EP0301884B1 - Liquid detergent compositions - Google Patents
Liquid detergent compositions Download PDFInfo
- Publication number
- EP0301884B1 EP0301884B1 EP19880307008 EP88307008A EP0301884B1 EP 0301884 B1 EP0301884 B1 EP 0301884B1 EP 19880307008 EP19880307008 EP 19880307008 EP 88307008 A EP88307008 A EP 88307008A EP 0301884 B1 EP0301884 B1 EP 0301884B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- composition according
- composition
- surfactant system
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims description 106
- 239000003599 detergent Substances 0.000 title claims description 62
- 239000007788 liquid Substances 0.000 title claims description 25
- 239000004094 surface-active agent Substances 0.000 claims description 87
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 239000003792 electrolyte Substances 0.000 claims description 32
- 239000004744 fabric Substances 0.000 claims description 13
- 125000000129 anionic group Chemical group 0.000 claims description 11
- 230000008014 freezing Effects 0.000 claims description 10
- 238000007710 freezing Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 239000004615 ingredient Substances 0.000 claims description 7
- 150000002191 fatty alcohols Chemical class 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 102000035195 Peptidases Human genes 0.000 claims description 3
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 238000007046 ethoxylation reaction Methods 0.000 claims description 3
- 239000003752 hydrotrope Substances 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 claims description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims 2
- 238000010936 aqueous wash Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 33
- 239000000463 material Substances 0.000 description 19
- 239000012071 phase Substances 0.000 description 18
- 239000011734 sodium Substances 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 10
- -1 aliphatic alcohols Chemical class 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000003703 phosphorus containing inorganic group Chemical group 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical class [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229950009390 symclosene Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0026—Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
Definitions
- This invention relates to aqueous liquid detergent compositions for washing fabrics.
- the present invention now provides an aqueous liquid detergent composition with a pH of 12 or less at 1% weight concentration in water and a viscosity no greater than 1.5 Pas at a shear rate of 21s ⁇ 1, comprising at least 1% by weight of dissolved electrolyte and at least 1% by weight of a surfactant system which consists of one or more detergent surfactants comprising a nonionic detergent surfactant, which surfactant system somewhere between 0.0001% and 5% weight concentration alone in water has a cloudy phase somewhere in the temperature range of 40°C down to the freezing point of the surfactant system at that concentration in water, wherein the surfactant system in the composition is in the form of a lamellar phase, and the composition comprises 55.1% by weight or less water.
- the detergent surfactants which make up the surfactant system maybe selected from known anionic, nonionic, zwitterionic and amphoteric detergent surfactants, for example as chosen from the classes, sub-classes and specific examples of such detergent surfactants described in Surface Active Agents Vol. I by Schwartz and Perry, Interscience (1949) and Vol II by Schwartz, Perry and Berch, Interscience (1958), in the current edition of "McCutcheon's Emulsifiers & Detergents" published by the McCutcheon division of Manufacturing Confectioners Company or in ′Tensid-Taschenbuch′, H.Stache, 2nd ed., Carl Hanser Verlag, München & Wien, 1981.
- An alternative aspect of the present invention provides an aqueous liquid detergent composition with a pH of 12 or less at 1% weight concentration in water and a viscosity no greater than 1.5 Pas at a shear rate of 21s ⁇ 1, comprising at least 1% by weight of dissolved electrolyte and at least 1% by weight of a surfactant system which consists of one or more detergent surfactants including a nonionic detergent surfactant which somewhere between 0.0001% and 5% weight concentration alone in water has a cloudy phase somewhere in the temperature range of 40°C down to the freezing point of the nonionic detergent surfactant at that concentration in water, wherein the surfactant system in the composition is in the form of a lamellar phase, and the composition comprises a protéolytic enzyme.
- the aqueous concentration at which the cloudy phase exists at one or more temperatures in the range of 40°C dawn to the freezing point of the surfactant system in distilled water may be a specific concentration, or more often, will span a range of such concentrations. This concentration is preferably 3% and/or 1% and/or 0.1% and/or 0.01% by weight.
- the surfactant system or the nonionic detergent surfactant When regarded from the point of view of a fixed relevant aqueous concentration, the surfactant system or the nonionic detergent surfactant, as appropriate, has a cloudy phase somewhere in the temperature range from 40°C, preferably 15°C, most preferably 10°C down to the freezing point in distilled water at that concentration. In practice, this means that it has a cloud point of not more than 40°C, preferably 15°C, most preferably 10°C. In other words, it is clear from the freezing point up to the cloud point which is the onset of turbidity, i.e. at 40°C or less. In fact, many will be cloudy right down to the freezing point of the composition.
- cloudy phase includes ′cloud phase′ and all other turbid phases e.g. lamellar phase, as will be known to those skilled in the art.
- Cloud phase and cloud point have the meanings ascribed to them in Surface Active Ethylene Oxide Adducts by N. Schonfeldt, Pergamon Press 1969, pp 145 to 154.
- the cloud point of a surfactant material is the temperature at which association between the surfactant and water molecules through hydrogen bonding breaks down, leading to the separation of surfactant rich and water rich phases and a consequential increase in turbidity or cloudiness.
- the cloud point correlates approximately to the hydrophilic ⁇ lipophilic balance (HLB) of the surfactant system.
- HLB hydrophilic ⁇ lipophilic balance
- the surfactant system, or one nonionic detergent surfactant which is part of that system has an HLB equal to or less than 10.5, especially less than 10.0 or even below 9.5.
- the HLB should preferably be above 6.0, most preferably above 7.5.
- nonionic detergent surfactants which may be used include in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Specific nonionic detergent compounds are alkyl (C6-C22) phenols-ethylene oxide condensates, the condensation products of aliphatic (C8-C18) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine.
- Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- alkylene oxides adducts of fatty materials are used as the nonionic detergent compounds
- the number of alkylene oxide groups per molecule has a considerable effect upon the cloud point as indicated by the Schonfeldt reference mentioned above.
- the chain length and nature of the fatty material is also influential, and thus the preferred number of alkylene oxide groups per molecule depends upon the nature and chain length of the fatty material.
- the adduct having 3 ethylene oxide (EO) groups per molecule has a cloud point of less than 0°C and is therefore suitable for use in the present invention.
- a similar detergent surfactant having 7 ethylene oxide groups per molecule has a cloud point of about 48°C and is therefore unsuitable. Further ethoxylation raises the cloud point still higher.
- the similar detergent surfactant with 11 ethylene oxide groups per molecule has a cloud point higher than 80°C.
- the required cloud point can be achieved if the average degree of ethoxylation per molecule is less than 56% by weight and/or the average number of EO groups per molecule is six or less, typically about 3.
- nonionic detergent surfactants are known per se from a variety of references such as GB-A-1241754 or US 4537708.
- the former reference whilst mentioning the possibility of liquids, discloses no example of a stable, pourable liquid.
- the latter discloses slurries containing sodium tripolyphosphate and at least 13% by weight of detergent surfactants. Such slurries have unacceptably high viscosities in the context of the present invention.
- UK patent specification GB-A-2153839 discloses examples of aqueous liquid detergent compositions which contain some low-detergency, foam boosting surfactants of the long-chain ethanolamide or diethanolamide kind which are not detergent surfactants as defined herein.
- nonionic detergent surfactants will not necessarily cause loss of cloudiness of the whole system, under the relevant conditions, for example because of non-ideal mixing of components in the product, which is a condition which can remain even after transport or prolonged storage, or because of the properties of the surfactant system as a whole.
- the anionic detergent surfactants are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C8-C18) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C9-C20) benzene sulphonates, particularly sodium linear secondary alkyl (C10-C15) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C8-C18) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; alkane monosulphonates such as those derived by reacting alpha-olefin
- an alkali metal soap of a fatty acid especially a soap of an acid having from 12 to 18 carbon atoms, for example oleic acid, ricinoleic acid, and fatty acids derived from castor oil, rapeseed oil, groundnut oil, coconut oil, palmkernel oil or mixtures thereof.
- the sodium or potassium soaps of these acids can be used, the potassium soaps being preferred.
- the requirement of a pH of 12 or less at 1% aqueous dilution is to exclude a number of disadvantages.
- a major benefit of many compositions according to the present invention is a fabric softening effect.
- Very alkaline wash solutions tend to have a harshening effect.
- the present invention also requires the compositions to have a viscosity no greater than 1.5 Pas at a shear rate of 21s ⁇ 1. However, at the latter shear rate, many practical embodiments will have a viscosity no greater than 1.25 Pas, preferably 1.0 Pas, 900 mPas, or even 850 mPas.
- This low viscosity may be achieved by incorporating sufficient hydrotrope in the composition to render the system isotropic.
- Hydrotropes are water soluble compounds which serve to increase the solubility of surfactants in aqueous solution and are well known in the art. Typical examples are lower alkanols such as ethanol, alkanolamines, e.g. triethanolamine, salts of aralkyl sulphonates and those with ureum types of molecule.
- the composition as a whole is anisotropic (structured) and comprises a lamellar phase formed by the surfactant system, preferably as lamellar droplets dispersed in an aqueous continuous phase which contains the dissolved electrolyte.
- the composition should be formulated as described hereinbelow.
- the composition either includes at least one special viscosity-reducing polymer (as defined hereinbelow) and/or at least one of the following three rules must be applied.
- the first rule is that the surfactant system also should contain an anionic detergent surfactant and that the anionic: nonionic weight ratio should be 6: 1 or less of the anionic, but most frequently, 4: 1 or less.
- EP-A-38,101 describes structured liquids based on a blend of anionic and nonionic surfactants with an alkali metal soap incorporated to ensure stability.
- many of those compositions of the present invention which are structured can be formulated stably without soap, for example where the ratio of anionic to nonionic surfactants is from 6: 1 to 1: 2, preferably from 4: 1 to 1: 1, especially from 3: 1 to 4: 3.
- soap when soap is included, stability can be obtained for a greater range of anionic/nonionic blends, than with the prior art compositions.
- the anionics may (for example) be as described in the aforementioned EP-A-38,101.
- the second rule is that the weight ratio of the surfactant system to water is 5: 1 or less of the surfactant system.
- any suspended solids should contribute no more than 15%, preferably no more than 10% by volume of the total composition.
- the special viscosity reducing polymer(s) can be selected from one of two classes, or from both.
- the first class of special viscosity reducing polymers comprises those polymers which would be only partly dissolved in the aqueous continuous phase as described in our UK patent application no. 8718216 (corresponding to EP 301882). allows a viscosity reduction (due to the polymer which is dissolved) whilst incorporating a sufficiently high amount to achieve a secondary benefit, especially building, because the part which is not dissolved does not bring about the instabilty that would occur if substantially all were dissolved.
- partly-dissolved polymers include many of the polymer and co-polymers salts already known as detergency builders. For example, may be used (including building and non-building polymers) polyethylene glycols, polyacrylates, polymaleates, polysugars, polysugarsulphonates and co-polymers of any of these.
- the partly dissolved polymer comprises a co-polymer which includes an alkali metal salt of a polyacrylic, polymethacrylic or maleic acid or anhydride.
- compositions with these co-polymers have a pH of above 8.0.
- the amount of viscosity reducing polymer can vary widely according to the formulation of the rest of the composition. However, typical amounts are from 0.5 to 4.5% by weight.
- the second class of special viscosity reducing polymers comprises those polymers which are substantially totally soluble in the aqueous phase and have an electrolyte resistance of more than 5 grams sodium nitriolotriacetate in 100 ml of a 5% by weight aqueous solution of the polymer, said soluble polymer also having a vapour pressure in 20% aqueous solution, equal to or less than the vapour pressure of a reference 2% by weight or greater aqueous solution of polyethylene glycol having an average molecular weight of 6000; said soluble polymer having a molecular weight of at least 1000.
- Use of such polymers is generally described in our UK patent application No. 8718217 (corresponding to EP 301883).
- the incorporation of the soluble polymer permits formulation with improved stability at the same viscosity (relative to the composition without the soluble polymer) or lower viscosity with the same stability.
- the soluble polymer can also reduce viscosity drift, even when it also brings about a viscosity reduction.
- the soluble polymer is especially preferred to incorporate with a partly-dissolved polymer which has a large insoluble component. That is because although the building capacity of the partly dissolved polymer will be good (since relatively high quantities can be stably incorporated), the viscosity reduction will not be optimum (since,little will be dissolved). Thus, the soluble polymer can usefully function to reduce the viscosity further, to an ideal level.
- the soluble polymer can, for example, be incorporated at from 0.05 to 20% by weight, although usually, from 0.1 to 2.5% by weight of the total composition is sufficient, and especially from 0.2 to 1.5% by weight. Often, levels above these can cause instability.
- a large number of different polymers may be used as such a soluble polymer, provided the electrolyte resistance and vapour pressure requirements are met.
- the former is measured as the amount of sodium nitrilotriacetate (NaNTA) solution necessary to reach the cloud point of 100 ml of a 5% solution of the polymer in water at 25°C, with the system adjusted to neutral pH, i.e. about 7. This is preferably effected using sodium hydroxide.
- the electrolyte resistance is 10 g NaNTA, especially 15 g.
- the latter indicates a vapour pressure low enough to have sufficient water binding capability, as generally explained in the applicants' specification GB-A-2053249.
- the measurement is effected with a reference solution at 10% by weight aqueous concentration, especially 18%.
- Our copending application 883070096 (EP-A-0301885) relates to liquid abrasive compositions.
- Typical classes of polymers which may be used as the soluble polymer include polyethylene glycols, Dextran, Dextran sulphonates, polyacrylates and polyacrylate/maleic acid co-polymers. Whether a particular polymer is partly soluble or substantially totally soluble will depend on the formulation of the remainder of the composition, but in particular on the type and amount of dissolved electrolyte.
- the soluble polymer must have an average molecular weight of at least 1000 but a minimum average molecular weight of 2000 is preferred.
- compositions of the present invention may also contain other ingredients, especially ingredients useful in the washing of fabrics.
- a fully formulated fabric washing product may be so obtained.
- the electrolyte is preferably at least 10% by weight of the composition, most preferably at least 10% of the composition being electrolyte which is dissolved.
- the electrolyte may be partially or totally, a water-soluble builder salt. Where all or part of the electrolyte is not a builder salt, then it will simply be another water soluble electrolyte. In the case of systems which suspend solids, these solids will generally be excess of water soluble builder salt beyond the solubility limit of the dissolved builder salt acting as electrolyte (although of course some or all of the electrolyte may not be dissolved builder salt). It is possible to suspend builders which are not water soluble and so cannot constitute all or part of the electrolyte. A prime example of these builders comprises the aluminosilicates.
- electrolyte/builder material the total amount of electrolyte and builder, although it will be appreciated from the previous paragraph that some or all of the electrolyte can be builder and vice versa .
- electrolyte/builder material the total amount of these substances will hereinafter be referred to under the general term electrolyte/builder material.
- the preferred amounts of both detergent active material and electrolyte/builder material will differ between those compositions which are structured prior to dilution (whether or not solids are suspended) and those (hydrotroped) systems which are unstructured pre-dilution.
- the total amount of detergent active material in the structured liquids is preferably from 2% to 50% by weight of the composition, most preferably from 5% to 40%, especially from 7.5% to 30% and typically from 10% to 20%.
- the amount is preferably from 5% to 70%, most preferably from 10% to 65%, especially from 15% to 60% and typically from 20% to 50%.
- the total amount of electrolyte/builder material is preferably from 1% to 70% by weight of the composition, most preferably from 2% to 50%, especially from 5% to 40% and typically from 10% to 30%.
- compositions of the invention contain a detergency builder material this may be any material capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline pH, the suspension of soil removed from the fabric and the dispersion of any fabric softening clay material which may be included in the composition.
- Examples of phosphorus-containing inorganic detergency builders when present, include the water-soluble salts, especially alkaline metal pyrophosphates, orthophosphates, polyphosphates and phosphonates.
- Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates and hexametaphosphates.
- non-phosphorus-containing inorganic detergency builders when present, include water-soluble alkali metal carbonates, bicarbonates, silicates and crystalline and amorphous alumino silicates. Specific examples include sodium carbonate (with or without calcite seeds), potassium carbonate, sodium and potassium bicarbonates and silicates.
- organic detergency builders when present, include the alkaline metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates, polyacetyl carboxylates and polyhydroxsulphonates. Specific examples include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediaminetetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, melitic acid, benzene polycarboxylic acids and citric acid.
- a number of optional conventional ingredients may also be present.
- conventional ingredients which may be present in the composition include the lather boosters (foam-boosting surfactants) such as alkanolamides, particularly the mono- and di-ethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, peracid bleach precursors, chlorine-releasing bleaching agents such as trichloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as lipases (e.g. Lipolase (Trade Mark) ex Novo), proteases and amylases, germicides and colourants. Fabric softening clay materials may also be included to boost the softening effect produced by the present invention.
- lather boosters such as alkanolamides, particularly the mono- and di-ethanolamides derived from palm kernel fatty acids and coconut fatty
- Concentrated systems comprising the detergent surfactants (with predetermined ratios) were prepared at a concentration of approximately between 20% and 40% w/w in water. From this sample, 50 grams were taken and diluted with water whilst stirring, until a clear solution was obtained. The water must be added slowly because it may take some time for the detergent active material to disintegrate/dissolve. There may be a point at the onset of clarity when turbidity is no longer visible to the unaided eye but ordered phases still just exist. In that case, the precise point where a truly clear solution is first created may be determined by detecting the point where streaming birefringence disappears, or by any other electronic detection system for detecting turbidity, e.g. scattering measurements.
- compositions 3-7 and 10, 11 are all in accordance with the present invention.
- compositions of Example 2 were tested by mechanical means for assessing softening.
- Compositions 2.2 and 2.3 according to the present invention gave superior softening performance relative to reference composition 2.1.
- Example 3 Isotropic Composition with Electrolyte and Minors
- composition according to the invention gave a cloudy phase on dilution to low concentrations in water at 5°C (but not at 20°C).
- a similar reference composition with C13 ⁇ 15 alcohol 7EO in place of the 3EO nonionic gave no cloudy phase even in water/ice mixture.
- composition according to the invention gives fabric softening performance comparable to compositions 2.2 and 2.3 in Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- This invention relates to aqueous liquid detergent compositions for washing fabrics.
- The applicants have discovered that such detergent liquids can demonstrate one or more surprising advantages selected from fabric softening, improved stability with pourability, enhanced cleaning and other benefits if formulated according to a special definition set-forth hereinbelow.
- One approach to providing a softening benefit in liquid laundering agents has been to incorporate a swelling bentonite clay, as described in UK Patent Specification GB-A-2,168,717. However, this has a tendency to increase the product viscosity to an unacceptable level unless an additional agent, namely a low molecular weight polyacrylate, is also incorporated. Moreover, although some fabric softening benefit can be obtained from these clays, it is generally some way short of that which can be obtained by the application of softening materials to fabrics in the rinse step of a laundering process, i.e. using conventional rinse conditioners.
- The non-prepublished European patent application EP 295021 describes the use of alkonylated nonionic surfactants having an HLB below 12 in structured liquid detergent compositions.
- The present invention now provides an aqueous liquid detergent composition with a pH of 12 or less at 1% weight concentration in water and a viscosity no greater than 1.5 Pas at a shear rate of 21s⁻¹, comprising at least 1% by weight of dissolved electrolyte and at least 1% by weight of a surfactant system which consists of one or more detergent surfactants comprising a nonionic detergent surfactant, which surfactant system somewhere between 0.0001% and 5% weight concentration alone in water has a cloudy phase somewhere in the temperature range of 40°C down to the freezing point of the surfactant system at that concentration in water, wherein the surfactant system in the composition is in the form of a lamellar phase, and the composition comprises 55.1% by weight or less water.
- The detergent surfactants which make up the surfactant system maybe selected from known anionic, nonionic, zwitterionic and amphoteric detergent surfactants, for example as chosen from the classes, sub-classes and specific examples of such detergent surfactants described in Surface Active Agents Vol. I by Schwartz and Perry, Interscience (1949) and Vol II by Schwartz, Perry and Berch, Interscience (1958), in the current edition of "McCutcheon's Emulsifiers & Detergents" published by the McCutcheon division of Manufacturing Confectioners Company or in ′Tensid-Taschenbuch′, H.Stache, 2nd ed., Carl Hanser Verlag, München & Wien, 1981.
- An alternative aspect of the present invention provides an aqueous liquid detergent composition with a pH of 12 or less at 1% weight concentration in water and a viscosity no greater than 1.5 Pas at a shear rate of 21s⁻¹, comprising at least 1% by weight of dissolved electrolyte and at least 1% by weight of a surfactant system which consists of one or more detergent surfactants including a nonionic detergent surfactant which somewhere between 0.0001% and 5% weight concentration alone in water has a cloudy phase somewhere in the temperature range of 40°C down to the freezing point of the nonionic detergent surfactant at that concentration in water, wherein the surfactant system in the composition is in the form of a lamellar phase, and the composition comprises a protéolytic enzyme.
- In either aspect of the invention, the aqueous concentration at which the cloudy phase exists at one or more temperatures in the range of 40°C dawn to the freezing point of the surfactant system in distilled water, may be a specific concentration, or more often, will span a range of such concentrations. This concentration is preferably 3% and/or 1% and/or 0.1% and/or 0.01% by weight.
- When regarded from the point of view of a fixed relevant aqueous concentration, the surfactant system or the nonionic detergent surfactant, as appropriate, has a cloudy phase somewhere in the temperature range from 40°C, preferably 15°C, most preferably 10°C down to the freezing point in distilled water at that concentration. In practice, this means that it has a cloud point of not more than 40°C, preferably 15°C, most preferably 10°C. In other words, it is clear from the freezing point up to the cloud point which is the onset of turbidity, i.e. at 40°C or less. In fact, many will be cloudy right down to the freezing point of the composition. As used herein, the term cloudy phase includes ′cloud phase′ and all other turbid phases e.g. lamellar phase, as will be known to those skilled in the art. Cloud phase and cloud point have the meanings ascribed to them in Surface Active Ethylene Oxide Adducts by N. Schonfeldt, Pergamon Press 1969, pp 145 to 154. In general terms, the cloud point of a surfactant material is the temperature at which association between the surfactant and water molecules through hydrogen bonding breaks down, leading to the separation of surfactant rich and water rich phases and a consequential increase in turbidity or cloudiness.
- The cloud point correlates approximately to the hydrophilic ― lipophilic balance (HLB) of the surfactant system. Preferably, the surfactant system, or one nonionic detergent surfactant which is part of that system, has an HLB equal to or less than 10.5, especially less than 10.0 or even below 9.5. However, the HLB should preferably be above 6.0, most preferably above 7.5.
- Suitable nonionic detergent surfactants which may be used include in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are alkyl (C₆-C₂₂) phenols-ethylene oxide condensates, the condensation products of aliphatic (C₈-C₁₈) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine. Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Where, for example, alkylene oxides adducts of fatty materials are used as the nonionic detergent compounds, the number of alkylene oxide groups per molecule has a considerable effect upon the cloud point as indicated by the Schonfeldt reference mentioned above. The chain length and nature of the fatty material is also influential, and thus the preferred number of alkylene oxide groups per molecule depends upon the nature and chain length of the fatty material.
- We have found for example that where the fatty material is a fatty alcohol having about 13 to 15 carbon atoms, the adduct having 3 ethylene oxide (EO) groups per molecule has a cloud point of less than 0°C and is therefore suitable for use in the present invention. A similar detergent surfactant having 7 ethylene oxide groups per molecule has a cloud point of about 48°C and is therefore unsuitable. Further ethoxylation raises the cloud point still higher. Thus the similar detergent surfactant with 11 ethylene oxide groups per molecule has a cloud point higher than 80°C. However, we have found that for many common ethoxylated fatty alcohol nonionics (ie. with typical fatty residues), the required cloud point can be achieved if the average degree of ethoxylation per molecule is less than 56% by weight and/or the average number of EO groups per molecule is six or less, typically about 3.
- Such nonionic detergent surfactants are known per se from a variety of references such as GB-A-1241754 or US 4537708. The former reference, whilst mentioning the possibility of liquids, discloses no example of a stable, pourable liquid. The latter discloses slurries containing sodium tripolyphosphate and at least 13% by weight of detergent surfactants. Such slurries have unacceptably high viscosities in the context of the present invention. It can also be noted that UK patent specification GB-A-2153839 discloses examples of aqueous liquid detergent compositions which contain some low-detergency, foam boosting surfactants of the long-chain ethanolamide or diethanolamide kind which are not detergent surfactants as defined herein.
- The presence of other nonionic detergent surfactants will not necessarily cause loss of cloudiness of the whole system, under the relevant conditions, for example because of non-ideal mixing of components in the product, which is a condition which can remain even after transport or prolonged storage, or because of the properties of the surfactant system as a whole.
- Thus, whilst a 1: 1 molar mixture of such 3E0 and 11EO ethoxylated alcohols may well have an HLB close to that of the 7EO material, the 7EO material alone would give a clear solution below 15°C, passing to a cloudy condition above about 48°C, whilst the mixture could be cloudy below 15°C. In the context of the present invention therefore, the use of the 7EO material alone would be unsuitable while the mixture of 3EO and 11EO materials would be suitable.
- The anionic detergent surfactants are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C₈-C₁₈) alcohols produced for example from tallow or coconut oil, sodium and potassium alkyl (C₉-C₂₀) benzene sulphonates, particularly sodium linear secondary alkyl (C₁₀-C₁₅) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty monoglyceride sulphates and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (C₈-C₁₈) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; alkane monosulphonates such as those derived by reacting alpha-olefins (C₈-C₂₀) with sodium bisulphite and those derived from reacting paraffins with SO₂ and Cl₂ and then hydrolysing with a base to produce a random sulphonate; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C₁₀-C₂₀ alpha-olefins, with SO₃ and then neutralising and hydrolysing the reaction product. The preferred anionic detergent compounds are sodium (C₁₁-C₁₅) alkyl benzene sulphonates and sodium (C₁₆-C₁₈) alkyl sulphates.
- It is also preferred in many cases to include an alkali metal soap of a fatty acid, especially a soap of an acid having from 12 to 18 carbon atoms, for example oleic acid, ricinoleic acid, and fatty acids derived from castor oil, rapeseed oil, groundnut oil, coconut oil, palmkernel oil or mixtures thereof. The sodium or potassium soaps of these acids can be used, the potassium soaps being preferred.
- In the definition of the present invention, the requirement of a pH of 12 or less at 1% aqueous dilution is to exclude a number of disadvantages. First, a major benefit of many compositions according to the present invention is a fabric softening effect. Very alkaline wash solutions tend to have a harshening effect. There can also be disadvantages in terms of safety and of adverse effects on the stability of any enzymes which optionally may be present.
- The present invention also requires the compositions to have a viscosity no greater than 1.5 Pas at a shear rate of 21s⁻¹. However, at the latter shear rate, many practical embodiments will have a viscosity no greater than 1.25 Pas, preferably 1.0 Pas, 900 mPas, or even 850 mPas.
- This low viscosity may be achieved by incorporating sufficient hydrotrope in the composition to render the system isotropic. Hydrotropes are water soluble compounds which serve to increase the solubility of surfactants in aqueous solution and are well known in the art. Typical examples are lower alkanols such as ethanol, alkanolamines, e.g. triethanolamine, salts of aralkyl sulphonates and those with ureum types of molecule.
- Alternatively, the composition as a whole (as opposed to the diluted surfactant system) is anisotropic (structured) and comprises a lamellar phase formed by the surfactant system, preferably as lamellar droplets dispersed in an aqueous continuous phase which contains the dissolved electrolyte. In that case, to achieve the required low viscosity, the composition should be formulated as described hereinbelow.
- Of the structured compositions, those which are capable of suspending solid particles are generally preferred, especially those which actually contain such particles in suspension. Structuring is brought about by the interaction of the surfactant molecules in the presence of water and the dissolved electrolyte, for example as described in Chapter 2, entitled ′Detergents′ by H A Barnes, in K Walters (Ed.), ′Rheometry: Industrial Applications′, J Wiley & Sons, Letchworth 1980.
- To achieve the required low viscosity in the lamellar structured embodiments, the composition either includes at least one special viscosity-reducing polymer (as defined hereinbelow) and/or at least one of the following three rules must be applied.
- The first rule is that the surfactant system also should contain an anionic detergent surfactant and that the anionic: nonionic weight ratio should be 6: 1 or less of the anionic, but most frequently, 4: 1 or less.
- Here, it can be noted that European Patent Specification EP-A-38,101 describes structured liquids based on a blend of anionic and nonionic surfactants with an alkali metal soap incorporated to ensure stability. However, we have now found that many of those compositions of the present invention which are structured, can be formulated stably without soap, for example where the ratio of anionic to nonionic surfactants is from 6: 1 to 1: 2, preferably from 4: 1 to 1: 1, especially from 3: 1 to 4: 3. Also, when soap is included, stability can be obtained for a greater range of anionic/nonionic blends, than with the prior art compositions. In this context, the anionics may (for example) be as described in the aforementioned EP-A-38,101.
- The second rule is that the weight ratio of the surfactant system to water is 5: 1 or less of the surfactant system.
- The third rule is that any suspended solids should contribute no more than 15%, preferably no more than 10% by volume of the total composition.
- In these lamellar structured embodiments, most preferably any two of the three rules are applied, especially all three.
- The special viscosity reducing polymer(s) can be selected from one of two classes, or from both.
- The first class of special viscosity reducing polymers comprises those polymers which would be only partly dissolved in the aqueous continuous phase as described in our UK patent application no. 8718216 (corresponding to EP 301882). allows a viscosity reduction (due to the polymer which is dissolved) whilst incorporating a sufficiently high amount to achieve a secondary benefit, especially building, because the part which is not dissolved does not bring about the instabilty that would occur if substantially all were dissolved.
- Examples of partly-dissolved polymers include many of the polymer and co-polymers salts already known as detergency builders. For example, may be used (including building and non-building polymers) polyethylene glycols, polyacrylates, polymaleates, polysugars, polysugarsulphonates and co-polymers of any of these. Preferably, the partly dissolved polymer comprises a co-polymer which includes an alkali metal salt of a polyacrylic, polymethacrylic or maleic acid or anhydride. Preferably, compositions with these co-polymers have a pH of above 8.0. In general, the amount of viscosity reducing polymer can vary widely according to the formulation of the rest of the composition. However, typical amounts are from 0.5 to 4.5% by weight.
- The second class of special viscosity reducing polymers comprises those polymers which are substantially totally soluble in the aqueous phase and have an electrolyte resistance of more than 5 grams sodium nitriolotriacetate in 100 ml of a 5% by weight aqueous solution of the polymer, said soluble polymer also having a vapour pressure in 20% aqueous solution, equal to or less than the vapour pressure of a reference 2% by weight or greater aqueous solution of polyethylene glycol having an average molecular weight of 6000; said soluble polymer having a molecular weight of at least 1000. Use of such polymers is generally described in our UK patent application No. 8718217 (corresponding to EP 301883).
- The incorporation of the soluble polymer permits formulation with improved stability at the same viscosity (relative to the composition without the soluble polymer) or lower viscosity with the same stability. The soluble polymer can also reduce viscosity drift, even when it also brings about a viscosity reduction.
- It is especially preferred to incorporate the soluble polymer with a partly-dissolved polymer which has a large insoluble component. That is because although the building capacity of the partly dissolved polymer will be good (since relatively high quantities can be stably incorporated), the viscosity reduction will not be optimum (since,little will be dissolved). Thus, the soluble polymer can usefully function to reduce the viscosity further, to an ideal level.
- The soluble polymer can, for example, be incorporated at from 0.05 to 20% by weight, although usually, from 0.1 to 2.5% by weight of the total composition is sufficient, and especially from 0.2 to 1.5% by weight. Often, levels above these can cause instability. A large number of different polymers may be used as such a soluble polymer, provided the electrolyte resistance and vapour pressure requirements are met. The former is measured as the amount of sodium nitrilotriacetate (NaNTA) solution necessary to reach the cloud point of 100 ml of a 5% solution of the polymer in water at 25°C, with the system adjusted to neutral pH, i.e. about 7. This is preferably effected using sodium hydroxide. Most preferably, the electrolyte resistance is 10 g NaNTA, especially 15 g. The latter indicates a vapour pressure low enough to have sufficient water binding capability, as generally explained in the applicants' specification GB-A-2053249. Preferably, the measurement is effected with a reference solution at 10% by weight aqueous concentration, especially 18%. Our copending application 883070096 (EP-A-0301885) relates to liquid abrasive compositions.
- Typical classes of polymers which may be used as the soluble polymer, provided they meet the above requirements, include polyethylene glycols, Dextran, Dextran sulphonates, polyacrylates and polyacrylate/maleic acid co-polymers. Whether a particular polymer is partly soluble or substantially totally soluble will depend on the formulation of the remainder of the composition, but in particular on the type and amount of dissolved electrolyte.
- The soluble polymer must have an average molecular weight of at least 1000 but a minimum average molecular weight of 2000 is preferred.
- The compositions of the present invention may also contain other ingredients, especially ingredients useful in the washing of fabrics. Thus, a fully formulated fabric washing product may be so obtained.
- The electrolyte is preferably at least 10% by weight of the composition, most preferably at least 10% of the composition being electrolyte which is dissolved. In any case, the electrolyte may be partially or totally, a water-soluble builder salt. Where all or part of the electrolyte is not a builder salt, then it will simply be another water soluble electrolyte. In the case of systems which suspend solids, these solids will generally be excess of water soluble builder salt beyond the solubility limit of the dissolved builder salt acting as electrolyte (although of course some or all of the electrolyte may not be dissolved builder salt). It is possible to suspend builders which are not water soluble and so cannot constitute all or part of the electrolyte. A prime example of these builders comprises the aluminosilicates.
- To give a guide as to preferred levels of ingredients, it is therefore convenient to refer to the total amount of electrolyte and builder, although it will be appreciated from the previous paragraph that some or all of the electrolyte can be builder and vice versa. In this context, the total amount of these substances will hereinafter be referred to under the general term electrolyte/builder material. However, the preferred amounts of both detergent active material and electrolyte/builder material will differ between those compositions which are structured prior to dilution (whether or not solids are suspended) and those (hydrotroped) systems which are unstructured pre-dilution.
- The total amount of detergent active material in the structured liquids is preferably from 2% to 50% by weight of the composition, most preferably from 5% to 40%, especially from 7.5% to 30% and typically from 10% to 20%. For the unstructured liquids, the amount is preferably from 5% to 70%, most preferably from 10% to 65%, especially from 15% to 60% and typically from 20% to 50%.
- In the lamellar structured liquids, the total amount of electrolyte/builder material is preferably from 1% to 70% by weight of the composition, most preferably from 2% to 50%, especially from 5% to 40% and typically from 10% to 30%.
- In both the structured and unstructured liquids optionally, other conventional ingredients are also included.
- When the compositions of the invention, contain a detergency builder material this may be any material capable of reducing the level of free calcium ions in the wash liquor and will preferably provide the composition with other beneficial properties such as the generation of an alkaline pH, the suspension of soil removed from the fabric and the dispersion of any fabric softening clay material which may be included in the composition.
- Examples of phosphorus-containing inorganic detergency builders, when present, include the water-soluble salts, especially alkaline metal pyrophosphates, orthophosphates, polyphosphates and phosphonates. Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates and hexametaphosphates.
- Examples of non-phosphorus-containing inorganic detergency builders, when present, include water-soluble alkali metal carbonates, bicarbonates, silicates and crystalline and amorphous alumino silicates. Specific examples include sodium carbonate (with or without calcite seeds), potassium carbonate, sodium and potassium bicarbonates and silicates.
- Examples of organic detergency builders, when present, include the alkaline metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates, polyacetyl carboxylates and polyhydroxsulphonates. Specific examples include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediaminetetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, melitic acid, benzene polycarboxylic acids and citric acid.
- As stated, apart from the water, detergent active material and electrolyte/builder material, a number of optional conventional ingredients may also be present. Examples of such conventional ingredients which may be present in the composition include the lather boosters (foam-boosting surfactants) such as alkanolamides, particularly the mono- and di-ethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, peracid bleach precursors, chlorine-releasing bleaching agents such as trichloroisocyanuric acid, inorganic salts such as sodium sulphate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as lipases (e.g. Lipolase (Trade Mark) ex Novo), proteases and amylases, germicides and colourants. Fabric softening clay materials may also be included to boost the softening effect produced by the present invention.
- The invention will now be illustrated by the following non-limiting examples.
- Concentrated systems comprising the detergent surfactants (with predetermined ratios) were prepared at a concentration of approximately between 20% and 40% w/w in water. From this sample, 50 grams were taken and diluted with water whilst stirring, until a clear solution was obtained. The water must be added slowly because it may take some time for the detergent active material to disintegrate/dissolve. There may be a point at the onset of clarity when turbidity is no longer visible to the unaided eye but ordered phases still just exist. In that case, the precise point where a truly clear solution is first created may be determined by detecting the point where streaming birefringence disappears, or by any other electronic detection system for detecting turbidity, e.g. scattering measurements.
-
- A =
- grams of concentrated detergent surfactant solution
- B =
- %w/w of detergent surfactant present in the concentrated solution
- C =
- grams of water added until a clear solution is first obtained
-
- In Table I, compositions 3-7 and 10, 11 are all in accordance with the present invention.
-
- The compositions of Example 2 were tested by mechanical means for assessing softening. Compositions 2.2 and 2.3 according to the present invention gave superior softening performance relative to reference composition 2.1.
-
- This was a clear isotropic liquid with pH = 9.3
- This composition according to the invention gave a cloudy phase on dilution to low concentrations in water at 5°C (but not at 20°C). A similar reference composition with C₁₃₋₁₅ alcohol 7EO in place of the 3EO nonionic gave no cloudy phase even in water/ice mixture.
- The above composition according to the invention gives fabric softening performance comparable to compositions 2.2 and 2.3 in Example 2.
-
- In a variant of the above formulation, 0.2% by weight of a polyethylene glycol, average MW 2,500 was added to the composition as a substantially totally soluble viscosity reducing polymer.
Claims (32)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8718215 | 1987-07-31 | ||
GB878718215A GB8718215D0 (en) | 1987-07-31 | 1987-07-31 | Liquid detergent compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0301884A1 EP0301884A1 (en) | 1989-02-01 |
EP0301884B1 true EP0301884B1 (en) | 1992-01-02 |
Family
ID=10621647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880307008 Expired EP0301884B1 (en) | 1987-07-31 | 1988-07-29 | Liquid detergent compositions |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0301884B1 (en) |
DE (1) | DE3867361D1 (en) |
ES (1) | ES2038761T3 (en) |
GB (1) | GB8718215D0 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8914602D0 (en) * | 1989-06-26 | 1989-08-16 | Unilever Plc | Liquid detergent composition |
EP0491723B2 (en) * | 1989-09-13 | 1998-12-23 | Unilever Plc | Liquid detergents |
GB8924479D0 (en) * | 1989-10-31 | 1989-12-20 | Unilever Plc | Detergent compositions |
ATE145424T1 (en) * | 1989-11-30 | 1996-12-15 | Clorox Co | STABLE AQUEOUS OXIDATION DETERGENT |
GB8927361D0 (en) * | 1989-12-04 | 1990-01-31 | Unilever Plc | Liquid detergents |
IN180345B (en) * | 1990-04-10 | 1998-01-24 | Albright & Wilson U K Ltd | |
US6194364B1 (en) | 1996-09-23 | 2001-02-27 | The Procter & Gamble Company | Liquid personal cleansing compositions which contain soluble oils and soluble synthetic surfactants |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1439308A (en) * | 1964-04-24 | 1966-05-20 | Unilever Nv | Liquid detergent compositions |
GB1241754A (en) * | 1968-04-12 | 1971-08-04 | Unilever Ltd | Detergent compositions |
GB1495145A (en) * | 1974-04-11 | 1977-12-14 | Procter & Gamble | Controlled sudsing detergent compositions |
GB1527141A (en) * | 1976-01-06 | 1978-10-04 | Procter & Gamble | Liquid detergent composition |
-
1987
- 1987-07-31 GB GB878718215A patent/GB8718215D0/en active Pending
-
1988
- 1988-07-29 DE DE8888307008T patent/DE3867361D1/en not_active Expired - Fee Related
- 1988-07-29 ES ES88307008T patent/ES2038761T3/en not_active Expired - Lifetime
- 1988-07-29 EP EP19880307008 patent/EP0301884B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ES2038761T3 (en) | 1993-08-01 |
GB8718215D0 (en) | 1987-09-09 |
EP0301884A1 (en) | 1989-02-01 |
DE3867361D1 (en) | 1992-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5006273A (en) | Concentrated aqueous liquid detergents containing viscosity reducing polymers | |
US5776883A (en) | Structured liquid detergent compositions containing nonionic structuring polymers providing enhanced shear thinning behavior | |
EP0763595B1 (en) | Detergent composition | |
EP0526539B1 (en) | Liquid detergent compositions | |
EP0301882B1 (en) | Liquid detergent compositions | |
US5205957A (en) | Structured aqueous liquid detergents containing functional polymers | |
CA1334919C (en) | Liquid detergent compositions | |
EP0301884B1 (en) | Liquid detergent compositions | |
GB2237813A (en) | Liquid detergent | |
EP0362916B1 (en) | Liquid detergent compositions | |
EP0359308B1 (en) | Liquid detergents | |
EP0498806B1 (en) | Detergent compositions | |
CA1335646C (en) | Liquid detergent compositions | |
EP0414285B1 (en) | Coacervates of builder polymers and their use | |
US5573701A (en) | Liquid detergent composition | |
EP0513136B1 (en) | Liquid bleach composition | |
EP0514434B1 (en) | Liquid bleach composition | |
CA2062781C (en) | Liquid bleach composition | |
EP0491723B1 (en) | Liquid detergents | |
CA2064900C (en) | Liquid detergents | |
EP0798372A2 (en) | Detergent composition | |
CA2201456A1 (en) | Detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19890220 |
|
17Q | First examination report despatched |
Effective date: 19900511 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3867361 Country of ref document: DE Date of ref document: 19920213 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: UNILEVER N.V. Owner name: UNILEVER PLC |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2038761 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88307008.8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19960702 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020702 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020703 Year of fee payment: 15 Ref country code: NL Payment date: 20020703 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020724 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020730 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020807 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030730 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040203 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070523 Year of fee payment: 20 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20091201 |