EP2441822A1 - Laundry detergent particles - Google Patents

Laundry detergent particles Download PDF

Info

Publication number
EP2441822A1
EP2441822A1 EP20100187522 EP10187522A EP2441822A1 EP 2441822 A1 EP2441822 A1 EP 2441822A1 EP 20100187522 EP20100187522 EP 20100187522 EP 10187522 A EP10187522 A EP 10187522A EP 2441822 A1 EP2441822 A1 EP 2441822A1
Authority
EP
European Patent Office
Prior art keywords
wt
detergent particle
coated detergent
coated
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20100187522
Other languages
German (de)
French (fr)
Inventor
Stephen Norman Batchelor
Judith Maria Bonsall
Andrew Paul Keningley
Loreto Micheli
Philip Ronald Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Original Assignee
Unilever PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC filed Critical Unilever PLC
Priority to EP20100187522 priority Critical patent/EP2441822A1/en
Publication of EP2441822A1 publication Critical patent/EP2441822A1/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Abstract

The present invention provides lenticular or disc detergent particle.

Description

    Field of Invention
  • The present invention relates to large laundry detergent particles.
  • Background of Invention
  • WO9932599 describes a method of manufacturing laundry detergent particles, being an extrusion method in which a builder and surfactant, the latter comprising as a major component a sulphated or sulphonated anionic surfactant, are fed into an extruder, mechanically worked at a temperature of at least 40°C, preferably at least 60°C, and extruded through an extrusion head having a multiplicity of extrusion apertures. In most examples, the surfactant is fed to the extruder along with builder in a weight ratio of more than 1 part builder to 2 parts surfactant. The extrudate apparently required further drying. In Example 6, PAS paste was dried and extruded. Such PAS noodles are well known in the prior art. The noodles are typically cylindrical in shape and their length exceeds their diameter, as described in example 2.
  • US 7,022,660 discloses a process for the preparation of a detergent particle having a coating.
  • Summary of the Invention
  • We have found that it is possible to have a highly reflective coated detergent particle that is aesthetically pleasing to the eye; the coating contains citric acid. The reflective coated detergent particle also gives the appearance of luxurious moisture. In a further aspect the coating increases the colour intensity when a dye or pigment is incorporated into the coating over that of similar inorganic coatings. A further advantage is that most dyes will be stable in the citric acid coating. Further in the absence of carbonate in a detergent formulation the coated detergent particle provides foaming in hard water environments.
  • In a further aspect, the present invention provides a coated detergent particle that is a concentrated formulation with more surfactant than inorganic solid. Only by having the coating encasing the surfactant which is soft can one have such a particulate concentrate where the unit dose required for a wash is reduced. Adding solvent to the core would result by converting the particle into a liquid formulation. On the other hand, having a greater amount of inorganic solid would result in a less concentrated formulation; a high inorganic content would take one back to conventional low surfactant concentration granular powder. The coated detergent particle of the present invention sits in the middle of the two conventional (liquid and granular) formats.
  • In one aspect the present invention provides a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm (preferably 3 to 8 mm), and z is from 2 to 8 mm (preferably 3 to 8 mm), wherein the particle comprises:
  1. (i) from 40 to 90 wt %, preferably 50 to 90 wt%, surfactant selected from: anionic surfactant; and, non-ionic surfactant;
  2. (ii) from 1 to 40 wt % citric acid, preferably 10 to 35 wt%, more preferably 20 to 35 wt %; and,
  3. (iii) from 0 to 3 wt %, preferably 0.001 to 3 wt % of a perfume,
    wherein the citric acid is present on the laundry detergent particle as a coating and the surfactant is present as a core.
  • Unless otherwise stated all wt % refer to the total percentage in the particle as dry weights.
  • Detailed Description of the Invention SHAPE
  • Preferably the coated laundry detergent particle is curved.
  • The coated laundry detergent particle may be lenticular (shaped like a whole dried lentil), an oblate ellipsoid, where z and y are the equatorial diameters and x is the polar diameter; preferably y = z.
  • The coated laundry detergent particle may be shaped as a disc.
  • Preferably the coated laundry detergent particle does not have hole; that is to say, the coated laundry detergent particle does not have a conduit passing there though that passes through the core, i.e., the coated detergent particle has a topologic genus of zero.
  • CORE SURFACTANT
  • The coated laundry detergent particle comprises between 50 to 90 wt% of a surfactant, most preferably 70 to 90 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981. Preferably the surfactants used are saturated.
  • Anionic Surfactants
  • Suitable anionic detergent compounds which may be used are usually watersoluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. Most preferred anionic surfactants are sodium lauryl ether sulfate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides. The chains of the surfactants may be branched or linear.
  • Soaps may also be present. The fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration. The anionic contribution from soap is preferably from 0 to 30 wt % of the total anionic.
  • Preferably, at least 50 wt % of the anionic surfactant is selected from: sodium C11 to C15 alkyl benzene sulphonates; and, sodium C12 to C18 alkyl sulphates. Even more preferably, the anionic surfactant is sodium C11 to C15 alkyl benzene sulphonates.
  • Preferably the anionic surfactant is present in the coated laundry detergent particle at levels between 15 to 85 wt %, more preferably 50 to 80 wt % on total surfactant.
  • Nonionic Surfactants
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are C6 to C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO. Preferably, the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.
  • Preferably the nonionic surfactant is present in the coated laundry detergent particle at levels between 5 to 75 wt % on total surfactant, more preferably 10 to 40 wt% on total surfactant.
  • Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt % on total surfactant.
  • Preferably all the surfactants are mixed together before being dried. Conventional mixing equipment may be used. The surfactant core of the laundry detergent particle may be formed by extrusion or roller compaction and subsequently coated with an inorganic salt.
  • Calcium Tolerant Surfactant System
  • In another aspect the surfactant system used is calcium tolerant and this is a preferred aspect because this reduces the need for builder.
  • Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
  • Calcium-tolerance of the surfactant blend is tested as follows:
    • The surfactant blend in question is prepared at a concentration of 0.7 g surfactant solids per litre of water containing sufficient calcium ions to give a French hardness of 40 (4 x 10-3 Molar Ca2+). Other hardness ion free electrolytes such as sodium chloride, sodium sulphate, and sodium hydroxide are added to the solution to adjust the ionic strength to 0.05M and the pH to 10. The adsorption of light of wavelength 540 nm through 4 mm of sample is measured 15 minutes after sample preparation. Ten measurements are made and an average value is calculated. Samples that give an absorption value of less than 0.08 are deemed to be calcium tolerant.
  • Examples of surfactant blends that satisfy the above test for calcium tolerance include those having a major part of LAS surfactant (which is not of itself calcium tolerant) blended with one or more other surfactants (co-surfactants) that are calcium tolerant to give a blend that is sufficiently calcium tolerant to be usable with little or no builder and to pass the given test. Suitable calcium tolerant co-surfactants include SLES 1-7EO, and alkyl-ethoxylate nonionic surfactants, particularly those with melting points less than 40°C.
  • A LAS/SLES surfactant blend has a superior foam profile to a LAS nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam. SLES may be used at levels of up to 30 wt% of the surfactant blend.
  • Citric acid
  • The coating is preferably applied to the surface of the surfactant core, by deposition from an aqueous solution of citric acid. In the alternative coating can be performed using a slurry. The aqueous solution preferably contains greater than 300g/L, more preferably 500 g/L, of the citric acid. An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
  • A preferred calcium tolerant coated laundry detergent particle comprises 15 to 100 wt% on surfactant of anionic surfactant of which 20 to 30 wt% on surfactant is sodium lauryl ether sulphate.
  • DYE and PIGMENT
  • Dyes are described in Industrial Dyes edited by K.Hunger 2003 Wiley-VCH ISBN 3-527-30426-6.
  • Pigments are described in Industrial Inorganic Pigments edited by G. Buxbaum and G. Pfaff (3rd edition Wiley-VCH 2005). Suitable organic pigments are described in Industrial Organic Pigments edited by W. Herbst and K.Hunger (3rd edition Wiley-VCH 2004). Pigments are listed in the colour index international © Society of Dyers and Colourists and American Association of Textile Chemists and Colorists 2002.
  • Pigments are practically insoluble coloured particles, preferably they have a primary particle size of 0.02 to 10µm, where the distance represent the longest dimension of the primary particle. The primary particle size is measured by scanning electron microscopy. Most preferably the organic pigments have a primary particle size between 0.02 and 0.2 µm.
  • By practically insoluble we mean having a water solubility of less than 500 part per trillion (ppt), preferably 10 ppt at 20°C with a 10 wt% surfactant solution.
  • Any class of dye and pigment may be used in the citrate coating.
  • Preferred dyes for use in the current invention are selected from anionic and non-ionic dyes Anionic dyes are negatively charged in an aqueous medium at pH 7. Examples of anionic dyes are found in the classes of acid and direct dyes in the Color Index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists). Anionic dyes preferably contain at least one sulphonate or carboxylate groups. Non-ionic dyes are uncharged in an aqueous medium at pH 7, examples are found in the class of disperse dyes in the Color Index.
  • The dyes may be alkoxylated. Alkoxylated dyes are preferably of the following generic form: Dye-NR1R2. The NR1R2 group is attached to an aromatic ring of the dye. R1 and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units. Examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
  • A preferred polyoxyalkylene chain is [(CH2CR3HO)x(CH2CR4HO)yR5) in which x+y ≤ 5 wherein y ≥ 1 and z = 0 to 5, R3 is selected from: H; CH3; CH2O(CH2CH2O)zH and mixtures thereof; R4 is selected from: H; CH2O(CH2CH2O)zH and mixtures thereof; and, R5 is selected from: H; and, CH3.
  • A preferred alkoxylated dye for use in the invention, which also functions as a shading dye, is:
    Figure imgb0001
  • Preferably the dye is selected from acid dyes; disperse dyes and alkoxylated dyes.
  • Most preferably the colourant is a pigment, even more preferably an organic pigment.
  • Pigments are coloured particles, preferably they have a primary particle size of 0.02 to 10µm, where the distance represent the longest dimension of the primary particle. The primary particle size is measured by scanning electron microscopy. Most preferably the organic pigments have a primary particle size between 0.02 and 0.2 µm.
  • Suitable organic pigments are preferably selected from monoazo pigments, beta-naphthol pigments, naphthol AS pigments, azo pigment lakes, benzimidazolone pigments, metal complex pigments, isoindolinone and isoindoline pigments, phthalocyanine pigments, quinacridone pigments, perylene and perinone pigments, diketopyrrolo-pyrrole pigments, thioindigo pigments, anthraquinone pigments, anthrapyrmidine pigments, flavanthrone pigments, anthanthrone pigments, dioxazine pigments and quinophthalone pigments, most preferably dioxazine and phthalocyanine pigments.
  • Preferred pigments are pigment green 8, pigment yellow 1, pigment yellow 3, pigment orange 1, pigment red 4, pigment red 3, pigment red 22, pigment red 112, pigment red 7, pigment brown 1, pigment red 5, pigment red 68, pigment red 51, pigment 53, pigment red 53:1, pigment red 49, pigment red 49:1, pigment red 49:2, pigment red 49:3, pigment red 64:1, pigment red 57, pigment red 57:1, pigment red 48, pigment red 63:1, pigment yellow 16, pigment yellow 12, pigment yellow 13, pigment yellow 83, pigment orange 13, pigment violet 23, pigment red 83, pigment blue 60, pigment blue 64, pigment orange 43, pigment blue 66, pigment blue 63, pigment violet 36, pigment violet 19, pigment red 122, pigment blue 16, pigment blue 15, pigment blue 15:1, pigment blue 15:2, pigment blue 15:3, pigment blue 15:4, pigment blue 15:6, pigment green 7, pigment green 36, pigment blue 29, pigment green 24, pigment red 101:1, pigment green 17, pigment green 18, pigment green 14, pigment brown 6, pigment blue 27 and pigment violet 16. Most preferably the pigment is selected from pigment blue 15, pigment blue 15:1, pigment blue 15:2, pigment blue 15:3, pigment blue 15:4, pigment blue 15:6.
  • Pigments are preferably present from 0.001 to 0.1wt%.
  • The dye and/or pigment is added to the coating solution or slurry and agitated before applying to the core of the particle. Application may be by any suitable method, preferably spraying on to the core particle as detailed above.
  • The dye and/or pigment may be any colour, preferable the dye is blue, violet, green or red. Most preferably the dye and/or pigment is blue or violet.
  • The dye is preferably a shading dye for imparting a perception of whiteness to a laundry textile, preferably acid violet 50, solvent violet 13, disperse violet 27, disperse violet 28, an alkoxylated thiophene, or a cationic phenazine as described in WO 2009/141172 and WO 2009/141173 . When a shading dye is present, preferably a further green dye is present to shift the colour of the particle from violet to blue-green.
  • The dye may be covalently bound to polymeric species.
  • A combination of dyes or pigments may be used.
  • The dye or pigment may also be incorporated into the core.
  • The coated laundry detergent particle
  • Preferably, the coated laundry detergent particle comprises from 10 to 100 wt %, more preferably 50 to 100 wt %, even more preferably 80 to 100 wt %, most preferably 90 to 100 wt % of a laundry detergent formulation in a package.
  • The package is that of a commercial formulation for sale to the general public and is preferably in the range of 0.01 kg to 5 kg, preferably 0.02 kg to 2 kg, most preferably 0.5 kg to 2 kg.
  • Preferably, the coated laundry detergent particle is such that at least 90 to 100 % of the coated laundry detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated laundry detergent particle.
  • Water content
  • The particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
  • Other Adjuncts
  • The adjuncts as described below may be present in the coating or the core. These may be in the core or the coating.
  • Fluorescent Agent
  • The coated laundry detergent particle preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Suitable Fluorescer for use in the invention are described in chapter 7 of Industrial Dyes edited by K.Hunger 2003 Wiley-VCH ISBN 3-527-30426-6.
  • Preferred fluorescers are selected from the classes distyrylbiphenyls, triazinylaminostilbenes, bis(1,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2-yl)biphenyls, 1,3-diphenyl-2-pyrazolines and courmarins. The fluorescer is preferably sulfonated.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino)stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]aminol stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • Tinopal® DMS is the disodium salt of disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino) stilbene-2-2' disulfonate. Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • Perfume
  • Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • The perfume serves to disaggregate the dye to make the dye more visible.
  • It is preferred that the coated laundry detergent particle does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • Polymers
  • The composition may comprise one or more further polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Enzymes
  • One or more enzymes are preferred present in a composition of the invention.
  • Preferably the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein on product.
  • Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P. fluorescens, Pseudomonas sp. strain SD 705 ( WO 95/06720 and WO 96/27002 ), P. wisconsinensis ( WO 96/12012 ), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus ( JP 64/744992 ) or B. pumilus ( WO 91/16422 ).
  • Other examples are lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 , WO 09/107091 and W009/111258 .
  • Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ (Novozymes A/S) and Lipoclean™.
  • The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
  • Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™,Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™,Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).
  • The method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 . Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, FungaMyl™and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 . Commercially available cellulases include Celluzyme™, Carezyme™, Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme™ and Novozym™ 51004 (Novozymes A/S).
  • Further enzymes suitable for use are disclosed in W02009/087524 , W02009/090576 , W02009/148983 and W02008/007318 .
  • Enzyme Stabilizers
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.
  • The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise. The singular encompasses the plural unless otherwise specified.
  • Sequesterants may be present in the coated laundry detergent particles.
  • It is preferred that the coated detergent particle has a core to shell ratio of from 3 to 1:1, most preferably 2.5 to 1.5:1; the optimal ratio of core to shell is 2:1.
  • EXPERIMENTAL Example 1: (particle manufacture) Preparation of core of particle
  • 1962.5g of dried, milled surfactant blend (LAS/PAS/NI 68/17/15 by weight) was thoroughly mixed with 37.38g of perfume oil. The mixture was then extruded using a ThermoFisher 24HC twin screw extruder, operated at a rate of 8kg/hr. Inlet temperature of the extruder was set at 20°C, rising to 40°C just prior to the die-plate. The die-plate used was drilled with 6 circular orifices of 5mm diameter.
  • The extruded product was cut after the die-plate using a high speed cutter set up to produce particle with a thickness of ∼1.1 mm.
  • Coating of Particle
  • 1200g of the extrudate above were charged to the fluidising chamber of a Strea 1 laboratory fluid bed drier (Aeromatic-Fielder AG) and spray coated using 1285g of a solution containing 640g of citric acid in 960 g of water, using a top-spray configuration.
  • The coating solution was fed to the spray nozzle of the Strea 1 via a peristaltic pump (Watson-Marlow model 101 U/R) at an initial rate of 3.3g/min, rising to 9.1g/min during the course of the coating trial.
  • The Fluid bed coater was operated with an initial air inlet air temperature of 55°C increasing to 90°C during the course of the coating trial whilst maintaining the outlet temperature in the range 45-50°C throughout the coating process.
  • Similar particles were prepared with a sodium sulphate and sodium carbonate coating.
  • Panel Test
  • Ten out of ten panellists found that large coated detergent particles coated with citric acid were shinier than those coated with sodium sulphate or sodium sulphate and more aesthetically pleasing to the eye. In similar test the panel also found that those with dye incorporated into the coating in citric acid were of greater colour intensity that similar particles with a sodium sulphate coating.
  • Example 2 Coloured particles
  • 2 batches of coloured particles were made with the core particle described in example 1. A reference particle was coated with sodium carbonate, and an example of the current invention made with citric acid. 1200g of the core particles were coated with the following solutions:
  • Reference particle
  • Solution for coating made up as follows:
    • 1400g demin water
    • 600g sodium carbonate
    • 2g dye solution
    • 2.1g Tinopal CBSX
  • Of this solution 1714g was sprayed onto the core particles so that the coated particle contains 30 wt% (dry weight) of sodium carbonate as a coating.
  • Citric acid particle
  • Solution for coating made up as follows:
    • 960g of demin water
    • 640g citric acid
    • 1.6g dye solution
  • Of this solution 1285g was sprayed onto the crystals so that the coated particle contains 30wt% (dry weight) of citric acid as a coating.
  • The dye solution for both granules contained 50g of Liquitint™ Pink AL a liquid preparation of a red dye ex Milliken and 5g of Pigmosol Blue 6900 (Pigment Blue 15:1 ex BASF).
  • The reflectance spectra of both granules were measured on a reflectomer and the colour expresses as the CIE L*a*b* values (UV excluded). The results are shown below:
    L* a* b*
    Reference (Na2CO3) 69.3 9.2 -19.1
    Citric acid coated 63.9 20.3 -28.7
  • The citric acid coated granules are more colourful with larger magnitude of a* and b* than the carbonate coated granules. The citric acid coated granules contain less dye than the carbonate coated.
  • In contrast to powders being coated with citric acid the larger particle also has greater brightness in ambient light than powders.
  • Example 3 Spotting
  • 25 of the coloured citric acid particles of example 2 were scattered on a 20 x 20 cm of piece of white woven Egyptian Cotton cloth placed in 500ml of demin water and left for 40 minutes. The cloth was then washed. No spots were observed from the citric acid coated particles.
  • Claims (19)

    1. A coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the particle comprises:
      (i) from 40 to 90 wt % surfactant selected from: anionic surfactant; and, non-ionic surfactant;
      (ii) from 1 to 40 wt % citric acid; and,
      (iii) from 0 to 3 wt % of a perfume,
      wherein the citric acid is present on the laundry detergent particle as a coating and the surfactant is present as a core.
    2. A coated detergent particle according to claim 1, wherein the coated detergent particle comprises from 10 to 35 wt% of a citric acid as a coating
    3. A coated detergent particle according to claim 1 or 2, wherein the citric acid coating comprises a dye or pigment in the range from 0.0001 to 0.1 wt % dye or pigment.
    4. A coated detergent particle according to any preceding claim, wherein the core comprises a dye or pigment in the range from 0.0001 to 0.1 wt % dye or pigment.
    5. A coated detergent particle according to any one of the preceding claims, wherein the coated detergent particle comprises from 15 to 85 wt % anionic surfactant on surfactant and from 5 to 75 wt % non-ionic surfactant on surfactant.
    6. A coated detergent particle according to any one of claims 1 to 5, wherein the coated detergent particle comprises 15 to 100 wt % anionic surfactant on surfactant of which 20 to 30 wt % is sodium lauryl ether sulphate.
    7. A coated detergent particle according to any one of the preceding claims, wherein the anionic surfactant is selected from alkyl benzene sulphonates; alkyl ether sulphates; alkyl sulphates.
    8. A coated detergent particle according to claim 7, wherein the anionic surfactant is selected from sodium lauryl ether sulfate with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates.
    9. A coated detergent particle according to any one of the preceding claims, wherein the non-anionic surfactant is 10 to 50 EO.
    10. A coated detergent particle according to claim 9, wherein the non-ionic surfactant is the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with 20 to 35 ethylene oxide groups.
    11. A coated detergent particle according to claim 3 or 4, wherein the core comprises a dye which is a blue or violet shading dye.
    12. A coated detergent particle according to claim 3 or 4, wherein the coating comprises a dye is a blue or violet shading dye.
    13. A coated detergent particle according to any one of the preceding claims, wherein the particle comprises from 0 to 15 wt % water.
    14. A coated detergent particle according to claim 13, wherein the particle comprises from 1 to 5 wt % water.
    15. A coated detergent particle according to any one of the preceding claims, wherein the coated detergent particle comprises from 10 to 100 wt % of a detergent formulation in a package.
    16. A coated detergent particle according to claim 15, wherein the coated detergent particle comprises from 50 to 100 wt % of a detergent formulation in a package.
    17. A coated detergent particle according to claim 16, wherein the coated detergent particle comprises from 80 to 100 wt % of a detergent formulation in a package.
    18. A coated detergent particle according to claim 17, wherein the coated detergent particle comprises from 90 to 100 wt % of a detergent formulation in a package.
    19. A coated detergent particle according to any one of the preceding claims, wherein at least 90 to 100 % of the coated detergent particles in the in the x, y and z dimensions are within a 20 % variable from the largest to the smallest coated detergent particle.
    EP20100187522 2010-10-14 2010-10-14 Laundry detergent particles Withdrawn EP2441822A1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP20100187522 EP2441822A1 (en) 2010-10-14 2010-10-14 Laundry detergent particles

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP20100187522 EP2441822A1 (en) 2010-10-14 2010-10-14 Laundry detergent particles

    Publications (1)

    Publication Number Publication Date
    EP2441822A1 true EP2441822A1 (en) 2012-04-18

    Family

    ID=43570488

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP20100187522 Withdrawn EP2441822A1 (en) 2010-10-14 2010-10-14 Laundry detergent particles

    Country Status (1)

    Country Link
    EP (1) EP2441822A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN105934508A (en) * 2014-02-19 2016-09-07 美利肯公司 Composition comprising benefit agent and aprotic solvent
    EP3339407A1 (en) * 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition

    Citations (50)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1296839A (en) 1969-05-29 1972-11-22
    GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
    EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
    US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
    EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
    EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
    EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
    EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
    JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
    EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
    EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
    WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
    EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
    WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
    WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
    WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
    WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
    WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
    WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
    WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
    WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
    WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
    WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
    WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
    WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
    WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
    WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
    WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
    WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
    WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
    WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
    WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
    WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
    WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
    US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
    GB2315764A (en) * 1996-07-31 1998-02-11 Procter & Gamble Detergent comprising surfactant, acid source and alkaline source
    WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
    WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
    WO1999032599A1 (en) 1997-12-19 1999-07-01 Manro Performance Chemicals Limited Method of manufacturing particles
    WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
    WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
    US7022660B1 (en) 1999-03-09 2006-04-04 The Procter & Gamble Company Process for preparing detergent particles having coating or partial coating layers
    WO2008007318A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
    WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
    WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
    WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
    WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
    WO2009141172A1 (en) 2008-05-20 2009-11-26 Unilever Plc Shading composition
    WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
    EP2166077A1 (en) * 2008-09-12 2010-03-24 The Procter and Gamble Company Particles comprising a hueing dye

    Patent Citations (53)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1296839A (en) 1969-05-29 1972-11-22
    GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
    US4435307A (en) 1980-04-30 1984-03-06 Novo Industri A/S Detergent cellulase
    EP0070074A2 (en) 1981-07-13 1983-01-19 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
    EP0218272A1 (en) 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
    EP0258068A2 (en) 1986-08-29 1988-03-02 Novo Nordisk A/S Enzymatic detergent additive
    EP0260105A2 (en) 1986-09-09 1988-03-16 Genencor, Inc. Preparation of enzymes having altered activity
    EP0305216A1 (en) 1987-08-28 1989-03-01 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
    JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
    EP0328177A2 (en) 1988-02-10 1989-08-16 Unilever N.V. Liquid detergents
    EP0331376A2 (en) 1988-02-28 1989-09-06 Amano Pharmaceutical Co., Ltd. Recombinant DNA, bacterium of the genus pseudomonas containing it, and process for preparing lipase by using it
    US5691178A (en) 1988-03-22 1997-11-25 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase
    WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
    US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
    US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
    EP0407225A1 (en) 1989-07-07 1991-01-09 Unilever Plc Enzymes and enzymatic detergent compositions
    WO1991016422A1 (en) 1990-04-14 1991-10-31 Kali-Chemie Aktiengesellschaft Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases
    WO1992005249A1 (en) 1990-09-13 1992-04-02 Novo Nordisk A/S Lipase variants
    WO1992019708A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
    WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
    WO1993024618A1 (en) 1992-06-01 1993-12-09 Novo Nordisk A/S Peroxidase variants with improved hydrogen peroxide stability
    WO1994001541A1 (en) 1992-07-06 1994-01-20 Novo Nordisk A/S C. antarctica lipase and lipase variants
    WO1994025578A1 (en) 1993-04-27 1994-11-10 Gist-Brocades N.V. New lipase variants for use in detergent applications
    WO1995006720A1 (en) 1993-08-30 1995-03-09 Showa Denko K.K. Novel lipase, microorganism producing the lipase, process for producing the lipase, and use of the lipase
    WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
    WO1995014783A1 (en) 1993-11-24 1995-06-01 Showa Denko K.K. Lipase gene and variant lipase
    WO1995022615A1 (en) 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
    WO1995026397A1 (en) 1994-03-29 1995-10-05 Novo Nordisk A/S Alkaline bacillus amylase
    WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
    WO1995035381A1 (en) 1994-06-20 1995-12-28 Unilever N.V. Modified pseudomonas lipases and their use
    WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
    WO1996012012A1 (en) 1994-10-14 1996-04-25 Solvay S.A. Lipase, microorganism producing same, method for preparing said lipase and uses thereof
    WO1996013580A1 (en) 1994-10-26 1996-05-09 Novo Nordisk A/S An enzyme with lipolytic activity
    WO1996027002A1 (en) 1995-02-27 1996-09-06 Novo Nordisk A/S Novel lipase gene and process for the production of lipase with the use of the same
    WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
    WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
    WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
    GB2315764A (en) * 1996-07-31 1998-02-11 Procter & Gamble Detergent comprising surfactant, acid source and alkaline source
    WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
    WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
    WO1999032599A1 (en) 1997-12-19 1999-07-01 Manro Performance Chemicals Limited Method of manufacturing particles
    US7022660B1 (en) 1999-03-09 2006-04-04 The Procter & Gamble Company Process for preparing detergent particles having coating or partial coating layers
    WO2000060063A1 (en) 1999-03-31 2000-10-12 Novozymes A/S Lipase variant
    WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
    WO2008007318A2 (en) 2006-07-07 2008-01-17 The Procter & Gamble Company Detergent compositions
    WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
    WO2009090576A2 (en) 2008-01-11 2009-07-23 Procter & Gamble International Operations Sa Cleaning and/or treatment compositions
    WO2009107091A2 (en) 2008-02-29 2009-09-03 The Procter & Gamble Company Detergent composition comprising lipase
    WO2009111258A2 (en) 2008-02-29 2009-09-11 The Procter & Gamble Company Detergent composition comprising lipase
    WO2009141172A1 (en) 2008-05-20 2009-11-26 Unilever Plc Shading composition
    WO2009141173A1 (en) 2008-05-20 2009-11-26 Unilever Plc Shading composition
    WO2009148983A1 (en) 2008-06-06 2009-12-10 The Procter & Gamble Company Detergent composition comprising a variant of a family 44 xyloglucanase
    EP2166077A1 (en) * 2008-09-12 2010-03-24 The Procter and Gamble Company Particles comprising a hueing dye

    Non-Patent Citations (11)

    * Cited by examiner, † Cited by third party
    Title
    'colour index', 2002
    'CTFA', 1992, CFTA PUBLICATIONS
    DARTOIS ET AL. BIOCHEMICA ET BIOPHYSICA ACTA vol. 1131, 1993, pages 253 - 360
    H. STACHE: 'Tenside-Taschenbuch', 1981, CARL HAUSER VERLAG
    'Industrial Dyes', 2003, WILEY-VCH
    'Industrial Inorganic Pigments', 2005, WILEY-VCH
    'Industrial Organic Pigments', 2004, WILEY-VCH
    'McCutcheon's Emulsifiers and Detergents', MANUFACTURING CONFECTIONERS COMPANY
    'OPD', 1993, SCHNELL PUBLISHING CO
    POUCHER JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS vol. 6, no. 2, 1955, page 80
    SCHWARTZ; PERRY: 'Surface Active Agents', vol. 1, 1949, INTERSCIENCE

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN105934508A (en) * 2014-02-19 2016-09-07 美利肯公司 Composition comprising benefit agent and aprotic solvent
    EP3339407A1 (en) * 2016-12-22 2018-06-27 The Procter & Gamble Company Laundry detergent composition

    Similar Documents

    Publication Publication Date Title
    EP1794275B1 (en) Laundry treatment compositions
    JP5883127B2 (en) Laundry care compositions containing a dye
    EP2491105B2 (en) Dye polymers
    US8715369B2 (en) Laundry treatment compositions
    CA2569559C (en) Laundry detergent compositions with efficient hueing dye
    EP1794274B1 (en) Laundry treatment compositions
    FI60406B (en) packad tvaettmedelskomposition
    EP2382299B1 (en) Incorporation of dye into granular laundry composition
    ES2477518T3 (en) polymeric dye
    EP1627909B1 (en) Detergent compositions comprising coloured particles
    US7902139B2 (en) Shading composition
    EP2440645B1 (en) Cationic dye polymers
    EP2297288B1 (en) Laundry compositions
    CN101970632B (en) Laundry treatment composition comprising polymeric lubricants
    CN101970631B (en) Laundry treatment compositions
    EP3194543B1 (en) Whitening composition
    US8062382B2 (en) Shading composition
    US9982221B2 (en) Leuco triphenylmethane colorants as bluing agents in laundry care compositions
    WO2008090091A1 (en) Shading composition
    EP2445478B1 (en) Process for the production of a dye-polymer
    EP2195410A1 (en) Performance ingredients in film particles
    WO2007006357A1 (en) Dye delivery granules
    US9790453B2 (en) Dye polymer
    WO2012126665A1 (en) Dye polymer
    US8883702B2 (en) Packaged particulate detergent composition

    Legal Events

    Date Code Title Description
    AK Designated contracting states:

    Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

    Kind code of ref document: A1

    AX Extension or validation of the european patent to

    Countries concerned: BAME

    18W Withdrawn

    Effective date: 20120521