EP0327412B1 - Passivation process of a integrated circuit - Google Patents

Passivation process of a integrated circuit Download PDF

Info

Publication number
EP0327412B1
EP0327412B1 EP89400042A EP89400042A EP0327412B1 EP 0327412 B1 EP0327412 B1 EP 0327412B1 EP 89400042 A EP89400042 A EP 89400042A EP 89400042 A EP89400042 A EP 89400042A EP 0327412 B1 EP0327412 B1 EP 0327412B1
Authority
EP
European Patent Office
Prior art keywords
layer
dielectric material
hard
integrated circuit
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400042A
Other languages
German (de)
French (fr)
Other versions
EP0327412A1 (en
Inventor
Pierre Merenda
Bernard Genot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics SA filed Critical SGS Thomson Microelectronics SA
Publication of EP0327412A1 publication Critical patent/EP0327412A1/en
Application granted granted Critical
Publication of EP0327412B1 publication Critical patent/EP0327412B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a new method for passivation of integrated circuits.
  • a passivation layer or protective layer In fact, in integrated circuits, it is usual to cover the active surfaces with a passivation layer or protective layer, the aim of which is to avoid pollution which could alter the characteristics of the components forming the integrated circuit.
  • This layer consists of a stable dielectric such as silicon dioxide, silicon nitride or silicon oxynitride.
  • the materials used as dielectric have the disadvantage of being relatively hard. This characteristic involves the risk of cracks in the passivation layer, these cracks being able to propagate as far as the active surfaces. As a result, the passivation layer no longer plays its protective role.
  • the passivation layers are generally deposited on the last metallization layer.
  • the metallization layer is etched to make the metal conductors.
  • the etching is carried out under reactive plasma. It is practically anisotropic and takes place in the direction of the thickness of the layer. As a result, the conductors have an approximately rectangular section.
  • the passivation layer is deposited on the conductors, it can be seen that the passivation layer is not deposited uniformly but has a hilly structure with particularly large recesses at the edges of the conductors.
  • JP-A-61-232646 (see PATENT ABSTRACTS OF JAPAN Vol.11 Number 77 (E-487) (2524)) concerns the reduction of thermal stresses between a protective resin and a protective layer, by inserting two layers between them of SiO2 or SiN4 separated by a layer which absorbs these thermal stresses. This layer has low elasticity.
  • the object of the present invention is to remedy the drawbacks mentioned above.
  • It relates to a new process for passivation of an integrated circuit comprising the formation of at least one final dielectric layer, characterized in that it consists in depositing on the integrated circuit a first layer of hard dielectric material, deposit on this layer, a layer of a dielectric material stretch and deposit on the surface thus obtained a second layer of a hard dielectric material.
  • hard layer or soft layer in the present invention means a layer defined by a measurement of microhardness.
  • a soft layer will have a hardness of less than 400 HK.
  • the following steps are also carried out one or more times: namely, the last dielectric layer is covered with a soft dielectric layer, then a layer of d is deposited on this new layer '' a hard dielectric material.
  • the soft layer is obtained from a viscous suspension which is subjected to annealing.
  • the dielectric suspension is eliminated once it has been annealed to a certain thickness so as to obtain a flat upper surface.
  • the dielectric suspension consists of a gel based on mineral silica which will advantageously be in colloidal form, such as the gel commonly called S.O.G (for Spin On Glass in English) well known in the art.
  • S.O.G Spin On Glass in English
  • the soft layer can be produced by a polyimide layer, but this has the drawback of having a large thickness.
  • the layer of hard dielectric material will consist of a material such as silicon dioxide SiO2, silicon nitride Si3 N4 or a silicon oxy-nitride of the form SiO x N y .
  • the integrated circuit shown in FIG. 1 is made up of a semiconductor substrate 1, for example an N-type silicon substrate in which isolation zones have been produced between the components constituted, for example, by thick oxide. 2 and diffused zones 3 such as for example P + doped zones. Thin oxide zones 4 have been produced on the substrate, which have been covered for example with grids 5 made of polycrystalline silicon. The different areas above were obtained using conventional methods well known to those skilled in the art. These different zones have been covered with an insulating layer 7 made for example of silicon dioxide SiO2.
  • the circuit shown in FIG. 1 by way of illustrative example consists of two N-type MOS transistors.
  • the layer 7 has been etched in a known manner and a metal layer 8 has been deposited on the insulating layer 7.
  • This metal layer is made, for example, of aluminum.
  • the conductors are then produced by etching, by placing the metal layer under reactive plasma. This engraving is generally anisotropic. It is carried out in the direction of the thickness of the layer and thus gives the conductor an approximately rectangular section as shown in FIG. 2.
  • the conductors 8 are then covered with a passivation layer or protective layer which can be produced in silicon oxide Si O2, in silicon nitride Si3 N4 or in silicon oxynitride Si O x N y .
  • the material used to produce this passivation layer 9 is a hard material which can fracture following stresses as shown by reference 6 in FIG. 1.
  • the passivation layer has a hilly profile.
  • the different stages of the passivation process of an integrated circuit according to the present invention in the case where the soft layer is obtained from a viscous dielectric suspension subjected to annealing. .
  • the method consists in depositing on the hilly layer 9 a dielectric suspension viscous 10. This suspension is spread uniformly over the entire surface of the dielectric layer 9. Due to its viscosity, this suspension completely fills the existing voids and forms a thin layer over the entire surface of the dielectric layer 9.
  • the suspension used can be a gel based on mineral silica advantageously in colloidal form such as the gel commonly called S.O.G. (Spin On Glass) well known to those skilled in the art.
  • the dielectric suspension is used in the same way as the photosensitive resins used for the configuration of the elements of the integrated circuit.
  • the suspension 10 is then annealed. This annealing is carried out for 1/2 hour at 425 ° C.
  • the solvent in the suspension evaporates while the dielectric forms a compact mass 10 ′ as shown in Figure 3B. This mass forms a thin film on the dielectric layer 9 located above the conductors 8.
  • this layer is covered with another layer 11 of hard dielectric material such as silicon nitride, silicon dioxide or silicon oxynitride.
  • this dielectric layer is deposited using a chemical vapor deposition process well known to those skilled in the art.
  • the layer 9 has a thickness of approximately 500 nm, the layer 10 a thickness of approximately 300 nm and the layer 11 a thickness of approximately 12 00 nm.
  • the thicknesses of layers 9 and 11 can be modified provided that their sum is constant and equal to 1700 nm ⁇ 300 nm.
  • the passivation layer of a composite structure consisting of a first hard dielectric layer 9 covering the conductors 8 and then a soft layer of a viscous dielectric material which has been annealed, this layer being covered with another layer of hard dielectric material, absorbs the stresses generated on the circuit and prevents the propagation of cracks inside the integrated circuit.
  • the surface of the integrated circuit presents a less accentuated undulation, because the soft layer partially fills the undulations of the first hard layer.
  • the upper hard dielectric layer 11 can be again covered with a viscous dielectric suspension. This layer is then subjected to annealing to obtain the layer 12 ′ in FIG. 3E.
  • This layer 12 ′ is again covered with a layer of hard dielectric material 13.
  • the materials used for the viscous layer 12 and the hard dielectric layer 13 are identical to the materials already used for the hard dielectric layers 9 and 11 and for the viscous layer 10. This superposition of layers gives a structure of the "millefeuille" type and can be renewed one or more times. It provides a relatively flat upper surface and improves stress absorption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

La présente invention concerne un nouveau procédé de passivation de circuits intégrés.The present invention relates to a new method for passivation of integrated circuits.

En effet, dans les circuits intégrés, il est habituel de recouvrir les surfaces actives d'une couche de passivation ou couche de protection dont le but est d'éviter les pollutions pouvant altérer les caractéristiques des composants formant le circuit intégré. Cette couche est constituée par un diélectrique stable tel que du dioxyde de silicium, du nitrure de silicium ou un oxynitrure de silicium. Les matériaux employés comme diélectrique présentent l'inconvénient d'être relativement durs. Cette caractéristique entraîne des risques de fissures de la couche de passivation, ces fissures pouvant se propager jusque vers les surfaces actives. Il en résulte que la couche de passivation ne joue plus son rôle de protection.In fact, in integrated circuits, it is usual to cover the active surfaces with a passivation layer or protective layer, the aim of which is to avoid pollution which could alter the characteristics of the components forming the integrated circuit. This layer consists of a stable dielectric such as silicon dioxide, silicon nitride or silicon oxynitride. The materials used as dielectric have the disadvantage of being relatively hard. This characteristic involves the risk of cracks in the passivation layer, these cracks being able to propagate as far as the active surfaces. As a result, the passivation layer no longer plays its protective role.

D'autre part, les couches de passivation sont généralement déposées sur la dernière couche de métallisation. La couche de métallisation est gravée pour réaliser les conducteurs métalliques. En général, la gravure est réalisée sous plasma réactif. Elle est pratiquement anisotrope et s'effectue dans le sens de l'épaisseur de la couche. Il en résulte que les conducteurs présentent une section approximativement rectangulaire. Aussi, lorsque l'on dépose la couche de passivation sur les conducteurs, on s'aperçoit que la couche de passivation ne se dépose pas de manière uniforme mais présente une structure vallonnée avec des creux particulièrement importants au niveau des bords des conducteurs.On the other hand, the passivation layers are generally deposited on the last metallization layer. The metallization layer is etched to make the metal conductors. In general, the etching is carried out under reactive plasma. It is practically anisotropic and takes place in the direction of the thickness of the layer. As a result, the conductors have an approximately rectangular section. Also, when the passivation layer is deposited on the conductors, it can be seen that the passivation layer is not deposited uniformly but has a hilly structure with particularly large recesses at the edges of the conductors.

JP-A-61-232646 (voir PATENT ABSTRACTS OF JAPAN Vol.11 Number 77 (E-487)(2524)) concerne la réduction des contraintes thermiques entre une résine de protection et une couche de protection, en insérant entre elles deux couches de SiO₂ ou SiN₄ séparées par une couche qui absorbe ces contraintes thermiques. Cette couche est à faible élasticité.JP-A-61-232646 (see PATENT ABSTRACTS OF JAPAN Vol.11 Number 77 (E-487) (2524)) concerns the reduction of thermal stresses between a protective resin and a protective layer, by inserting two layers between them of SiO₂ or SiN₄ separated by a layer which absorbs these thermal stresses. This layer has low elasticity.

La présente invention a pour but de remédier aux inconvénients mentionnés ci-dessus.The object of the present invention is to remedy the drawbacks mentioned above.

Elle a pour objet un nouveau procédé de passivation d'un circuit intégré comprenant la formation d'au moins une couche diélectrique finale, caractérisé en ce qu'il consiste à déposer sur le circuit intégré une première couche d'un matériau diélectrique dur, à déposer sur cette couche, une couche d'un matériau diélectrique tendre et à déposer sur la surface ainsi obtenue une deuxième couche d'un matériau diélectrique dur.It relates to a new process for passivation of an integrated circuit comprising the formation of at least one final dielectric layer, characterized in that it consists in depositing on the integrated circuit a first layer of hard dielectric material, deposit on this layer, a layer of a dielectric material stretch and deposit on the surface thus obtained a second layer of a hard dielectric material.

L'utilisation d'une couche tendre permet de remplir les vallonnements de la couche en matériau diélectrique dur inférieur et d'obtenir une surface relativement plane sur laquelle on peut déposer facilement une deuxième couche de protection en matériau diélectrique dur. Cette couche tendre intercalée entre deux couches dures permet d'absorber les contraintes mécaniques venant de l'extérieur et évite notamment la propagation des fissures qui auraient pu se réaliser dans les couches en matériau diélectrique dur. De plus, la couche dure externe empêche la déformation plastique de la couche tendre et répartit les contraintes extérieures dans la couche tendre. Par couche dure ou couche tendre dans la présente invention, on entend une couche définie par une mesure de microdureté. Ainsi, une couche dure présentera une dureté supérieure à 700 HK (HK = dureté knoop) (dureté mesurée à 15 g sur film mince de quelques micromètres, déposé sur une plaquette de silicium). Une couche tendre présentera une dureté inférieure à 400 HK.The use of a soft layer makes it possible to fill the undulations of the layer of lower hard dielectric material and to obtain a relatively flat surface on which a second protective layer of hard dielectric material can be easily deposited. This soft layer interposed between two hard layers makes it possible to absorb the mechanical stresses coming from the outside and in particular prevents the propagation of cracks which could have been produced in the layers of hard dielectric material. In addition, the outer hard layer prevents plastic deformation of the soft layer and distributes the external stresses in the soft layer. By hard layer or soft layer in the present invention means a layer defined by a measurement of microhardness. Thus, a hard layer will have a hardness greater than 700 HK (HK = knoop hardness) (hardness measured at 15 g on a thin film of a few micrometers, deposited on a silicon wafer). A soft layer will have a hardness of less than 400 HK.

Selon une autre caractéristique de la présente invention, on réalise de plus, une ou plusieurs fois les étapes suivantes : à savoir, on recouvre la dernière couche diélectrique d'une couche diélectrique tendre, puis l'on dépose sur cette nouvelle couche une couche d'un matériau diélectrique dur. En utilisant ce procédé, on réalise une structure de type "mille feuille" intercalant des couches diélectriques dures avec des couches diélectriques tendres ce qui permet une meilleure absorption des contraintes et un blocage de la transmission des fissures.According to another characteristic of the present invention, the following steps are also carried out one or more times: namely, the last dielectric layer is covered with a soft dielectric layer, then a layer of d is deposited on this new layer '' a hard dielectric material. By using this process, a "mille feuille" type structure is produced, intercalating hard dielectric layers with soft dielectric layers, which allows better absorption of stresses and blocking of the transmission of cracks.

Selon un mode de réalisation préférentiel, la couche tendre est obtenue à partir d'une suspension visqueuse que l'on soumet à un recuit.According to a preferred embodiment, the soft layer is obtained from a viscous suspension which is subjected to annealing.

D'autre part, selon encore une autre caractéristique de la présente invention, on élimine la suspension diélectrique une fois recuite sur une certaine épaisseur de manière à obtenir une surface supérieure plane.On the other hand, according to yet another characteristic of the present invention, the dielectric suspension is eliminated once it has been annealed to a certain thickness so as to obtain a flat upper surface.

De préférence, la suspension diélectrique est constituée par un gel à base de silice minérale qui sera avantageusement sous forme colloïdale, tel que le gel appelé couramment S.O.G (pour Spin On Glass en langue anglaise) bien connu dans la technique.Preferably, the dielectric suspension consists of a gel based on mineral silica which will advantageously be in colloidal form, such as the gel commonly called S.O.G (for Spin On Glass in English) well known in the art.

Eventuellement, la couche tendre peut être réalisée par une couche de polyimide, mais celle-ci présente l'inconvénient d'avoir une épaisseur importante.Optionally, the soft layer can be produced by a polyimide layer, but this has the drawback of having a large thickness.

D'autre part, la couche en matériau diélectrique dur sera constituée par un matériau tel que le dioxyde de silicium SiO₂, le nitrure de silicium Si₃ N₄ ou un oxy-nitrure de silicium de la forme SiOxNy.On the other hand, the layer of hard dielectric material will consist of a material such as silicon dioxide SiO₂, silicon nitride Si₃ N₄ or a silicon oxy-nitride of the form SiO x N y .

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description d'un mode de réalisation faite avec référence aux dessins ci-annexés et dans lesquels :

  • la figure 1 est une vue en coupe schématique d'un circuit intégré comportant une couche de passivation réalisée conformément à l'art antérieur,
  • la figure 2 est une vue en coupe par AA des deux couches supérieures de la figure 1,
  • les figures 3A à 3E sont des vues analogues à celles de la figure 2, illustrant les étapes essentielles du procédé de passivation conforme à l'invention et,
  • la figure 4 est une vue analogue à celle de la figure 3B représentant une variante du procédé de passivation conforme à la présente invention.
Other characteristics and advantages of the present invention will appear on reading the description of an embodiment made with reference to the appended drawings and in which:
  • FIG. 1 is a schematic sectional view of an integrated circuit comprising a passivation layer produced in accordance with the prior art,
  • FIG. 2 is a sectional view through AA of the two upper layers of FIG. 1,
  • FIGS. 3A to 3E are views similar to those of FIG. 2, illustrating the essential steps of the passivation process according to the invention and,
  • Figure 4 is a view similar to that of Figure 3B showing a variant of the passivation method according to the present invention.

Pour permettre une meilleure compréhension du procédé de la présente invention, les différentes couches ont été représentées à une échelle agrandie et sans respecter leurs dimensions.To allow a better understanding of the process of the present invention, the different layers have been shown on an enlarged scale and without respecting their dimensions.

Le circuit intégré représenté sur la figure 1 se compose d'un substrat semiconducteur 1, par exemple un substrat en silicium de type N dans lequel ont été réalisées des zones d'isolement entre les composants constituées, par exemple, par de l'oxyde épais 2 et des zones diffusées 3 telles que par exemple des zones dopées P+. Sur le substrat ont été réalisées des zones d'oxyde mince 4 qui ont été recouvertes par exemple de grilles 5 réalisées en silicium polycristallin. Les différentes zones ci-dessus ont été obtenues en utilisant les procédés classiques bien connus de l'homme de l'art. Ces différentes zones ont été recouvertes d'une couche d'isolement 7 réalisée par exemple en dioxyde de silicium SiO₂. Le circuit représenté sur la figure 1 à titre d'exemple illustratif est constitué de deux transistors MOS de type N. Pour réaliser la connexion entre différentes zones telles que, par exemple, entre deux diffusions correspondantes des deux transistors MOS (Metal Oxyde Semi-conducteur) représentée sur la figure 1, la couche 7 a été gravée de manière connue et une couche métallique 8 a été déposée sur la couche isolante 7. Cette couche métallique est réalisée, par exemple, en aluminium. Les conducteurs sont ensuite réalisés par gravure, en plaçant la couche métallique sous plasma réactif. Cette gravure est en général anisotrope. Elle s'effectue dans le sens de l'épaisseur de la couche et donne ainsi au conducteur une section approximativement rectangulaire comme représenté sur la figure 2.The integrated circuit shown in FIG. 1 is made up of a semiconductor substrate 1, for example an N-type silicon substrate in which isolation zones have been produced between the components constituted, for example, by thick oxide. 2 and diffused zones 3 such as for example P + doped zones. Thin oxide zones 4 have been produced on the substrate, which have been covered for example with grids 5 made of polycrystalline silicon. The different areas above were obtained using conventional methods well known to those skilled in the art. These different zones have been covered with an insulating layer 7 made for example of silicon dioxide SiO₂. The circuit shown in FIG. 1 by way of illustrative example consists of two N-type MOS transistors. To make the connection between different zones such as, for example, between two corresponding diffusions of the two MOS (Metal Oxide Semiconductor) transistors ) shown in Figure 1, the layer 7 has been etched in a known manner and a metal layer 8 has been deposited on the insulating layer 7. This metal layer is made, for example, of aluminum. The conductors are then produced by etching, by placing the metal layer under reactive plasma. This engraving is generally anisotropic. It is carried out in the direction of the thickness of the layer and thus gives the conductor an approximately rectangular section as shown in FIG. 2.

Si le circuit possède un seul niveau d'interconnexions, les conducteurs 8 sont alors recouverts d'une couche de passivation ou couche de protection qui peut être réalisée en oxyde de silicium Si O₂, en nitrure de silicium Si₃ N₄ ou en oxynitrure de silicium Si Ox Ny. Le matériau utilisé pour réaliser cette couche de passivation 9 est un matériau dur qui peut se fracturer suite à des contraintes comme représenté par la référence 6 sur la figure 1. D'autre part, en particulier en technologie MOS où plusieurs couches de matériaux différents sont superposées et gravées, la couche de passivation présente un profil vallonné.If the circuit has only one level of interconnections, the conductors 8 are then covered with a passivation layer or protective layer which can be produced in silicon oxide Si O₂, in silicon nitride Si₃ N₄ or in silicon oxynitride Si O x N y . The material used to produce this passivation layer 9 is a hard material which can fracture following stresses as shown by reference 6 in FIG. 1. On the other hand, in particular in MOS technology where several layers of different materials are superimposed and engraved, the passivation layer has a hilly profile.

On décrira maintenant, avec référence aux figures 3A à 3E, les différentes étapes du procédé de passivation d'un circuit intégré conforme à la présente invention dans le cas où la couche tendre est obtenue à partir d'une suspension diélectrique visqueuse soumise à un recuit. Ce cas correspond à un mode de réalisation particulièrement avantageux de la présente invention. Le procédé consiste à déposer sur la couche vallonnée 9 une suspension diélectrique visqueuse 10. Cette suspension est étalée de manière uniforme sur toute la surface de la couche diélectrique 9. Du fait, de sa viscosité cette suspension comble totalement les creux existants et forme une couche mince sur toute la surface de la couche diélectrique 9.We will now describe, with reference to FIGS. 3A to 3E, the different stages of the passivation process of an integrated circuit according to the present invention in the case where the soft layer is obtained from a viscous dielectric suspension subjected to annealing. . This case corresponds to a particularly advantageous embodiment of the present invention. The method consists in depositing on the hilly layer 9 a dielectric suspension viscous 10. This suspension is spread uniformly over the entire surface of the dielectric layer 9. Due to its viscosity, this suspension completely fills the existing voids and forms a thin layer over the entire surface of the dielectric layer 9.

A titre d'exemple, la suspension utilisée peut être un gel à base de silice minérale avantageusement sous forme colloïdale tel que le gel appelé couramment S.O.G. (Spin On Glass) bien connu de l'homme de l'art. Dans ce cas, la suspension diélectrique s'utilise de la même manière que les résines photosensibles servant à la configuration des éléments du circuit intégré. On procède ensuite au recuit de la suspension 10. Ce recuit est réalisé pendant 1/2 heure à 425°C. Ainsi, le solvant de la suspension s'évapore tandis que le diélectrique forme une masse compacte 10′ telle que représentée sur la figure 3B. Cette masse forme un film mince sur la couche diélectrique 9 située au-dessus des conducteurs 8. Ensuite, cette couche est recouverte d'une autre couche 11 de matériau diélectrique dur tel que du nitrure de silicium, du dioxyde de silicium ou de l'oxynitrure de silicium. De manière connue, cette couche diélectrique est déposée en utilisant un procédé de dépôt chimique en phase vapeur bien connu de l'homme de l'art.For example, the suspension used can be a gel based on mineral silica advantageously in colloidal form such as the gel commonly called S.O.G. (Spin On Glass) well known to those skilled in the art. In this case, the dielectric suspension is used in the same way as the photosensitive resins used for the configuration of the elements of the integrated circuit. The suspension 10 is then annealed. This annealing is carried out for 1/2 hour at 425 ° C. Thus, the solvent in the suspension evaporates while the dielectric forms a compact mass 10 ′ as shown in Figure 3B. This mass forms a thin film on the dielectric layer 9 located above the conductors 8. Next, this layer is covered with another layer 11 of hard dielectric material such as silicon nitride, silicon dioxide or silicon oxynitride. In known manner, this dielectric layer is deposited using a chemical vapor deposition process well known to those skilled in the art.

A titre d'exemple, la couche 9 présente une épaisseur d'environ 500 nm, la couche 10 une épaisseur d'environ 300 nm et la couche 11 une épaisseur d'environ 12 00 nm. Les épaisseurs des couches 9 et 11 peuvent être modifiées à condition que leur somme soit constante et égale à 1 700 nm ± 3 00 nm.For example, the layer 9 has a thickness of approximately 500 nm, the layer 10 a thickness of approximately 300 nm and the layer 11 a thickness of approximately 12 00 nm. The thicknesses of layers 9 and 11 can be modified provided that their sum is constant and equal to 1700 nm ± 300 nm.

L'utilisation pour la couche de passivation d'une structure composite constituée d'une première couche diélectrique dure 9 recouvrant les conducteurs 8 puis d'une couche tendre en un matériau diélectrique visqueux qui a été recuit, cette couche étant recouverte d'une autre couche d'un matériau diélectrique dur, permet d'absorber les contraintes engendrées sur le circuit et évite la propagation des fissures à l'intérieur du circuit intégré.The use for the passivation layer of a composite structure consisting of a first hard dielectric layer 9 covering the conductors 8 and then a soft layer of a viscous dielectric material which has been annealed, this layer being covered with another layer of hard dielectric material, absorbs the stresses generated on the circuit and prevents the propagation of cracks inside the integrated circuit.

De plus, la surface du circuit intégré présente un vallonnement moins accentué, car la couche tendre remplie partiellement les vallonnements de la première couche dure.In addition, the surface of the integrated circuit presents a less accentuated undulation, because the soft layer partially fills the undulations of the first hard layer.

Selon une variante de réalisation représentée à la figure 4, pour obtenir une surface supérieure encore plus plane, il est possible d'éliminer uniformément une pellicule d'épaisseur faible de la couche diélectrique 10′ en mettant cette couche sous plasma réactif. Il en résulte une surface 10 presque plane.According to an alternative embodiment shown in FIG. 4, to obtain an even more planar upper surface, it is possible to uniformly remove a film of small thickness from the dielectric layer 10 ′ by placing this layer under reactive plasma. This results in an almost flat surface 10.

Pour améliorer l'absorption des contraintes extérieures et éviter la propagation de fentes à l'intérieur de la couche de passivation, la couche diélectrique dure supérieure 11 peut être à nouveau recouverte d'une suspension diélectrique visqueuse. Cette couche est soumise alors à un recuit pour obtenir la couche 12′ sur la figure 3E. Cette couche 12′ est à nouveau recouverte d'une couche d'un matériau diélectrique dur 13. Les matériaux utilisés pour la couche visqueuse 12 et la couche diélectrique dure 13 sont identiques aux matériaux déjà utilisés pour les couches diélectriques dures 9 et 11 et pour la couche visqueuse 10. Cette superposition de couches donne une structure de type "millefeuille" et peut être renouvelée une ou plusieurs fois. Elle permet d'obtenir une surface supérieure relativement plane et améliore l'absorption des contraintes.To improve the absorption of external stresses and avoid the propagation of cracks inside the passivation layer, the upper hard dielectric layer 11 can be again covered with a viscous dielectric suspension. This layer is then subjected to annealing to obtain the layer 12 ′ in FIG. 3E. This layer 12 ′ is again covered with a layer of hard dielectric material 13. The materials used for the viscous layer 12 and the hard dielectric layer 13 are identical to the materials already used for the hard dielectric layers 9 and 11 and for the viscous layer 10. This superposition of layers gives a structure of the "millefeuille" type and can be renewed one or more times. It provides a relatively flat upper surface and improves stress absorption.

Claims (10)

  1. Method of passivating an integrated circuit comprising the formation of at least one final dielectric layer, characterised in that it consists of depositing a first layer (9) of a hard dielectric material, depositing on this layer a layer of a soft dielectric material (10) obtained from a viscous suspension which is subjected to baking, and depositing on the surface thus obtained a second layer (11) of a hard dielectric material.
  2. Method according to Claim 1, characterised in that, in addition, the following steps are carried out one or more times:
    - covering the last hard dielectric layer with a soft dielectric layer (12), and then
    - depositing a layer (13) of a hard dielectric material so as to produce a structure of the "millefeuille" type.
  3. Method according to either one of Claims 1 and 2, characterised in that the soft layer is a layer of polyimide.
  4. Method according to Claim 1, 2 or 3, characterised in that the baked dielectric suspension is eliminated over a certain thickness so as to obtain a plane top surface.
  5. Method according to any one of Claims 1 to 4, characterised in that the dielectric suspension is a gel based on mineral silica, advantageously in a colloidal form.
  6. Method according to any one of Claims 1 to 5, characterised in that the layer of hard dielectric material is a layer of SiO₂, Si₃N₄ or SiOxNy.
  7. Integrated circuit comprising at least one final passivation layer, characterised in that this layer comprises a first layer of hard dielectric material (9), a first layer of soft dielectric material (10) obtained from a viscous suspension subjected to a circuit, and a second layer (11) of hard dielectric material.
  8. Integrated circuit according to Claim 7, characterised in that the layer (10) of soft dielectric material has a thickness of around 300 nm.
  9. Integrated circuit according to Claim 7 or 8, characterised in that the first (10) and second (11) layers of hard material have a variable thickness, the sum of which is constant and equal to 1700 nm ± 300 nm.
  10. Integrated circuit according to Claim 9, characterised in that the first layer (9) of hard dielectric material has a thickness of around 500 nm and in that the second layer (11) of hard dielectric material has a thickness of around 1200 nm.
EP89400042A 1988-01-13 1989-01-06 Passivation process of a integrated circuit Expired - Lifetime EP0327412B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8800294A FR2625839B1 (en) 1988-01-13 1988-01-13 PROCESS FOR PASSIVATING AN INTEGRATED CIRCUIT
FR8800294 1988-01-13

Publications (2)

Publication Number Publication Date
EP0327412A1 EP0327412A1 (en) 1989-08-09
EP0327412B1 true EP0327412B1 (en) 1994-09-21

Family

ID=9362244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400042A Expired - Lifetime EP0327412B1 (en) 1988-01-13 1989-01-06 Passivation process of a integrated circuit

Country Status (4)

Country Link
EP (1) EP0327412B1 (en)
JP (1) JP3054637B2 (en)
DE (1) DE68918301T2 (en)
FR (1) FR2625839B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762066B2 (en) 2001-09-17 2004-07-13 Infineon Technologies Ag Method for fabricating a semiconductor structure using a protective layer, and semiconductor structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270267A (en) * 1989-05-31 1993-12-14 Mitel Corporation Curing and passivation of spin on glasses by a plasma process wherein an external polarization field is applied to the substrate
CA1339817C (en) * 1989-05-31 1998-04-14 Mitel Corporation Curing and passivation of spin-on-glasses by a plasma process, and product produced thereby
NL195049C (en) * 1990-06-18 2003-06-27 Hyundai Electronics Ind Method for manufacturing integrated semiconductor circuits.
US5825078A (en) * 1992-09-23 1998-10-20 Dow Corning Corporation Hermetic protection for integrated circuits
EP0627763B1 (en) * 1993-05-31 2004-12-15 STMicroelectronics S.r.l. Process for improving the adhesion between dielectric layers at their interface in semiconductor devices manufacture
US5435888A (en) * 1993-12-06 1995-07-25 Sgs-Thomson Microelectronics, Inc. Enhanced planarization technique for an integrated circuit
US6107194A (en) * 1993-12-17 2000-08-22 Stmicroelectronics, Inc. Method of fabricating an integrated circuit
US6284584B1 (en) 1993-12-17 2001-09-04 Stmicroelectronics, Inc. Method of masking for periphery salicidation of active regions
US5439846A (en) * 1993-12-17 1995-08-08 Sgs-Thomson Microelectronics, Inc. Self-aligned method for forming contact with zero offset to gate
US5847464A (en) * 1995-09-27 1998-12-08 Sgs-Thomson Microelectronics, Inc. Method for forming controlled voids in interlevel dielectric
US6462394B1 (en) 1995-12-26 2002-10-08 Micron Technology, Inc. Device configured to avoid threshold voltage shift in a dielectric film
US7067442B1 (en) * 1995-12-26 2006-06-27 Micron Technology, Inc. Method to avoid threshold voltage shift in thicker dielectric films
US5711987A (en) * 1996-10-04 1998-01-27 Dow Corning Corporation Electronic coatings

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198444A (en) * 1975-08-04 1980-04-15 General Electric Company Method for providing substantially hermetic sealing means for electronic components
IN147578B (en) * 1977-02-24 1980-04-19 Rca Corp
GB1566072A (en) * 1977-03-28 1980-04-30 Tokyo Shibaura Electric Co Semiconductor device
JPS5627935A (en) * 1979-08-15 1981-03-18 Toshiba Corp Semiconductor device
JPS56114335A (en) * 1980-02-13 1981-09-08 Fujitsu Ltd Semiconductor device and its manufacture
JPS5731145A (en) * 1980-08-01 1982-02-19 Nec Corp Semiconductor device
JPS5788734A (en) * 1980-11-21 1982-06-02 Toshiba Corp Semiconductor device
JPS57199224A (en) * 1981-06-02 1982-12-07 Nec Corp Semiconductor device
JPS5874043A (en) * 1981-10-29 1983-05-04 Nec Corp Semiconductor device
JPS60233829A (en) * 1984-01-19 1985-11-20 Nec Corp Formation of insulation layer
JPS6179233A (en) * 1984-09-26 1986-04-22 Fujitsu Ltd Semiconductor device
JPS61232646A (en) * 1985-04-09 1986-10-16 Nec Corp Resin-sealed type semiconductor integrated circuit device

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 251 (E-432)(2307), 28 août 1986 ; & JP-A-61 079 233 *
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 356 (E-459)(2412), 29 novembre 1986 ; & JP-A-61 154 131 *
PATENT ABSTRACTS OF JAPAN, vol. 11, no. 77 (E-487)(2524), 7 mars 1987 ; & JP-A-61 232 646 *
PATENT ABSTRACTS OF JAPAN, vol. 6, no. 170 (E-128)(1048), 3 septembre 1982 ; & JP-A-57 088 734 *
PATENT ABSTRACTS OF JAPAN, vol. 6, no. 99 (E-111)(977), 8 juin 1982 ; & JP-A-57 031 145 *
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 166 (E-188)(1311), 21 juillet 1983 ; & JP-A-58 074 043 *
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 49 (E-161)(1194), 25 février 1983 ; & JP-A-57 199 224 *
RADIO, FERNSEHEN, ELEKTRONIK, vol. 32, no. 2, février 1983, page 68, Ost-Berlin, DDR ; "Die doppelte Glaspassivierung". *
THIN SOLID FILMS, vol. 83, no. 2, septembre 1981, pages 145-163, Lausanne, Suisse ; A.M. WILSON : "Polyimide Insulators for Multilevel Interconnections". *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762066B2 (en) 2001-09-17 2004-07-13 Infineon Technologies Ag Method for fabricating a semiconductor structure using a protective layer, and semiconductor structure
US7015567B2 (en) 2001-09-17 2006-03-21 Infineon Technologies Ag Method for fabricating a semiconductor structure using a protective layer, and semiconductor structure

Also Published As

Publication number Publication date
DE68918301D1 (en) 1994-10-27
FR2625839A1 (en) 1989-07-13
JPH01225326A (en) 1989-09-08
FR2625839B1 (en) 1991-04-26
DE68918301T2 (en) 1995-05-18
JP3054637B2 (en) 2000-06-19
EP0327412A1 (en) 1989-08-09

Similar Documents

Publication Publication Date Title
EP0327412B1 (en) Passivation process of a integrated circuit
EP0801419B1 (en) Process of making a thin semiconductor film comprising electronic devices
US6337283B1 (en) Method of fabricating a silicon solar cell
US6387726B1 (en) Method of fabricating a silicon solar cell
EP0851465B1 (en) Method of separation of at least two elements joined by ion implantation
US6274402B1 (en) Method of fabricating a silicon solar cell
EP0950257B1 (en) Method for making a thin film on a support
EP0223637B1 (en) Method for making a metallic multilayer interconnection pattern of the components of a very dense integrated circuit
FR2711275A1 (en) Automatically aligned contact method in semiconductor fabrication, and devices produced
FR2758907A1 (en) METHOD FOR OBTAINING A THIN FILM, ESPECIALLY A SEMICONDUCTOR, WITH A PROTECTED AREA OF IONS, AND INVOLVING AN ION IMPLANTATION STEP
EP3465784B1 (en) Hybrid structure for a surface acoustic wave device
EP3818561A1 (en) Substrate for an integrated radiofrequency device, and process for manufacturing same
EP1103072A1 (en) Thin-layered semiconductor structure comprising a heat distribution layer
JP2671419B2 (en) Method for manufacturing semiconductor device
US5436410A (en) Method and structure for suppressing stress-induced defects in integrated circuit conductive lines
FR2850791A1 (en) Vertical unipolar component e.g. Schottky diode, has cathode with isolated trenches filled with vertical stacking from two grain conducting portions separated by insulating layer, where stacking depth is equal to cathode thickness
JPH02105556A (en) Semiconductor device
FR2796758A1 (en) PROCESS FOR CORRECTION OF TOPOGRAPHIC EFFECTS ON MICRO-ELECTRONIC SUBSTRATE
FR3106237A1 (en) ESD protection
EP3391407B1 (en) Compensation of an arc curvature generated in a wafer
EP3326195B1 (en) Method for manufacturing a substrate
EP3746394B1 (en) Method for encapsulating a microelectronic device, comprising a step of thinning the substrate and the encapsulation cover
FR3122285A1 (en) PHOTOGRAPHIC SENSOR
WO2024089181A1 (en) Piezoelectric-on-insulator (poi) substrate, and process for manufacturing a piezoelectric-on-insulator (poi) substrate
FR2829616A1 (en) Front face mounting vertical diode comprises two zones which include solder beads forming plane parallel to plane of semiconductor substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19890918

17Q First examination report despatched

Effective date: 19920714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 68918301

Country of ref document: DE

Date of ref document: 19941027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030122

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030123

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050106