EP0338874B1 - Explosive projectile producing explosions in a definite pattern - Google Patents

Explosive projectile producing explosions in a definite pattern Download PDF

Info

Publication number
EP0338874B1
EP0338874B1 EP89400806A EP89400806A EP0338874B1 EP 0338874 B1 EP0338874 B1 EP 0338874B1 EP 89400806 A EP89400806 A EP 89400806A EP 89400806 A EP89400806 A EP 89400806A EP 0338874 B1 EP0338874 B1 EP 0338874B1
Authority
EP
European Patent Office
Prior art keywords
projectile
payload
sections
casing
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400806A
Other languages
German (de)
French (fr)
Other versions
EP0338874A1 (en
Inventor
Yannick Olichon
Régis Riffet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giat Industries SA
Original Assignee
Giat Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA filed Critical Giat Industries SA
Priority to AT89400806T priority Critical patent/ATE100189T1/en
Publication of EP0338874A1 publication Critical patent/EP0338874A1/en
Application granted granted Critical
Publication of EP0338874B1 publication Critical patent/EP0338874B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/201Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by target class
    • F42B12/204Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by target class for attacking structures, e.g. specific buildings or fortifications, ships or vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/208Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by a plurality of charges within a single high explosive warhead

Definitions

  • the technical sector of the present invention is that of explosive projectiles comprising a fragmentation envelope and an explosive charge, generating splinters during the explosion.
  • US-A-3498224 describes a military head in which a number of rows of metal cubes constituting preformed shards are arranged between the explosive and the envelope. Such an arrangement makes it possible to obtain a widening of the sheaf of splinters but it is necessary for this to vary the thickness of metal along the axis of the military head therefore to design a complete projectile (envelope and loading) with special geometric characteristics.
  • Patent FR-A-2599134 describes a military head intended to destroy a warhead penetrating at high speed into the atmosphere and which can generate, as desired, two different types of splinter distribution from two thicknesses of explosive separated by a space free. This charge does not aim to communicate significant kinetic energy to the fragments but rather to position almost immobile fragments on the trajectory of the target warhead. This document illustrates the preamble of claim 1.
  • the object of the present invention is therefore to propose a projectile generating a spray of splinters covering an area greater than that covered by known projectiles, which has the consequence of giving it greater efficiency.
  • the invention also provides a projectile generating a focused burst of shrapnel.
  • the subject of the invention is therefore a projectile generating a burst of splinters by controlled operation on a trajectory during a tense shot, comprising an explosive charge contained in a metal envelope and comprising means for varying along its longitudinal axis x'x the ratio R of the radial thicknesses (e) of the explosive charge and (E) of the metallic envelope containing said charge, so as to modulate along the longitudinal axis the speed of the fragments, projectile characterized in that the variation of the ratio R is obtained by modulating the radial thickness (e) of the explosive charge, an explosive free space being filled with an inert shock wave damping material.
  • the ratio R can be increasing from upstream to downstream, discontinuously according to several radial loading thicknesses or continuously to ensure dispersion of the chips.
  • the load may comprise a first slice of thickness equal to the internal diameter of the envelope, four tubular slices of increasing radial thickness towards the base, a free space being provided within these slices, and a solid slice disposed at the level of the base, of thickness equal to the internal diameter of the envelope.
  • the load may consist of a first section of diameter equal to the internal diameter of the envelope and of four full sections of increasing thickness towards the base, a free space being provided between the metal casing and these four sections.
  • the ratio R can be decreasing from upstream to downstream, discontinuously according to several radial loading thicknesses or continuous to ensure focusing of the fragments.
  • the load can comprise a first section of diameter equal to the internal diameter of the envelope, and four tubular sections of decreasing radial thickness towards the base, a free space being provided within these sections.
  • the load can comprise a first section of diameter equal to the internal diameter of the envelope, and four solid sections of decreasing thickness towards the base, a free space being provided between the metal casing and these four sections.
  • An inert shock-absorbing material can be interposed in the free space within the tubular sections.
  • An inert shock wave absorbing material can be interposed in the free space between the envelope and the full wafers.
  • Loading can be achieved by stacking tablets.
  • An advantage of the present invention lies in the implementation of simple means for varying the speed of the fragments relative to the projectile, and it is surprisingly found that a small variation in this speed causes a variation in the resulting speed of the fragments relative to on the ground and therefore a great dispersion of the sheaf.
  • FIG. 1 shows the combination of the static velocity vectors measured when the projectile is stopped in order to illustrate the zones of effectiveness of the fragments.
  • the minimum speeds of the flakes V m , the maximum speeds of the flakes V M are measured for a known projectile of 35 mm caliber and these same speeds V ′ m and V ′ M for a projectile according to the invention of the same caliber.
  • the speeds V M and V m of the fragments are communicated by the detonation of the explosive and are measured in a reference frame linked to the projectile.
  • the speed V R of the projectile is identical in both cases since it is the flight speed of the latter and it is measured relative to the ground.
  • the combination of the burst speed vectors with the flight speed delimits an area of efficiency on the ground.
  • the combination of the velocity vectors V R and V M or V ′ M gives a resulting vector whose intersection with the ground gives the point A.
  • the combination of the vectors V R and V m gives a resulting vector whose intersection with the ground gives the point B.
  • the points A and B then delimit the zone P1 of effectiveness of the known projectile whose width is of the order of 3 m for a projectile initiated at 10 meters from the ground.
  • the combination of the vectors V R and V ′ m gives a resulting vector whose intersection with the ground gives the point C.
  • the points A and C then delimit the zone P2 of effectiveness of the projectile according to the invention which is of the order of 5 m. It can be seen that the invention makes it possible to enlarge the zone of effectiveness of the projectile.
  • the vectors representing the speed of the bursts relative to the projectile are not normal to the lateral surface of the latter, but are inclined in the direction of propagation of the detonation wave inside the explosive charge .
  • FIG 2 there is shown a partial section of a projectile of axis X′X where we see the explosive 1 thick (e) and the metal casing 2 thick (E).
  • the thickness of the explosive will more generally be defined as being the half-difference of the external and internal diameters (when the latter exists) of the section of explosive considered. In Figure 2, it is a full slice.
  • Vx F (NatExpl, Dexpl, Denv, x, R) It is also known that the speed Vx will vary like the ratio R, so that a low value of this ratio will cause a reduced speed and vice versa.
  • the ratio R is varied.
  • the invention proposes to modulate the speeds of the flakes along the longitudinal axis of the projectile by playing on the values of the ratio R along this same axis.
  • the characteristics desired for the projectile efficiency, therefore width of area covered by the fragments at a given operating height
  • it will be possible to define a minimum speed of the fragments (the maximum speed being that corresponding to the maximum loading of the 'envelope).
  • Figure 1 showed the burst velocity vectors with a common origin located at the point of operation. In reality, for a given section of the projectile, the speed vectors have their origin at the level of said section.
  • FIGS. 3 and 4 show more precisely the distribution of the speed vectors along the envelope of the projectile, always in the case of a priming by warhead rocket (vectors inclined downstream of the projectile).
  • FIG. 3 represents a projectile in which the burst velocities have an increasing value from upstream to downstream (projectile according to the variant embodiments of FIGS. 5 and 6), this value being able to increase continuously or else in stages.
  • the result is a scattering of the chips.
  • FIG. 4 represents a projectile in which the burst velocities have a decreasing value from upstream to downstream (projectile according to the variant embodiments of FIGS. 7 and 8).
  • a projectile 3 which can be a medium caliber shell, of longitudinal axis x′x. It includes a head rocket 4 and a metal casing 2 made of steel.
  • the envelope contains the explosive charge 1 consisting of six 5-10 sections of explosive.
  • the envelope 1 can be weakened beforehand according to the method taught in the French patent cited above.
  • the maximum thickness of the load corresponds to the case of full load.
  • the minimum thickness is conditioned either by the calculation of the effectiveness of the projectile, or by the value of the critical thickness of the explosive allowing the transmission of the shock wave.
  • the ratio R is modulated continuously or discontinuously. In the invention, examples have been described for illustrative purposes in which the ratio R is discontinuous.
  • the wafer 5 has a thickness equal to the internal diameter of the envelope 1 and the other four wafers 6 to 9 are in the form of tubular elements of increasing thickness towards the base of the projectile. The heights of these different sections are determined so as to obtain a uniform distribution over the area to be covered.
  • a solid wafer 10 is placed at the level of the projectile base.
  • the number and the height of the sections is a function of the progressiveness which one wishes to adopt between the speeds V m and V M.
  • the ratio R of the thickness of the load 1 and of the casing 2 is varied increasing along the axis x′x towards the base.
  • the speed of the flakes generated at each slice is therefore increasing in the same direction, which makes it possible to distribute the flakes more widely over the upstream and downstream zones mentioned above.
  • a module 11 is placed in inert material, both in terms of detonation and that of fragmentation. Its density is equivalent to that of the explosive.
  • a pulverulent or compressed material similar to the ballast used in exercise shells is used.
  • FIG 5 there is shown a load 1 consisting of a cast block; one could use a load consisting of a stack of tablets corresponding to sections 5-10. These can be obtained by compression.
  • a 35 mm explosive projectile according to the state of the art comprising a prefragmented envelope, for example by electronic bombardment, (see French patent cited above), is initiated at a distance from the ground of the order of 10 meters while being animated with a speed of the order of 910 m / s.
  • the fragments are then distributed in a global zone, along the axis of fire, of the order of 3.20 meters.
  • the average density of flakes, along the axis of fire, is then substantially 5.41.
  • FIG. 6 there is shown an alternative embodiment of the load 1.
  • This load 1 consists of five sections of explosive 12-16.
  • the thickness of these slices which are in the form of solid elements aligned on the axis x′x, increases towards the pellet.
  • a damping material 17 is placed between the casing 2 and the charge 1.
  • the role of this material is to absorb part of the energy of the explosive, which makes it possible to obtain a reduced burst speed with a greater thickness of explosive.
  • This solution makes it possible to use the invention in the case of an explosive with a large critical thickness for the transmission of the detonation or when it is impossible to achieve a charge of small thickness. A dispersion of the same order as that of the projectile according to FIG. 5 is ensured.
  • the load 1 comprises five sections 18-22 all being in the form of cylindrical elements, stacked on the axis x′x. Section 18 is full while sections 19-22 are annular. An inert material 23 is placed in the free space within the sections and its role is to dampen the transmission of the shock wave as it passes. This damping increases with the thickness of the material 23 when one goes towards the base. In this embodiment, the variation of the ratio R results in focusing of the flakes.
  • FIG. 8 another alternative embodiment is shown showing five sections of explosive.
  • the section 24 is identical to the section 18 of the previous embodiment, while the sections 25-28 are formed by solid cylindrical elements aligned on the axis x′x.
  • a material 29 can be provided in the form of a single piece as shown on the left part of the figure when using a single piece load.
  • We can also proceed by superimposing tablets rimmed with inert materials as shown in the right part of the figure.
  • a focusing of the fragments is obtained.
  • the number and the height of each section is a function of the progressiveness which it is desired to adopt between the speeds V m and V M.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Nozzles (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The subject of the invention is a projectile generating a cluster of splinters by controlled operation on its trajectory during flat-trajectory firing. It comprises an explosive charge (1) contained in a metal casing (2), and means for varying along its longitudinal axis x'x the ratio R of the radial thicknesses (e) of the explosive charge (1) and (E) of the metal casing (2) containing said charge, so as to modulate the velocity of the splinters along the longitudinal axis. The variation of the ratio R is obtained by modulating the radial thickness (e) of the explosive charge (1). The ratio R increases from upstream in the downstream direction discontinuously according to a plurality of radial charge thicknesses or continuously in order to ensure a dispersal of the splinters. The charge comprises a first section (5) of a thickness equal to the inside diameter of the casing (2), four tubular sections (6-9) of a radial thickness increasing towards the base, a free space being formed within these sections (6-9), in which is interposed a module (11) made of a shock-wave damping material, and a section (10) arranged in the region of the base and of a thickness equal to the inside diameter of the casing (2). The invention is used for military equipment. <IMAGE>

Description

Le secteur technique de la présente invention est celui des projectiles explosifs comportant une enveloppe à fragmentation et un chargement explosif, engendrant des éclats lors de l'explosion.The technical sector of the present invention is that of explosive projectiles comprising a fragmentation envelope and an explosive charge, generating splinters during the explosion.

Ce type de projectile est bien connu de l'homme de l'art et à titre d'exemple on citera le brevet FR-A-2 438 686. Dans tous les projectiles connus, on vise toujours à améliorer la fragmentation de l'enveloppe métallique, le chargement explosif occupant l'espace interne de l'enveloppe. On obtient une zone de répartition des éclats dont l'étendue sur le sol dépend du mode de tir et du calibre. Il s'ensuit que le balayage d'une zone de terrain déterminée avec des projectiles de 30 à 40 mm de calibre nécessite l'utilisation d'un grand nombre de ces projectiles.This type of projectile is well known to those skilled in the art and by way of example the patent FR-A-2 438 686. In all known projectiles, the aim is always to improve the fragmentation of the envelope metallic, the explosive charge occupying the internal space of the envelope. A distribution area of the fragments is obtained, the extent of which on the ground depends on the firing mode and the caliber. It follows that the scanning of a determined area of land with 30 to 40 mm caliber projectiles requires the use of a large number of these projectiles.

Lorsqu'on examine l'intersection avec le sol de la gerbe d'éclats d'un projectile, après fonctionnement fusant lors d'un tir tendu et que l'on traduit cette intersection en terme d'efficacité, on peut définir trois zones :

  • une zone centrale où la probabilité de mise hors de combat (Pk), la probabilité d'atteinte (Ph) et la densité d'éclats (De) sont élevées,
  • une zone amont où De est faible ; l'efficacité est donc faible,
  • une zone aval où Pk, Ph et De sont réduits ; l'efficacité est moyenne.
When we examine the intersection with the ground of the shrapnel of fragments of a projectile, after fusing operation during a tense shot and that we translate this intersection in terms of efficiency, we can define three zones:
  • a central area where the probability of being put out of action (Pk), the probability of being hit (Ph) and the density of fragments (De) are high,
  • an upstream area where De is weak; the efficiency is therefore low,
  • a downstream zone where Pk, Ph and De are reduced; the efficiency is average.

Dans la zone centrale, Pk est élevé car les vitesses des éclats sont très élevées voire excédentaires par rapport à un objectif anti-personnel. De même, Ph n'est pas optimisé en raison de la valeur excessive de De, car plusieurs éclats peuvent atteindre la même cible.In the central area, Pk is high because the burst speeds are very high or even excess compared to an anti-personnel objective. Likewise, Ph is not optimized due to the excessive value of De, since several flakes can reach the same target.

Pour augmenter l'efficacité d'un tel projectile, diverses solutions techniques sont envisageables :

  • augmenter les vitesses d'éclats ; mais on est limité par l'énergie des explosifs,
  • élargir la zone aval en aval ; cette solution est peu intéressante, car on augmente la distance parcourue par les éclats ; on diminue donc leur vitesse et par conséquent Pk.
To increase the effectiveness of such a projectile, various technical solutions are possible:
  • increase the burst speed; but we are limited by the energy of the explosives,
  • expand the downstream downstream area; this solution is of little interest, since the distance traveled by the flakes is increased; their speed is therefore reduced and therefore Pk.

Le brevet US-A-3498224 décrit une tête militaire dans laquelle un certain nombre de rangées de cubes métalliques constituant des éclats préformés sont disposées entre l'explosif et l'enveloppe. Un tel aménagement permet d'obtenir un élargissement de la gerbe d'éclats mais il est nécessaire pour cela de faire varier l'épaisseur de metal le long de l'axe de la tête militaire donc de concevoir un projectile complet (enveloppe et chargement) avec des caractéristiques géométriques particulières.US-A-3498224 describes a military head in which a number of rows of metal cubes constituting preformed shards are arranged between the explosive and the envelope. Such an arrangement makes it possible to obtain a widening of the sheaf of splinters but it is necessary for this to vary the thickness of metal along the axis of the military head therefore to design a complete projectile (envelope and loading) with special geometric characteristics.

Le brevet FR-A-2599134 décrit une tête militaire destinée à détruire une ogive pénétrant à grande vitesse dans l'atmosphère et qui peut engendrer au choix deux types de répartition d'éclats différents à partir de deux épaisseurs d'explosif séparées par un espace libre. Cette charge ne vise pas à communiquer aux éclats une énergie cinétique importante mais plutôt à positionner des éclats quasi immobiles sur la trajectoire de l'ogive cible. Ce document illustre le préambule de la revendication 1.Patent FR-A-2599134 describes a military head intended to destroy a warhead penetrating at high speed into the atmosphere and which can generate, as desired, two different types of splinter distribution from two thicknesses of explosive separated by a space free. This charge does not aim to communicate significant kinetic energy to the fragments but rather to position almost immobile fragments on the trajectory of the target warhead. This document illustrates the preamble of claim 1.

Le but de la présente invention est donc de proposer un projectile engendrant une gerbe d'éclats couvrant une zone supérieure à celle couverte par les projectiles connus, ce qui a pour conséquence de lui conférer une efficacité supérieure. L'invention propose également un projectile engendrant une gerbe d'éclats focalisée.The object of the present invention is therefore to propose a projectile generating a spray of splinters covering an area greater than that covered by known projectiles, which has the consequence of giving it greater efficiency. The invention also provides a projectile generating a focused burst of shrapnel.

L'invention a donc pour objet un projectile engendrant une gerbe d'éclats par fonctionnement commandé sur trajectoire lors d'un tir tendu, comprenant un chargement explosif contenu dans une enveloppe métallique et comprennant des moyens pour faire varier suivant son axe longitudinal x'x le rapport R des épaisseurs radiale (e) du chargement explosif et (E) de l'enveloppe métallique renfermant ledit chargement, de façon à moduler le long de l'axe longitudinal la vitesse des éclats, projectile caractérisé en ce que la variation du rapport R est obtenue par modulation de l'épaisseur radiale (e) du chargement explosif, un espace libre d'explosif étant rempli par un matériau inerte amortisseur d'onde de choc.The subject of the invention is therefore a projectile generating a burst of splinters by controlled operation on a trajectory during a tense shot, comprising an explosive charge contained in a metal envelope and comprising means for varying along its longitudinal axis x'x the ratio R of the radial thicknesses (e) of the explosive charge and (E) of the metallic envelope containing said charge, so as to modulate along the longitudinal axis the speed of the fragments, projectile characterized in that the variation of the ratio R is obtained by modulating the radial thickness (e) of the explosive charge, an explosive free space being filled with an inert shock wave damping material.

Le rapport R peut être croissant d'amont en aval, de manière discontinue suivant plusieurs épaisseurs radiales de chargement ou continue pour assurer une dispersion des éclats.The ratio R can be increasing from upstream to downstream, discontinuously according to several radial loading thicknesses or continuously to ensure dispersion of the chips.

Le chargement peut comporter une première tranche d'épaisseur égale au diamètre interne de l'enveloppe, quatre tranches tubulaires d'épaisseur radiale croissante vers le culot, un espace libre étant ménagé au sein de ces tranches, et une tranche pleine disposée au niveau du culot, d'épaisseur égale au diamètre interne de l'enveloppe.The load may comprise a first slice of thickness equal to the internal diameter of the envelope, four tubular slices of increasing radial thickness towards the base, a free space being provided within these slices, and a solid slice disposed at the level of the base, of thickness equal to the internal diameter of the envelope.

Le chargement peut être constitué d'une première tranche de diamètre égal au diamètre interne de l'enveloppe et de quatre tranches pleines d'épaisseur croissante vers le culot, un espace libre étant ménagé entre l'enveloppe métallique et ces quatre tranches.The load may consist of a first section of diameter equal to the internal diameter of the envelope and of four full sections of increasing thickness towards the base, a free space being provided between the metal casing and these four sections.

Le rapport R peut être décroissant d'amont en aval, de manière discontinue suivant plusieurs épaisseurs radiales de chargement ou continue pour assurer une focalisation des éclats.The ratio R can be decreasing from upstream to downstream, discontinuously according to several radial loading thicknesses or continuous to ensure focusing of the fragments.

Le chargement peut comporter une première tranche de diamètre égal au diamètre interne de l'enveloppe, et quatre tranches tubulaires d'épaisseur radiale décroissante vers le culot, un espace libre étant ménagé au sein de ces tranches.The load can comprise a first section of diameter equal to the internal diameter of the envelope, and four tubular sections of decreasing radial thickness towards the base, a free space being provided within these sections.

Le chargement peut comporter une première tranche de diamètre égal au diamètre interne de l'enveloppe, et quatre tranches pleines d'épaisseur décroissante vers le culot, un espace libre étant ménagé entre l'enveloppe métallique et ces quatre tranches.The load can comprise a first section of diameter equal to the internal diameter of the envelope, and four solid sections of decreasing thickness towards the base, a free space being provided between the metal casing and these four sections.

Un matériau inerte amortisseur d'onde de choc peut être interposé dans l'espace libre au sein des tranches tubulaires.An inert shock-absorbing material can be interposed in the free space within the tubular sections.

Un matériau inerte amortisseur d'onde de choc peut être interposé dans l'espace libre entre l'enveloppe et les tranches pleines.An inert shock wave absorbing material can be interposed in the free space between the envelope and the full wafers.

Le chargement peut être réalisé par empilage de comprimés.Loading can be achieved by stacking tablets.

Un avantage de la présente invention réside dans la mise en oeuvre de moyens simples pour faire varier la vitesse des éclats relativement au projectile, et on constate avec surprise qu'une faible variation de cette vitesse entraîne une variation de la vitesse résultante des éclats par rapport au sol et donc une grande dispersion de la gerbe.An advantage of the present invention lies in the implementation of simple means for varying the speed of the fragments relative to the projectile, and it is surprisingly found that a small variation in this speed causes a variation in the resulting speed of the fragments relative to on the ground and therefore a great dispersion of the sheaf.

On peut éventuellement obtenir une focalisation de la gerbe, tout en conservant un amorçage unique du chargement.One can possibly obtain a focusing of the spray, while preserving a unique priming of the load.

D'autres avantages de l'invention apparaîtront à la lumière du complément de description donné ci-après à titre indicatif en relation avec un dessin sur lequel :

  • la figure 1 illustre schématiquement la zone de répartition des éclats d'une gerbe,
  • la figure 2 représente une section partielle d'un projectile,
  • les figures 3 et 4 représentent des projectiles dans lesquels les vitesses d'éclats sont respectivement croissantes ou décroissantes d'amont en aval,
  • les figures 5 et 6 représentent une coupe d'un projectile selon deux modes de réalisation,
  • les figures 7 et 8 représentent une coupe d'un projectile selon deux autres modes de réalisation du projectile.
Other advantages of the invention will appear in the light of the additional description given below for information only in relation to a drawing in which:
  • FIG. 1 schematically illustrates the area of distribution of the fragments of a sheaf,
  • FIG. 2 represents a partial section of a projectile,
  • FIGS. 3 and 4 represent projectiles in which the burst velocities are respectively increasing or decreasing from upstream to downstream,
  • Figures 5 and 6 show a section of a projectile according to two embodiments,
  • Figures 7 and 8 show a section of a projectile according to two other embodiments of the projectile.

On a représenté sur la figure 1 la combinaison des vecteurs vitesses statiques mesurées lorsque le projectile est à l'arrêt afin d'illustrer les zones d'efficacité des éclats. On mesure les vitesses minimum des éclats Vm, les vitesses maximum des éclats VM pour un projectile connu de 35 mm de calibre et ces mêmes vitesses V′m et V′M pour un projectile selon l'invention de même calibre. Les vitesses VM et Vm des éclats sont communiquées par la détonation de l'explosif et sont mesurées dans un repère lié au projectile. La vitesse VR du projectile est dans les deux cas identique puisqu'il s'agit de la vitesse de vol de celui-ci et elle est mesurée par rapport au sol.FIG. 1 shows the combination of the static velocity vectors measured when the projectile is stopped in order to illustrate the zones of effectiveness of the fragments. The minimum speeds of the flakes V m , the maximum speeds of the flakes V M are measured for a known projectile of 35 mm caliber and these same speeds V ′ m and V ′ M for a projectile according to the invention of the same caliber. The speeds V M and V m of the fragments are communicated by the detonation of the explosive and are measured in a reference frame linked to the projectile. The speed V R of the projectile is identical in both cases since it is the flight speed of the latter and it is measured relative to the ground.

On obtient les résultats suivants : PROJECTILE CONNU PROJECTILE SELON L'INVENTION VR = 1000 m/s VR = 1000 m/s VM = 1700 m/s V′M = 1700 m/s Vm = 1000 m/s V′m = 700 m/s The following results are obtained: KNOWN PROJECTILE PROJECTILE ACCORDING TO THE INVENTION V R = 1000 m / s V R = 1000 m / s V M = 1700 m / s V ′ M = 1700 m / s V m = 1000 m / s V ′ m = 700 m / s

La combinaison des vecteurs vitesse des éclats avec la vitesse de vol délimite sur le sol une zone d'efficacité. On voit que la combinaison des vecteurs vitesses VR et VM ou V′M donne un vecteur résultant dont l'intersection avec le sol donne le point A. La combinaison des vecteurs VR et Vm donne un vecteur résultant dont l'intersection avec le sol donne le point B. Les points A et B délimitent alors la zone P1 d'efficacité du projectile connu dont la largeur est de l'ordre de 3 m pour un projectile initié à 10 mètres du sol. La combinaison des vecteurs VR et V′m donne un vecteur résultant dont l'intersection avec le sol donne le point C. Les points A et C délimitent alors la zone P2 d'efficacité du projectile selon l'invention qui est de l'ordre de 5 m. On voit que l'invention permet d'alargir la zone d'efficacité du projectile.The combination of the burst speed vectors with the flight speed delimits an area of efficiency on the ground. We see that the combination of the velocity vectors V R and V M or V ′ M gives a resulting vector whose intersection with the ground gives the point A. The combination of the vectors V R and V m gives a resulting vector whose intersection with the ground gives the point B. The points A and B then delimit the zone P1 of effectiveness of the known projectile whose width is of the order of 3 m for a projectile initiated at 10 meters from the ground. The combination of the vectors V R and V ′ m gives a resulting vector whose intersection with the ground gives the point C. The points A and C then delimit the zone P2 of effectiveness of the projectile according to the invention which is of the order of 5 m. It can be seen that the invention makes it possible to enlarge the zone of effectiveness of the projectile.

Un effet inverse pourrait être obtenu en utilisant les mêmes moyens selon l'invention pour obtenir une focalisation des éclats. Il suffit de moduler la vitesse minimale Vm des éclats. On peut également prévoir une focalisation en deux ou plusieurs zones étroites en prévoyant deux ou plusieurs vitesses minimale d'éclats.An opposite effect could be obtained by using the same means according to the invention for obtaining a focusing of the fragments. It suffices to modulate the minimum speed V m of the flakes. It is also possible to provide focusing in two or more narrow zones by providing two or more minimum burst speeds.

D'une façon générale, les vecteurs représentant la vitesse des éclats relativement au projectile ne sont pas normaux à la surface latérale de celui-ci, mais sont inclinés dans la direction de propagation de l'onde de détonation à l'intérieur du chargement explosif.In general, the vectors representing the speed of the bursts relative to the projectile are not normal to the lateral surface of the latter, but are inclined in the direction of propagation of the detonation wave inside the explosive charge .

De plus, il existe pour un projectile donné une vitesse maximale et une vitesse minimale des éclats, cette différence de vitesse étant due à la fois à la géométrie du projectile et à la distance entre l'amorçage du chargement explosif et la tranche considérée de l'enveloppe du projectile. L'angle entre les vitesses maximale et minimale et la normale à l'enveloppe du projectile est un des facteurs qui détermine l'ouverture de la gerbe d'eclats et est de l'ordre de 3 à 10° pour un projectile de moyen calibre.In addition, there exists for a given projectile a maximum speed and a minimum speed of the fragments, this difference in speed being due both to the geometry of the projectile and to the distance between the initiation of the explosive charge and the considered section of the shell of the projectile. The angle between the maximum and minimum velocities and the normal to the projectile envelope is one of the factors which determines the opening of the sheaf of shrapnel and is of the order of 3 to 10 ° for a medium caliber projectile. .

Sur la figure 1, afin d'illustrer les zones d'efficacité des éclats, on a représenté la combinaison de ces vecteurs vitesse dans le cas d'un amorçage par fusée d'ogive (vecteurs inclinés vers l'aval du projectile). Dans un but de simplification, tous les vecteurs vitesse sont représentés avec une origine commune qui correspond au point théorique appelé point de fonctionnement du projectile explosif et on n'a représenté que les directions d'éclats orientées vers le sol. En réalité, il y a un ensemble de vecteurs vitesse qui présente une symétrie de révolution autour de l'axe du projectile (si l'amorçacge de la charge explosive est symétrique).In FIG. 1, in order to illustrate the zones of effectiveness of the splinters, the combination of these speed vectors has been shown in the case of an initiation by a warhead rocket (vectors inclined downstream of the projectile). For the sake of simplification, all the speed vectors are represented with a common origin which corresponds to the theoretical point called the operating point of the explosive projectile and only the directions of flakes oriented towards the ground have been represented. In reality, there is a set of velocity vectors which presents a symmetry of revolution around the axis of the projectile (if the initiation of the explosive charge is symmetrical).

Sur la figure 2, on a représenté une coupe partielle d'un projectile d'axe X′X où l'on voit l'explosif 1 d'épaisseur (e) et l'enveloppe métallique 2 d'épaisseur (E). On définira plus généralement l'épaisseur d'explosif comme étant la demi-différence des diamètres externe et interne (lorsque ce dernier existe) de la tranche d'explosif considérée. Sur la figure 2, il s'agit d'une tranche pleine. Il est bien connu que la vitesse Vx des éclats au niveau d'une tranche de l'enveloppe d'un projectile explosif donné, est une fonction de la nature de l'explosif (NatExpl), de la densité de celui-ci (Dexpl), de la densité de l'enveloppe (Denv), de la distance de la tranche d'enveloppe considérée à l'amorçage de l'explosif (x), et du rapport des épaisseurs e et E (R = e/E).In Figure 2, there is shown a partial section of a projectile of axis X′X where we see the explosive 1 thick (e) and the metal casing 2 thick (E). The thickness of the explosive will more generally be defined as being the half-difference of the external and internal diameters (when the latter exists) of the section of explosive considered. In Figure 2, it is a full slice. It is well known that the speed Vx of the fragments at the level of a section of the envelope of a given explosive projectile is a function of the nature of the explosive (NatExpl), of the density thereof (Dexpl ), the density of the envelope (Denv), the distance from the envelope edge considered at the initiation of the explosive (x), and the ratio of the thicknesses e and E (R = e / E) .

On écrira :

Vx = F (NatExpl, Dexpl, Denv, x, R)

Figure imgb0001


   Il est connu également que la vitesse Vx va varier comme le rapport R, donc qu'une faible valeur de ce rapport va entraîner une vitesse réduite et inversement.We will write:

Vx = F (NatExpl, Dexpl, Denv, x, R)
Figure imgb0001


It is also known that the speed Vx will vary like the ratio R, so that a low value of this ratio will cause a reduced speed and vice versa.

La balistique de la munition étant fixée, il devient très difficile de faire varier l'enveloppe métallique elle-même et la masse du projectile. D'autre part, la répartition de la matière, exprimée par les moments d'inertie et la position du centre de gravité, conditionne la stabilité du projectile. Il en résulte qu'il est délicat de faire varier simultanément les trois facteurs précédents. Selon donc l'invention, on fait varier le rapport R.The ballistics of the ammunition being fixed, it becomes very difficult to vary the metal casing itself and the mass of the projectile. On the other hand, the distribution of matter, expressed by the moments of inertia and the position of the center of gravity, conditions the stability of the projectile. As a result, it is difficult to vary the three preceding factors simultaneously. Therefore, according to the invention, the ratio R is varied.

Ainsi, l'invention propose de moduler les vitesses des éclats le long de l'axe longitudinal du projectile en jouant sur les valeurs du rapport R le long de ce même axe. En fonction des caractéristiques souhaitées pour le projectile (efficacité, donc largeur de zone couverte par les éclats à une hauteur de fonctionnement donnée), il va être possible de définir une vitesse minimale des éclats (la vitesse maximale étant celle correspondant au chargement maximal de l'enveloppe).Thus, the invention proposes to modulate the speeds of the flakes along the longitudinal axis of the projectile by playing on the values of the ratio R along this same axis. Depending on the characteristics desired for the projectile (efficiency, therefore width of area covered by the fragments at a given operating height), it will be possible to define a minimum speed of the fragments (the maximum speed being that corresponding to the maximum loading of the 'envelope).

A ces vitesses minimale et maximale correspondront des valeurs minimale et maximale du rapport R. On fera varier de façon continue ou discontinue le rapport R entre ces deux valeurs extrêmes, cela en fonction de la progressivité souhaitée pour la variation des vitesses d'éclats le long de l'axe du projectile, c'est-à-dire en fonction de l'homogénéité souhaitée pour la répartition au sol de ces éclats.These minimum and maximum speeds will correspond to minimum and maximum values of the ratio R. The ratio R between these two extreme values will be varied continuously or discontinuously, this as a function of the progressiveness desired for the variation of the burst speeds along the axis of the projectile, that is to say as a function of the homogeneity desired for the distribution on the ground of these fragments.

Lorsque la valeur minimale du rapport R est incompatible avec la transmission de la détonation, on remplacera cette valeur théorique par la valeur minimale effectivement compatible avec cette transmission, on bien on jouera sur les caractéristiques du matériau amortisseur.When the minimum value of the ratio R is incompatible with the transmission of the detonation, this theoretical value will be replaced by the minimum value actually compatible with this transmission, we will indeed play on the characteristics of the damping material.

La figure 1 montrait les vecteurs vitesses d'éclats avec une origine commune située au point de fonctionnement. En réalité, pour une tranche donnée du projectile, les vecteurs vitesse ont leur origine au niveau de ladite tranche.Figure 1 showed the burst velocity vectors with a common origin located at the point of operation. In reality, for a given section of the projectile, the speed vectors have their origin at the level of said section.

Les figures 3 et 4 représentent plus précisément la répartition des vecteurs vitesse le long de l'enveloppe du projectile, toujours dans le cas d'un amorçage par fusée d'ogive (vecteurs inclinés vers l'aval du projectile).FIGS. 3 and 4 show more precisely the distribution of the speed vectors along the envelope of the projectile, always in the case of a priming by warhead rocket (vectors inclined downstream of the projectile).

La figure 3 représente un projectile dans lequel les vitesses d'éclats ont une valeur croissante d'amont en aval (projectile selon les variantes de réalisation des figures 5 et 6), cette valeur pouvant croître de façon continue ou bien par paliers. Le résultat obtenu est une dispersion des éclats.FIG. 3 represents a projectile in which the burst velocities have an increasing value from upstream to downstream (projectile according to the variant embodiments of FIGS. 5 and 6), this value being able to increase continuously or else in stages. The result is a scattering of the chips.

La figure 4 représente un projectile dans lequel les vitesses d'éclats ont une valeur décroissante d'amont en aval (projectile selon les variantes de réalisation des figures 7 et 8). On voit alors qu'il existe une zone de focalisation des éclats au niveau du point Ω , ou plutôt, en raison de la symétrie de révolution du projectile et de l'amorçage, une couronne de focalisation passant par Ω et dont l'axe est l'axe du projectile.FIG. 4 represents a projectile in which the burst velocities have a decreasing value from upstream to downstream (projectile according to the variant embodiments of FIGS. 7 and 8). We then see that there is a zone of focalization of the fragments at the level of the point Ω, or rather, due to the symmetry of revolution of the projectile and the initiation, a focusing ring passing through Ω and whose axis is the axis of the projectile.

Ainsi, il est possible grâce à l'invention de définir une répartition de vitesse d'éclats qui assure une concentration ou focalisation de ces derniers à une distance connue du projectile. Cela sera particulièrement intéressant dans le cas de projectiles destinés à atteindre des cibles aériennes telles des missiles.Thus, it is possible thanks to the invention to define a speed distribution of shards which ensures a concentration or focusing of the latter at a known distance from the projectile. This will be particularly interesting in the case of projectiles intended to hit aerial targets such as missiles.

Sur la figure 5, on a représenté en coupe un projectile 3 qui peut être un obus de moyen calibre, d'axe longitudinal x′x. Il comprend une fusée 4 de tête et une enveloppe métallique 2 en acier. L'enveloppe renferme le chargement explosif 1 constitué de six tranches 5-10 d'explosif. L'enveloppe 1 peut être préalablement fragilisée selon la méthode enseignée dans le brevet français cité précédemment.In Figure 5, there is shown in section a projectile 3 which can be a medium caliber shell, of longitudinal axis x′x. It includes a head rocket 4 and a metal casing 2 made of steel. The envelope contains the explosive charge 1 consisting of six 5-10 sections of explosive. The envelope 1 can be weakened beforehand according to the method taught in the French patent cited above.

L'épaisseur maximale du chargement correspond au cas du chargement plein. L'épaisseur minimale est conditionnée soit par le calcul de l'efficacité du projectile, soit par la valeur de l'épaisseur critique de l'explosif permettant la transmission de l'onde de choc. Selon le résultat recherché, on module le rapport R de façon continue ou discontinue. Dans l'invention, on a décrit à titre indicatif des exemples dans lesquels le rapport R est discontinu. La tranche 5 a une épaisseur égale au diamètre interne de l'enveloppe 1 et les quatre autres tranches 6 à 9 se présentent sous la forme d'éléments tubulaires d'épaisseur croissante vers le culot du projectile. Les hauteurs de ces différentes tranches sont déterminées de façon à obtenir une répartition homogène sur la zone à couvrir. Une tranche pleine 10 est disposée au niveau du culot du projectile.The maximum thickness of the load corresponds to the case of full load. The minimum thickness is conditioned either by the calculation of the effectiveness of the projectile, or by the value of the critical thickness of the explosive allowing the transmission of the shock wave. Depending on the desired result, the ratio R is modulated continuously or discontinuously. In the invention, examples have been described for illustrative purposes in which the ratio R is discontinuous. The wafer 5 has a thickness equal to the internal diameter of the envelope 1 and the other four wafers 6 to 9 are in the form of tubular elements of increasing thickness towards the base of the projectile. The heights of these different sections are determined so as to obtain a uniform distribution over the area to be covered. A solid wafer 10 is placed at the level of the projectile base.

Le nombre et la hauteur des tranches est fonction de la progressivité que l'on veut adopter entre les vitesses Vm et VM. Ainsi, on fait varier le rapport R de l'épaisseur du chargement 1 et de l'enveloppe 2 de manière croissante le long de l'axe x′x vers le culot. La vitesse des éclats générés au niveau de chaque tranche est donc croissante dans le même sens, ce qui permet de répartir les éclats plus largement sur les zones amont et aval évoquées précédemment. Dans l'espace libre au sein des tranches 6 à 9, on place un module 11 en matériau inerte, tant sur le plan détonique que de celui de la fragmentation. Sa densité est équivalente à celle de l'explosif. A titre indicatif, on utilise un matériau pulvérulent ou comprimé analogue au lest utilisé dans les obus d'exercice.The number and the height of the sections is a function of the progressiveness which one wishes to adopt between the speeds V m and V M. Thus, the ratio R of the thickness of the load 1 and of the casing 2 is varied increasing along the axis x′x towards the base. The speed of the flakes generated at each slice is therefore increasing in the same direction, which makes it possible to distribute the flakes more widely over the upstream and downstream zones mentioned above. In the free space within sections 6 to 9, a module 11 is placed in inert material, both in terms of detonation and that of fragmentation. Its density is equivalent to that of the explosive. As an indication, a pulverulent or compressed material similar to the ballast used in exercise shells is used.

Sur la figure 5, on a représenté un chargement 1 constitué par un bloc coulé ; on pourrait utiliser un chargement constitué par un empilement de comprimés correspondant aux tranches 5-10. Ces derniers peuvent être obtenus par compression.In Figure 5, there is shown a load 1 consisting of a cast block; one could use a load consisting of a stack of tablets corresponding to sections 5-10. These can be obtained by compression.

Afin de comparer les performances d'un projectile selon l'invention à celles d'un projectile classique, on réalise un certain nombre de tirs.In order to compare the performance of a projectile according to the invention to that of a conventional projectile, a certain number of shots are taken.

Un projectile explosif de 35 mm selon l'état de la technique, dont la forme extérieure générale est celle représentée sur la figure 5, comportant une enveloppe préfragmentée, par exemple par bombardement électronique, (voir brevet français précité), est initié à une distance du sol de l'ordre de 10 mètres en étant animé d'une vitesse de l'ordre de 910 m/s. Les éclats se trouvent alors répartis dans une zone globale, le long de l'axe de tir, de l'ordre de 3,20 mètres.A 35 mm explosive projectile according to the state of the art, the general external shape of which is that shown in FIG. 5, comprising a prefragmented envelope, for example by electronic bombardment, (see French patent cited above), is initiated at a distance from the ground of the order of 10 meters while being animated with a speed of the order of 910 m / s. The fragments are then distributed in a global zone, along the axis of fire, of the order of 3.20 meters.

La densité moyenne d'éclats, le long de l'axe de tir, est alors sensiblement de 5,41.The average density of flakes, along the axis of fire, is then substantially 5.41.

Un projectile selon l'invention et plus particulièrement conforme à celui représenté sur la figure 5, muni d'un module de même densité que l'explosif, dont R varie entre 1 et 4 donne les résultats suivants :
   largeur de zone : 5,50 mètres,
   densité moyenne d'éclats : 3,34.
A projectile according to the invention and more particularly in accordance with that shown in FIG. 5, provided with a module of the same density as the explosive, the R of which varies between 1 and 4 gives the following results:
width of zone: 5.50 meters,
average chip density: 3.34.

On constate ainsi une diminution de la densité moyenne des éclats et un élargissement de leur zone de répartition ; ce qui s'explique par le fait que les vitesses initiales des éclats relativement au projectile ont diminué au niveau des zones de moindre épaisseur d'explosif. Ceci entraîne une augmentation de l'angle d'ouverture de la gerbe d'éclats. En effet, la vitesse initiale absolue de chaque éclat est obtenue par composition de sa vitesse relative (diminuée) avec la vitesse du projectile (inchangée), d'où modification de l'angle de la gerbe.There is thus a decrease in the average density of the flakes and a widening of their distribution area; which is explained by the fact that the initial velocities of the fragments relative to the projectile have decreased in the areas of less thickness of explosive. This results in an increase in the opening angle of the burst of splinters. Indeed, the absolute initial speed of each burst is obtained by composition of its relative speed (decreased) with the speed of the projectile (unchanged), hence changing the angle of the spray.

Les vitesses absolues des éclats ne diminuent au maximum que de 20% ce qui entraîne néanmoins une augmentation de l'angle de la gerbe de 50%, la diminution réduite de la vitesse assure une bonne efficacité anti-personnel sur une zone notablement plus grande, d'où une efficacité globale supérieure, la densité réduite obtenue (3,34) étant encore suffisamment importante pour que la probabilité d'atteinte soit maximale.The absolute speeds of the flakes only decrease by a maximum of 20% which nevertheless leads to an increase in the angle of the spray of 50%, the reduced reduction in speed ensures good anti-personnel efficiency over a notably larger area, hence a higher overall efficiency, the reduced density obtained (3.34) being still large enough for the probability of attack to be maximum.

Des simulations ont montré que cette augmentation de l'efficacité du projectile permet de réduire les rafales de 10 coups à environ 6 coups, ce qui assure une économie en munitions.Simulations have shown that this increase in the effectiveness of the projectile makes it possible to reduce the bursts from 10 shots to about 6 shots, which ensures an economy in ammunition.

Sur la figure 6, on a représenté une variante de réalisation du chargement 1. Ce chargement 1 est constitué de cinq tranches d'explosif 12-16. L'épaisseur de ces tranches qui se présentent sous la forme d'éléments pleins alignés sur l'axe x′x, croît vers le culot. Un matériau amortissant 17 est disposé entre l'enveloppe 2 et le chargement 1. Le rôle de ce matériau est d'absorber une partie de l'énergie de l'explosif, ce qui permet d'obtenir une vitesse d'éclats réduite avec une épaisseur d'explosif plus importante. Cette solution permet d'utiliser l'invention dans le cas d'explosif à épaisseur critique importante pour la transmission de la détonation ou lorsqu'il est impossible de réaliser un chargement d'épaisseur faible. On assure une dispersion du même ordre que celle du projectile selon la figure 5.In Figure 6, there is shown an alternative embodiment of the load 1. This load 1 consists of five sections of explosive 12-16. The thickness of these slices which are in the form of solid elements aligned on the axis x′x, increases towards the pellet. A damping material 17 is placed between the casing 2 and the charge 1. The role of this material is to absorb part of the energy of the explosive, which makes it possible to obtain a reduced burst speed with a greater thickness of explosive. This solution makes it possible to use the invention in the case of an explosive with a large critical thickness for the transmission of the detonation or when it is impossible to achieve a charge of small thickness. A dispersion of the same order as that of the projectile according to FIG. 5 is ensured.

Sur la figure 7, on a représenté d'autres moyens permettant de faire varier le rapport R. Le chargement 1 comporte cinq tranches 18-22 se présentant toutes sous la forme d'éléments cylindriques, empilés sur l'axe x′x. La tranche 18 est pleine tandis que les tranches 19-22 sont annulaires. Un matériau inerte 23 est disposé dans l'espace libre au sein des tranches et son rôle est d'amortir la transmission de l'onde de choc à son passage. Cet amortissement augmente avec l'épaisseur du matériau 23 lorsqu'on va vers le culot. Dans ce mode de réalisation, la variation du rapport R entraîne une focalisation des éclats.In FIG. 7, other means have been shown making it possible to vary the ratio R. The load 1 comprises five sections 18-22 all being in the form of cylindrical elements, stacked on the axis x′x. Section 18 is full while sections 19-22 are annular. An inert material 23 is placed in the free space within the sections and its role is to dampen the transmission of the shock wave as it passes. This damping increases with the thickness of the material 23 when one goes towards the base. In this embodiment, the variation of the ratio R results in focusing of the flakes.

Sur la figure 8, on a représenté une autre variante de réalisation montrant cinq tranches d'explosif. La tranche 24 est identique à la tranche 18 du mode de réalisation précédent, tandis que les tranches 25-28 sont constituées par des éléments cylindriques pleins alignés sur l'axe x′x. Comme précédemment, un matériau 29 peut être prévu sous forme d'une pièce monobloc comme montré sur la partie gauche de la figure lorsqu'on utilise un chargement monobloc. On peut également procéder par superposition de comprimés cerclés de matériaux inertes comme le montre la partie droite de la figure. Comme dans le mode de réalisation précédent, on obtient une focalisation des éclats.In FIG. 8, another alternative embodiment is shown showing five sections of explosive. The section 24 is identical to the section 18 of the previous embodiment, while the sections 25-28 are formed by solid cylindrical elements aligned on the axis x′x. As before, a material 29 can be provided in the form of a single piece as shown on the left part of the figure when using a single piece load. We can also proceed by superimposing tablets rimmed with inert materials as shown in the right part of the figure. As in the previous embodiment, a focusing of the fragments is obtained.

Dans le cas de l'interposition d'un matériau amortisseur, on évite l'écaillage de l'enveloppe métallique à l'interface entre l'enveloppe et l'explosif. Ainsi, pour une charge de dimension donnée, on diminue la masse des éclats de petites dimensions (inférieure à O,1 g) qui représente près de 50% de la masse totale de l'enveloppe. Le nombre d'éclats efficaces est donc augmenté.In the case of the interposition of a damping material, the flaking of the metal casing at the interface between the casing and the explosive is avoided. Thus, for a load of given size, the mass of the small flakes is reduced (less than 0.1 g) which represents nearly 50% of the total mass of the envelope. The number of effective shards is therefore increased.

Dans les exemples précédents, le nombre et la hauteur de chaque tranche est fonction de la progressivité que l'on veut adopter entre les vitesses Vm et VM.In the previous examples, the number and the height of each section is a function of the progressiveness which it is desired to adopt between the speeds V m and V M.

Claims (10)

  1. Projectile generating a fragmentation pattern by controlled operation on the trajectory in direct fire, comprising an H.E. payload (1) contained in a metal casing (2) and including a means of varying the ratio R of the radial thicknesses of the H.E. payload (1) (e) and the metal casing (2) enclosing the said payload (E), along the projectile longitudinal axis x'x, in order to modulate fragment velocities along the longitudinal axis, the projectile being characterised by the fact that the ratio R is varied by modulation of the radial thickness (e) of the H.E. payload (1), a gap in the H.E. being filled with inert material (11, 17, 23, 29) which damps out the shock wave.
  2. Projectile according to claim 1, characterised by the fact that the ratio R increases discontinuously from the projectile nose towards the base, with several radial thicknesses of payload, or continuously to ensure fragment dispersal.
  3. Projectile according to claim 2, characterised by the fact that the payload (1) comprises an initial section (5) with a thickness equal to the inside diameter of the casing (2), four tubular sections (6 to 9) with radial thickness increasing towards the projectile base, a gap within these sections (6 to 9) being filled by the inert material, and a section (10) positioned at the base, of thickness equal to the inside diameter of the casing (2).
  4. Projectile according to claim 2, characterised by the fact that the payload (1) comprises an initial section (12) with a diameter equal to the inside diameter of the casing (2), and four solid sections (13 to 16) with thickness increasing towards the projectile base, a gap between the metal casing (2) and these four sections (13 to 16) being filled with the inert material.
  5. Projectile according to claim 1, characterised by the fact that the ratio R decreases discontinuously from nose to base, with several radial thicknesses of payload, or continuously to ensure concentration of fragments.
  6. Projectile according to claim 5, characterised by the fact that the payload (1) comprises an initial section (18) with a diameter equal to the inside diameter of the casing (2), and four tubular sections (19 to 22) with radial thickness decreasing towards the projectile base, a gap within these sections (19 to 22) being filled with the inert material.
  7. Projectile according to claim 5, characterised by the fact that the payload (1) comprises an initial section (24) with a diameter equal to the inside diameter of the casing (2), and four solid sections (25 to 28) with thickness decreasing towards the projectile base, a gap between the metal casing (2) and these four sections (25 to 28) being filled with the inert material.
  8. Projectile according to any of claims 3 to 7, characterised by the fact that the inert material (11, 23, 17, 29) placed in the gap within tubular sections (6 to 9 or 19 to 22), or between the casing (2) and the solid sections (13 to 16 or 25 to 28), damps out the shock wave.
  9. Projectile according to any of claims 3 to 7, characterised by the fact that the inert material density is equivalent to that of the H.E.
  10. Projectile according to any of claims 3 to 9, characterised by the fact that the payload is formed by the stacking of pellets.
EP89400806A 1988-03-31 1989-03-22 Explosive projectile producing explosions in a definite pattern Expired - Lifetime EP0338874B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89400806T ATE100189T1 (en) 1988-03-31 1989-03-22 EXPLOSIVE PROJECTION WITH SPRAY EFFECT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8804256A FR2629582B1 (en) 1988-03-31 1988-03-31 EXPLOSIVE PROJECTILE GENERATING A SHOWER
FR8804256 1988-03-31

Publications (2)

Publication Number Publication Date
EP0338874A1 EP0338874A1 (en) 1989-10-25
EP0338874B1 true EP0338874B1 (en) 1994-01-12

Family

ID=9364827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400806A Expired - Lifetime EP0338874B1 (en) 1988-03-31 1989-03-22 Explosive projectile producing explosions in a definite pattern

Country Status (4)

Country Link
EP (1) EP0338874B1 (en)
AT (1) ATE100189T1 (en)
DE (1) DE68912182D1 (en)
FR (1) FR2629582B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535679A (en) * 1994-12-20 1996-07-16 Loral Vought Systems Corporation Low velocity radial deployment with predetermined pattern
US5691502A (en) * 1995-06-05 1997-11-25 Lockheed Martin Vought Systems Corp. Low velocity radial deployment with predeterminded pattern
ES2264958T3 (en) * 2001-11-28 2007-02-01 Rheinmetall Waffe Munition Gmbh PROJECTILES WITH HIGH EFFECT OF PENETRATION AND SIDE WITH INTEGRATED DISGREGATION DEVICE.
GB0904929D0 (en) * 2009-03-23 2009-05-06 Qinetiq Ltd Novel munition
DE102014019202A1 (en) 2014-12-19 2016-06-23 Diehl Bgt Defence Gmbh & Co. Kg bullet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE492106A (en) * 1949-03-29
US3498224A (en) * 1968-10-04 1970-03-03 Us Navy Fragmentation warhead having circumferential layers of cubical fragments
US4351240A (en) * 1975-02-28 1982-09-28 The United States Of America As Represented By The Secretary Of The Navy Incendiary fragmentary warhead
US4351239A (en) * 1975-02-28 1982-09-28 The United States Of America As Represented By The Secretary Of The Navy Warhead, incendiary
FR2599134B1 (en) * 1986-05-23 1988-08-26 Matra MILITARY HEAD FOR MACHINE

Also Published As

Publication number Publication date
DE68912182D1 (en) 1994-02-24
FR2629582B1 (en) 1993-06-04
EP0338874A1 (en) 1989-10-25
FR2629582A1 (en) 1989-10-06
ATE100189T1 (en) 1994-01-15

Similar Documents

Publication Publication Date Title
EP3102906B1 (en) Hollow charge and use for separating two floors of an aeronautical vehicle or for the neutralization thereof
EP0800054B1 (en) Projectile the warhead of which is triggered by means of a target designator
FR2599134A1 (en) MILITARY HEAD FOR MACHINE
EP0221218B1 (en) Shaped-charge war heads in tandem arrangement
EP0338874B1 (en) Explosive projectile producing explosions in a definite pattern
EP0437992B1 (en) Explosive charge creating a plurality of plugs and/or jets
FR2514123A1 (en) IMPROVEMENTS TO MILITARY LOADS ACTING AGAINST TARGETS IN FLIGHT OR ON THE GROUND
EP0438343A2 (en) Penetrator ammunition for targets with high mechanical resistance
EP0329530B1 (en) Method for creating a fin-stabilised penetrating jet, and its use in a war head
FR2561376A1 (en) Explosive device with fragmentation
EP1521053B1 (en) Anti-bunker ammunition
FR3070484A1 (en) PREFRAGMENTATION OF AN OGIVE
EP0316216B1 (en) Gyroscopic stabilising device for a projectile steering element
FR2736424A1 (en) MILITARY HEAD WITH FORMED LOAD
FR2552871A1 (en) Anti-tank projectile acting at the deviation speed
EP1521052A1 (en) Armour perforating projectile
FR2704052A1 (en) Multi-ignitable shaped charge
FR2992408A1 (en) Warhead e.g. missile, has enclosure comprising three sectors, which are regularly angularly distributed and delimited longitudinally by support or by grooves or ribs that extend from one end to another end of enclosure
EP0193427B1 (en) Warhead with shaped charges arranged in tandem
CH651382A5 (en) HOLLOW LOAD.
EP3633313B1 (en) Enclosure for ammunition and ammunition including such an enclosure
FR2573194A1 (en) FRAGMENTATION ENVELOPE FOR ANTI-INDIVIDUAL WEAPONS, SUCH AS GRENADES
EP1302741A1 (en) High explosive projectile
FR2669722A1 (en) Weapons system acting by diving attack on the objective
EP0338879B1 (en) Stabilizing means for projectile to be fired from a rifled barrel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIAT INDUSTRIES

17Q First examination report despatched

Effective date: 19920114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940112

Ref country code: NL

Effective date: 19940112

Ref country code: GB

Effective date: 19940112

Ref country code: SE

Effective date: 19940112

Ref country code: AT

Effective date: 19940112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940112

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940112

Ref country code: DE

Effective date: 19940112

REF Corresponds to:

Ref document number: 100189

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68912182

Country of ref document: DE

Date of ref document: 19940224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940331

Ref country code: BE

Effective date: 19940331

Ref country code: CH

Effective date: 19940331

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940112

BERE Be: lapsed

Owner name: GIAT INDUSTRIES

Effective date: 19940331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed