebert Corporation Mehrfachdurchlaufwärmetauscher mit parallelen Rohren
CN1312454C (zh) * 2004-12-22 2007-04-25 天津天大胜远中央空调有限公司 一种管壳式换热器中传热管的排列方法
CN100362305C (zh) * 2005-07-01 2008-01-16 彭建华 回管换热器
ES2332619B1 (es) * 2006-06-15 2011-06-15 Hrs Spiratube, S.L. Intercambiador de calor de carcasa y tubos compacto.
US20100300653A1 (en) * 2007-08-15 2010-12-02 Bonner Michael R Modular shell and tube heat exchanger system
WO2009080839A1 (es) * 2007-12-20 2009-07-02 Hrs Spiratube, S.L. Intercambiador de calor de carcasa y tubos compacto
US8047164B2 (en) * 2008-06-12 2011-11-01 Aos Holding Company Removable heat exchanger for a gas fired water heater
US9605912B2 (en) * 2012-04-18 2017-03-28 Kennieth Neal Helical tube EGR cooler
DE202018102625U1 (de) * 2018-05-09 2019-08-14 Solarlux Gmbh Wärmetauscher

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US937344A (en) * 1906-12-21 1909-10-19 Bruce Walter Brine-cooler.
US1655086A (en) * 1926-03-26 1928-01-03 Robert L Blanding Heat exchanger
US1794692A (en) * 1928-06-14 1931-03-03 Mccord Radiator & Mfg Co Condenser
FR685287A (fr) * 1929-11-21 1930-07-08 échangeur de chaleur tubulaire
US2508247A (en) * 1945-09-25 1950-05-16 Research Corp Heat interchanger
US3048372A (en) * 1958-03-25 1962-08-07 Jr Robert P Newton Waste water heat reclaimer
US3171478A (en) * 1960-12-22 1965-03-02 John E Welks Heat exchanger
DE1303351B (de) * 1963-04-01 Hitachi Ltd
GB1163805A (en) * 1967-06-20 1969-09-10 Richmond Engineering Company I Water Heating Apparatus
LU56329A1 (de) * 1968-06-25 1968-11-25
US3605872A (en) * 1968-08-15 1971-09-20 Wiegand Apparatebau Gmbh Method of causing a liquid to flow in a stream of annular cross section
US4323114A (en) * 1979-03-26 1982-04-06 Fansteel Inc. Cluster heat exchanger
DE2966828D1 (en) * 1979-07-11 1984-04-26 Du Pont Apparatus with expandable tube bundle
IT1144497B (it) * 1981-06-12 1986-10-29 Mc Quay Europa Spa Evaportatore ad espansione diretta facilmente pulibile in particolare per refrigerazione d'acqua
AU7807487A (en) * 1986-08-21 1988-03-08 Emil Bader Countercurrent heat-exchanger with helical bank of tubes
DE3640970A1 (de) * 1986-11-29 1988-06-09 Gutehoffnungshuette Man Rohrbuendelwaermetauscher

Also Published As

Publication number Publication date
GB2218796A (en) 1989-11-22
MX170670B (es) 1993-09-06
GB8911301D0 (en) 1989-07-05
DE68904469T2 (de) 1993-07-15
GB8811813D0 (en) 1988-06-22
ATE84873T1 (de) 1993-02-15
EP0342959A1 (de) 1989-11-23
US4989670A (en) 1991-02-05
GB2218796B (en) 1992-08-12
MY104111A (en) 1993-12-31
DE68904469D1 (de) 1993-03-04

Similar Documents

Publication Publication Date Title
EP0342959B1 (de) Wärmetauscher
US6089313A (en) Apparatus for exchanging heat between at least three fluids
US4479533A (en) Tertiary heat exchanger
US5590707A (en) Heat exchanger
EP1723375B1 (de) Verfahren zum Aufwärmen von Frischwasser
EP2241849B1 (de) Mikrokanalwärmetauscher nach Rohr-Rippen-Block Bauart mit besonderer Führung des Rücklaufrohres
US6286590B1 (en) Heat exchanger with flat tubes of two columns
GB2250336A (en) Heat exchanger
EP1971815B1 (de) Spiralförmig gewickelter, geschichteter rohrwärmetauscher
CN100538244C (zh) 多路径平行管热交换器
KR19990067881A (ko) 액체 냉각식 2상 열교환기
CA2281183A1 (en) Cooling coil for a thermal storage tower
US4483392A (en) Air to air heat exchanger
US4588026A (en) Coiled heat exchanger
EP0957327B1 (de) Wärmetauscher-Rohrschlange
US5095972A (en) Heat exchanger
JP2000055574A (ja) 熱交換装置
JPH0571884A (ja) コア深さの小さい熱交換器
EP0628779A2 (de) Wärmetauscher
EP0797067A1 (de) Verteilvorrichtung zum gleichmässigen Verteilen des Mediums in einer Vielzahl von Wärmetauscherrohren
CA1137324A (en) Heat exchanger capillary tube arrangement
EP0874209A1 (de) Wärmetauscher zur Warmwasserbereitung und Verfahren zu dessen Herstellung
WO1999067584A1 (en) Heat exchanger tracking
KR102196959B1 (ko) 열교환기
JP4328411B2 (ja) 熱交換器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GR IT NL

17P Request for examination filed

Effective date: 19891206

17Q First examination report despatched

Effective date: 19900117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930120

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930120

Ref country code: AT

Effective date: 19930120

Ref country code: BE

Effective date: 19930120

Ref country code: NL

Effective date: 19930120

REF Corresponds to:

Ref document number: 84873

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68904469

Country of ref document: DE

Date of ref document: 19930304

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000510

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020128

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203