EP0332582B1 - Casing tube - Google Patents

Casing tube Download PDF

Info

Publication number
EP0332582B1
EP0332582B1 EP89810163A EP89810163A EP0332582B1 EP 0332582 B1 EP0332582 B1 EP 0332582B1 EP 89810163 A EP89810163 A EP 89810163A EP 89810163 A EP89810163 A EP 89810163A EP 0332582 B1 EP0332582 B1 EP 0332582B1
Authority
EP
European Patent Office
Prior art keywords
cladding tube
wall
bulges
tube
encasing tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810163A
Other languages
German (de)
French (fr)
Other versions
EP0332582A1 (en
Inventor
Erwin Siegfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VSL International Ltd
Original Assignee
VSL International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VSL International Ltd filed Critical VSL International Ltd
Publication of EP0332582A1 publication Critical patent/EP0332582A1/en
Application granted granted Critical
Publication of EP0332582B1 publication Critical patent/EP0332582B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/10Ducts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20396Hand operated
    • Y10T74/20402Flexible transmitter [e.g., Bowden cable]
    • Y10T74/20456Specific cable or sheath structure

Definitions

  • the invention relates to a cladding tube according to the preamble of patent claim 1.
  • cladding pipes In the field of prestressing cable technology when constructing concrete structures, cladding pipes have to fulfill several important functions: a) Keeping a channel open to enable the longitudinal movement and thus the prestressing operation of the prestressing cable; b) ensuring the bond behavior between the tensioning cable and the supporting structure; c) Ensuring reliable corrosion protection during the service life of the structure.
  • cladding tubes with bulges having walls are used.
  • the zones of the bulges characterize the so-called compound zones.
  • the fatigue strength tension cables are influenced to a significant extent by the cladding tube material.
  • the use of plastic sheaths instead of steel leads to a significant improvement in the fatigue strength of the tensioning cable.
  • it in order to achieve a high level of fatigue strength, it must be ensured that the transverse pressure between the tensioning cable and the cladding tube is kept as small as possible. This can be achieved by limiting the cable curvature and / or by shaping the wall of the cladding tube in a favorable manner by ensuring that the contact points mentioned, hereinafter referred to as friction zones, are kept as large as possible.
  • friction zones the contact points mentioned, hereinafter referred to as friction zones
  • the cladding tubes are poured out with an injection compound, for example with cement mortar.
  • the injection compound serves on the one hand to create the bond between the tensioning cable and the cladding tube and on the other hand to protect the tensioning cable from corrosion by tightly enclosing it.
  • the flow behavior of the injection mass in the cladding tube is of great importance to avoid air bubbles. The flow behavior is largely determined by the shape and the course of the bulges mentioned in the cladding tube wall. In the previously used radially arranged bulges, turbulence occurs during injection, which favors the occurrence of air pockets. Many air pockets, especially those that extend in the longitudinal direction, impair the bond behavior and the corrosion protection of the tensioning cable.
  • a cladding tube which has a polygonal cross-section, the edges extending in the longitudinal direction of the cladding tube in a helical manner.
  • the cladding tube furthermore has a steep profile essentially the same as that of a known corrugated tube, or is additionally equipped with corrugations which are also known and parallel to one another.
  • the polygonal cross-section ensures that the cladding tube around the tendons forms screw cross-sectional extensions in the same direction as the edges, the tendons running essentially parallel to the cladding tube axis can only come into contact with the cladding tube wall at locations between these extensions. This has a particularly positive effect when the injection mass is introduced into the cladding tube by forming fewer water or air inclusions than is the case with a conventional cladding tube.
  • first bulges 3 run in opposite directions to the second bulges 4.
  • the pitch of the first bulges 3 are smaller than the pitch of the second bulges 4.
  • the bulges 3, 4 of the wall 5 have a trapezoidal appearance when viewed in section. Other shapes, such as triangular, rectangular, arcuate or sinusoidal, can also be realized.
  • the cladding tube 1 is made of plastic, preferably of polyethylene.
  • the thickness of the wall 5 is 1-7 mm, preferably 2-5 mm.
  • the bulges 3, 4 running helically in the wall 5 of the cladding tube 1 lead, in the developments of FIGS. 2, 3 and 4, to bulges shown in a straight line at certain pitch angles 10, 11 with respect to the cladding tube axis.
  • the pitch angle 10 of the first bulges 3 is approximately 15 ° in the exemplary embodiment shown.
  • the pitch angle 11 of the oppositely arranged second bulges 4 is approximately 50 °. Tests have shown that the pitch angles of the various bulges 3, 4 are preferably between 5 ° and 80 °. For the second bulges 4 is in 2 shows the pitch 16.
  • the pitch of the first bulges 3 is significantly larger and is therefore not included in the figure.
  • the pitch of a helical bulge is inversely proportional to the tangent of its pitch angle.
  • the intersection points at which the individual bulges running in opposite or opposite directions with different gradients intersect lie in the development drawings on a line which includes the angle of rotation 13 to the cable axis.
  • the individual strands 12 of the tension cable 2 present in the cladding tube are shown schematically in FIGS. 2, 3 and 4 by a dash-dotted line. The outlines of only one strand 12 are shown in broken lines.
  • each of the indicated strands 12 has a ratio of the friction zones to the composite zones of approximately 2: 1.
  • the twisting of the bulges 3, 4, including the mentioned twisting angle 13 results in constantly changing friction and compound zones for each of the strands lying on the inside of the wall 5 of the cladding tube 1.
  • the network behavior changes constantly, but remains closed.
  • FIG. 3 shows the flow behavior of the schematically illustrated injection compound 20 during injection of the cladding tube 1 shown.
  • the second bulges 4, which are arranged at a larger pitch angle 11 in the exemplary embodiment shown, serve as a cross-connection to the first bulges 3, which are elongated at a smaller pitch angle 10 added.
  • the outer composite zones 21 of the composite between cladding tube 1 and the surrounding concrete are shown in the lower half of the figure, and the inner composite zones 22 of the composite between cladding tube 1 and the strands 12 of the tensioning cable 2 are shown in the upper half of the figure.
  • the composite portion of the individual strands 12 of a tensioning cable 2 is greater in the cladding tube 1 according to the invention. The frictional forces caused by the normal load on the structure are evenly transmitted to the individual strands.
  • the outer composite zones 21 between the cladding tube 1 and the concrete surrounding the cladding tube are rhombus-shaped.
  • the composite zones are significantly enlarged compared to known embodiments of cladding tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Bridges Or Land Bridges (AREA)

Description

Die Erfindung betrifft ein Hüllrohr gemäss dem Oberbegriff des Patentanspruches 1.The invention relates to a cladding tube according to the preamble of patent claim 1.

Auf dem Gebiete der Spannkabeltechnik beim Erstellen von Tragwerken aus Beton haben Hüllrohre mehrere wichtige Funktionen zu erfüllen: a) Offenhalten eines Kanals, um die Längsverschiebbarkeit und damit die Spannoperation der Spannkabel zu ermöglichen; b) Gewährleistung des Verbundverhaltens zwischen Spannkabel und Tragwerk; c) Gewährleistung eines zuverlässigen Korrosionsschutzes während der Lebensdauer des Tragwerkes.In the field of prestressing cable technology when constructing concrete structures, cladding pipes have to fulfill several important functions: a) Keeping a channel open to enable the longitudinal movement and thus the prestressing operation of the prestressing cable; b) ensuring the bond behavior between the tensioning cable and the supporting structure; c) Ensuring reliable corrosion protection during the service life of the structure.

Um ein bestimmtes Verbundverhalten zwischen dem Spannkabel und dem Hüllrohr sowie zwischen dem Hüllrohr und dem Tragwerk zu erhalten, werden Hüllrohre mit Ausbuchtungen aufweisenden Wänden verwendet. Die Zonen der Ausbuchtungen kennzeichnen die sogenannten Verbundzonen.In order to obtain a certain bond behavior between the tensioning cable and the cladding tube and between the cladding tube and the supporting structure, cladding tubes with bulges having walls are used. The zones of the bulges characterize the so-called compound zones.

Verlegte Hüllrohre weisen stets gewisse Krümmungen auf. Dadurch ist es praktisch unvermeidlich, dass die Spannkabel, insbesondere nach dem Spannen, an gewissen Stellen mit der Innenfläche der Hüllrohrwand in Kontakt sind. Diese Kontaktstellen sind diejenigen Stellen, an denen die Innenfläche der Hüllrohrwand keine Ausbuchtungen aufweist. An den Kontaktstellen entstehen mit dem Spannen des Spannkabels Querpressungen zwischen dem letzteren und der Wand des Hüllrohres. Durch die normale Beanspruchung eines Tragwerkes treten an den genannten Kontaktstellen Reibungskräfte zwischen dem Spannkabel und dem Hüllrohr auf, was zu Abnutzungserscheinungen und schlussendlich zur Zerstörung des Spannkabels und/oder des Hüllrohres führen kann. Man spricht im ersteren Falle von Reibermüdung und Ermüdungsfestigkeit. Die Ermüdungsfestigkeit von Spannkabeln wird einerseits in entscheidendem Masse durch das Hüllrohrmaterial beeinflusst. Die Verwendung von Hüllrohren aus Kunststoff anstelle von Stahl führt zu einer wesentlichen Verbesserung der Ermüdungsfestigkeit des Spannkabels. Andererseits muss zur Erreichung einer hohen Ermüdungsfestigkeit dafür gesorgt werden, dass die zwischen dem Spannkabel und dem Hüllrohr herrschende Querpressung möglichst klein gehalten wird. Dies kann durch eine Begrenzung der Kabelkrümmung und/oder durch eine günstige Formgebung der Wandung des Hüllrohres erreicht werden, indem dafür gesorgt wird, dass die genannten Kontaktstellen, in der Folge als Reibzonen bezeichnet, möglichst gross gehalten werden. Ein Vergrössern der Reibzonen und damit ein Erhöhen der Ermüdungsfestigkeit führt bei den heute verwendeten Hüllrohren aber zwangsläufig zu einer Reduktion der Verbundzonen und des Verbundverhaltens.Installed cladding tubes always have certain curvatures. As a result, it is practically unavoidable that the tensioning cables, in particular after tensioning, are in contact with the inner surface of the cladding tube wall at certain points. These contact points are those points at which the inner surface of the cladding tube wall has no bulges. At the contact points, the tensioning of the tensioning cable creates transverse pressures between the latter and the wall of the cladding tube. Due to the normal load on a structure, frictional forces occur between the tensioning cable and the cladding tube at the contact points mentioned, which can lead to signs of wear and ultimately to the destruction of the tensioning cable and / or the cladding tube. In the former case, one speaks of friction fatigue and fatigue strength. The fatigue strength tension cables are influenced to a significant extent by the cladding tube material. The use of plastic sheaths instead of steel leads to a significant improvement in the fatigue strength of the tensioning cable. On the other hand, in order to achieve a high level of fatigue strength, it must be ensured that the transverse pressure between the tensioning cable and the cladding tube is kept as small as possible. This can be achieved by limiting the cable curvature and / or by shaping the wall of the cladding tube in a favorable manner by ensuring that the contact points mentioned, hereinafter referred to as friction zones, are kept as large as possible. However, increasing the friction zones and thus increasing the fatigue strength inevitably leads to a reduction in the bond zones and the bond behavior with the cladding tubes used today.

Nach dem Spannen der Kabel werden die Hüllrohre mit einer Injektionsmasse, beispielsweise mit Zementmörtel, ausgegossen. Die Injektionsmasse dient einerseits dazu, den Verbund zwischen dem Spannkabel und dem Hüllrohr herzustellen und andererseits das Spannkabel durch dichtes Umschliessen vor Korrosion zu schützen. Dem Fliessverhalten der Injektionsmasse im Hüllrohr kommt zur Vermeidung von Luftblasen grosse Bedeutung zu. Das Fliessverhalten wird weitgehend durch die Formgebung und den Verlauf der genannten Ausbuchtungen in der Hüllrohrwand bestimmt. Bei den bisher verwendeten im wesentlichen radial angeordneten Ausbuchtungen entstehen beim Injizieren Turbulenzen, die das Auftreten von Lufteinschlüssen begünstigen. Viele, und vor allem in der Längsrichtung ausgedehnte Lufteinschlüsse beeinträchtigen das Verbundverhalten sowie den Korrosionsschutz des Spannkabels.After the cables have been tensioned, the cladding tubes are poured out with an injection compound, for example with cement mortar. The injection compound serves on the one hand to create the bond between the tensioning cable and the cladding tube and on the other hand to protect the tensioning cable from corrosion by tightly enclosing it. The flow behavior of the injection mass in the cladding tube is of great importance to avoid air bubbles. The flow behavior is largely determined by the shape and the course of the bulges mentioned in the cladding tube wall. In the previously used radially arranged bulges, turbulence occurs during injection, which favors the occurrence of air pockets. Many air pockets, especially those that extend in the longitudinal direction, impair the bond behavior and the corrosion protection of the tensioning cable.

In der deutschen Offenlegungsschrift DE 16 59 181 ist ein Hüllrohr offenbart, das um Querschnitt mehrkantig ausgebilder ist, wobei die Kanten in Längsrichtung des Hüllrohres schraubengangförmig verlaufen. Das Hüllrohr weist im weiteren eine steilgängige Profilierung im wesentlichen gleich derjenigen eines bekannten Wellrohres auf, oder ist zusätzlich mit ebenfalls bekannten zueinander parallelen Wellungen ausgerüstet. Durch den mehrkantigen Querschnitt wird erreicht, dass das Hüllrohr um die Spannglieder gleichsinnig mit den Kanten schraubengangförmig verlaufende Querschnittserweiterungen bildet, wobei die im wesentlichen parallel zur Hüllrohrachse verlaufenden Spannglieder immer nur an zwischen diesen Erweiterungen gelegenen Stellen mit der Hüllrohrwand in Berührung kommen können. Dies wirkt sich insbesondere beim Einbringen der Injektionsmasse in das Hüllrohr positiv aus, indem weniger Einschlüsse von Wasser oder Luft gebildet werden, als dies bei einem gewöhnlichen Hüllrohr der Fall ist.In German published patent application DE 16 59 181 a cladding tube is disclosed which has a polygonal cross-section, the edges extending in the longitudinal direction of the cladding tube in a helical manner. The cladding tube furthermore has a steep profile essentially the same as that of a known corrugated tube, or is additionally equipped with corrugations which are also known and parallel to one another. The polygonal cross-section ensures that the cladding tube around the tendons forms screw cross-sectional extensions in the same direction as the edges, the tendons running essentially parallel to the cladding tube axis can only come into contact with the cladding tube wall at locations between these extensions. This has a particularly positive effect when the injection mass is introduced into the cladding tube by forming fewer water or air inclusions than is the case with a conventional cladding tube.

Nachteilig ist, dass die vorgenannte Querpressung bei diesem Hüllrohr gegenüber einem gewöhnlichen Wellrohr vergrössert wird, weil die Anzahl Kontaktstellen zwischen dem Hüllrohr und den Spanngliedern durch die mehrkantige Ausführung des Hüllrohres reduziert wird. Es kann versucht werden durch die Verwendung eines Rohres mit zueinander parallelen Wellungen, die zudem voneinander beabstandet sind, diesem Nachteil zu begegnen. Die Reduktion der Querpressung wird dabei durch eine Verkleinerung der Verbundzonen erkauft. Trotz der Verminderung der Lufteinschlüsse wird das Verbundverhalten hier reduziert.It is disadvantageous that the above-mentioned transverse pressure is increased in this cladding tube compared to a conventional corrugated tube, because the number of contact points between the cladding tube and the tendons is reduced by the polygonal design of the cladding tube. An attempt can be made to counter this disadvantage by using a tube with corrugations which are parallel to one another and which are also spaced apart from one another. The reduction in transverse pressure is purchased by reducing the bond zones. Despite the reduction in air pockets, the bond behavior is reduced here.

Für das Fliessverhalten der Injektionsmasse ist es im weiteren nachteilig, dass die obgenannten schraubenganglinienförmig verlaufenden Erweiterungen in ihrer Längsrichtung durch die kreuzenden Profilierungen im wesentlichen quer gerillt sind und deshalb nicht mit einem gleichbleibenden Querschnitt bzw. nicht gleichförmig verlaufen. Dies rührt daher, weil sich die durch das mehrkantige Hüllrohr hervorgerufenen Erweiterungen und die Profilierung des Hüllrohres überlagern.For the flow behavior of the injection compound, it is further disadvantageous that the above-mentioned helical lines extending extensions in their longitudinal direction are grooved essentially transversely by the intersecting profiles and therefore do not run with a constant cross-section or not uniformly. This is because the extensions caused by the polygonal cladding tube and the profile of the cladding tube overlap.

Es ist die Aufgabe der vorliegenden Erfindung, ein Hüllrohr zu schaffen, das gegenüber Hüllrohren bekannter Art durch die Formgebung und Anordnung von Ausbuchtungen in der Wand das Verbundverhalten von Spannkabeln unter Einhaltung einer geforderten hohen Ermüdungsfestigkeit, verbessert, indem die Verbundzonen vergrössert und die Lufteinschlüsse bei der Injektion vermindert werden.It is the object of the present invention to provide a cladding tube which, compared to cladding tubes of a known type, improves the connection behavior of tensioning cables by maintaining the required high fatigue strength by the shape and arrangement of bulges in the wall, by enlarging the connection zones and the air pockets in the Injection can be reduced.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruches 1 aufgeführten Merkmale gelöst.This object is achieved by the features listed in the characterizing part of patent claim 1.

Der Erfindungsgegenstand ist nachstehend mit Bezugnahme auf die Zeichnungen beispielsweise näher beschrieben. Es zeigen

  • Fig. 1 eine perspektivische Darstellung eines Abschnittes des erfindungsgemässen Hüllrohres,
  • Fig. 2 eine Abwicklung eines Hüllrohrabschnittes gemäss Fig. 1,
  • Fig. 3 eine Abwicklung gemäss Fig. 2 mit angedeutetem Fliessverhalten der Injektionsmasse im Rohrinnern bei erfindungsgemäss angeordneten Ausbuchtungen, und
  • Fig. 4 eine Abwicklung gemäss Fig. 2 mit einer schematischen Darstellung der äusseren und der inneren Verbundzonen.
The subject matter of the invention is described in more detail below with reference to the drawings, for example. Show it
  • 1 is a perspective view of a portion of the cladding tube according to the invention,
  • 2 shows a development of a cladding tube section according to FIG. 1,
  • 3 shows a development according to FIG. 2 with indicated flow behavior of the injection mass in the interior of the pipe with bulges arranged according to the invention, and
  • 4 shows a development according to FIG. 2 with a schematic representation of the outer and inner bond zones.

Die Fig. 1 zeigt einen Abschnitt eines Hüllrohres 1 mit einem eingelegten Spannkabel 2. Das Spannkabel 2 besteht aus mehreren einzelnen Litzen oder Paralleldrähten 12. Die Wand 5 des Hüllrohres 1 weist sich über die ganze Länge des Hüllrohres erstreckende, schraubenlinienförmig angeordnete, nach aussen gerichtete Ausbuchtungen 3, 4 auf. Erste Ausbuchtungen 3 verlaufen im gezeigten Ausführungsbeispiel gegenläufig zu den zweiten Ausbuchtungen 4. Die Ganghöhen der ersten Ausbuchtungen 3 sind kleiner als die Ganghöhen der zweiten Ausbuchtungen 4. Weitere Varianten in der Anordnung der Ausbuchtungen 3, 4, wie gleiche Ganghöhen für die ersten und zweiten Ausbuchtungen oder eine schraubenlinienförmige Anordnung der ersten und zweiten Ausbuchtungen mit gleichläufigem Verlauf, aber unterschiedlicher Ganghöhe, sind, entsprechend dem Erfindungsgedanken, ohne weiteres möglich, aber in den Figuren nicht dargestellt. Die Ausbuchtungen 3, 4 der Wand 5 haben im Schnitt betrachtet ein trapezförmiges Aussehen. Weitere Formen, wie dreieckige, rechteckige, kreisbogenförmige oder sinusförmige, sind ebenfalls realisierbar. Das Hüllrohr 1 ist aus Kunststoff, vorzugsweise aus Polyethylen hergestellt. Die Stärke der Wand 5 beträgt 1 - 7 mm, vorzugsweise 2 - 5 mm.1 shows a section of a cladding tube 1 with an inserted tensioning cable 2. The tensioning cable 2 consists of several individual strands or parallel wires 12. The wall 5 of the cladding tube 1 points over the whole Bulges 3, 4 which extend along the length of the cladding tube and are arranged in a helical shape. In the exemplary embodiment shown, first bulges 3 run in opposite directions to the second bulges 4. The pitch of the first bulges 3 are smaller than the pitch of the second bulges 4. Further variants in the arrangement of the bulges 3, 4, such as the same pitch for the first and second bulges or a helical arrangement of the first and second bulges with the same course but different pitch are, according to the inventive concept, readily possible, but not shown in the figures. The bulges 3, 4 of the wall 5 have a trapezoidal appearance when viewed in section. Other shapes, such as triangular, rectangular, arcuate or sinusoidal, can also be realized. The cladding tube 1 is made of plastic, preferably of polyethylene. The thickness of the wall 5 is 1-7 mm, preferably 2-5 mm.

Die Fig. 2, 3 und 4 zeigen Abwicklungen des Hüllrohres anhand derer die vorteilhaften Merkmale des erfindungsgemässen Gegenstandes beschrieben sind. Die in der Wand 5 des Hüllrohres 1 schraubenlinienförmig verlaufenden Ausbuchtungen 3, 4 führen in den Abwicklungen der Fig. 2, 3 und 4 zu unter bestimmten Steigungswinkeln 10, 11 gegenüber der Hüllrohraxe geradlinig verlaufend dargestellten Ausbuchtungen. Der Steigungswinkel 10 der ersten Ausbuchtungen 3 beträgt im gezeigten Ausführungsbeispiel ca. 15°. Der Steigungswinkel 11 der gegenläufig angeordneten zweiten Ausbuchtungen 4 ist ungefähr 50°. Versuche haben ergeben, dass die Steigungswinkel der verschiedenen Ausbuchtungen 3, 4 vorzugsweise zwischen 5° - 80° liegen. Für die zweiten Ausbuchtungen 4 ist in der Fig. 2 die Ganghöhe 16 dargestellt. Die Ganghöhe der ersten Ausbuchtungen 3 ist wesentlich grösser und demzufolge in der Figur nicht enthalten. Allgemein verhält sich die Ganghöhe einer schraubenlinienförmig verlaufenden Ausbuchtung umgekehrt proportional zum Tangens ihres Steigungswinkels. Die Schnittpunkte, in denen sich die einzelnen gegenläufig oder gleichläufig mit verschiedenen Steigungen verlaufenden Ausbuchtungen kreuzen, liegen in den Abwicklungszeichnungen auf einer Linie, welche den Verdrehungswinkel 13 zur Kabelaxe einschliesst. Die einzelnen Litzen 12 des im Hüllrohr vorhandenen Spannkabels 2 sind in den Fig. 2, 3 und 4 durch jeweils eine strichpunktierte Linie schematisch dargestellt. Nur von einer Litze 12 sind die Umrisse gestrichelt eingezeichnet. Bezeichnet man die längs der genannten, gestrichelt dargestellten Litze 12 verlaufenden Abschnitte, die sich unterhalb einer Ausbuchtung 3, 4 befinden, mit Verbundzone 15 und alle anderen Abschnitte, die sich nicht unterhalb einer Ausbuchtung 3, 4 befinden mit Reibzone 14, so ergibt sich für das gezeigte Ausführungsbeispiel für jede der angedeuteten Litzen 12 ein Verhältnis der Reibzonen zu Verbundzonen von ungefähr 2:1. Durch das Aendern der Steigungswinkel 10, 11 der Ausbuchtungen 3, 4 sind Hüllrohre herstellbar, deren Verhältnis Reibzone zu Verbundzone für spezifische Anwendungsfälle optimiert ist. Durch die Verdrehung der Ausbuchtungen 3, 4 unter Einschluss des genannten Verdrehungswinkels 13 ergeben sich für jede der an der Innenseite der Wand 5 des Hüllrohres 1 anliegenden Litzen immer wechselnde Reib- und Verbundzonen. Das Verbundverhalten verändert sich ständig, bleibt aber in sich geschlossen.2, 3 and 4 show developments of the cladding tube on the basis of which the advantageous features of the object according to the invention are described. The bulges 3, 4 running helically in the wall 5 of the cladding tube 1 lead, in the developments of FIGS. 2, 3 and 4, to bulges shown in a straight line at certain pitch angles 10, 11 with respect to the cladding tube axis. The pitch angle 10 of the first bulges 3 is approximately 15 ° in the exemplary embodiment shown. The pitch angle 11 of the oppositely arranged second bulges 4 is approximately 50 °. Tests have shown that the pitch angles of the various bulges 3, 4 are preferably between 5 ° and 80 °. For the second bulges 4 is in 2 shows the pitch 16. The pitch of the first bulges 3 is significantly larger and is therefore not included in the figure. In general, the pitch of a helical bulge is inversely proportional to the tangent of its pitch angle. The intersection points at which the individual bulges running in opposite or opposite directions with different gradients intersect lie in the development drawings on a line which includes the angle of rotation 13 to the cable axis. The individual strands 12 of the tension cable 2 present in the cladding tube are shown schematically in FIGS. 2, 3 and 4 by a dash-dotted line. The outlines of only one strand 12 are shown in broken lines. If one designates the sections running along the above-mentioned stranded wire 12, which are located below a bulge 3, 4, with the composite zone 15 and all other sections which are not below a bulge 3, 4 with the friction zone 14, this results in the exemplary embodiment shown for each of the indicated strands 12 has a ratio of the friction zones to the composite zones of approximately 2: 1. By changing the pitch angles 10, 11 of the bulges 3, 4, cladding tubes can be produced, the ratio of the friction zone to the composite zone being optimized for specific applications. The twisting of the bulges 3, 4, including the mentioned twisting angle 13, results in constantly changing friction and compound zones for each of the strands lying on the inside of the wall 5 of the cladding tube 1. The network behavior changes constantly, but remains closed.

In der Fig. 3 ist das Fliessverhalten der schematisch dargestellten Injektionsmasse 20 beim Injizieren des Hüllrohres 1 gezeigt. Je kleiner der Steigungswinkel 10, 11 einer der beiden schraubenlinienförmig angeordneten Ausbuchtungen 3, 4 zur Hüllrohraxe gewählt ist, desto besser ist das Fliessverhalten der Injektionsmasse 20 während dem Injizieren. Da die Ausbuchtungen 3, 4 nicht im wesentlichen radial wie bei bekannten Hüllrohren angeordnet sind, erfolgt die Injektion, mit kleinerer Bremswirkung und Turbulenzbildung, deutlich fliessender. Lufteinschlüsse werden praktisch vermieden. Die im gezeigten Ausführungsbeispiel unter einem grösseren Steigungswinkel 11 angeordneten zweiten Ausbuchtungen 4 dienen als Querverbindung zu den unter einem kleineren Steigungswinkel 10 länglich angeordneten ersten Ausbuchtungen 3. Fliessendes Injektionsgut wird seitlich in die zweiten Ausbuchtungen 4 gedrückt und von der nächsten ersten Ausbuchtung 3 durch eine Sogwirkung wieder aufgenommen.3 shows the flow behavior of the schematically illustrated injection compound 20 during injection of the cladding tube 1 shown. The smaller the pitch angle 10, 11 of one of the two helically arranged bulges 3, 4 for the cladding tube ax, the better the flow behavior of the injection compound 20 during the injection. Since the bulges 3, 4 are not arranged essentially radially as in the case of known cladding tubes, the injection takes place in a much more fluid manner, with a smaller braking effect and turbulence formation. Air pockets are practically avoided. The second bulges 4, which are arranged at a larger pitch angle 11 in the exemplary embodiment shown, serve as a cross-connection to the first bulges 3, which are elongated at a smaller pitch angle 10 added.

In der schematischen Darstellung der Fig. 4 sind in der unteren Hälfte der Figur die äusseren Verbundzonen 21 des Verbundes zwischen Hüllrohr 1 und umgebendem Beton und in der oberen Figurenhälfte die inneren Verbundzonen 22 des Verbundes zwischen Hüllrohr 1 und den Litzen 12 des Spannkabels 2 dargestellt. Im Gegensatz zu bekannten Hüllrohren mit im wesentlichen radial angeordneten Ausbuchtungen ist der Verbundanteil der einzelnen Litzen 12 eines Spannkabels 2 beim erfindungsgemässen Hüllrohr 1 grösser. Die durch die normale Beanspruchung des Tragwerkes auftretenden Reibungskräfte werden gleichmässig auf die einzelnen Litzen übertragen. Im Gegensatz zu den inneren Verbundzonen 22 zwischen dem Hüllrohr 1 und dem Spannkabel 2 sind die äusseren Verbundzonen 21 zwischen dem Hüllrohr 1 und dem das Hüllrohr umgebenden Beton rhombusförmig ausgebildet.4, the outer composite zones 21 of the composite between cladding tube 1 and the surrounding concrete are shown in the lower half of the figure, and the inner composite zones 22 of the composite between cladding tube 1 and the strands 12 of the tensioning cable 2 are shown in the upper half of the figure. In contrast to known cladding tubes with substantially radially arranged bulges, the composite portion of the individual strands 12 of a tensioning cable 2 is greater in the cladding tube 1 according to the invention. The frictional forces caused by the normal load on the structure are evenly transmitted to the individual strands. In contrast to the inner composite zones 22 between the cladding tube 1 and the tensioning cable 2, the outer composite zones 21 between the cladding tube 1 and the concrete surrounding the cladding tube are rhombus-shaped.

Durch die schraubenlinienförmige Anordnung von gegenläufig verlaufenden Ausbuchtungen 3, 4 oder von gleichläufig verlaufenden Ausbuchtungen mit verschiedenen Ganghöhen sind die Verbundzonen gegenüber bekannten Ausführungsformen von Hüllrohren wesentlich vergrössert.Due to the helical arrangement of opposing extending bulges 3, 4 or of bulges running in the same direction with different pitch heights, the composite zones are significantly enlarged compared to known embodiments of cladding tubes.

Es ist beispielsweise auch möglich, die Höhe der Ausbuchtungen zu vergrössern, was das Fliessverhalten der Injektionsmasse weiter begünstigt und ebenfalls zu einem genügenden Verbundverhalten führt.For example, it is also possible to increase the height of the bulges, which further promotes the flow behavior of the injection compound and also leads to a sufficient bond behavior.

Claims (7)

1. A plastic encasing tube for enclosing tensioning cables, with a substantially circular cross-section, the wall of the encasing tube having at least a first and a second outwardly directed spiral protrusion, characterized in that formed by each of the protrusions on the outside of the wall (5) there is a raised thread running uniformly over its entire length and on the inside of the wall a duct running uniformly over its entire length and in that the first and second protrusions (3, 4) intersect at regular intervals so that the wall is divided both outside and inside into rectangles, each of their surface curvatures corresponding substantially to the outer or inner tube wall curvature.
2. The encasing tube of claim 1, characterized in that there is a plurality of first and second protrusions (3, 4).
3. The encasing tube of claim 1 or 2, characterized in that the first protrusion (3) runs in the opposite direction from the second protrusion (4).
4. The encasing tube of one of claims 1 to 3, characterized in that all the protrusions (3, 4) have the same cross-section.
5. The encasing tube of one of claims 1 to 4, characterized in that the raised thread formed by one of the protrusions (3, 4) and the duct formed are similar to each other and each have a triangular, rectangular, trapezoidal, arcuate or sinusoidal cross-section.
6. The encasing tube of one of claims 1 to 5, characterized in that the pitch angle (10, 11) of each protrusion (3, 4), related to the longitudinal axis of the encasing tube, is at least 5° and at most 80°.
7. The encasing tube of one of claims 1 to 6, characterized in that the thickness of the wall is from 1 to 7 mm, and preferably from 2 to 5 mm.
EP89810163A 1988-03-08 1989-03-02 Casing tube Expired - Lifetime EP0332582B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH861/88 1988-03-08
CH86188 1988-03-08

Publications (2)

Publication Number Publication Date
EP0332582A1 EP0332582A1 (en) 1989-09-13
EP0332582B1 true EP0332582B1 (en) 1992-05-06

Family

ID=4196895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810163A Expired - Lifetime EP0332582B1 (en) 1988-03-08 1989-03-02 Casing tube

Country Status (6)

Country Link
US (1) US5038834A (en)
EP (1) EP0332582B1 (en)
JP (1) JPH0216240A (en)
DE (1) DE58901303D1 (en)
ES (1) ES2032136T3 (en)
NO (1) NO890946L (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331007A (en) * 1987-02-06 1994-07-19 Fisons Corporation Arylalkyl-amines and -amides having anticonvulsant and neuroprotective properties
US5430044A (en) * 1987-02-06 1995-07-04 Fisons Corporation Arylalkyl-amines and -amides having anticonvulsant and neuroprotective properties
DE9011565U1 (en) * 1990-05-24 1990-12-20 Dipl.-Ing. Dr. Ernst Vogelsang Gmbh & Co Kg, 4352 Herten Cable routing device
FR2662725A1 (en) * 1990-05-31 1991-12-06 Dyckerhoff & Widmann Ag Method for the production of a tension member consisting of a bundle of elements
JP2888664B2 (en) * 1991-03-30 1999-05-10 日本石油株式会社 Optical tube made of CFRP
US5713700A (en) * 1993-06-14 1998-02-03 Dipl-Inc. Dr. Ernst Vogelsang Gmbh & Co.Kg Method of providing subterranean cable systems
US5383062A (en) * 1993-10-18 1995-01-17 Nippon Oil Co., Ltd. CFRP-made optical cylinder
US5771680A (en) * 1995-12-21 1998-06-30 General Electric Company Stiffened composite structures and method of making thereof
US5775849A (en) * 1996-04-25 1998-07-07 Sorkin; Felix L. Coupler for ducts used in post-tension rock anchorage systems
US6209274B1 (en) * 1997-01-31 2001-04-03 Vsl International Vent flow apparatus and method
JP4167742B2 (en) * 1998-01-23 2008-10-22 中央発條株式会社 Push-pull control cable
FI104923B (en) * 1998-11-09 2000-04-28 Uponor Innovation Ab Cable protection tubes and a method and apparatus for making a cable protection tubes
US6659135B2 (en) * 2000-12-29 2003-12-09 Felix L. Sorkin Tendon-receiving duct with longitudinal channels
US6715799B2 (en) 2002-04-16 2004-04-06 David J. Hardy Corrugated pipe coupling having six degrees of freedom
US8362359B1 (en) 2009-07-27 2013-01-29 Superior Essex Communications Lp Surface modified drop cable, method of making same, and drop cable assembly
US9126374B2 (en) 2010-09-28 2015-09-08 Russell B. Hanson Iso-grid composite component
JP2017025625A (en) * 2015-07-24 2017-02-02 株式会社フジタ Bundle reinforcement
TW201717220A (en) 2015-11-04 2017-05-16 品威電子國際股份有限公司 Flex flat cable structure and fixing structure of cable connector and flex flat cable
USD831182S1 (en) * 2016-06-20 2018-10-16 3M Innovative Properties Company Air filter
CA3076835C (en) * 2017-09-25 2021-03-16 1552818 Ontario Limited Pipe protector

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US290659A (en) * 1883-12-25 Sheet-metal pipe
US498458A (en) * 1893-05-30 James callan
US485783A (en) * 1892-11-08 Wilson c
US862919A (en) * 1905-06-23 1907-08-13 Rifled Pipe Company Helically-corrugated pipe.
US1827437A (en) * 1929-12-07 1931-10-13 Alfred H Pascoe Method of making reenforced drill pipe casings
US1913390A (en) * 1931-12-23 1933-06-13 American Metal Hose Company Flexible metal tubing
BE503984A (en) * 1950-07-06
NL198636A (en) * 1954-07-07
US2968321A (en) * 1958-04-02 1961-01-17 Acme Hamilton Mfg Corp Reinforced flexible hose
DE1465643A1 (en) * 1963-11-12 1969-10-02 Kabel Metallwerke Ghh Hollow pipe
LU51598A1 (en) * 1965-07-22 1966-11-08
DE1291093B (en) * 1966-07-21 1969-03-20 Buehrer Erwin Sleeve tube for tendons in concrete components
DE1659181A1 (en) * 1968-02-24 1970-12-23 Pforzheim Metallschlauch Cladding tube
US3902552A (en) * 1973-05-10 1975-09-02 Olin Corp Patterned tubing
US4112708A (en) * 1976-06-21 1978-09-12 Nippon Cable Systems Inc. Flexible drive cable
DE3321559A1 (en) * 1983-06-15 1984-12-20 Vdo Adolf Schindling Ag, 6000 Frankfurt DEVICE FOR ELECTRICALLY MEASURING A LIQUID LEVEL
US4802511A (en) * 1983-11-01 1989-02-07 Teepak, Inc. Shirred tubular material

Also Published As

Publication number Publication date
US5038834A (en) 1991-08-13
NO890946D0 (en) 1989-03-06
EP0332582A1 (en) 1989-09-13
ES2032136T3 (en) 1993-01-01
NO890946L (en) 1989-09-11
JPH0216240A (en) 1990-01-19
DE58901303D1 (en) 1992-06-11

Similar Documents

Publication Publication Date Title
EP0332582B1 (en) Casing tube
EP0439749B1 (en) Threaded joint
DE2704819A1 (en) CONCRETE REINFORCEMENT BAR WITH HOT-ROLLED RIBS FORMING PARTS OF A THREAD
DE1936078A1 (en) Reinforcement bars for concrete structures
EP1606448B1 (en) Method for producing a cable
WO1986006777A1 (en) Threaded bar
DE2913519C3 (en) Flexible pipeline
DE2424665C3 (en) Pressure hose with reinforcement inserts
EP0722024B1 (en) Corrosion protected free tension member, in particular tendon for prestressed concrete without bonding
EP0505351B1 (en) Tensioning strand for prestressed concrete structures
DE1659182B1 (en) Sleeve tube for tendons
DE3418318A1 (en) REINFORCEMENT ELEMENT FOR CONCRETE CONSTRUCTION PARTS
EP1332262B2 (en) Reinforcing mat for reinforced concrete
DE3408251A1 (en) Hose of rubber or rubber-like material
DE9418641U1 (en) Heat exchange tube
DE1659182C (en) Duct for tendons
DE3936168C2 (en)
DE4240968C1 (en) Multi-part steel rod, in particular concrete reinforcement rod, tension rod or the like
DE1759968C3 (en) Cold deformed rebar for concrete
DE2044249C3 (en) Composite component
DE2162211C3 (en) Profiled duct for prestressed concrete structures
DE9204183U1 (en) Linear spacer
DE4211044B4 (en) Spiral wound reinforcing strip
DE3025412C2 (en) Cables, in particular communication cables, with longitudinal strain relief elements in the cable sheath
DE69304345T2 (en) HOSE CONNECTION AND HOSE ASSEMBLY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19900309

17Q First examination report despatched

Effective date: 19910417

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 58901303

Country of ref document: DE

Date of ref document: 19920611

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032136

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: VSL INTERNATIONAL AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960301

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960319

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050302