EP0329138B1 - Electromagnetic relay - Google Patents

Electromagnetic relay Download PDF

Info

Publication number
EP0329138B1
EP0329138B1 EP89102683A EP89102683A EP0329138B1 EP 0329138 B1 EP0329138 B1 EP 0329138B1 EP 89102683 A EP89102683 A EP 89102683A EP 89102683 A EP89102683 A EP 89102683A EP 0329138 B1 EP0329138 B1 EP 0329138B1
Authority
EP
European Patent Office
Prior art keywords
armature
yoke
coil
limb
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102683A
Other languages
German (de)
French (fr)
Other versions
EP0329138A1 (en
Inventor
Rolf-Dieter Dipl.-Phys. Kimpel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0329138A1 publication Critical patent/EP0329138A1/en
Application granted granted Critical
Publication of EP0329138B1 publication Critical patent/EP0329138B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/60Contact arrangements moving contact being rigidly combined with movable part of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • H01H1/5822Flexible connections between movable contact and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/001Means for preventing or breaking contact-welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/20Non-polarised relays with two or more independent armatures

Definitions

  • the invention relates to an electromagnetic relay with a coil, an axially arranged core in the coil and with a first and a second, each L-shaped yoke, the first yoke being designed as an armature, the first leg of which has a working air gap with respect to a first end of the Forms core and carries a contact spring, and whose second leg runs approximately parallel to the coil axis, the second yoke with its first leg facing the second end of the core, with its second leg extending substantially parallel to the coil axis next to the coil and a bearing point forms for the free end of the second leg of the first yoke, both yokes also having an extension of their first leg beyond the respective second leg and a tension return spring acting on both extensions and extending substantially parallel to the coil axis.
  • a relay structure with some of these features, in particular with an angular yoke and a flat armature carrying a contact spring, is described, for example, in DE-A-32 32 679, but is also known in many other configurations. These relays are simple and inexpensive to manufacture, robust against external influences and therefore used in large numbers, for example in motor vehicles.
  • Known relays of this conventional design each have a plate-shaped armature, which is usually mounted on the yoke in the region of an end edge.
  • the armature is angled, but the bearing point is also usually in the case of such angled anchors in an extension of the pole face. If high direct currents are switched with such relays, there is a strong material migration and a great tendency to weld the contacts. These undesirable effects are particularly pronounced when the melt that arises in the arc of the contact can cool down at the same point on the arc if there is no relative movement at the contact points. This is often the case with relays of the type mentioned at the beginning, since the contact springs are generally connected directly to the armature.
  • Another disadvantage of the conventional arrangement is that the force exerted on the armature by the return spring, which force may also have to generate the rest contact force, counteracts the excitation force and increases during conventional armature tightening in conventional systems. Care must therefore be taken to ensure that the magnet system, ie the coil, is designed so that the force generated by the excitation system is greater than the counterforce exerted by the return spring and, if appropriate, the contact springs, at any time during the response. If the difference between the force curves of these two counteracting systems is too small, there is a risk that the relay will not pull through completely or not quickly enough under unfavorable tolerance conditions, so that unsafe contact will result.
  • a relay is known from FR-A-2 517 464, in which two angled armatures are mounted opposite one another on a plastic body surrounding the coil and actuate contact springs fastened separately with one or more actuating elements.
  • the two anchors like all conventional angle anchors, are each mounted in their bending angle there, so that each anchor executes its pivoting movement about its own axis at this bending angle. Since the contact springs are not connected to the anchors there, but are actuated by sliders, there is no relative movement at the contact points; the restoring forces exerted by the contact springs also have the conventional characteristics.
  • a significant further advantage of this construction is, however, that the return spring acting on the extension of the armature as well as on an extension of the second yoke has a falling characteristic of its effective spring force during the armature tightening movement.
  • This is explained by the fact that, due to the rotary movement of the angle armature around the distal end of the second armature leg, the point of application of the return spring moves considerably with respect to the bearing point, so that the effective lever arm for the force of the return spring when the armature suit is significantly reduced. So although the spring force of the return spring remains the same during the armature movement or even increases slightly, it works with the lever arm multiplied spring force in a lower torque, which counteracts the torque applied by the magnet system.
  • the object of the invention is to develop a relay of the type mentioned in such a way that the advantages already described with reference to US Pat. No. 4,691,181 are achieved to an increased extent, the relay being intended to have as few individual parts as possible.
  • this relay is designed in such a way that the second yoke forms a second armature, which has a working air gap with its first leg relative to the core, and that the free ends of the two yoke legs are movably supported against one another at a common bearing point.
  • the second yoke is also designed as an angular armature, which is mounted with its angled second leg together with the corresponding leg of the first armature.
  • the relay thus has two movable anchors, while a separate immovable flow return element is not required.
  • the previously described advantages for contact friction and for the improved force-displacement characteristic are also given in the two-armature relay according to the invention.
  • a two-armature relay has the known advantage that increased security against welding is given when the two contacts are connected in series.
  • FIG. 1 shows schematically the basic structure of a relay designed similarly to US-A-4691181.
  • This relay has a coil with a coil body 1 and a winding 2. Inside the coil, a core 3 is arranged in the axial direction, the first end 3a of which forms a working air gap with a movable yoke or armature 4, while the second end 3b with a fixed yoke 5 connected is.
  • This yoke 5 has a first leg 5a, which runs perpendicular to the coil axis, and a second leg 5b, which is bent in a direction parallel to the coil axis and extends in length approximately to the middle of the coil length.
  • the armature 4 is also angled or L-shaped, a first armature leg 4a forming the working air gap mentioned, while a second armature leg 4b runs approximately parallel to the coil axis and is supported with the free end 4c on the free end 5c of the yoke leg 5b.
  • the bearing point or pivot point is designated 6.
  • the armature 4 has an extension 4d which extends beyond the bend;
  • the yoke 5 also has an extension 5d which extends the first yoke leg 5a beyond the angle of the second yoke leg 5b.
  • a return spring 7 is suspended, which is subjected to tension and is designed, for example, as a coil spring.
  • a contact spring 8 is attached to the armature, which forms a normally closed contact and a working contact with two counter-contact elements 9 and 10, which are only indicated.
  • the system In the switching position shown in FIG. 1, the system is in the non-energized state, the contact spring 8 resting on the mating contact element 9 in the idle state and receiving a corresponding contact pressure through the return spring 7.
  • the armature 4 When the coil 2 is excited, the armature 4 is attracted. It rotates around point 6 and brings the contact spring 8 into contact with the mating contact element 10.
  • the contact spring 8 receives due to the distance a of the armature leg 4 from the pivot point 6 a remarkable movement component in its longitudinal direction, whereby a considerable friction is generated on the contact surfaces. As a result, both material migration and mechanical contact wear can be kept low.
  • the force relationships are shown in FIG. 2 as an example.
  • the path s is plotted on the abscissa, which the armature travels between a rest position R (corresponds to FIG. 1) and a working or closing position A (with the armature fully tightened).
  • the forces F are plotted on the ordinate, all forces being related to the same lever arm in order to make them comparable.
  • the curve m denotes the course of the force generated by the magnet system through the excitation coil 2. It increases as the armature approaches the core until it reaches the value F m in the closed state.
  • Curve f1 shows the course of the spring forces, i.e. the contact springs and the return spring, in a conventional relay of a comparable design.
  • the normally closed contact force F k1 must first be overcome until the contact opens. Thenceforth only the return spring 7 counteracts the pulling forces of the magnet system.
  • the force of the return spring increases with increasing armature until the contact closes at point S. At this point the spring force reaches a size F k2 . From then on, a contact force is built up in the contact spring 8 resting on the counter-contact element 10, which counteracts the magnet system in addition to the force of the return spring, which also increases.
  • the spring force In the final state of the attracted armature, the spring force reaches the value F k3 . It can be seen from FIG. 2 that the spring force curve f1 in some places comes quite close to the curve of the force of the magnet system. However, you must not cut this curve, otherwise the spring force would be greater than the force of the magnet system, so the armature could no longer be tightened.
  • Curve f2 now shows a force-displacement curve which can be achieved in the relay shown in FIG. 1 and which is considerably further away from curve m , that is to say it produces greater energy reserves of the magnet system when the magnet system remains unchanged, and thus leads to a more reliable response.
  • Curve f2 does not initially increase after opening break contact 8-9, since the effective force of the return spring drops due to the decreasing lever arm b , namely from point R to point S from force F k1 to F k4 . Only from the closing point S on does the spring force curve f2 rise again, since the desired contact force must now be built up at the normally open contact 10. However, due to the much lower starting point, it has a sufficiently large distance from the magnet system curve m , so that the desired responsiveness is guaranteed.
  • FIG. 3 shows an exemplary embodiment of a relay designed according to the invention in a schematic representation.
  • Coil and armature 4 are constructed and labeled in the same way as in FIG 1. Only instead of the fixed yoke 5, a movable yoke or a second armature 15 is now provided, which forms a further working air gap with the second core end 3b.
  • the second anchor 15 is constructed correspondingly to the first anchor 4, that is to say with a first anchor leg 15a and an angled second anchor leg 15b and with an extension 15d.
  • the return spring 7 is accordingly suspended in this case between the two extensions 4d and 15d.
  • a second contact spring 18 is also attached to the armature 15, which cooperates with counter-contact elements 19 and 20.
  • FIG. 3 also has the advantage that the advantages of two anchors can be used with only one excitation system, but at the same time a fixed yoke is saved.
  • the magnet system contains a coil body 21 with a winding 22, the coil body resting on a base 23 as a supporting part.
  • the system has two anchors 24 and 25, which are each angularly shaped according to FIG 3.
  • the first armature legs 24a and 25a interact with the core (not shown) and each carry a contact spring, for example 28.
  • the second armature legs 24b and 25b extend next to the coil and form interlocking bearing elements at their free ends, for example a bearing cutting edge 24c and a bearing groove 25c.
  • both anchors with a bearing cutting edge or with bearing grooves and a corresponding one between them Intermediate element, for example in the form of a rod with a cylindrical cross section or with an X-shaped cross section, depending on the design of the anchor ends.
  • a return spring 27 is suspended between extensions 24d and 25d of the two anchors. The function of the two anchors has already been described with reference to FIG 3.
  • the relay has a base 30 and a cap 31 as a housing, with connection elements, for example in the form of flat plugs 32, being fastened in the base 30.
  • connection elements for example in the form of flat plugs 32, being fastened in the base 30.
  • These connecting elements are connected in a suitable, known manner to the corresponding parts in the relay, for example via strands 33 to the contact springs and via correspondingly bent, invisible connecting pieces to the coil connections 34.
  • Support elements 35 (only molded on the base) for the two anchors. As a result, the anchors, which are otherwise only preloaded against one another, are secured against lateral migration.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Description

Die Erfindung betrifft ein elektromagnetisches Relais mit einer Spule, einem in der Spule axial angeordneten Kern sowie mit einem ersten und einem zweiten, jeweils L-förmigen Joch, wobei das erste Joch als Anker ausgebildet ist, dessen erster Schenkel einen Arbeitsluftspalt gegenüber einem ersten Ende des Kerns bildet sowie eine Kontaktfeder trägt, und dessen zweiter Schenkel annähernd parallel zur Spulenachse verläuft, wobei das zweite Joch mit seinem ersten Schenkel dem zweiten Ende des Kerns zugewandt ist, sich mit seinem zweiten Schenkel im wesentlichen parallel zur Spulenachse neben der Spule erstreckt und eine Lagerstelle für das freie Ende des zweiten Schenkels des ersten Joches bildet, wobei ferner beide Joche jeweils eine Verlängerung ihres ersten Schenkels über den jeweils zweiten Schenkel hinaus besitzen und wobei eine Zug-Rückstellfeder an beiden Verlängerungen angreift und sich im wesentlichen parallel zur Spulenachse erstreckt.The invention relates to an electromagnetic relay with a coil, an axially arranged core in the coil and with a first and a second, each L-shaped yoke, the first yoke being designed as an armature, the first leg of which has a working air gap with respect to a first end of the Forms core and carries a contact spring, and whose second leg runs approximately parallel to the coil axis, the second yoke with its first leg facing the second end of the core, with its second leg extending substantially parallel to the coil axis next to the coil and a bearing point forms for the free end of the second leg of the first yoke, both yokes also having an extension of their first leg beyond the respective second leg and a tension return spring acting on both extensions and extending substantially parallel to the coil axis.

Ein Relaisaufbau mit einem Teil dieser Merkmale, insbesondere mit einem winkelförmigen Joch und einem eine Kontaktfeder tragenden flachen Anker, ist beispielsweise in der DE-A-32 32 679 beschrieben, jedoch auch in vielen anderen Ausgestaltungen bekannt. Diese Relais sind einfach und preisgünstig herzustellen, robust gegenüber äußeren Einflüssen und deshalb in großen Stückzahlen im Einsatz, beispielsweise in Kraftfahrzeugen.A relay structure with some of these features, in particular with an angular yoke and a flat armature carrying a contact spring, is described, for example, in DE-A-32 32 679, but is also known in many other configurations. These relays are simple and inexpensive to manufacture, robust against external influences and therefore used in large numbers, for example in motor vehicles.

Bekannte Relais dieser herkömmlichen Konstruktion besitzen jeweils einen plattenförmigen Anker, der meist im Bereich einer Endkante am Joch gelagert ist. Es sind zwar auch Ausführungen bekannt, bei denen der Anker abgewinkelt ist, doch befindet sich die Lagerstelle auch bei solchen abgewinkelten Ankern normalerweise etwa in Verlängerung der Polfläche. Werden mit derartigen Relais hohe Gleichströme geschaltet, so ergibt sich eine starke Materialwanderung und eine große Neigung zum Verschweißen der Kontakte. Diese unerwünschten Effekte sind besonders stark ausgeprägt, wenn die Schmelze, die im Lichtbogen des Kontaktes entsteht, an der gleichen Stelle des Lichtbogens erkalten kann, wenn also keine Relativbewegung an den Kontaktstellen erfolgt. Dies ist häufig bei Relais der eingangs genannten Art der Fall, da die Kontaktfedern in der Regel unmittelbar mit dem Anker verbunden sind.Known relays of this conventional design each have a plate-shaped armature, which is usually mounted on the yoke in the region of an end edge. There are also known designs in which the armature is angled, but the bearing point is also usually in the case of such angled anchors in an extension of the pole face. If high direct currents are switched with such relays, there is a strong material migration and a great tendency to weld the contacts. These undesirable effects are particularly pronounced when the melt that arises in the arc of the contact can cool down at the same point on the arc if there is no relative movement at the contact points. This is often the case with relays of the type mentioned at the beginning, since the contact springs are generally connected directly to the armature.

Ein anderer Nachteil der herkömmlichen Anordnung besteht darin, daß die durch die Rückstellfeder auf den Anker ausgeübte Kraft, die gegebenenfalls auch die Ruhekontaktkraft erzeugen muß, der Erregerkraft entgegenwirkt und bei herkömmlichen Systemen während des Ankeranzugs noch ansteigt. Es muß daher darauf geachtet werden, daß das Magnetsystem, d. h. die Spule, so ausgelegt wird, daß die durch das Erregersystem erzeugte Kraft in jedem Zeitpunkt des Ansprechens größer ist als die durch die Rückstellfeder und gegebenenfalls die Kontaktfedern aufgebrachten Gegenkräfte. Ist der Unterschied zwischen den Kräftekurven dieser beiden entgegenwirkenden Systeme zu gering, so besteht die Gefahr, daß bei ungünstigen Toleranzverhältnissen das Relais nicht ganz oder nicht schnell genug durchzieht, so daß eine unsichere Kontaktgabe die Folge ist.Another disadvantage of the conventional arrangement is that the force exerted on the armature by the return spring, which force may also have to generate the rest contact force, counteracts the excitation force and increases during conventional armature tightening in conventional systems. Care must therefore be taken to ensure that the magnet system, ie the coil, is designed so that the force generated by the excitation system is greater than the counterforce exerted by the return spring and, if appropriate, the contact springs, at any time during the response. If the difference between the force curves of these two counteracting systems is too small, there is a risk that the relay will not pull through completely or not quickly enough under unfavorable tolerance conditions, so that unsafe contact will result.

Aus der FR-A-2 517 464 ist ein Relais bekannt, bei welchem zwei abgewinkelte Anker einander gegenüberliegend auf einem die Spule umgebenden Kunststoffkörper gelagert sind und mit einem oder auch mehreren Betätigungselementen davon getrennt befestigte Kontaktfedern betätigen. Die beiden Anker sind dort jeweils so wie alle herkömmlichen Winkelanker in ihrem Biegewinkel gelagert, so daß jeder Anker um eine eigene Achse in diesem Biegewinkel seine Schwenkbewegung ausführt. Da die Kontaktfedern dort nicht mit den Ankern verbunden, sondern mit Schiebern betätigt werden, ist eine Relativbewegung an den Kontaktstellen nicht gegeben; auch die durch die Kontaktfedern ausgeübten Rückstellkräfte haben die herkömmliche Charakteristik.A relay is known from FR-A-2 517 464, in which two angled armatures are mounted opposite one another on a plastic body surrounding the coil and actuate contact springs fastened separately with one or more actuating elements. The two anchors, like all conventional angle anchors, are each mounted in their bending angle there, so that each anchor executes its pivoting movement about its own axis at this bending angle. Since the contact springs are not connected to the anchors there, but are actuated by sliders, there is no relative movement at the contact points; the restoring forces exerted by the contact springs also have the conventional characteristics.

Aus der US-A-4,691,181 ist auch bereits ein Relais der eingangs genannten Art bekannt, bei dem von zwei L-formigen Jochen das eine als Anker dient und mit seinem zweiten Schenkel auf dem Ende des zweiten Schenkels des anderen Joches gelagert ist. Der erste Schenkel des Ankers trägt unmittelbar eine Kontaktfeder, und die Rückstellung erfolgt mittels einer Zug-Schraubenfeder. Damit wird ein Teil der eingangs geschilderten Nachteile herkömmlicher Relais bereits beseitigt.From US-A-4,691,181 a relay of the type mentioned is also known, in which one of two L-shaped yokes serves as an anchor and is supported with its second leg on the end of the second leg of the other yoke. The first leg of the armature carries a contact spring directly, and is reset by means of a tension coil spring. This already eliminates some of the disadvantages of conventional relays described at the beginning.

Eine Verbesserung der Kraft-Weg-Charakteristik bei den Federkräften ergibt sich dadurch, daß der Anker nicht nur abgewinkelt ist, sondern auch seine Lagerstelle am Ende des abgewinkelten zweiten Schenkels, also etwa im Mittelbereich der Spulenlänge aufweist. Dadurch schwenkt der Anker bei der Schaltbewegung nicht um seinen Knickpunkt zwischen beiden Schenkeln, sondern um das freie Ende des zweiten Schenkels, welches entsprechend der Länge dieses zweiten Schenkels einen großen Abstand von der Ebene der Polfläche am Spulenkern aufweist. Die mit dem ersten Ankerschenkel verbundene Kontaktfeder erhält dadurch an der Kontaktstelle einen großen Reibweg, wodurch der Materialwanderung und der Verschweißneigung des Kontaktes entgegengewirkt wird.An improvement in the force-displacement characteristic of the spring forces results from the fact that the armature is not only angled, but also has its bearing point at the end of the angled second leg, that is to say approximately in the central region of the coil length. As a result, during the switching movement, the armature does not pivot about its break point between the two legs, but rather about the free end of the second leg, which, according to the length of this second leg, is at a large distance from the plane of the pole face on the coil core. The contact spring connected to the first armature leg thus has a large friction path at the contact point, which counteracts the material migration and the tendency of the contact to weld.

Ein wesentlicher weiterer Vorteil dieser Konstruktion liegt aber darin, daß die an der Verlängerung des Ankers wie auch an einer Verlängerung des zweiten Joches angreifende Rückstellfeder während der Ankeranzugsbewegung eine fallende Charakteristik ihrer wirksamen Federkraft aufweist. Dies erklärt sich dadurch, daß wegen der Drehbewegung des Winkelankers um das entfernte Ende des zweiten Ankerschenkels auch der Angriffspunkt der Rückstellfeder gegenüber der Lagerstelle wesentlich wandert, so daß der wirksame Hebelarm für die Kraft der Rückstellfeder beim Ankeranzug sich wesentlich verkleinert. Obwohl also die Federkraft der Rückstellfeder während der Ankerbewegung gleichbleibt oder sogar geringfügig ansteigt, wirkt sich die mit dem Hebelarm multiplizierte Federkraft in einem geringeren Drehmoment aus, das dem vom Magnetsystem aufgebrachten Drehmoment entgegenwirkt.A significant further advantage of this construction is, however, that the return spring acting on the extension of the armature as well as on an extension of the second yoke has a falling characteristic of its effective spring force during the armature tightening movement. This is explained by the fact that, due to the rotary movement of the angle armature around the distal end of the second armature leg, the point of application of the return spring moves considerably with respect to the bearing point, so that the effective lever arm for the force of the return spring when the armature suit is significantly reduced. So although the spring force of the return spring remains the same during the armature movement or even increases slightly, it works with the lever arm multiplied spring force in a lower torque, which counteracts the torque applied by the magnet system.

Aufgabe der Erfindung ist es, ein Relais der eingangs genannten Art so weiterzubilden, daß die anhand der US-A-4,691,181 bereits geschilderten Vorteile in erhöhtem Maße erreicht werden, wobei das Relais möglichst wenig Einzelteile aufweisen soll.The object of the invention is to develop a relay of the type mentioned in such a way that the advantages already described with reference to US Pat. No. 4,691,181 are achieved to an increased extent, the relay being intended to have as few individual parts as possible.

Erfindungsgemäß ist dieses Relais derart gestaltet, daß das zweite Joch einen zweiten Anker bildet, der mit seinem ersten Schenkel einen Arbeitsluftspalt gegenüber dem Kern aufweist, und daß die freien Enden der beiden Jochschenkel an einer gemeinsamen Lagerstelle gegeneinander beweglich gelagert sind.According to the invention, this relay is designed in such a way that the second yoke forms a second armature, which has a working air gap with its first leg relative to the core, and that the free ends of the two yoke legs are movably supported against one another at a common bearing point.

Bei dem erfindungsgemäßen Relais ist also auch das zweite Joch als winkelförmiger Anker ausgebildet, der mit seinem abgewinkelten zweiten Schenkel gemeinsam mit dem entsprechenden Schenkel des ersten Ankers gelagert ist. Das Relais besitzt also zwei bewegliche Anker, während ein eigenes unbewegliches Flußrückführungselement nicht erforderlich ist. Die bereits vorher beschriebenen Vorteile für die Kontaktreibung und für die verbesserte Kraft-Weg-Charakteristik sind auch bei dem erfindungsgemäßen Zwei-Anker-Relais gegeben. Darüber hinaus hat ein Zwei-Anker-Relais den an sich bekannten Vorteil, daß bei Serienschaltung der beiden Kontakte eine erhöhte Sicherheit gegen Verschweißung gegeben ist.In the relay according to the invention, the second yoke is also designed as an angular armature, which is mounted with its angled second leg together with the corresponding leg of the first armature. The relay thus has two movable anchors, while a separate immovable flow return element is not required. The previously described advantages for contact friction and for the improved force-displacement characteristic are also given in the two-armature relay according to the invention. In addition, a two-armature relay has the known advantage that increased security against welding is given when the two contacts are connected in series.

Weitere Ausgestaltungen sind in den Unteransprüchen angegeben.Further refinements are specified in the subclaims.

Nachfolgend wird die Erfindung an Ausführungsbeispielen anhand der Zeichnung näher erläutert. Es zeigt

  • FIG 1 schematisch ein Relaissystem ähnlich dem der US-A-4691181 mit einem feststehenden Joch und einem beweglichen Winkelanker,
  • FIG 2 ein Diagramm mit den Kraft-Weg-Kurven des Magnetsystems und des Kontaktsatzes bei einem herkömmlichen und bei dem Relais nach Fig. 1,
  • FIG 3 eine FIG 1 entsprechende schematische Darstellung eines erfindungsgemäßen Relais mit zwei Ankern,
  • FIG 4 eine detailliertere konstruktive Ausgestaltung eines Relais gemäß FIG 3.
The invention is explained in more detail below using exemplary embodiments with reference to the drawing. It shows
  • 1 schematically shows a relay system similar to that of US-A-4691181 with a fixed yoke and a movable angle anchor,
  • 2 shows a diagram with the force-displacement curves of the magnet system and the contact set in a conventional and in the relay according to FIG. 1,
  • 3 shows a schematic representation corresponding to FIG. 1 of a relay according to the invention with two armatures,
  • 4 shows a more detailed design of a relay according to FIG. 3.

FIG 1 zeigt schematisch den Grundaufbau eines ähnlich der US-A-4691181 gestalteten Relais. Dieses Relais besitzt eine Spule mit einem Spulenkörper 1 und einer Wicklung 2. Innerhalb der Spule ist in Axialrichtung ein Kern 3 angeordnet, dessen erstes Ende 3a einen Arbeitsluftspalt mit einem beweglichen Joch oder Anker 4 bildet, während das zweite Ende 3b mit einem feststehenden Joch 5 verbunden ist. Dieses Joch 5 besitzt einen ersten Schenkel 5a, der senkrecht zur Spulenachse verläuft, und einen zweiten Schenkel 5b, der in eine Richtung parallel zur Spulenachse gebogen ist und in der Länge etwa bis zur Mitte der Spulenlänge sich erstreckt. Der Anker 4 ist ebenfalls winkelförmig oder L-förmig gestaltet, wobei ein erster Ankerschenkel 4a den erwähnten Arbeitsluftspalt bildet, während ein zweiter Ankerschenkel 4b annähernd parallel zur Spulenachse verläuft und mit dem freien Ende 4c auf dem freien Ende 5c des Jochschenkels 5b gelagert ist. Der Lagerpunkt oder Drehpunkt ist mit 6 bezeichnet.1 shows schematically the basic structure of a relay designed similarly to US-A-4691181. This relay has a coil with a coil body 1 and a winding 2. Inside the coil, a core 3 is arranged in the axial direction, the first end 3a of which forms a working air gap with a movable yoke or armature 4, while the second end 3b with a fixed yoke 5 connected is. This yoke 5 has a first leg 5a, which runs perpendicular to the coil axis, and a second leg 5b, which is bent in a direction parallel to the coil axis and extends in length approximately to the middle of the coil length. The armature 4 is also angled or L-shaped, a first armature leg 4a forming the working air gap mentioned, while a second armature leg 4b runs approximately parallel to the coil axis and is supported with the free end 4c on the free end 5c of the yoke leg 5b. The bearing point or pivot point is designated 6.

Der Anker 4 besitzt in Verlängerung des ersten Ankerschenkels 4a eine über die Abwinkelung hinausreichende Verlängerung 4d; entsprechend besitzt auch das Joch 5 eine in Verlängerung des ersten Jochschenkels 5a über die Abwinkelung des zweiten Jochschenkels 5b hinausreichende Verlängerung 5d. An diesen beiden Verlängerungen 4d und 5d ist eine Rückstellfeder 7 eingehängt, die auf Zug beansprucht wird und beispielsweise als Schraubenfeder ausgebildet ist.As an extension of the first arm leg 4a, the armature 4 has an extension 4d which extends beyond the bend; Correspondingly, the yoke 5 also has an extension 5d which extends the first yoke leg 5a beyond the angle of the second yoke leg 5b. On these two extensions 4d and 5d, a return spring 7 is suspended, which is subjected to tension and is designed, for example, as a coil spring.

Am Anker ist außerdem eine Kontaktfeder 8 befestigt, welche mit zwei nur andeutungsweise gezeigten Gegenkontaktelementen 9 bzw. 10 einen Ruhekontakt und einen Arbeitskontakt bildet.In addition, a contact spring 8 is attached to the armature, which forms a normally closed contact and a working contact with two counter-contact elements 9 and 10, which are only indicated.

In der in FIG 1 gezeigten Schaltstellung befindet sich das System im nicht erregten Zustand, wobei die Kontaktfeder 8 im Ruhezustand am Gegenkontaktelement 9 anliegt und durch die Rückstellfeder 7 einen entsprechenden Kontaktdruck erhält. Bei Erregung der Spule 2 wird der Anker 4 angezogen. Dabei dreht er sich um den Punkt 6 und bringt die Kontaktfeder 8 mit dem Gegenkontaktelement 10 in Berührung. Die Kontaktfeder 8 erhält dabei aufgrund des Abstandes a des Ankerschenkels 4 vom Drehpunkt 6 eine bemerkenswerte Bewegungskomponente in ihrer Längsrichtung, wodurch auf den Kontaktflächen jeweils eine beachtliche Reibung erzeugt wird. Dadurch können sowohl die Materialwanderung als auch der mechanische Kontaktverschleiß gering gehalten werden.In the switching position shown in FIG. 1, the system is in the non-energized state, the contact spring 8 resting on the mating contact element 9 in the idle state and receiving a corresponding contact pressure through the return spring 7. When the coil 2 is excited, the armature 4 is attracted. It rotates around point 6 and brings the contact spring 8 into contact with the mating contact element 10. The contact spring 8 receives due to the distance a of the armature leg 4 from the pivot point 6 a remarkable movement component in its longitudinal direction, whereby a considerable friction is generated on the contact surfaces. As a result, both material migration and mechanical contact wear can be kept low.

Außerdem ergibt sich bei der Schaltbewegung, daß der Abstand b zwischen dem Drehpunkt 6 und dem Angriffspunkt 11 der Rückstellfeder am Anker 4 mit zunehmender Annäherung des Ankerschenkels 4a an das Jochende 3a geringer wird, so daß sich die Federkraft der Rückstellfeder 7 zunehmend geringer auswirkt, d. h. daß das Produkt aus Federkraft der Rückstellfeder 7 und Hebelarm b kleiner wird, während die vom Magnetsystem auf den Anker ausgeübte Kraft bei im wesentlichen gleichbleibendem Hebelarm c zunimmt.In addition, it results in the switching movement that the distance b between the pivot point 6 and the point 11 of the return spring on the armature 4 becomes smaller as the arm leg 4a approaches the yoke end 3a, so that the spring force of the return spring 7 has an increasingly smaller effect, ie that the product of the spring force of the return spring 7 and lever arm b becomes smaller, while the force exerted by the magnet system on the armature increases with the lever arm c remaining essentially the same.

Die Kräfteverhältnisse sind beispielshalber in FIG 2 dargestellt. Dort ist auf der Abszisse der Weg s aufgezeichnet, den der Anker zwischen einer Ruhestellung R (entspricht FIG 1) und einer Arbeits- oder Schließstellung A (bei vollkommen angezogenem Anker) zurücklegt. Auf der Ordinate sind die Kräfte F aufgetragen, wobei alle Kräfte jeweils auf den gleichen Hebelarm bezogen sind, um sie vergleichbar zu machen. Die Kurve m bezeichnet den Verlauf der vom Magnetsystem durch die Erregerspule 2 erzeugten Kraft. Sie steigt mit zunehmender Annäherung des Ankers an den Kern an, bis sie den Wert Fm im Schließzustand erreicht hat.The force relationships are shown in FIG. 2 as an example. There, the path s is plotted on the abscissa, which the armature travels between a rest position R (corresponds to FIG. 1) and a working or closing position A (with the armature fully tightened). The forces F are plotted on the ordinate, all forces being related to the same lever arm in order to make them comparable. The curve m denotes the course of the force generated by the magnet system through the excitation coil 2. It increases as the armature approaches the core until it reaches the value F m in the closed state.

Die Kurve f1 zeigt den Verlauf der Federkräfte, also der Kontaktfedern und der Rückstellfeder, bei einem herkömmlichen Relais vergleichbarer Bauart. Beim Ansprechen des Relais, also am Punkt R, muß zunächst die Ruhekontaktkraft Fk1 überwunden werden, bis der Kontakt öffnet. Von da an wirkt nur noch die Rückstellfeder 7 den Anzugskräften des Magnetsystems entgegen. Bei einem herkömmlichen System entsprechend der Kurve f1 steigt jedoch auch die Kraft der Rückstellfeder mit zunehmendem Ankeranzug an, bis im Punkt S der Kontakt schließt. In diesem Punkt erreicht die Federkraft eine Größe Fk2. Von da an wird in der am Gegenkontaktelement 10 anliegenden Kontaktfeder 8 eine Kontaktkraft aufgebaut, die zusätzlich zu der ebenfalls noch ansteigenden Kraft der Rückstellfeder dem Magnetsystem entgegenwirkt. Im Endzustand des angezogenen Ankers erreicht die Federkraft den Wert Fk3. Aus FIG 2 ist zu ersehen, daß die Federkraftkurve f1 an manchen Stellen ziemlich nahe an die Kurve der Kraft des Magnetsystems herankommt. Sie darf jedoch diese Kurve nicht schneiden, da ansonsten die Federkraft größe wäre als die Kraft des Magnetsystems, der Anker also nicht mehr weiter angezogen werden könnte.Curve f1 shows the course of the spring forces, i.e. the contact springs and the return spring, in a conventional relay of a comparable design. When the relay responds, i.e. at point R, the normally closed contact force F k1 must first be overcome until the contact opens. Thenceforth only the return spring 7 counteracts the pulling forces of the magnet system. In a conventional system according to curve f1, however, the force of the return spring increases with increasing armature until the contact closes at point S. At this point the spring force reaches a size F k2 . From then on, a contact force is built up in the contact spring 8 resting on the counter-contact element 10, which counteracts the magnet system in addition to the force of the return spring, which also increases. In the final state of the attracted armature, the spring force reaches the value F k3 . It can be seen from FIG. 2 that the spring force curve f1 in some places comes quite close to the curve of the force of the magnet system. However, you must not cut this curve, otherwise the spring force would be greater than the force of the magnet system, so the armature could no longer be tightened.

Die Kurve f2 zeigt nunmehr eine bei dem in Fig. 1 gezeigten Relais erreichbare Kraft-Weg-Kurve, welche wesentlich weiter von der Kurve m entfernt ist, also bei unverändertem Magnetsystem größere Energiereserven des Magnetsystems erbringt und dadurch zu einem sichereren Ansprechen führt. Die Kurve f2 steigt nämlich nach dem Öffnen des Ruhekontaktes 8-9 zunächst nicht weiter an, da die wirksame Kraft der Rückstellfeder aufgrund des sich verringernden Hebelarms b abfällt, und zwar vom Punkt R bis zum Punkt S von der Kraft Fk1 auf Fk4. Erst vom Schließpunkt S an steigt die Federkraftkurve f2 wieder an, da nunmehr die gewünschte Kontaktkraft am Arbeitskontakt 10 aufgebaut werden muß. Sie besitzt jedoch aufgrund des wesentlich niedrigeren Ausgangspunktes einen hinreichend großen Abstand zur Magnetsystemkurve m, so daß also die gewünsche Ansprechsicherheit gewährleistet wird.Curve f2 now shows a force-displacement curve which can be achieved in the relay shown in FIG. 1 and which is considerably further away from curve m , that is to say it produces greater energy reserves of the magnet system when the magnet system remains unchanged, and thus leads to a more reliable response. Curve f2 does not initially increase after opening break contact 8-9, since the effective force of the return spring drops due to the decreasing lever arm b , namely from point R to point S from force F k1 to F k4 . Only from the closing point S on does the spring force curve f2 rise again, since the desired contact force must now be built up at the normally open contact 10. However, due to the much lower starting point, it has a sufficiently large distance from the magnet system curve m , so that the desired responsiveness is guaranteed.

FIG 3 zeigt ein Ausführungsbeispiel eines erfindungsgemäß gestalteten Relais in schematischer Darstellung. Spule und Anker 4 sind in gleicher Weise aufgebaut und bezeichnet wie in FIG 1. Lediglich anstelle des feststehenden Joches 5 ist nunmehr ein bewegliches Joch bzw. ein zweiter Anker 15 vorgesehen, der einen weiteren Arbeitsluftspalt mit dem zweiten Kernende 3b bildet. Der zweite Anker 15 ist entsprechend aufgebaut wie der erste Anker 4, also mit einem ersten Ankerschenkel 15a und einem abgewinkelten zweiten Ankerschenkel 15b sowie mit einer Verlängerung 15d. Die Rückstellfeder 7 ist entsprechend in diesem Fall zwischen den beiden Verlängerungen 4d und 15d eingehängt. Am Anker 15 ist außerdem eine zweite Kontaktfeder 18 befestigt, welche mit Gegenkontaktelementen 19 und 20 zusammenwirkt. Die anhand von FIG 1 beschriebenen Vorteile werden auch bei dem Relais nach FIG 3 erreicht, nämlich die Kontaktreibung während des Schaltvorgangs und der günstige Verlauf der Kraft-Weg-Kurven. Mit den zwei Ankern und den damit verbundenen zwei Arbeitsluftspalten ergibt sich ein noch steilerer Anstieg der Magnetkraftkurve, während sich der Abfall der wirksamen Kraft der Rückstellfeder 7 bei beiden Ankern verstärkt auswirkt. Die Ausführungsform von FIG 3 hat dabei auch den Vorteil, daß die Vorteile von zwei Ankern bei nur einem Erregersystem genutzt werden können, gleichzeitig aber ein feststehendes Joch eingespart wird.3 shows an exemplary embodiment of a relay designed according to the invention in a schematic representation. Coil and armature 4 are constructed and labeled in the same way as in FIG 1. Only Instead of the fixed yoke 5, a movable yoke or a second armature 15 is now provided, which forms a further working air gap with the second core end 3b. The second anchor 15 is constructed correspondingly to the first anchor 4, that is to say with a first anchor leg 15a and an angled second anchor leg 15b and with an extension 15d. The return spring 7 is accordingly suspended in this case between the two extensions 4d and 15d. A second contact spring 18 is also attached to the armature 15, which cooperates with counter-contact elements 19 and 20. The advantages described with reference to FIG. 1 are also achieved with the relay according to FIG. 3, namely the contact friction during the switching process and the favorable course of the force-displacement curves. With the two armatures and the associated two working air gaps there is an even steeper increase in the magnetic force curve, while the drop in the effective force of the return spring 7 has an increased effect on both armatures. The embodiment of FIG. 3 also has the advantage that the advantages of two anchors can be used with only one excitation system, but at the same time a fixed yoke is saved.

Eine konstruktive Ausgestaltung des Relais von FIG 3 ist in FIG 4 noch gezeigt. Das Magnetsystem enthält dabei einen Spulenkörper 21 mit einer Wicklung 22, wobei der Spulenkörper als tragendes Teil auf einem Sockel 23 ruht. Das System besitzt zwei Anker 24 und 25, die jeweils winkelförmig entsprechend FIG 3 gestaltet sind. Die ersten Ankerschenkel 24a bzw. 25a wirken mit dem nicht dargestellten Kern zusammen und tragen jeweils eine Kontaktfeder, beispielsweise 28. Die zweiten Ankerschenkel 24b und 25b erstrecken sich neben der Spule und bilden an ihren freien Enden ineinandergreifende Lagerelemente, beispielsweise eine Lagerschneide 24c und eine Lagernut 25c. Es wäre jedoch auch denkbar, etwa beide Anker mit einer Lagerschneide oder mit Lagernuten auszustatten und zwischen diesen ein entsprechendes Zwischenelement, etwa in Form eines Stabes mit zylindrischem Querschnitt oder mit X-förmigem Querschnitt, je nach der Gestaltung der Ankerenden, einzufügen. Eine Rückstellfeder 27 ist zwischen Verlängerungen 24d und 25d der beiden Anker eingehängt. Die Funktion der beiden Anker ist bereits anhand von FIG 3 beschrieben worden.A structural design of the relay from FIG. 3 is also shown in FIG. The magnet system contains a coil body 21 with a winding 22, the coil body resting on a base 23 as a supporting part. The system has two anchors 24 and 25, which are each angularly shaped according to FIG 3. The first armature legs 24a and 25a interact with the core (not shown) and each carry a contact spring, for example 28. The second armature legs 24b and 25b extend next to the coil and form interlocking bearing elements at their free ends, for example a bearing cutting edge 24c and a bearing groove 25c. However, it would also be conceivable to equip both anchors with a bearing cutting edge or with bearing grooves and a corresponding one between them Intermediate element, for example in the form of a rod with a cylindrical cross section or with an X-shaped cross section, depending on the design of the anchor ends. A return spring 27 is suspended between extensions 24d and 25d of the two anchors. The function of the two anchors has already been described with reference to FIG 3.

Wie in FIG 4 weiterhin noch zu sehen ist, besitzt das Relais einen Sockel 30 und eine Kappe 31 als Gehäuse, wobei im Sockel 30 Anschlußelemente, beispielsweise in Form von Flachsteckern 32, befestigt sind. Diese Anschlußelemente sind in geeigneter, bekannter Weise mit den entsprechenden Teilen im Relais verbunden, beispielsweise über Litzen 33 mit den Kontaktfedern und über entsprechend abgebogene, nicht sichtbare Verbindungsstücke mit den Spulenanschlüssen 34. Am Sockel 30 und an der Kappe 31 sind außerdem Abstützelemente 35 (nur am Sockel zu sehen) für die beiden Anker angeformt. Dadurch werden die ansonsten nur gegeneinander vorgespannten Anker gegen ein seitliches Wegwandern gesichert.As can also be seen in FIG. 4, the relay has a base 30 and a cap 31 as a housing, with connection elements, for example in the form of flat plugs 32, being fastened in the base 30. These connecting elements are connected in a suitable, known manner to the corresponding parts in the relay, for example via strands 33 to the contact springs and via correspondingly bent, invisible connecting pieces to the coil connections 34. Support elements 35 (only molded on the base) for the two anchors. As a result, the anchors, which are otherwise only preloaded against one another, are secured against lateral migration.

Schließlich sei noch darauf hingewiesen, daß anstelle der in den Ansprüchen genannten Verlängerung des jeweiligen Joch- bzw. Ankerschenkels für den Angriff der Rückstellfeder eine entsprechend gestaltete Kontaktfeder gemäß DE-GM 83 25 986 bzw. EP-OS 0 136 592 verwendet werden kann. In diesem Fall wird der veränderliche Hebelarm durch die Kontaktfeder, nicht durch den Anker unmittelbar gebildet.Finally, it should be pointed out that instead of the extension of the respective yoke or anchor leg mentioned in the claims for the attack of the return spring, a correspondingly designed contact spring according to DE-GM 83 25 986 or EP-OS 0 136 592 can be used. In this case, the variable lever arm is formed directly by the contact spring, not by the armature.

Claims (6)

  1. Electromagnetic relay having a coil, a core (3) which is arranged axially in the coil (1, 2), and having a first and a second yoke (4, 15; 24, 25), which are in each case L-shaped, the first yoke (4; 24) being constructed as an armature whose first limb (4a, 24a) forms an operating air gap with respect to a first end (3a) of the core (3) and supports a contact spring (8; 28), and whose second limb (4b; 24b) runs approximately parallel to the coil axis, the second yoke (15; 25) facing the second end (3b) of the core (3) with its first limb (15a; 25a), extending essentially parallel to the coil axis, adjacent to the coil, with its second limb (15b; 25b), and forming a bearing point for the free end of the second limb (4b; 24b) of the first yoke (4; 24), both yokes (4; 24) furthermore in each case having an extension (4d, 15d; 24d, 25d) of their first limb (4a, 15a; 24a, 25a) beyond the respectively second limb (4b, 15b); 24b, 25b), and a tension restoring spring (7; 27) engaging on both extensions (4d, 15d; 24d, 25d) and extending essentially parallel to the coil axis, characterised in that the second yoke (15; 25) forms a second armature which, with its first limb (15a; 25a), has an operating air gap with respect to the core (3), and in that the free ends of the two second yoke limbs (4b, 15b; 24b, 25b) are supported on a common bearing point (6) such that they can move with respect to one another.
  2. Relay according to Claim 1, characterised in that the respectively second limbs (4b, 15b; 24b, 25b) in each case extend approximately up to half the coil length.
  3. Relay according to Claim 1 or 2, characterised in that the two armatures (24, 25) in each case have integrally formed bearing elements (24c, 25c) which engage in one another.
  4. Relay according to Claim 1 or 2, characterised in that the two armatures are in each case supported on a common bearing element which is supported in between.
  5. Relay according to one of Claims 1 to 4, characterised in that bearing or supporting elements (35) are integrally formed on the housing (30, 31) in the region of the bearing ends of the two armatures (24, 25).
  6. Relay according to one of Claims 1 to 5, characterised in that the extension for the engagement of the restoring spring is formed by a section of the contact spring which is mounted on the armature.
EP89102683A 1988-02-19 1989-02-16 Electromagnetic relay Expired - Lifetime EP0329138B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3805254 1988-02-19
DE3805254 1988-02-19

Publications (2)

Publication Number Publication Date
EP0329138A1 EP0329138A1 (en) 1989-08-23
EP0329138B1 true EP0329138B1 (en) 1993-06-23

Family

ID=6347764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102683A Expired - Lifetime EP0329138B1 (en) 1988-02-19 1989-02-16 Electromagnetic relay

Country Status (4)

Country Link
US (1) US4956623A (en)
EP (1) EP0329138B1 (en)
JP (1) JPH01253139A (en)
DE (1) DE58904759D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317294A (en) * 1991-08-16 1994-05-31 Magnetic Technology, Inc. Electromagnetic relay
US5363669A (en) * 1992-11-18 1994-11-15 Whirlpool Corporation Defrost cycle controller
US5321377A (en) * 1993-01-21 1994-06-14 Kaloust P. Sagoian Electromagnet for relays and contactor assemblies
US5872497A (en) * 1996-10-23 1999-02-16 Physio-Control Corporation High energy transfer relay
AUPR475301A0 (en) * 2001-05-04 2001-05-31 Alcatel Micro-relay for telecommunications network configuration
DE10150393A1 (en) * 2001-10-08 2003-04-17 Afl Germany Electronics Gmbh relay
DE10162585C1 (en) * 2001-12-19 2003-04-24 Gruner Ag Electrical relay has auxiliary spring acting on switched contact spring in closed contact position for reducing rebound
CN101471202B (en) * 2008-08-06 2011-11-30 厦门宏发电声股份有限公司 Moving spring armature component of electromagnetic relay
JP5241375B2 (en) * 2008-08-15 2013-07-17 富士通コンポーネント株式会社 Electromagnetic relay
CN101577194B (en) * 2009-06-11 2011-05-11 刘世辅 Energy-saving electromagnetic switch device
EP2737512A1 (en) * 2011-07-29 2014-06-04 ABB Technology AG Magnetic actuator with rotatable armature
DE102012202084A1 (en) * 2012-02-13 2013-08-14 Siemens Aktiengesellschaft Hinged armature bearing for magnetic release
KR101545893B1 (en) * 2014-01-28 2015-08-20 엘에스산전 주식회사 Relay
DE102014103247A1 (en) * 2014-03-11 2015-09-17 Tyco Electronics Austria Gmbh Electromagnetic relay
JP6536472B2 (en) * 2016-04-28 2019-07-03 株式会社デンソー solenoid
CH713442B1 (en) * 2017-02-08 2021-03-31 Elesta Gmbh Ostfildern De Zweigniederlassung Bad Ragaz Relay.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691181A (en) * 1986-04-24 1987-09-01 Niles Parts Co., Ltd. Hinge type relay

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2614926A1 (en) * 1976-04-07 1977-10-13 Hartmann & Braun Ag Electromagnetic switch with guided contacts - has flap armature with insulator on pivoting end with intermediate spring contacts
DE3232679C2 (en) * 1981-09-04 1985-06-05 Siemens AG, 1000 Berlin und 8000 München Electromagnetic switching relay for high current loads
FR2517464A1 (en) * 1981-11-27 1983-06-03 Bernier Raymond Electromagnetic relay requiring less space for contacts - has two pivoting L=shaped armatures and contact assembly above core
US4682133A (en) * 1985-08-14 1987-07-21 Siemens Aktiengesellschaft Electro-magnetic relay having two armatures
US4701734A (en) * 1986-03-27 1987-10-20 Niles Parts Co., Ltd. Hinge type relay
US4745382A (en) * 1986-05-22 1988-05-17 Siemens Aktiengesellschaft Electromagnetic relay for automatic assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691181A (en) * 1986-04-24 1987-09-01 Niles Parts Co., Ltd. Hinge type relay

Also Published As

Publication number Publication date
EP0329138A1 (en) 1989-08-23
US4956623A (en) 1990-09-11
DE58904759D1 (en) 1993-07-29
JPH01253139A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
EP0329138B1 (en) Electromagnetic relay
EP1859462B1 (en) Magnetic actuating device
EP1121700B2 (en) Security relay
DE3407868A1 (en) ELECTROMAGNETIC DEVICE, ESPECIALLY FOR CONTACTING
EP0203515B1 (en) Electromagnetic relay
DE2632126C2 (en) Polarized miniature relay
EP0326116A1 (en) Contact arrangement for a relay
DE9015406U1 (en) Electromagnetic relay with contact spring attached to the armature
WO2017202803A1 (en) Electromagnetic switch
EP0528833B1 (en) Electromagnetic switching system and process for producing the same
EP0594870A1 (en) Driving motor
DE1291832C2 (en) ELECTROMAGNETIC RELAY
AT400648B (en) ELECTROMAGNET, IN PARTICULAR TO ACTUATE THE INTERRUPTERS OF A SWITCHING DEVICE
DE4243852C1 (en) EM switching relay with adjustable contact carrier - in form of leaf spring element fixed to flap armature with slide element to adjust position
DE10126854A1 (en) Magnetic yoke for electromagnetic trip of switching device has magnetic core cooperating with trip coil formed in one piece with base body of magnetic yoke
DE10239284B4 (en) Electromagnetic relay with non-linear force-displacement behavior of the contact spring and contact spring
DE1912077C2 (en) Contact spring set with the switching state that can no longer be changed at the moment a switching connection is welded
EP0777248B1 (en) Electromagnetic relay and method to adjust the electromagnetic relay
DE1614754B2 (en) PROTECTIVE TUBE ANCHOR CONTACT
DE3334072A1 (en) Magnet system with hinged armature
DE102017123202B4 (en) Switchgear with a hinged armature magnet system
DE3508795A1 (en) POLARIZED ELECTROMAGNETIC RELAY
DE948887C (en) Electromagnetic relay
DE3224013A1 (en) Electromagnetic relay
EP1469500A1 (en) Magnet system for a relay with a rocker armature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19890905

17Q First examination report despatched

Effective date: 19911227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 58904759

Country of ref document: DE

Date of ref document: 19930729

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930901

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940517

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950116

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960216