EP0328177A2 - Liquid detergents - Google Patents
Liquid detergents Download PDFInfo
- Publication number
- EP0328177A2 EP0328177A2 EP19890200163 EP89200163A EP0328177A2 EP 0328177 A2 EP0328177 A2 EP 0328177A2 EP 19890200163 EP19890200163 EP 19890200163 EP 89200163 A EP89200163 A EP 89200163A EP 0328177 A2 EP0328177 A2 EP 0328177A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- surfactant
- composition according
- composition
- stabilising
- salting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 34
- 239000007788 liquid Substances 0.000 title claims abstract description 26
- 239000004094 surface-active agent Substances 0.000 claims abstract description 87
- 238000005185 salting out Methods 0.000 claims abstract description 15
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 8
- 238000005191 phase separation Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 61
- 239000003792 electrolyte Substances 0.000 claims description 34
- 230000003019 stabilising effect Effects 0.000 claims description 31
- 239000011149 active material Substances 0.000 claims description 15
- -1 alkyl polysaccharides Chemical class 0.000 claims description 14
- 239000003945 anionic surfactant Substances 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 235000021317 phosphate Nutrition 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 claims description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 abstract description 13
- 238000010348 incorporation Methods 0.000 abstract description 5
- 239000007864 aqueous solution Substances 0.000 abstract description 3
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 abstract 1
- 239000011734 sodium Substances 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- HXDRSFFFXJISME-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O HXDRSFFFXJISME-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000001683 neutron diffraction Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000003703 phosphorus containing inorganic group Chemical group 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical class [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0026—Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
Definitions
- the present invention is concerned with liquid detergent compositions which contain sufficient detergent active material and sufficient dissolved electrolyte to result in a surfactant structure within the composition.
- Such compositions are sometimes referred to as 'internally structured' since the structure is due to primary ingredients rather than to secondary additives, such as certain cross-linked polyacrylates, which can be added as 'external structurants' to a composition which would otherwise show no evidence of a structure.
- Internal structuring is very well known in the art and may be deliberatly brought about to endow properties such as consumer preferred flow properties and/or turbid appearance.
- Many internally structured liquids are also capable of suspending particulate solids such as detergency builders and abrasive particles. Examples of such structured liquids without suspended solids are given in US patent 4 244 840 whilst examples where solid particles are suspended are disclosed in specifications EP-A-160 342; EP-A-38 101; EP-A-104 452 and also in the aforementioned US 4 244 840.
- a surfactant structuring system in a liquid may be detected by means known to those skilled in the art for example, optical techniques, various rheometrical measurements, x-ray or neutron diffraction, and sometimes, electron microscopy.
- lamellar dispersion One common type of internal surfactant structure is sometimes referred to as a dispersion of lamellar droplets (lamellar dispersion) These droplets consist of an onion-like configuration of concentric bilayers of surfactant molecules, between which is trapped water or electrolyte solution (aqueous phase). Systems in which such droplets are close-packed provide a very desirable combination of physical stability and solid-suspending properties with useful flow properties.
- electrolyte means any ionic water soluble material. However, in structured liquids, not all the electrolyte is necessarily dissolved but may be suspended as particles of solid because the total electrolyte concentration of the liquid is higher than the solubility limit of the electrolyte. Mixtures of electrolytes also may be used, with one or more of the electrolytes being in the dissolved aqueous phase and one or more being substantially only in the suspended solid phase. Two or more electrolytes may also be distributed approximately proportionally, between these two phases. In part, this may depend on processing, e.g. the order of addition of components.
- the term 'salts' includes all organic and inorganic materials which may be included, other than surfactants and water, whether or not they are ionic, and this term encompasses the sub-set of the electrolytes (water soluble materials).
- 'stabilising surfacants' especially suitable surfactants (hereinafter called 'stabilising surfacants') can be identified using a test of the general kind referred to above, provided that it is framed in a suitable manner, provided that one defines an appropriate threshold for deciding whether a particular surfactant passes the test and provided one also ensures that the composition containing the stabilising surfactant gives a certain result upon centrifugation.
- the surfactants may be screened for use in novel internally structured detergent liquids.
- the test herein prescribed for electrolyte tolerance is termed the measurement of salting-out resistance.
- 200ml is prepared of a 5% by weight aqueous solution of the surfactant in question.
- Trisodium nitrolotriacetate (NTA) is added at room temperature (ca 25°C) until phase separation, as observed by the onset of cloudiness, occurs.
- the abbreviation SOR will be used for salting-out resistance.
- the present invention provides an aqueous liquid detergent composition
- aqueous liquid detergent composition comprising detergent active material and dissolved electrolyte in amounts sufficient to result in a surfactant structure within said composition, which composition yields substantially no clear liquid active rich layer upon centrifuging at 750G for 20 hours at 25°C
- the detergent active material comprises a stabilising surfactant, which has an average alkyl chain length greater than 6 carbon atoms, and which has a salting-out resistance (as hereinbefore defined), greater than, or equal to 6.4.
- the selection of surfactants as described above allows the compositions of the present invention to be capable of greater flexibility in the incorporation of large amounts of salts, especially soluble salts (i.e. electrolytes) and improved possibilities for the incorporation of polymer builders, especially water-soluble builders, which can also act to bring about a desirable viscosity reduction in the product.
- the incorporation of higher levels of surfactants is advantageous for fatty soil removal.
- the stabilising surfactant is nonionic in character
- the ensuing incorporation of high levels of nonionic rather than anionic surfactant is advantageous for the stability of any enzymes present, these in general being more sensitive to anionics than to nonionics.
- the applicants have observed a trend that the higher the measured SOR, the lower is the concentration of surfactant necessary to achieve a given advantage.
- compositions to be in accordance with the present invention it is not only necessary for it to contain at least some stabilising surfactant as hereinbefore defined but also for the compositions as a whole to yield substantially no clear liquid active rich layer upon centrifugation at 750G for 20 hours at 25°C.
- the abbreviation G refers to the value of the earth's normal gravitational force. It should be noted that this requirement excludes compositions which do not demonstrate the advantage provided by compositions of the present invention and also those compositions which are the subject of our co-pending patent application, reference no.C.3218, entitled 'Aqueous Detergent Compositions and Methods of Forming Them' filed on the same day as this application.
- liquid active rich layer means totally or substantially clear to the unaided eye.
- a liquid layer which is not active rich will contain less than 10% by weight of surfactant (detergent active) material, preferably less than 5%, most preferably less than 2% by weight.
- the stabilising surfactant may constitute all or part of the detergent active material.
- the only restriction on the total amount of detergent active and electrolyte is that together they must result in formation of a structuring system.
- the selection of surfactant types and their proportions, in order to obtain a stable liquid with the required structure will, in the light of the present teaching, now be fully within the capability of those Skilled in the art.
- an important sub-class of useful compositions is those where the detergent active material comprises one or more conventional or 'primary' surfactants, together with one or more stabilising surfactants.
- Typical blends useful for fabric washing compositions include those where the primary surfactant(s) comprise nonionic and/or a non-alkoxylated anionic and/or an alkoxylated anionic surfactant.
- the stabilising surfactant should have an average alkyl chain length greater than 6 carbon atoms, it is usually preferred that the stabilising surfactant have an average alkyl chain length greater than 8 carbon atoms.
- Some especially preferred classes of stabilising surfactants which may be used alone or in combination are:- alkyl polyalkoxylated phosphates; alkyl polyalkoxylated sulphosuccinates; dialkyl diphenyloxide disulphonates; and alkyl polysaccharides (sometimes called alkyl polyglucosides or polyglycosides).
- stabilising surfactants for example the alkyl polysaccharides described in European patent specification nos. EP-A-70 074; 70 075; 70 076; 70 077; 75 994; 75 995; 75 996 and 92 355.
- stabilising surfactants of whatever chemical type which have an SOR greater than 9.0.
- the total detergent active material may be present at from 2% to 50% by weight of the total composition, especially from 5% to 35% and most preferably from 10% to 30% by weight.
- these figures will apply both to blends of primary and stabilising surfactants, as well as to the case where the detergent active material consists entirely of stabilising surfactant.
- the amount of stabilising surfactant material will typically constitute from 0.1% to 45% by weight of the total composition, especially from 0.5% to 30% and most preferably from 1% to 30% by weight.
- the stabilising surfactant will often constitute from 5% to 90% by weight of the total detergent active material, especially from 7.5% to 90% and most preferably from 10% to 90% by weight.
- compositions of the present invention should have a rheology and a minimum stability, compatible with most commercial and retail requirements. For this reason, we generally prefer the compositions of the present invention to yield no more than 2% by volume phase separation upon storage at 25°C for 21 days from the time of preparation and to have a viscosity of no greater than 2.5 Pas, preferably 1 Pas at a shear rate of 21 s ⁇ 1.
- DoBS dodecyl benzene sulphonate
- Locus I illustrates the boundary of compositions which are stable at one electrolyte level (say 10% by weight).
- the broken lines A, B, C have the following meanings
- Locus II shows the same boundary at a higher electrolye level (say 12.5% by weight).
- FIG. 2 represents a system of 23% total surfactant, 10% sodium citrate and 67% water, the surfactants being dodecyl benzene sulphonate, C12 ⁇ 15E7 and the stabilising surfactant C12 ⁇ 13 G3 (see key at end of Example 1).
- Ternary diagram a) shows the expected additive behavious from the binary systems whilst diagram b) shows the stability area found in practice. N.B. In these diagrams, numbers along the axes denote the fraction of surfactant with respect to the total surfactant in the composition.
- the detergent active material in general, may comprise one or more surfactants, and whether in the primary or stabilising categories, may be selected from anionic, cationic, nonionic, zwitterionic and amphoteric species, and (provided mutually compatible) mixtures thereof.
- suitable nonionic types includes in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are alkyl (C6-C18) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine.
- Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phospine oxides and dialkyl sulphoxides.
- the primary anionic detergent surfactants are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C8-C18) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C9-C20) benzene sulphonates, particularly sodium linear secondary alkyl (C10-C15) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C8-C18) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monos
- an alkali metal soap of a fatty acid especially a soap of an acid having from 12 to 18 carbon atoms, for example oleic acid, ricinoleic acid, and fatty acids derived from castor oil, rapeseed oil, groundnut oil, coconut oil, palmkernel oil or mixtures thereof.
- the sodium or potassium soaps of these acids can be used, the potassium soaps being preferred.
- compositions also contain electrolyte in an amount sufficient to bring about structuring of the detergent active material.
- the compositions contain from 1% to 60%, especially from 10 to 45% of a salting-out electrolyte.
- Salting-out electrolyte has the meaning ascribed to in specification EP-A-79 646.
- some salting-in electrolyte (as defined in the latter specification) may also be included, provided if of a kind and in an amount compatible with the other components and the composition is still in accordance with the definition of the invention claimed herein.
- Some or all of the electrolyte may have detergency builder properties.
- compositions according to the present invention include detergency builder material, some or all of which may be electrolyte.
- the builder material is any capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline pH, the suspension of soil removed from the fabric and the dispersion of the fabric softening clay material.
- Examples of phosphorous-containing inorganic detergency builders when present, include the water-soluble salts, especially alkali metal pyrophosphates, orthophosphates, polyphosphates and phosphonates.
- Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates and hexametaphosphates.
- non-phosphorus-containing inorganic detergency builders when present, include water-insoluble alkali metal carbonates, bicarbinates, silicates and crystalline and amorphous alumino silicates. Specific examples include sodium carbonate (with or without calcite seeds), potassium carbonate, sodium and potassium bicarbonates, silicates and zeolites.
- organic detergency builders when present, include the alkaline metal, ammonium and substituted ammonium polyacetyl carboxylates and polyhydroxysulphonates. Specific examples include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediaminetetraacetic acid, nitrilitriacetic acid, oxydisuccinic acid, melitic acid, benzene polycarboxylic acids, citric acid, tartrate disuccinic acid and tartrate mono-succinic acid.
- lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, fabric softeners such as clays, amines and amine oxides, lather depressants, oxygen-releasing bleaching agents such as tricloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as proteases and amylases, germicides and colourants.
- lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids
- fabric softeners such as clays, amines and amine oxides
- lather depressants oxygen-releasing bleaching agents such as tricloroisocyanuric acid
- inorganic salts such as sodium sulphate
- fluorescent agents such as fluorescent agents, perfumes, enzymes such as proteases and amylases, germicides and colourants.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- The present invention is concerned with liquid detergent compositions which contain sufficient detergent active material and sufficient dissolved electrolyte to result in a surfactant structure within the composition. Such compositions are sometimes referred to as 'internally structured' since the structure is due to primary ingredients rather than to secondary additives, such as certain cross-linked polyacrylates, which can be added as 'external structurants' to a composition which would otherwise show no evidence of a structure.
- Internal structuring is very well known in the art and may be deliberatly brought about to endow properties such as consumer preferred flow properties and/or turbid appearance. Many internally structured liquids are also capable of suspending particulate solids such as detergency builders and abrasive particles. Examples of such structured liquids without suspended solids are given in US patent 4 244 840 whilst examples where solid particles are suspended are disclosed in specifications EP-A-160 342; EP-A-38 101; EP-A-104 452 and also in the aforementioned US 4 244 840.
- Some of the different kinds of surfactant structuring which are possible are described in the reference H.A.Barnes, 'Detergents', Ch.2. in K.Walters (Ed), 'Rheometry: Industrial Applications', J.Wiley & Sons, Letchworth 1980. In general, the degree of ordering of such systems increases with increasing surfactant and/or electrolyte concentrations. At very low concentrations, the surfactant can exist as a molecular solution, or as a solution of spherical micelles, both of these being isotropic. With the addition of further surfactant and/or electrolyte, structured (anisotropic) systems can form. They are referred to respectively, by various terms such as rod-micelles, planar lamellar structures, lamellar droplets and liquid crystalline phases. Often, different workers have used different terminology to refer to the structures which are really the same. The presence of a surfactant structuring system in a liquid may be detected by means known to those skilled in the art for example, optical techniques, various rheometrical measurements, x-ray or neutron diffraction, and sometimes, electron microscopy.
- One common type of internal surfactant structure is sometimes referred to as a dispersion of lamellar droplets (lamellar dispersion) These droplets consist of an onion-like configuration of concentric bilayers of surfactant molecules, between which is trapped water or electrolyte solution (aqueous phase). Systems in which such droplets are close-packed provide a very desirable combination of physical stability and solid-suspending properties with useful flow properties.
- As used herein, the term electrolyte means any ionic water soluble material. However, in structured liquids, not all the electrolyte is necessarily dissolved but may be suspended as particles of solid because the total electrolyte concentration of the liquid is higher than the solubility limit of the electrolyte. Mixtures of electrolytes also may be used, with one or more of the electrolytes being in the dissolved aqueous phase and one or more being substantially only in the suspended solid phase. Two or more electrolytes may also be distributed approximately proportionally, between these two phases. In part, this may depend on processing, e.g. the order of addition of components. On the other hand, the term 'salts' includes all organic and inorganic materials which may be included, other than surfactants and water, whether or not they are ionic, and this term encompasses the sub-set of the electrolytes (water soluble materials).
- The amounts and types of surfactants and salts (e.g. builders, buffers, enzyme stabilizers, anti-corrosives) which ideally one would want to incorporate in such systems, will vary a great deal according to the type of product being incorporated. Unfortunately, this is hampered in some cases, by incompatibility of components and one of the ways in which this can manifest itself is salting-out (precipitation) of the surfactants due to the salts present. This is particularly a problem where one or both of the salt and surfactant concentrations is relatively high, although the precise onset of salting-out will depend on the nature of the materials in question. It is often (but not exclusively) a problem when the salts contain a high proportion of electrolyte.
- This has given rise to a desire to identify surfactants and surfactant blends which can stably be incorporated in such liquids to endow an improved degree of tolerance of a wide range of types and concentrations of salts. This is essentially the problem adressed in patent specification EP-A-178,006, although the surfactants described there for this purpose (alkyl polycarboxylates) do not give the degree of electrolyte tolerance which the present invention seeks to provide.
- Since many of the usual salts are also electrolytes, one may assume that suitable surfactants to give the required improvement could be identified by dissolving them in water and testing their tolerance to progressively increasing amounts of added electrolyte. Unfortunately, we have found that this is not always an accurate predictor. The reason could be due to the fact that an aqueous solution of surfactant will be a molecular solution or a solution of spherical micelles. This is quite different to the arrangement of the surfactant molecules in structured liquids. Thus, as electrolyte is progressively added to molecular or spherical micelle solutions of surfactant, the behaviour of the surfactant will not always mimic that in the structured systems.
- However, it has now been found that unexpectedly, especially suitable surfactants (hereinafter called 'stabilising surfacants') can be identified using a test of the general kind referred to above, provided that it is framed in a suitable manner, provided that one defines an appropriate threshold for deciding whether a particular surfactant passes the test and provided one also ensures that the composition containing the stabilising surfactant gives a certain result upon centrifugation. This provides the advantage that the surfactants may be screened for use in novel internally structured detergent liquids.
- The test herein prescribed for electrolyte tolerance is termed the measurement of salting-out resistance. For this test, 200ml is prepared of a 5% by weight aqueous solution of the surfactant in question. Trisodium nitrolotriacetate (NTA) is added at room temperature (ca 25°C) until phase separation, as observed by the onset of cloudiness, occurs. The amount of NTA added at this point, as expressed in gram equivalents added to 1 litre of the surfactant solution (1 mol of NTA = 3 equivalents) is the salting-out resistance of the surfactant. Where convenient, the abbreviation SOR will be used for salting-out resistance.
- Thus, the present invention provides an aqueous liquid detergent composition comprising detergent active material and dissolved electrolyte in amounts sufficient to result in a surfactant structure within said composition, which composition yields substantially no clear liquid active rich layer upon centrifuging at 750G for 20 hours at 25°C, wherein the detergent active material comprises a stabilising surfactant, which has an average alkyl chain length greater than 6 carbon atoms, and which has a salting-out resistance (as hereinbefore defined), greater than, or equal to 6.4.
- As compared with previously known surfactant structured liquid detergents, the selection of surfactants as described above allows the compositions of the present invention to be capable of greater flexibility in the incorporation of large amounts of salts, especially soluble salts (i.e. electrolytes) and improved possibilities for the incorporation of polymer builders, especially water-soluble builders, which can also act to bring about a desirable viscosity reduction in the product. The incorporation of higher levels of surfactants is advantageous for fatty soil removal. In particular, where the stabilising surfactant is nonionic in character, the ensuing incorporation of high levels of nonionic rather than anionic surfactant is advantageous for the stability of any enzymes present, these in general being more sensitive to anionics than to nonionics. In general, the applicants have observed a trend that the higher the measured SOR, the lower is the concentration of surfactant necessary to achieve a given advantage.
- For a composition to be in accordance with the present invention, it is not only necessary for it to contain at least some stabilising surfactant as hereinbefore defined but also for the compositions as a whole to yield substantially no clear liquid active rich layer upon centrifugation at 750G for 20 hours at 25°C. The abbreviation G refers to the value of the earth's normal gravitational force. It should be noted that this requirement excludes compositions which do not demonstrate the advantage provided by compositions of the present invention and also those compositions which are the subject of our co-pending patent application, reference no.C.3218, entitled 'Aqueous Detergent Compositions and Methods of Forming Them' filed on the same day as this application.
- In this context, the term 'clear' in respect of liquid active rich layer means totally or substantially clear to the unaided eye. A liquid layer which is not active rich will contain less than 10% by weight of surfactant (detergent active) material, preferably less than 5%, most preferably less than 2% by weight.
- The stabilising surfactant may constitute all or part of the detergent active material. The only restriction on the total amount of detergent active and electrolyte is that together they must result in formation of a structuring system. Thus, within the ambit of the present invention, a very wide variation in surfactant types and levels is possible. The selection of surfactant types and their proportions, in order to obtain a stable liquid with the required structure will, in the light of the present teaching, now be fully within the capability of those Skilled in the art. However, it can be mentioned that an important sub-class of useful compositions is those where the detergent active material comprises one or more conventional or 'primary' surfactants, together with one or more stabilising surfactants. Typical blends useful for fabric washing compositions include those where the primary surfactant(s) comprise nonionic and/or a non-alkoxylated anionic and/or an alkoxylated anionic surfactant.
- The stabilising surfactant should have an average alkyl chain length greater than 6 carbon atoms, it is usually preferred that the stabilising surfactant have an average alkyl chain length greater than 8 carbon atoms. Some especially preferred classes of stabilising surfactants which may be used alone or in combination are:-
alkyl polyalkoxylated phosphates;
alkyl polyalkoxylated sulphosuccinates;
dialkyl diphenyloxide disulphonates; and
alkyl polysaccharides (sometimes called alkyl polyglucosides or polyglycosides). - A wide variety of such stabilising surfactants is known in the art, for example the alkyl polysaccharides described in European patent specification nos. EP-A-70 074; 70 075; 70 076; 70 077; 75 994; 75 995; 75 996 and 92 355.
- Especially preferred are those stabilising surfactants (of whatever chemical type) which have an SOR greater than 9.0.
- In many (but not all) cases, the total detergent active material may be present at from 2% to 50% by weight of the total composition, especially from 5% to 35% and most preferably from 10% to 30% by weight. Thus, these figures will apply both to blends of primary and stabilising surfactants, as well as to the case where the detergent active material consists entirely of stabilising surfactant. However, with blends of primary and stabilising surfactants, the amount of stabilising surfactant material will typically constitute from 0.1% to 45% by weight of the total composition, especially from 0.5% to 30% and most preferably from 1% to 30% by weight. In such blends, the stabilising surfactant will often constitute from 5% to 90% by weight of the total detergent active material, especially from 7.5% to 90% and most preferably from 10% to 90% by weight.
- Generally, it is very desirable that the compositions should have a rheology and a minimum stability, compatible with most commercial and retail requirements. For this reason, we generally prefer the compositions of the present invention to yield no more than 2% by volume phase separation upon storage at 25°C for 21 days from the time of preparation and to have a viscosity of no greater than 2.5 Pas, preferably 1 Pas at a shear rate of 21 s⁻¹.
- In the case of blends of primary and stabilising surfactants, the precise proportions of each component which will result in such stability and viscosity will depend on the type(s) and amount(s) of the electrolytes, as is the case with conventional structured liquids. Thus, by way of illustration, Figure 1 sl:ows a schematic representation of a typical ternary stability diagram for a blend of dodecyl benzene sulphonate (DoBS), a C₁₂₋₁₅ fatty alcohol ethoxylated with an average of 7 moles of ethylene oxide, and a stabilising surfactant. Locus I illustrates the boundary of compositions which are stable at one electrolyte level (say 10% by weight). For this boundary, the broken lines A, B, C have the following meanings
- A = Minimum weight fraction of stabilising surfactant with respect to the total surfactant level, to obtain a stable liquid detergent composition (here 0.06).
- B = Maximum weight fraction of ethoxylated fatty alcohol with respect to the total surfactant level, which can stably be incorporated (here 0.34).
- C = Minimum weight fraction of charged surfactant with respect to the total surfactant level (here 0.37), to obtain a stable liquid detergent composition (assuming the stabilising surfactant is nonionic in type).
- Locus II shows the same boundary at a higher electrolye level (say 12.5% by weight). Thus, it can be appreciated that when determining compositional parameters at different electrolyte levels, it is necessary to change the proportions of surfactants so that the test composition is always effectively in the same place relative to the stability boundary. Such adjustments similarly have to be made in determining the threshold levels A, B and C at different electrolyte levels, as will be shown hereinbelow by way of example.
- In such ternary surfactant blends, the use of a stabilising surfactant as a co-surfactant together with one or more primary surfactants leads to a larger stable area within the stability diagram (i.e. a wider range of surfactant ratios result in stable compositions) than would be expected from the additive behaviour of the respective binary combinations. Figure 2 represents a system of 23% total surfactant, 10% sodium citrate and 67% water, the surfactants being dodecyl benzene sulphonate, C₁₂₋₁₅E₇ and the stabilising surfactant C₁₂₋₁₃ G₃ (see key at end of Example 1). Ternary diagram a) shows the expected additive behavious from the binary systems whilst diagram b) shows the stability area found in practice. N.B. In these diagrams, numbers along the axes denote the fraction of surfactant with respect to the total surfactant in the composition.
- The detergent active material in general, may comprise one or more surfactants, and whether in the primary or stabilising categories, may be selected from anionic, cationic, nonionic, zwitterionic and amphoteric species, and (provided mutually compatible) mixtures thereof. For example, they may be chosen from any of the classes, subclasses and specific materials described in 'Surface Active Agents' Vol.I, by Schwartz & Perry, Interscience 1949 and 'Surface Active Agents' Vol.II by Schwartz, Perry & Berch (Interscience 1958), in the current edition of "McCutcheon's Emulsifiers & Detergents" published by the McCutcheon division of Manufacturing Confectioners Company or in 'Tensid-Taschenbuch', H.Stache, 2nd Edn., Carl Hanser Verlag, Munchen & Wien, 1981.
- In the case of the primary surfactants, suitable nonionic types includes in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are alkyl (C₆-C₁₈) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine. Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phospine oxides and dialkyl sulphoxides.
- The primary anionic detergent surfactants are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C₈-C₁₈) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C₉-C₂₀) benzene sulphonates, particularly sodium linear secondary alkyl (C₁₀-C₁₅) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C₈-C₁₈) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alpha-olefins (C₈-C₂₀) with sodium bisulphite and those derived from reacting paraffins with SO₂ and Cl₂ and then hydrolysing with a base to produce a random sulponate; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C₁₀-C₂₀ alpha-olefins, with SO₃ and then neutralising and hydrolysing the reaction product. The preferred anionic detergent compounds are sodium (C₁₁-C₁₅) alkyl benzene sulphonates and sodium (C₁₆-C₁₈) alkyl sulphates.
- It is also possible to include, as a primary surfactant, an alkali metal soap of a fatty acid, especially a soap of an acid having from 12 to 18 carbon atoms, for example oleic acid, ricinoleic acid, and fatty acids derived from castor oil, rapeseed oil, groundnut oil, coconut oil, palmkernel oil or mixtures thereof. The sodium or potassium soaps of these acids can be used, the potassium soaps being preferred.
- The compositions also contain electrolyte in an amount sufficient to bring about structuring of the detergent active material. Preferably though, the compositions contain from 1% to 60%, especially from 10 to 45% of a salting-out electrolyte. Salting-out electrolyte has the meaning ascribed to in specification EP-A-79 646. Optionally, some salting-in electrolyte (as defined in the latter specification) may also be included, provided if of a kind and in an amount compatible with the other components and the composition is still in accordance with the definition of the invention claimed herein. Some or all of the electrolyte (whether salting-in or salting-out), or any substantially water insoluble salt which may be present, may have detergency builder properties. In any event, it is preferred that compositions according to the present invention include detergency builder material, some or all of which may be electrolyte. The builder material is any capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline pH, the suspension of soil removed from the fabric and the dispersion of the fabric softening clay material.
- Examples of phosphorous-containing inorganic detergency builders, when present, include the water-soluble salts, especially alkali metal pyrophosphates, orthophosphates, polyphosphates and phosphonates. Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates and hexametaphosphates.
- Examples of non-phosphorus-containing inorganic detergency builders, when present, include water-insoluble alkali metal carbonates, bicarbinates, silicates and crystalline and amorphous alumino silicates. Specific examples include sodium carbonate (with or without calcite seeds), potassium carbonate, sodium and potassium bicarbonates, silicates and zeolites.
- Examples of organic detergency builders, when present, include the alkaline metal, ammonium and substituted ammonium polyacetyl carboxylates and polyhydroxysulphonates. Specific examples include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediaminetetraacetic acid, nitrilitriacetic acid, oxydisuccinic acid, melitic acid, benzene polycarboxylic acids, citric acid, tartrate disuccinic acid and tartrate mono-succinic acid.
- Apart from the ingredients already mentioned, a number of optional ingredients may also be present, for example lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, fabric softeners such as clays, amines and amine oxides, lather depressants, oxygen-releasing bleaching agents such as tricloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as proteases and amylases, germicides and colourants.
-
Claims (11)
alkyl polyalkoxylated phosphates;
alkyl polyalkoxylated sulphosuccinates;
dialkyl diphenyloxide disulphonates;
alkyl polysaccharides;
and mixtures thereof.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8803036 | 1988-02-10 | ||
GB888803036A GB8803036D0 (en) | 1988-02-10 | 1988-02-10 | Liquid detergents |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0328177A2 true EP0328177A2 (en) | 1989-08-16 |
EP0328177A3 EP0328177A3 (en) | 1990-07-04 |
EP0328177B1 EP0328177B1 (en) | 1994-08-03 |
Family
ID=10631434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89200163A Expired - Lifetime EP0328177B1 (en) | 1988-02-10 | 1989-01-26 | Liquid detergents |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0328177B1 (en) |
JP (1) | JPH06102795B2 (en) |
AU (1) | AU606501B2 (en) |
BR (1) | BR8900560A (en) |
CA (1) | CA1311398C (en) |
DE (1) | DE68917167T2 (en) |
ES (1) | ES2057087T3 (en) |
GB (1) | GB8803036D0 (en) |
ZA (1) | ZA891064B (en) |
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0724013A1 (en) * | 1995-01-30 | 1996-07-31 | Colgate-Palmolive Company | Pourable detergent concentrates which maintain or increase in viscosity after dilution with water |
US6218350B1 (en) | 1997-06-13 | 2001-04-17 | Lever Brothers Company, Division Of Conopco, Inc. | Bleaching enzymes |
US6518231B2 (en) | 2000-12-18 | 2003-02-11 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Enhancement of air bleaching catalysts |
US6586383B2 (en) | 2001-03-14 | 2003-07-01 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Air bleaching catalysts with moderating agent |
US6818149B2 (en) | 2000-12-15 | 2004-11-16 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Ligand and complex for catalytically bleaching a substrate |
EP2009088A2 (en) | 2004-09-23 | 2008-12-31 | Unilever Plc | Laundry treatment compositions |
EP2075326A1 (en) | 2007-12-18 | 2009-07-01 | Unilever PLC | Fabric laundering compositions comprising oxazolenes |
EP2103677A1 (en) | 2008-03-14 | 2009-09-23 | Unilever PLC | Laundry treatment compositions |
EP2228429A1 (en) | 2009-03-13 | 2010-09-15 | Unilever PLC | Shading dye and catalyst combination |
WO2010102861A1 (en) | 2009-03-12 | 2010-09-16 | Unilever Plc | Dye-polymers formulations |
WO2010119022A1 (en) | 2009-04-16 | 2010-10-21 | Unilever Plc | Polymer particles |
WO2010127919A1 (en) | 2009-05-05 | 2010-11-11 | Unilever Plc | Shading composition |
WO2011042372A1 (en) | 2009-10-08 | 2011-04-14 | Unilever Plc | Shading composition |
WO2011045195A1 (en) | 2009-10-13 | 2011-04-21 | Unilever Plc | Dye polymers |
WO2011047951A1 (en) | 2009-10-20 | 2011-04-28 | Unilever Plc | Laundry compositions |
WO2011047950A1 (en) | 2009-10-20 | 2011-04-28 | Unilever Plc | Improvements to laundry compositions |
WO2011047987A1 (en) | 2009-10-23 | 2011-04-28 | Unilever Plc | Dye polymers |
EP2343359A1 (en) | 2010-01-07 | 2011-07-13 | Unilever PLC | Detergent formulation containing spray dried granule |
WO2011082840A1 (en) | 2010-01-06 | 2011-07-14 | Unilever Plc | Surfactant ratio in dye formulations |
WO2011082889A1 (en) | 2010-01-07 | 2011-07-14 | Unilever Plc | Natural shading agents |
WO2011098355A1 (en) | 2010-02-09 | 2011-08-18 | Unilever Plc | Dye polymers |
WO2011098356A1 (en) | 2010-02-12 | 2011-08-18 | Unilever Plc | Laundry treatment composition comprising bis-azo shading dyes |
EP2360232A1 (en) | 2010-02-12 | 2011-08-24 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Surfactant ratio in laundry detergents comprising a dye |
WO2011134685A1 (en) | 2010-04-29 | 2011-11-03 | Unilever Plc | Bis-heterocyclic azo dyes |
WO2012004134A1 (en) | 2010-07-08 | 2012-01-12 | Unilever Plc | Compositions comprising optical benefit agents |
WO2012004132A1 (en) | 2010-07-08 | 2012-01-12 | Unilever Plc | Surfactant compositions comprising curved lamellar elements as a visual cue |
EP2441825A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Process for preparing laundry detergent particles |
EP2441823A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Particulate detergent compositions comprising surfactant, carbonate, and hydroxamate |
EP2441820A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Laundry detergent particles |
EP2441822A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Laundry detergent particles |
WO2012048909A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged particulate detergent composition |
WO2012049178A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012049033A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Top-loading laundry vessel method |
WO2012048948A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048910A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged particulate detergent composition |
WO2012049053A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Package comprising a laundry composition, dispenser for said package and method for washing using said dispenser and said package |
WO2012048949A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particle |
WO2012049034A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2012048955A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2012048951A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048947A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012049055A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Transparent packaging of detergent compositions |
WO2012049032A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Refill and refillable packages of concentrated particulate detergent compositions |
WO2012048950A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048945A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Particulate detergent compositions comprising fluorescer |
WO2012048956A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged concentrated particulate detergent composition |
WO2012052305A1 (en) | 2010-10-22 | 2012-04-26 | Unilever Plc | Improvements relating to laundry products |
WO2012059363A1 (en) | 2010-11-01 | 2012-05-10 | Unilever Nv | A detergent composition having shading dyes and lipase |
WO2012098046A1 (en) | 2011-01-17 | 2012-07-26 | Unilever Plc | Dye polymer for laundry treatment |
WO2012119859A1 (en) | 2011-03-10 | 2012-09-13 | Unilever Plc | Dye polymer |
WO2012130492A1 (en) | 2011-03-25 | 2012-10-04 | Unilever Plc | Dye polymer |
WO2012159778A1 (en) | 2011-05-26 | 2012-11-29 | Unilever Plc | Liquid laundry composition |
WO2013011071A1 (en) | 2011-07-21 | 2013-01-24 | Unilever Plc | Liquid laundry composition |
WO2013037643A1 (en) | 2011-09-15 | 2013-03-21 | Unilever Plc | Detergent compositions comprising surfactant and enzyme |
WO2013087286A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions |
WO2013087285A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions and uses |
WO2013087287A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions |
EP2639291A1 (en) | 2012-03-13 | 2013-09-18 | Unilever PLC | Packaged particulate detergent composition |
WO2013139702A1 (en) | 2012-03-21 | 2013-09-26 | Unilever Plc | Laundry detergent particles |
WO2013149753A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2013149752A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2013149755A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2013149754A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particle |
WO2014048857A1 (en) | 2012-09-25 | 2014-04-03 | Unilever Plc | Laundry detergent particles |
WO2014060235A2 (en) | 2012-10-17 | 2014-04-24 | Unilever Plc | Laundry compositions |
WO2014079622A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Ingredient for use in a laundry composition |
WO2014079620A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Laundry compositions |
WO2014079621A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Laundry compositions |
WO2015078692A1 (en) | 2013-11-27 | 2015-06-04 | Unilever Plc | Laundry compositions |
WO2015078764A1 (en) | 2013-11-27 | 2015-06-04 | Unilever Plc | Laundry compositions |
WO2016041676A1 (en) | 2014-09-18 | 2016-03-24 | Unilever Plc | Whitening composition |
WO2016110378A1 (en) | 2015-01-09 | 2016-07-14 | Unilever Plc | Laundry treatment composition comprising a dye |
WO2016110379A1 (en) | 2015-01-06 | 2016-07-14 | Unilever Plc | Laundry composition |
WO2016206838A1 (en) | 2015-06-26 | 2016-12-29 | Unilever Plc | Laundry detergent composition |
EP3190167A1 (en) | 2016-01-07 | 2017-07-12 | Unilever PLC | Bitter pill |
WO2017121714A1 (en) | 2016-01-15 | 2017-07-20 | Unilever Plc | Dye |
WO2017140392A1 (en) | 2016-02-17 | 2017-08-24 | Unilever Plc | Whitening composition |
WO2017140391A1 (en) | 2016-02-17 | 2017-08-24 | Unilever Plc | Whitening composition |
WO2017198438A1 (en) | 2016-05-17 | 2017-11-23 | Unilever Plc | Liquid laundry detergent compositions |
WO2017198574A1 (en) | 2016-05-17 | 2017-11-23 | Unilever Plc | Liquid laundry detergent compositions |
WO2018072979A1 (en) | 2016-10-18 | 2018-04-26 | Unilever Plc | Whitening composition |
EP3354792A1 (en) | 2011-06-01 | 2018-08-01 | Unilever PLC, a company registered in England and Wales under company no. 41424 of | Liquid detergent composition containing dye polymer |
EP3401384A1 (en) * | 2017-05-10 | 2018-11-14 | Unilever PLC | Liquid laundry detergent composition |
WO2018234003A1 (en) | 2017-06-21 | 2018-12-27 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2018234056A1 (en) | 2017-06-20 | 2018-12-27 | Unilever N.V. | Particulate detergent composition comprising perfume |
WO2019008036A1 (en) | 2017-07-07 | 2019-01-10 | Unilever Plc | Whitening composition |
WO2019008035A1 (en) | 2017-07-07 | 2019-01-10 | Unilever Plc | Laundry cleaning composition |
WO2019012013A1 (en) | 2017-07-14 | 2019-01-17 | Unilever Plc | Method for assessing fabric conditioner |
WO2019115435A1 (en) | 2017-12-12 | 2019-06-20 | Unilever N.V. | High moisture retaining structuring system for detergent composition |
US10370621B2 (en) | 2013-08-16 | 2019-08-06 | Chemsenti Limited | Bleaching formulations comprising particles and transition metal ion-containing bleaching catalysts |
WO2019162136A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Detergent solid composition comprising aminopolycarboxylate and organic acid |
WO2019219302A1 (en) | 2018-05-17 | 2019-11-21 | Unilever Plc | Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants |
WO2020016097A1 (en) | 2018-07-17 | 2020-01-23 | Unilever Plc | Use of a rhamnolipid in a surfactant system |
WO2020020703A1 (en) | 2018-07-27 | 2020-01-30 | Unilever N.V. | Laundry detergent |
WO2020151992A1 (en) | 2019-01-22 | 2020-07-30 | Unilever N.V. | Laundry detergent |
WO2020151959A1 (en) | 2019-01-22 | 2020-07-30 | Unilever N.V. | Laundry detergent |
WO2021032834A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Detergent solid composition |
WO2021151536A1 (en) | 2020-01-29 | 2021-08-05 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2021204831A1 (en) | 2020-04-09 | 2021-10-14 | Unilever Ip Holdings B.V. | Laundry detergent composition |
WO2022023250A1 (en) | 2020-07-27 | 2022-02-03 | Unilever Ip Holdings B.V. | Use of an enzyme and surfactant for inhibiting microorganisms |
WO2022128786A1 (en) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Use and cleaning composition |
WO2022128781A1 (en) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Cleaning composition |
WO2022268728A1 (en) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Unit dose cleaning composition |
WO2023006382A1 (en) | 2021-07-26 | 2023-02-02 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2023233028A1 (en) | 2022-06-03 | 2023-12-07 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2024046743A1 (en) | 2022-08-30 | 2024-03-07 | Unilever Ip Holdings B.V. | Detergent product |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8803036D0 (en) * | 1988-02-10 | 1988-03-09 | Unilever Plc | Liquid detergents |
GB8803037D0 (en) * | 1988-02-10 | 1988-03-09 | Unilever Plc | Aqueous detergent compositions & methods of forming them |
WO1991016409A1 (en) * | 1990-04-25 | 1991-10-31 | Unilever N.V. | Liquid detergent compositions |
GB0222501D0 (en) | 2002-09-27 | 2002-11-06 | Unilever Plc | Composition and method for bleaching a substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0080221A1 (en) * | 1981-11-13 | 1983-06-01 | Unilever N.V. | Stable liquid detergent suspensions |
EP0154362A1 (en) * | 1984-02-16 | 1985-09-11 | Unilever N.V. | Liquid detergent compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8803036D0 (en) * | 1988-02-10 | 1988-03-09 | Unilever Plc | Liquid detergents |
-
1988
- 1988-02-10 GB GB888803036A patent/GB8803036D0/en active Pending
-
1989
- 1989-01-26 ES ES89200163T patent/ES2057087T3/en not_active Expired - Lifetime
- 1989-01-26 EP EP89200163A patent/EP0328177B1/en not_active Expired - Lifetime
- 1989-01-26 DE DE68917167T patent/DE68917167T2/en not_active Expired - Fee Related
- 1989-02-06 AU AU29675/89A patent/AU606501B2/en not_active Ceased
- 1989-02-06 CA CA000590211A patent/CA1311398C/en not_active Expired - Fee Related
- 1989-02-09 BR BR898900560A patent/BR8900560A/en not_active IP Right Cessation
- 1989-02-10 ZA ZA891064A patent/ZA891064B/en unknown
- 1989-02-10 JP JP1032556A patent/JPH06102795B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0080221A1 (en) * | 1981-11-13 | 1983-06-01 | Unilever N.V. | Stable liquid detergent suspensions |
EP0154362A1 (en) * | 1984-02-16 | 1985-09-11 | Unilever N.V. | Liquid detergent compositions |
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0724013A1 (en) * | 1995-01-30 | 1996-07-31 | Colgate-Palmolive Company | Pourable detergent concentrates which maintain or increase in viscosity after dilution with water |
US6218350B1 (en) | 1997-06-13 | 2001-04-17 | Lever Brothers Company, Division Of Conopco, Inc. | Bleaching enzymes |
US6818149B2 (en) | 2000-12-15 | 2004-11-16 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Ligand and complex for catalytically bleaching a substrate |
US6518231B2 (en) | 2000-12-18 | 2003-02-11 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Enhancement of air bleaching catalysts |
US6586383B2 (en) | 2001-03-14 | 2003-07-01 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Air bleaching catalysts with moderating agent |
EP2009088A2 (en) | 2004-09-23 | 2008-12-31 | Unilever Plc | Laundry treatment compositions |
EP2133409A2 (en) | 2004-09-23 | 2009-12-16 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Shading Fabric Conditioner |
EP2075326A1 (en) | 2007-12-18 | 2009-07-01 | Unilever PLC | Fabric laundering compositions comprising oxazolenes |
EP2103677A1 (en) | 2008-03-14 | 2009-09-23 | Unilever PLC | Laundry treatment compositions |
WO2010102861A1 (en) | 2009-03-12 | 2010-09-16 | Unilever Plc | Dye-polymers formulations |
EP2228429A1 (en) | 2009-03-13 | 2010-09-15 | Unilever PLC | Shading dye and catalyst combination |
WO2010119022A1 (en) | 2009-04-16 | 2010-10-21 | Unilever Plc | Polymer particles |
WO2010119065A1 (en) | 2009-04-16 | 2010-10-21 | Unilever Plc | Surfactant compositions comprising lamellar elements as a visual cue |
WO2010127919A1 (en) | 2009-05-05 | 2010-11-11 | Unilever Plc | Shading composition |
WO2011042372A1 (en) | 2009-10-08 | 2011-04-14 | Unilever Plc | Shading composition |
WO2011045195A1 (en) | 2009-10-13 | 2011-04-21 | Unilever Plc | Dye polymers |
WO2011047951A1 (en) | 2009-10-20 | 2011-04-28 | Unilever Plc | Laundry compositions |
WO2011047950A1 (en) | 2009-10-20 | 2011-04-28 | Unilever Plc | Improvements to laundry compositions |
WO2011047987A1 (en) | 2009-10-23 | 2011-04-28 | Unilever Plc | Dye polymers |
WO2011082840A1 (en) | 2010-01-06 | 2011-07-14 | Unilever Plc | Surfactant ratio in dye formulations |
EP2343359A1 (en) | 2010-01-07 | 2011-07-13 | Unilever PLC | Detergent formulation containing spray dried granule |
WO2011082889A1 (en) | 2010-01-07 | 2011-07-14 | Unilever Plc | Natural shading agents |
WO2011082842A1 (en) | 2010-01-07 | 2011-07-14 | Unilever Plc | Detergent formulation containing spray dried granule |
WO2011098355A1 (en) | 2010-02-09 | 2011-08-18 | Unilever Plc | Dye polymers |
WO2011098356A1 (en) | 2010-02-12 | 2011-08-18 | Unilever Plc | Laundry treatment composition comprising bis-azo shading dyes |
EP2360232A1 (en) | 2010-02-12 | 2011-08-24 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Surfactant ratio in laundry detergents comprising a dye |
WO2011134685A1 (en) | 2010-04-29 | 2011-11-03 | Unilever Plc | Bis-heterocyclic azo dyes |
WO2012004134A1 (en) | 2010-07-08 | 2012-01-12 | Unilever Plc | Compositions comprising optical benefit agents |
WO2012004132A1 (en) | 2010-07-08 | 2012-01-12 | Unilever Plc | Surfactant compositions comprising curved lamellar elements as a visual cue |
EP2441822A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Laundry detergent particles |
WO2012048956A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged concentrated particulate detergent composition |
EP2441820A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Laundry detergent particles |
EP2441825A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Process for preparing laundry detergent particles |
WO2012048909A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged particulate detergent composition |
WO2012049178A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012049033A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Top-loading laundry vessel method |
WO2012048948A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048910A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaged particulate detergent composition |
WO2012049053A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Package comprising a laundry composition, dispenser for said package and method for washing using said dispenser and said package |
WO2012048949A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particle |
WO2012049034A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2012048955A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2012048951A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048947A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012049055A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Transparent packaging of detergent compositions |
WO2012049032A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Refill and refillable packages of concentrated particulate detergent compositions |
WO2012048950A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Laundry detergent particles |
WO2012048945A1 (en) | 2010-10-14 | 2012-04-19 | Unilever Plc | Particulate detergent compositions comprising fluorescer |
EP2441823A1 (en) | 2010-10-14 | 2012-04-18 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Particulate detergent compositions comprising surfactant, carbonate, and hydroxamate |
WO2012052305A1 (en) | 2010-10-22 | 2012-04-26 | Unilever Plc | Improvements relating to laundry products |
WO2012059363A1 (en) | 2010-11-01 | 2012-05-10 | Unilever Nv | A detergent composition having shading dyes and lipase |
EP2787066A1 (en) | 2010-11-01 | 2014-10-08 | Unilever N.V. | A detergent composition having shading dyes and lipase |
WO2012098046A1 (en) | 2011-01-17 | 2012-07-26 | Unilever Plc | Dye polymer for laundry treatment |
WO2012119859A1 (en) | 2011-03-10 | 2012-09-13 | Unilever Plc | Dye polymer |
WO2012130492A1 (en) | 2011-03-25 | 2012-10-04 | Unilever Plc | Dye polymer |
WO2012159778A1 (en) | 2011-05-26 | 2012-11-29 | Unilever Plc | Liquid laundry composition |
EP4134424A1 (en) | 2011-06-01 | 2023-02-15 | Unilever IP Holdings B.V. | Liquid detergent composition containing dye polymer |
EP3354792A1 (en) | 2011-06-01 | 2018-08-01 | Unilever PLC, a company registered in England and Wales under company no. 41424 of | Liquid detergent composition containing dye polymer |
WO2013011071A1 (en) | 2011-07-21 | 2013-01-24 | Unilever Plc | Liquid laundry composition |
WO2013037643A1 (en) | 2011-09-15 | 2013-03-21 | Unilever Plc | Detergent compositions comprising surfactant and enzyme |
WO2013087287A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions |
WO2013087284A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions |
WO2013087285A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions and uses |
WO2013087286A1 (en) | 2011-12-12 | 2013-06-20 | Unilever Plc | Laundry compositions |
EP2639291A1 (en) | 2012-03-13 | 2013-09-18 | Unilever PLC | Packaged particulate detergent composition |
WO2013139702A1 (en) | 2012-03-21 | 2013-09-26 | Unilever Plc | Laundry detergent particles |
WO2013149755A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2013149754A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particle |
WO2013149752A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2013149753A1 (en) | 2012-04-03 | 2013-10-10 | Unilever Plc | Laundry detergent particles |
WO2014048857A1 (en) | 2012-09-25 | 2014-04-03 | Unilever Plc | Laundry detergent particles |
WO2014060235A2 (en) | 2012-10-17 | 2014-04-24 | Unilever Plc | Laundry compositions |
WO2014079622A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Ingredient for use in a laundry composition |
WO2014079620A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Laundry compositions |
WO2014079621A1 (en) | 2012-11-20 | 2014-05-30 | Unilever Plc | Laundry compositions |
US10370621B2 (en) | 2013-08-16 | 2019-08-06 | Chemsenti Limited | Bleaching formulations comprising particles and transition metal ion-containing bleaching catalysts |
WO2015078692A1 (en) | 2013-11-27 | 2015-06-04 | Unilever Plc | Laundry compositions |
WO2015078764A1 (en) | 2013-11-27 | 2015-06-04 | Unilever Plc | Laundry compositions |
WO2016041676A1 (en) | 2014-09-18 | 2016-03-24 | Unilever Plc | Whitening composition |
WO2016110379A1 (en) | 2015-01-06 | 2016-07-14 | Unilever Plc | Laundry composition |
WO2016110378A1 (en) | 2015-01-09 | 2016-07-14 | Unilever Plc | Laundry treatment composition comprising a dye |
WO2016206838A1 (en) | 2015-06-26 | 2016-12-29 | Unilever Plc | Laundry detergent composition |
EP3190167A1 (en) | 2016-01-07 | 2017-07-12 | Unilever PLC | Bitter pill |
WO2017121714A1 (en) | 2016-01-15 | 2017-07-20 | Unilever Plc | Dye |
WO2017140392A1 (en) | 2016-02-17 | 2017-08-24 | Unilever Plc | Whitening composition |
WO2017140391A1 (en) | 2016-02-17 | 2017-08-24 | Unilever Plc | Whitening composition |
WO2017198574A1 (en) | 2016-05-17 | 2017-11-23 | Unilever Plc | Liquid laundry detergent compositions |
WO2017198438A1 (en) | 2016-05-17 | 2017-11-23 | Unilever Plc | Liquid laundry detergent compositions |
WO2018072979A1 (en) | 2016-10-18 | 2018-04-26 | Unilever Plc | Whitening composition |
EP3401384A1 (en) * | 2017-05-10 | 2018-11-14 | Unilever PLC | Liquid laundry detergent composition |
WO2018206196A1 (en) * | 2017-05-10 | 2018-11-15 | Unilever Plc | Liquid laundry detergent composition |
CN110520514A (en) * | 2017-05-10 | 2019-11-29 | 荷兰联合利华有限公司 | Liquid laundry detergent compositions |
CN110520514B (en) * | 2017-05-10 | 2021-05-07 | 荷兰联合利华有限公司 | Liquid laundry detergent compositions |
WO2018234056A1 (en) | 2017-06-20 | 2018-12-27 | Unilever N.V. | Particulate detergent composition comprising perfume |
WO2018234003A1 (en) | 2017-06-21 | 2018-12-27 | Unilever Plc | Packaging and dispensing of detergent compositions |
WO2019008035A1 (en) | 2017-07-07 | 2019-01-10 | Unilever Plc | Laundry cleaning composition |
WO2019008036A1 (en) | 2017-07-07 | 2019-01-10 | Unilever Plc | Whitening composition |
WO2019012013A1 (en) | 2017-07-14 | 2019-01-17 | Unilever Plc | Method for assessing fabric conditioner |
WO2019115435A1 (en) | 2017-12-12 | 2019-06-20 | Unilever N.V. | High moisture retaining structuring system for detergent composition |
WO2019162133A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Shaped detergent product composition comprising aminopolycarboxylate |
WO2019162138A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Solid compositions comprising aminopolycarboxylate |
WO2019162134A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Solid compositions comprising aminopolycarboxylate |
WO2019162135A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Process of preparing a solid composition comprising aminopolycarboxylate |
WO2019162132A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Detergent solid composition comprising aminopolycarboxylate and inorganic acid. |
WO2019162136A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Detergent solid composition comprising aminopolycarboxylate and organic acid |
WO2019162130A1 (en) | 2018-02-23 | 2019-08-29 | Unilever N.V. | Shaped detergent product comprising aminopolycarboxylate |
WO2019219302A1 (en) | 2018-05-17 | 2019-11-21 | Unilever Plc | Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants |
WO2020016097A1 (en) | 2018-07-17 | 2020-01-23 | Unilever Plc | Use of a rhamnolipid in a surfactant system |
WO2020020703A1 (en) | 2018-07-27 | 2020-01-30 | Unilever N.V. | Laundry detergent |
WO2020151959A1 (en) | 2019-01-22 | 2020-07-30 | Unilever N.V. | Laundry detergent |
WO2020151992A1 (en) | 2019-01-22 | 2020-07-30 | Unilever N.V. | Laundry detergent |
WO2021032817A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Detergent solid composition |
WO2021032833A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Detergent solid composition |
WO2021032815A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | An embossed detergent solid |
WO2021032816A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Detergent solid composition |
WO2021032834A1 (en) | 2019-08-21 | 2021-02-25 | Unilever Ip Holdings B.V. | Detergent solid composition |
WO2021151640A1 (en) | 2020-01-29 | 2021-08-05 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2021151536A1 (en) | 2020-01-29 | 2021-08-05 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2021204831A1 (en) | 2020-04-09 | 2021-10-14 | Unilever Ip Holdings B.V. | Laundry detergent composition |
WO2021204636A1 (en) | 2020-04-09 | 2021-10-14 | Unilever Ip Holdings B.V. | Laundry detergent composition |
WO2022023250A1 (en) | 2020-07-27 | 2022-02-03 | Unilever Ip Holdings B.V. | Use of an enzyme and surfactant for inhibiting microorganisms |
WO2022128786A1 (en) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Use and cleaning composition |
WO2022128781A1 (en) | 2020-12-17 | 2022-06-23 | Unilever Ip Holdings B.V. | Cleaning composition |
WO2022268657A1 (en) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Unit dose cleaning composition |
WO2022268728A1 (en) | 2021-06-24 | 2022-12-29 | Unilever Ip Holdings B.V. | Unit dose cleaning composition |
WO2023006382A1 (en) | 2021-07-26 | 2023-02-02 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2023233028A1 (en) | 2022-06-03 | 2023-12-07 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2023233026A1 (en) | 2022-06-03 | 2023-12-07 | Unilever Ip Holdings B.V. | Laundry detergent product |
WO2023233025A1 (en) | 2022-06-03 | 2023-12-07 | Unilever Ip Holdings B.V. | Liquid detergent product |
WO2024046743A1 (en) | 2022-08-30 | 2024-03-07 | Unilever Ip Holdings B.V. | Detergent product |
WO2024046756A1 (en) | 2022-08-30 | 2024-03-07 | Unilever Ip Holdings B.V. | Detergent product |
WO2024046757A1 (en) | 2022-08-30 | 2024-03-07 | Unilever Ip Holdings B.V. | Detergent product |
Also Published As
Publication number | Publication date |
---|---|
GB8803036D0 (en) | 1988-03-09 |
BR8900560A (en) | 1989-10-10 |
DE68917167T2 (en) | 1994-11-24 |
ES2057087T3 (en) | 1994-10-16 |
CA1311398C (en) | 1992-12-15 |
AU606501B2 (en) | 1991-02-07 |
JPH01268800A (en) | 1989-10-26 |
AU2967589A (en) | 1989-08-10 |
ZA891064B (en) | 1990-10-31 |
EP0328177B1 (en) | 1994-08-03 |
DE68917167D1 (en) | 1994-09-08 |
EP0328177A3 (en) | 1990-07-04 |
JPH06102795B2 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0328177B1 (en) | Liquid detergents | |
EP0301883B1 (en) | Liquid detergent compositions | |
US5776883A (en) | Structured liquid detergent compositions containing nonionic structuring polymers providing enhanced shear thinning behavior | |
EP0763595B1 (en) | Detergent composition | |
EP0301882B1 (en) | Liquid detergent compositions | |
EP0526539B1 (en) | Liquid detergent compositions | |
US5205957A (en) | Structured aqueous liquid detergents containing functional polymers | |
EP0499623B1 (en) | Detergent compositions | |
CA2345644A1 (en) | Detergent composition | |
EP0362916B1 (en) | Liquid detergent compositions | |
GB2237813A (en) | Liquid detergent | |
EP0359308B1 (en) | Liquid detergents | |
EP0498806B1 (en) | Detergent compositions | |
EP0301884B1 (en) | Liquid detergent compositions | |
US5573701A (en) | Liquid detergent composition | |
AU652736B2 (en) | Liquid bleach composition | |
CA2022902A1 (en) | Heavy duty washing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900531 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER N.V. Owner name: UNILEVER PLC |
|
17Q | First examination report despatched |
Effective date: 19930528 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 68917167 Country of ref document: DE Date of ref document: 19940908 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2057087 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89200163.7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970107 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20051229 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060117 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060119 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060126 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060127 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060131 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060228 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070801 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070126 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20070801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070801 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070126 |