EP0324021B1 - Resorptions-wärmewandleranlage - Google Patents

Resorptions-wärmewandleranlage Download PDF

Info

Publication number
EP0324021B1
EP0324021B1 EP88907049A EP88907049A EP0324021B1 EP 0324021 B1 EP0324021 B1 EP 0324021B1 EP 88907049 A EP88907049 A EP 88907049A EP 88907049 A EP88907049 A EP 88907049A EP 0324021 B1 EP0324021 B1 EP 0324021B1
Authority
EP
European Patent Office
Prior art keywords
solution
circuit
pressure
solution circuit
pressure level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88907049A
Other languages
English (en)
French (fr)
Other versions
EP0324021A1 (de
Inventor
Vinko Mucic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCH THERMO-CONSULTING-HEIDELBERG GmbH
Original Assignee
TCH THERMO-CONSULTING-HEIDELBERG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCH THERMO-CONSULTING-HEIDELBERG GmbH filed Critical TCH THERMO-CONSULTING-HEIDELBERG GmbH
Priority to AT88907049T priority Critical patent/ATE62991T1/de
Publication of EP0324021A1 publication Critical patent/EP0324021A1/de
Application granted granted Critical
Publication of EP0324021B1 publication Critical patent/EP0324021B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the invention relates to a combined with at least one compression and expansion machine resorption heat conversion system, such as a heat pump, refrigeration system or heat transformer, which is operated with a two-fluid working medium, preferably an ammonia-water mixture, in order to supply thermal energy supplied by at least one external heat source To convert thermal energy with a different temperature level, and the two coupled solution circuits, in which thermal energy is supplied at different pressure and temperature levels for degassing the working fluid or for re-or absorption, and the degassing from the at low pressure level located rich solution of the gaseous working fluid component expelled from one solution circuit by the compression machine to the higher pressure level of this solution circuit and that at the higher pressure level of the other solution circuit from the rich L.
  • a compression and expansion machine resorption heat conversion system such as a heat pump, refrigeration system or heat transformer
  • a two-fluid working medium preferably an ammonia-water mixture
  • solution expelled gaseous working medium component of the other solution circuit is expanded through an expander to a lower pressure level, and wherein each solution cycle having a leading from the lower to the higher pressure level flow for the solution and a leading from the higher to the lower pressure level return to the solution.
  • Known heat converter systems (DE-PS 35 36 953) with two solution circuits, which work with at least one compression and one expansion machine, represent improved efficiency developments of older known absorption heat converter systems with two solution circuits (DE-PS 33 44 599, DE-PS 34 24 950).
  • the two solution circuits are operated independently of one another as closed solution circuits, whereby their continuous operation, however, presupposes that the quantity and concentration balance between the two circuits is equalized to compensate for concentration differences in the circuits as a result of different amounts of between the circuits of exchanged gaseous working fluid components to avoid.
  • the invention has for its object to develop the known, with at least one compression and one expansion machine heat converter system so that the equipment and control engineering and thus the investment costs are reduced, the system _ even with changing working conditions in the two solution circuits _ at least there is no deterioration in efficiency.
  • this object is achieved according to the invention in that the two solution circuits are coupled in that the flow of each solution circuit with the return of the other solution circuit in each case without the interposition of control or regulating elements at a common, the high pressure level of the medium pressure level representing the one and the low pressure level of the other solution circuit, and that in this connection a sorption or degassing unit common to both circuits is switched on.
  • the configuration is expediently such that the resorber of the first solution circuit located at a low pressure level and the absorber of the second solution circuit located at a higher pressure level are combined to form the common sorption unit, in which on the one hand the Degasser of the first solution circuit at low pressure and low temperature expelled gaseous working fluid component after pressure and temperature increase by means of the compression machine and on the other hand the gaseous working fluid component expelled in the degasser of the second solution circuit at high pressure and high temperature with pressure and temperature reduction in the expansion machine on the common middle Pressure level at an intermediate temperature be re-absorbed or absorbed in the poor solution.
  • a major advantage of this heat pump circuit with directly coupled solution circuits is that the ratio of the amounts of the gaseous pressure medium component expelled at low temperature and low pressure in the degasifier of the first solution circuit and at high temperature and high pressure in the degasifier of the second solution circuit are completely arbitrary can, so that a heat source of low and high temperature with extremely different or changing amounts of heat can be interconnected.
  • the design is such that the degasser of the first solution circuit, which is at a high pressure level, and the degasser of the second solution circuit, which is at a low pressure, are combined to form a common degasser, in which the working medium component is gaseous at the medium pressure level and at an intermediate temperature expelled from the rich solution and then partly to the absorber of the second solution circuit with pressure and temperature increase by means of the compression machine to the resorber of the first solution circuit and partly to the absorber of the second solution circuit with pressure and temperature reduction and where it is absorbed or absorbed in the poor solution.
  • the heat transformer circuit constructed in this way has the essential advantage that the gaseous working fluid component expelled in the degasifier can be distributed in any quantity ratios to the solution circuits. This means that either a larger part of the gaseous working fluid component with pressure increase and subsequent absorption for the generation of useful heat of high temperature and a correspondingly smaller part with pressure reduction in an expansion machine for the production of mechanical energy or vice versa can be used, depending on whether in the special application rather Thermal energy or mechanical energy is needed.
  • Figure 1 shows schematically the circuit structure of an embodiment designated in its entirety with 10, designed as a heat pump, while in Figure 2 the illustration is such that the horizontal position of the functional components or lines shown schematically shows the concentration and their vertical position schematically shows the pressure illustrated in principle in the two-substance work equipment.
  • the system 10 has two solution circuits I and II for the working medium, which preferably consists of an ammonia / water mixture, the solution circuits, however, as is explained in more detail below, being directly coupled.
  • the solution circuit I shown below in FIG. 1 has a degasser 12 and a sorption unit 14, which represents the resorber of this solution circuit, which are connected by lines 16 and 18 with the solution pump 20 or throttle element 22 switched on.
  • the low pressure p1 degasser 12 is from the incoming over the line 18 rich solution of the working fluid by supplying heat at a low temperature level t1 gaseous working fluid component in a connecting line 24 with the compressor 26 expelled, in which the gaseous working fluid component to an intermediate pressure p2 is compressed.
  • the poor solution emerging from the degasser 12 via the line 16 then flows from the solution pump 20 and is also raised in pressure to p 2 to the sorption unit 14, which is connected to the connecting line 24 via a branch line 28, so that in it via the branch line 28 recycled gaseous working fluid component can be absorbed again in the poor solution, heat of absorption being obtained at an intermediate temperature t2 which is higher than t 1 and which can be dissipated as useful heat.
  • From the sorption unit 14 then again rich solution flows via line 18 back to the degasser 12, the throttle member 22 again reducing the pressure to p 1.
  • a heat exchanger 30 connected in the region of the intermediate pressure p 2 between the lines 16 and 18, thermal energy contained in the rich solution is transferred to the poor solution.
  • the system is practically a two-component compression heat pump, in which in principle further measures to improve its performance figure, e.g. the measures disclosed in the _ not previously published _ patent application P 37 16 642.5 for additional degassing of the poor solution on one between p1 and p2 lying pressure by means of heat transfer from the rich solution and compression of the gaseous working medium component expelled to the pressure p2 and promotion of the additional amount of gas shaped working fluid component in the sorption unit, can be realized.
  • these measures are not the subject of the present application, they are not described in detail within the scope of the present application and _ for the sake of clarity _ are also not shown in the drawing figure.
  • the system 10 also has the second solution circuit II shown above in the drawings, in which the sorption unit 14, which represents the absorber of this second solution circuit, is connected to a desorber 32 via lines 34 and 36 with the solution pump 38 or throttle element 40 switched on, and a further heat exchanger 42 is.
  • thermal energy is supplied at a temperature t3> t2 and thus expelled from the rich solution flowing in via the line 34 gaseous working fluid component into a connecting line 44, in which an expansion machine 46 _, for example, ammonia -Turbine _ is arranged, in which the pressure in the gaseous working fluid component is reduced to p2, the expansion machine doing work, which is converted into electrical energy in a generator 48 and / or used for the direct drive of further machines, for example the compressor 26 can.
  • an expansion machine 46 _ for example, ammonia -Turbine _
  • the sorption unit 14 must therefore be designed for the throughput of the amount of poor solution flowing in from the degasser 12 and the desorber 32 and the re-absorption of the gaseous working fluid component expelled in the degasser 12 and in the desorber 32. Concentration differences in the solution circuits I and II which impair the continuous operation of the system 10 cannot therefore occur, since the solution circuits are coupled.
  • the electrical energy generated in the electrical generator 48 driven by the expansion machine 46 is obtained as additional useful energy, from which, however, the drive energy required to drive the compressor 26 must be subtracted when calculating the overall efficiency of the system.
  • the heat converter system shown in FIGS. 3 and 4 designated in its entirety by 50 and operating as a heat transformer, has a basic structure corresponding to the heat converter system 10 with two solution circuits I and II operated at different pressure levels, directly interconnected at an intermediate pressure p 2, but with the functional differences between a heat transformer and a heat pump must be taken into account.
  • the solution circuit I shown above in the drawing figures is formed by a degasser 52 which also forms part of the solution circuit II and which is connected to a resorber 54 via lines 56, 58 with the solution pump 60 or throttle element 62 switched on.
  • gaseous working medium component is fed from the rich solution of the working medium supplied via the line 58 by supplying heat at the temperature level t 2 into a connecting line branch connected to a connecting line 64 with the compressor 66 switched on 68 expelled.
  • the compressor 66 promotes it flowing from the degasser 52 gaseous working fluid component with pressure increase to the pressure p3 to the resorber 52, where it dissipates the heat of absorption occurring at the temperature t3 in the poor solution flowing in there after pressure increase by the solution pump 60 via the line 56 is absorbed.
  • the rich solution then flows back to the degasser 52 via the line 58 and after the pressure in the throttle element 62 has been reduced.
  • a heat exchanger 70 transfers thermal energy from the rich solution flowing in line 58 to the poor solution flowing in line 56.
  • the solution circuit I can also be understood here again as a two-component compression heat pump, which in connection with the system 10 for the solution circuit I regarding the improvement of the performance figure of such a compression heat pump by further measures also with regard to the solution circuit I of the heat converter system 50 applies.
  • the heat energy in the resorber 52 with the temperature t3> t2 thus represents useful energy in this case.
  • the solution circuit II in addition to the degasser 52 forming part of the solution circuit I, is formed by an absorber 72, which is connected to the degasser 52 via lines 74, 76 with the solution pump 78 or throttle element 80 switched on, again through a heat exchanger 82 transfers heat from the rich solution flowing in line 74 to the poor solution flowing in line 76.
  • a further connecting line 84 is connected, into which an expansion machine 86 driving a generator 88 is switched on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung betrifft eine mit wenigstens einer Kompressions- und einer Expansionsmaschine kombinierte Resorptions-Wärmewandleranlage, wie Wärmepumpe, Kälteanlage oder Wärmetransformator, welche mit einem Zweistoff-Arbeitsmittel, vorzugsweise einem Ammoniak-Wasser-Gemisch betrieben wird, um von wenigstens einer äußeren Wärmequelle zugeführten Wärmeeenergie in Wärmeenergie mit einem abweichenden Temperaturniveau umzuwandeln, und die zwei miteinander gekoppelte Lösungskreisläufe, in denen jeweils auf unterschiedlichen Druck- und Temperaturniveaus Wärmeenergie zur Entgasung des Arbeitsmittels zu- bzw. zur Re- oder Absorption abgeführt wird, und die bei der Entgasung aus der auf niedrigem Druckniveau befindlichen reichen Lösung des einen Lösungskreislaufs ausgetriebene gasförmige Arbeitsmittelkomponente durch die Kompressionsmaschine auf das höhere Druckniveau dieses Lösungskreislaufs und die auf dem höheren Druckniveau des anderen Lösungskreislaufs aus der reichen Lösung ausgetriebene gasförmige Arbeitsmittelkomponente des anderen Lösungskreislaufs durch eine Expansionsmaschine auf ein niedrigeres Druckniveau entspannt wird, und wobei jeder Lösungskreislauf einen vom niedrigeren zum höheren Druckniveau führender Vorlauf für die Lösung und einen vom höheren zum niedrigeren Druckniveau führenden Rücklauf für die Lösung aufweist.
  • Derartige, mit wenigstens einer Kompressions- und einer Expansionsmaschine arbeitende bekannte Wärmewandleranlagen (DE-PS 35 36 953) mit zwei Lösungskreisläufen stellen im Wirkungsgrad verbesserte Weiterentwicklungen älterer bekannter Resorptions-Wärmewandleranlagen mit zwei Lösungskreisläufen (DE-PS 33 44 599, DE-PS 34 24 950) dar. Bei den bekannten Wärmewandleranlagen werden die beiden Lösungskreisläufe unabhängig voneinander als jeweils geschlossene Lösungskreisläufe betrieben, wobei ihr kontinuierlicher Betrieb allerdings voraussetzt, daß die Mengen- und Konzentrationsbilanz zwischen den beiden Kreisläufen ausgeglichen wird, um Konzentrationsunterschiede in den Kreisläufen infolge unterschiedlicher Mengen von zwischen den Kreisläufen ausgetauschter gasförmiger Arbeitsmittelkomponente zu vermeiden. Während dies ursprünglich dadurch gewährleistet wurde, daß die gasförmige Arbeitsmittelkomponente sowohl hoch- wie niederdruckseitig in gleicher Menge mit gleicher Konzentration ausschließlich in Dampfform ausgetauscht wurde, wobei die Anpassung der Konzentration den Einsatz einer Rektifizierungskolonne in dem Strömungszweig erforderte, in welchem ohne eine solche Rektifizierung eine gasförmige Arbeitsmittelkomponente mit zu hoher Konzentration ausgetauscht würde, wurde der gerätetechnische Aufwand für die Rektifizierungskolonne bei den oben erwähnten bekannten Wärmewandleranlagen bereits dadurch vermindert, daß _ anstelle der Rektifizierungskolonne _ eine zusätzliche Ausgleichsverbindung zwischen den beiden Lösungskreisläufen vorgesehen wurde, über welche flüssige Arbeitsmittelkomponente mengensteuerbar von einer zum anderen Lösungskreislauf gerade in solcher Menge gefördert wurde, daß Konzentrationsunterschiede in beiden Lösungskreisläufen infolge unterschiedlicher Mengen (und Konzentrationen) der hoch- und niederdruckseitig ausgetauschten gasförmigen Arbeitsmittelkomponenten ausgeglichen wurden. Dies erfordert dann allerdings immer noch die kontinuierliche Messung der Mengen und Konzentrationen der gasförmig ausgetauschten Arbeitsmittelkomponenten und eine entsprechende Steuerung der Menge der über die Ausgleichsverbindung strömenden flüssigen Arbeitsmittelkomponente. D.h. auch in diesen Fällen ist eine regelungstechnisch aufwendige Prozeßsteuerung erforderlich.
  • Demgegenüber liegt der Erfindung die Aufgabe zugrunde, die bekannte, mit wenigstens einer Kompressions- und einer Expansionsmaschine arbeitende Wärmewandleranlage so weiterzubilden, daß der gerätetechnische und regelungstechnische Aufwand und somit die Investitionskosten verringert werden, wobei die Anlage _ auch bei sich ändernden Arbeitsbedingungen in den beiden Lösungskreisläufen _ zumindest keine Wirkungsgradverschlechterungen erfährt.
  • Ausgehend von einer Wärmewandleranlage der eingangs erwähnten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß die beiden Lösungskreisläufe dadurch gekoppelt sind, daß der Vorlauf jedes Lösungskreislaufs jeweils mit dem Rücklauf des jeweils anderen Lösungskreislaufs ohne Zwischenschaltung von Steuer- oder Regelorganen auf einem gemeinsamen, das hohe Druckniveau des einen und das niedrige Druckniveau des anderen Lösungskreislaufs darstellenden mittleren Druckniveau verbunden sind, und daß in dieser Verbindung eine beiden Kreisläufen gemeinsame Sorptions- bzw. Entgasungseinheit eingeschaltet ist. Bei dieser Schaltung, bei der sich die beiden Lösungskreisläufe also auf unterschiedlichen Druckniveaus befinden, wobei der hohe Druck des einen Kreislaufs gleich dem niedrige Druck des zweiten Kreislaufs ist, ist es möglich, eine Früher in den beiden Kreisläufen jeweils gesondert vorzusehende Funktionseinheit zu einer gemeinsamen Einheit zu vereinigen, wobei die Steuerung von Konzentrationsunterschieden in den Lösungskreisläufen entfällt, nachdem diese direkt gekoppelt sind, d.h. das Arbeitsmittel in beiden Kreisläufen gleiche Konzentration hat, so daß ein gesteuerter Austausch von Arbeitsmittel zwischen den Kreisläufen zum Zweck des Konzentrationsausgleichs entfällt.
  • Wenn die Wärmewandleranlage als Wärmepumpe bzw. Kälteanlage geschaltet ist, ist die Ausgestaltung zweckmäßig so getroffen, daß der Resorber des auf niedrigem Druckniveau befindlichen ersten Lösungskreislaufs und der Absorber des auf höherem Druckniveau befindlichen zweiten Lösungskreislaufs zu der gemeinsamen Sorptionseinheit zusammengefaßt sind, in welcher einerseits die im Entgaser des ersten Lösungskreislaufs bei niedrigem Druck und niedriger Temperatur ausgetriebene gasförmige Arbeitsmittelkomponente nach Druck- und Temperaturanhebung mittels der Kompressionsmaschine und andererseits die im Entgaser des zweiten Lösungskreislaufs bei hohem Druck und hoher Temperature ausgetriebene gasförmige Arbeitsmittelkomponente unter Druck- und Temperaturabsenkung in der Expansionsmachine auf dem gemeinsamen mittleren Druckniveau bei einer Zwischentemperatur in der armen Lösung re- bzw. absorbiert werden. Ein wesentlicher Vorteil dieser Wärmepumpen-Schaltung mit direkt gekoppelten Lösungskreisläufen liegt darin, daß das Verhältnis der Mengen der bei der niedrigen Temperatur und niedrigem Druck im Entgaser des ersten Lösungskreislaufs und bei hoher Temperatur und hohem Druck im Entgaser des zweiten Lösungskreislaufs ausgetriebenen gasförmigen Druckmittelkomponente vollständig beliebig sein kann, so daß also auch eine Wärmequelle niedriger und hoher Temperatur mit extrem unterschiedlichen oder auch sich ändernden anfallenden Wärmemengen zusammenschaltbar sind.
  • Beim Einsatz als Wärmetransformator ist die Ausgestaltung andererseits so getroffen, daß der Entgaser des auf hohem Druckniveau befindlichen ersten Lösungskreislaufs und der Entgaser des auf niedrigem Druck befindlichen zweiten Lösungskreislaufs zu einem gemeinsamen Entgaser zusammengefaßt sind, in welchem auf dem mittleren Druckniveau und bei einer Zwischentemperatur gasförmige Arbeitsmittelkomponente aus der reichen Lösung ausgetrieben und dann teilweise unter Druck- und Temperaturerhöhung mittels der Kompressionsmaschine zum Resorber des ersten Lösungskreislaufs und teilweise unter Druck- und Temperaturabsenkung in der Expansionsmaschine zum Absorber des zweiten Lösungskreislaufs geführt und dort jeweils in der armen Lösung resorbiert bzw. absorbiert wird. Die so aufgebaute Wärmetransformator-Schaltung hat den wesentlichen Vorteil, daß die im Entgaser ausgetriebene gasförmige Arbeitsmittelkomponente in beliebigen Mengenverhältnissen auf die Lösungskreisläufe verteilt werden kann. D.h. es kann entweder ein größerer Teil der gasförmigen Arbeitsmittelkomponente unter Druckerhöhung und durch anschließende Resorption zur Erzeugung von Nutzwärme hoher Temperatur und ein entsprechend geringerer Teil unter Druckabsenkung in einer Expansionsmaschine zur Erzeugung mechanischer Energie oder auch umgekehrt verwendet werden, je nachdem, ob im speziellen Anwendungsfall eher Wärmeenergie oder mechanische Energie benötigt wird.
  • Die Erfindung ist in der folgenden Beschreibung zweier Ausführungsbeispiele in Verbindung mit der Zeichnung näher erläutert, und zwar zeigt:
    • Fig. 1 einen schematischen Schaltplan eines als Wärmepumpe arbeitenden Ausführungsbeispiels der erfindungsgemäßen Wärmewandleranlage;
    • Fig. 2 die in der Wärmepumpe gemäß Figur 1 ablaufenden Zustandsänderungen des Arbeitsmittels schematisch in einem p,ξ-Diagramm;
    • Fig. 3 einen schematischen Schaltplan eines als Wärmetransformator arbeitenden Ausführungsbeispiels der erfindungsgemäßen Wärmewandleranlage; und
    • Fig. 4 die im Wärmetransformator gemäß Figur 3 ablaufenden Zustandsänderungen des Arbeitsmittels schematisch in einem p,ξ-Diagramm.
  • Figur 1 zeigt schematisch den schaltungsmäßigen Aufbau eines in seiner Gesamtheit mit 10 bezeichneten, als Wärmepumpe ausgebildeten Ausführungsbeispiels, während in Figur 2 die Darstellung so getroffen ist, daß die horizontale Lage der dargestellten Funktionsbauteile bzw. Leitungen schematisch die Konzentration und ihre senkrechte Lage schematisch den Druck im Zweistoff-Arbeitsmittel prinzipiell veranschaulicht.
  • Die Anlage 10 weist zwei Lösungskreisläue I und II für das vorzugsweise aus einem Ammoniak-Wasser-Gemisch bestehende Arbeitsmittel auf, wobei die Lösungskreisläufe allerdings _ wie im folgenden noch näher erläutert wird _ direkt gekoppelt sind.
  • Der in Figur 1 unten dargestellte Lösungskreislauf I weist einen Entgaser 12 und eine, den Resorber dieses Lösungskreislaufs darstellende Sorptionseinheit 14 auf, die durch Leitungen 16 und 18 mit eingeschalteter Lösungspumpe 20 bzw. Drosselorgan 22 verbunden sind. In dem auf niedrigem Druck p₁ befindlichen Entgaser 12 wird aus der über die Leitung 18 zuströmenden reichen Lösung des Arbeitsmittels durch Zufuhr von Wärme auf einem niedrigen Temperaturniveau t₁ gasförmige Arbeitsmittelkomponente in eine Verbindungsleitung 24 mit eingeschaltetem Kompresor 26 ausgetrieben, in welchem die gasförmige Arbeitsmittelkomponente auf einen Zwischendruck p₂ verdichtet wird. Die über die Leitung 16 aus dem Entgaser 12 austretende arme Lösung strömt dann von der Lösungspumpe 20 gefördert und im Druck ebenfalls auf p₂ angehoben zur Sorptionseinheit 14, welche über eine Zweigleitung 28 an der Verbindungsleitung 24 angeschlossen ist, so daß in ihr über die Zweigleitung 28 zurückgeführte gasförmige Arbeitsmittelkomponente wieder in der armen Lösung resorbiert werden kann, wobei Resorptionswärme bei einer gegenüber t₁ erhöhten Zwischentemperatur t₂ anfällt, die als Nutzwärme abgeführt werden kann. Aus der Sorptionseinheit 14 strömt dann wieder reiche Lösung über die Leitung 18 zurück zum Entgaser 12, wobei das Drosselorgan 22 den Druck wieder auf p₁ absenkt. Durch einen im Bereich des Zwischendrucks p₂ zwischen die Leitungen 16 und 18 geschalteten Wärmewechsler 30 wird in der reichen Lösung enthaltene Wärmeenergie auf die arme Lösung übertragen. Im bisher beschriebenen Umfang stellt die Anlage also praktisch eine Zweistoff-Kompressions-Wärmepumpe dar, in welcher grundsätzlich weitere Maßnahmen zur Verbesserung ihrer Leistungsziffer, z.B. die in der _ nicht vorveröffentlichten _ Patentanmeldung P 37 16 642.5 offenbarten Maßnahmen zur zusätzlichen Entgasung der armen Lösung auf einem zwischen p₁ und p₂ liegenden Druck mittels Wärmeübertragung aus der reichen Lösung und Verdichtung der hierbei ausgetriebenen gasförmigen Arbeitsmittelkomponente auf den Druck p₂ und Förderung der zusätzlich anfallenden Menge der gas förmigen Arbeitsmittelkomponente in die Sorptionseinheit, verwirklicht werden können. Da diese Maßnahmen aber nicht Gegenstand der vorliegenden Anmeldung sind, werden sie im Rahmen der vorliegenden Anmeldung nicht im einzelnen beschrieben und _ der Übersichtlichkeit halber _ in der Zeichnungsfigur auch nicht dargestellt.
  • Die Anlage 10 weist außerdem den in den Zeichnungsfiguren oben dargestellten zweiten Lösungskreislauf II auf, in welchem die den Absorber dieses zweiten Lösungskreislaufs darstellende Sorptionseinheit 14 mit einem Desorber 32 über Leitungen 34 und 36 mit eingeschalteter Lösungspumpe 38 bzw. Drosselorgan 40 sowie einem weiteren Wärmewechsler 42 verbunden ist. In dem gegenüber der Sorptionseinheit 14 auf höherem Druck p₃ befindlichen Desorber 32 wird bei einer Temperatur t₃ > t₂ Wärmeenergie zugeführt und somit aus der über die Leitung 34 zuströmenden reichen Lösung gasförmige Arbeitsmittelkomponente in eine Verbindungsleitung 44 ausgetrieben, in welcher eine Expansionsmaschine 46 _ beispielsweise einer Ammoniak-Turbine _ angeordnet ist, in welcher der Druck in der gasförmigen Arbeitsmittelkomponente auf p₂ abgesenkt wird, wobei die Expansionsmaschine Arbeit leistet, die in einem Generator 48 in elektrische Energie umgewandelt und/oder auch zum direkten Antrieb weiterer Maschinen, z.B. des Kompressors 26 verwendet werden kann. Der hinter der Expansionsmaschine 46 verlaufende Zweig der Verbindungsleitung 44 ist ebenfalls an die Zweigleitung 28 angeschlossen, d.h. auch die im Desorber 32 ausgetriebene gasförmige Arbeitsmittelkomponente wird in die Sorptionseinheit 40 zurückgeführt. Da andererseits auch die Leitungen 34 und 36 des Lösungskreislaufs II an die Sorptionseinheit 14 angeschlossen sind, _ was die Figur 1 durch Verbindung der Leitung 36 mit der Leitung 16 unmittelbar vor deren Eintritt in die und die Verbindung der Leitung 34 mit der Leitung 18 unmittelbar nach deren Austritt aus der Sorptionseinheit 14 veranschaulicht ist _ sind die Lösungskreisläufe I und II also nicht voneinander getrennt, sondern direkt miteinander verbunden. Die Sorptionseinheit 14 muß also auf den Durchsatz der vom Entgaser 12 und vom Desorber 32 zuströmenden Menge von armer Lösung sowie der Re- bzw. Absorption der im Entgaser 12 und im Desorber 32 ausgetriebenen gasförmigen Arbeitsmittelkomponente ausgelegt sein. Den kontinuierlichen Betrieb der Anlage 10 beeinträchtigende Konzentrationsunterschiede in den Lösungskreisläufen I und II können demnach nicht auftreten, da die Lösungskreisläufe ja gekoppelt sind.
  • Die in dem von der Expansionsmaschine 46 angetriebenen elektrischen Generator 48 erzeugte elektrische Energie fällt als zusätzliche Nutzenergie an, von der allerdings die zum Antrieb des Kompressors 26 erforderliche Antriebsenergie bei der Berechnung des Gesamtwirkungsgrades der Anlage abzuziehen ist.
  • Die in den Figuren 3 und 4 gezeigte, in ihrer Gesamtheit mit 50 bezeichnete, als Wärmetransformator arbeitende Wärmewandleranlage weist einen der Wärmewandleranlage 10 entsprechenden grundsätzlichen Aufbau mit zwei auf unterschiedlichen Druckniveaus betriebenen, bei einem Zwischendruck p₂ direkt zusammengeschalteten Lösungskreisläufen I und II auf, wobei aber die funktionellen Unterschiede eines Wärmetransformators gegenüber einer Wärmepumpe zu beachten sind. Der in den Zeichnungsfiguren oben dargestellte Lösungskreislauf I wird von einem _ gleichzeitig Teil des Lösungskreislaufs II bildenden _ Entgaser 52 gebildet, welcher mit einem Resorber 54 über Leitungen 56, 58 mit eingeschalteter Lösungspumpe 60 bzw. Drosselorgan 62 verbunden ist. In dem auf dem Zwischendruck befindlichen Entgaser 52 wird aus der über die Leitung 58 zugeführten reichen Lösung des Arbeitsmittels durch Zufuhr von Wärme auf dem Temperaturniveau t₂ gasförmige Arbeitsmittelkomponente in einen an eine Verbindungsleitung 64 mit eingeschaltetem Kompressor 66 angeschlossenen Verbindungsleitungszweig 68 ausgetrieben. Der Kompressor 66 fördert die ihm vom Entgaser 52 zuströmende gasförmige Arbeitsmittelkomponente unter Druckerhöhung auf den Druck p₃ zum Resorber 52, wo sie unter Abfuhr der dabei bei der Temperatur t₃ anfallenden Resorptionswärme in der dort nach Druckerhöhung durch die Lösungspumpe 60 über die Leitung 56 zuströmenden armen Lösung resorbiert wird. Die reiche Lösung strömt dann über die Leitung 58 und nach Druckabsenkung im Drosselorgan 62 zum Entgaser 52 zurück. Ein Wärmewechsler 70 überträgt auch hier wiederum von der in der Leitung 58 strömenden reichen Lösung Wärmeenergie auf die in der Leitung 56 strömende arme Lösung. Der Lösungskreislauf I kann also auch hier wiederum als Zweistoff-Kompressions-Wärmepumpe aufgefaßt werden, wobei das im Zusammenhang mit der Anlage 10 für den Lösungskreislauf I bezüglich der Verbesserung der Leistungsziffer einer solchen Kompressions-Wärmepumpe durch weitere Maßnahmen Ausgeführte auch bezüglich des Lösungskreislaufs I der Wärmewandleranlage 50 gilt. Die im Resorber 52 mit der Temperatur t₃ > t₂ anfallende Wärmeenergie stellt in diesem Falle also Nutzenergie dar.
  • Der Lösungskreislauf II wird neben dem _ wie erwähnt auch Teil des Lösungskreislaufs I bildenden _ Entgaser 52 von einem Absorber 72 gebildet, der mit dem Entgaser 52 über Leitungen 74, 76 mit eingeschalteter Lösungspumpe 78 bzw. Drosselorgan 80 verbunden ist, wobei auch hier wieder durch einen Wärmewechsler 82 Wärme von der in der Leitung 74 strömenden reichen Lösung auf die in der Leitung 76 strömende arme Lösung übertragen wird. An dem aus dem Entgaser 52 angeschlossenen und die ausgetriebene gasförmige Arbeitsmittelkomponente abfördernden Verbindungszweig 68 ist _ neben der Verbindungsleitung 64 _ eine weitere Verbindungsleitung 84 angeschlossen, in welche eine einen Generator 88 antreibende Expansionsmaschine 86 eingeschaltet ist. Über die Verbindungsleitung 48 wird ein Teil der im Entgaser 52 ausgetriebenen gasförmigen Arbeitsmittelkomponente nach Druckerniedrigung in der Expansionsmaschine 86 auf p₁ in den Absorber 72 zurückgeführt und dort unter Abfuhr von Absorptionswärme bei einem Temperaturniveau t₁ in der über die Leitung 76 zugeführten und im Drosselorgan 80 ebenfalls auf den Druck p₁ abgesenkten armen Lösung absorbiert. Die dadurch wieder reichere Lösung strömt dann über die Leitung 74 unter Druckerhöhung durch die Lösungspumpe 78 auf den Druck p₂ wieder zum Entgaser 52 zurück. Auch bei diesem Ausführungsbeispiel ist die direkte Koppelung der beiden Lösungskreisläufe I und II wiederum dadurch veranschaulicht, daß die Leitungen 58 und 74 bzw. 56 und 76 als unmittelbar vor dem Eintritt in bzw. unmittelbar nach dem Austritt aus dem Entgaser 52 direkt miteinander verbunden dargestellt sind. Konzentrationsunterschiede zwischen den Lösungskreisläufen I und II, welche durch gesonderte Maßnahmen ausgeglichen werden müßten, können also auch beim Betrieb der Wärmewandleranlage 50 als Wärmetransformator nicht auftreten.

Claims (3)

1. Mit wenigstens einer Kompressions- (26; 66) und einer Expansionsmaschine (46; 86) kombinierte Resorptions-Wärmewandleranlage, wie Wärmepumpe, Kälteanlage (10) oder Wärmetransformator (50), welche mit einem Zweistoff-Arbeitsmittel, vorzugsweise einem Ammoniak-Wasser-Gemisch, betrieben wird, um von wenigstens einer äußeren Wärmequelle zugeführte Wärmeenergie in Wärmeenergie mit einem abweichenden Temperaturniveau umzuwandeln, und die zwei miteinander gekoppelte Lösungskreisläufe (I; II) aufweist, in denen jeweils auf unterschiedlichen Druck- und Temperaturniveaus Wärmeenergie zur Entgasung des Arbeitsmittels zu- bzw. zur Re- oder Absorption abgeführt wird, und die bei der Entgasung aus der auf niedrigem Druckniveau befindlichen reichen Lösung des einen Lösungskreislaufs (I) ausgetriebene gasförmige Arbeitsmittelkomponente durch die Kompressionsmaschine (26; 66) auf das höhere Druckniveau dieses Lösungskreislaufs (I) und die auf dem höheren Druckniveau des anderen Lösungskreislaufs (II) aus der reichen Lösung ausgetriebene gasförmige Arbeitsmittelkomponente des anderen Lösungskreislaufs (II) durch eine Expansionsmaschine (46; 86) auf ein niedriges Druckniveau entspannt wird, und wobei jeder Lösungskreislauf (I; II) einen vom niedrigen zum höheren Druckniveau führenden Vorlauf für die Lösung und einen vom höheren zum niedrigen Druckniveau führenden Rücklauf für die Lösung aufweist, dadurch gekennzeichnet, daß die beiden Lösungskreisläufe (I, II) dadurch gekoppelt sind, daß der Vorlauf jedes Lösungskreislaufs(I bzw. II) jeweils mit dem Rücklauf des jeweils anderen Lösungskreislaufs (II bzw. I) ohne Zwischenschaltung von Steuer- oder Regelorganen auf einem gemeinsamen, das hohe Druckniveau des einen und das niedrige Druckniveau des anderen Lösungskreislaufs darstellenden mittleren Druckniveau (p₂) verbunden sind, und daß in dieser Verbindung eine beiden Kreisläufen gemeinsame Sorptions- (14) bzw. Entgasungseinheit eingeschaltet ist.
2. Wärmewandler anglage nach Anspruche 1, dadurch gekennzeichnet, daß der Wärmewandler als Wärmepumpe ausgebildet und der Resorber des auf niedrigem Druckniveau befindlichen ersten Lösungskreislaufs (I) und der Absorber des auf höherem Druckniveau befindlichen zweiten Lösungskreislaufs (II) zu der gemeinsamen Sorptionseinheit (14) zusammengefaßt sind, in welcher einerseits die im Entgaser (12) des ersten Lösungskreislaufs (I) bei niedrigem Druck (p₁) und niedriger Temperatur (t₁) ausgetriebene gasförmige Arbeitsmittelkomponente nach Druck- und Temperaturanhebung mittels der Kompressionsmaschine (26) und andererseits die im Entgaser (32) des zweiten Lösungskreislaufs (II) bei hohem Druck (p₃) und hoher Temperatur (t₃) ausgetriebene gasförmige Arbeitsmittelkomponente unter Druck- und Temperaturabsenkung in der Expansionsmaschine (46) auf dem gemeinsamen mittleren Druckniveau (p₃) und bei einer Zwischentemperatur (t₂) in der armen Lösung re- bzw. absorbiert werden.
3. Wärmewandleranlage nach Anspruch 1, dadurch gekennzeichnet, daß die Anlage als Wärmetransformator ausgebildet und der Entgaser des auf hohem Druckniveau befindlichen ersten Lösungskreislaufs (I) und der Entgaser des auf niedrigem Druckniveau befindlichen zweiten Lösungskreislaufs (II) zu einem gemeinsamen Entgaser (52) zusammengefaßt sind, in welchem auf dem mittleren Druckniveau (p₂) und bei einer Zwischentemperatur (t₂) gasförmige Arbeitsmittelkomponente aus der reichen Lösung ausgetrieben und dann teilweise unter Druck- und Temperaturerhöhung mittels der Kompressionsmaschine (66) zum Resorber (54) des ersten Lösungskreislaufs (I) und teilweise unter Druck-und Temperaturabsenkung in der Expansionsmaschine (86) zum Absorber (72) des zweiten Lösungskreislaufs (II) geführt und dort jeweils in der armen Lösung re- bzw. absorbiert wird.
EP88907049A 1987-07-20 1988-07-07 Resorptions-wärmewandleranlage Expired - Lifetime EP0324021B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88907049T ATE62991T1 (de) 1987-07-20 1988-07-07 Resorptions-waermewandleranlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3723938 1987-07-20
DE19873723938 DE3723938A1 (de) 1987-07-20 1987-07-20 Resorptions-waermewandleranlage

Publications (2)

Publication Number Publication Date
EP0324021A1 EP0324021A1 (de) 1989-07-19
EP0324021B1 true EP0324021B1 (de) 1991-04-24

Family

ID=6331945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88907049A Expired - Lifetime EP0324021B1 (de) 1987-07-20 1988-07-07 Resorptions-wärmewandleranlage

Country Status (5)

Country Link
US (1) US4955931A (de)
EP (1) EP0324021B1 (de)
JP (1) JPH02500128A (de)
DE (1) DE3723938A1 (de)
WO (1) WO1989000665A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
DE19721351A1 (de) * 1997-05-22 1998-11-26 Ees Erdgas Energiesysteme Gmbh Verfahren und Anlage zum Erzeugen von Kälte und/oder Wärme
KR20010041159A (ko) * 1998-02-20 2001-05-15 하이서브 테크놀로지, 인코포레이티드 유기 금속액 흡수제를 사용하는 열펌프
US20070144195A1 (en) * 2004-08-16 2007-06-28 Mahl George Iii Method and apparatus for combining a heat pump cycle with a power cycle
EP2129977A4 (de) * 2007-03-21 2013-05-15 George Mahl Iii Verfahren und vorrichtung zur kombination eines wärmepumpenzyklus mit einem leistungszyklus
CN102052110A (zh) * 2010-11-02 2011-05-11 谢瑞友 大功率空气能动力源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE491065C (de) * 1926-06-12 1930-02-05 Frans Georg Liljenroth Kaelteerzeugungsmaschine nach dem Absorptionsprinzip
JPS58500261A (ja) * 1981-03-24 1983-02-17 アレフエルト,ゲオルク 動作流体回路と吸収回路を持つ多段装置並びにその動作の方法
DE3119989C2 (de) * 1981-05-20 1986-02-06 Mannheimer Versorgungs- und Verkehrsgesellschaft mbH (MVV), 6800 Mannheim Zwei- oder Mehrstoff-Kompressions-Wärmepumpe bzw. -Kältemaschine mit Lösungskreislauf
DE3344599C1 (de) * 1983-12-09 1985-01-24 TCH Thermo-Consulting-Heidelberg GmbH, 6900 Heidelberg Resorptions-Wärmewandleranlage
DE3424949C2 (de) * 1984-07-06 1986-06-05 TCH Thermo-Consulting-Heidelberg GmbH, 6900 Heidelberg Resorptions-Wärmetransformatoranlage
US4586344A (en) * 1984-10-23 1986-05-06 Dm International Inc. Refrigeration process and apparatus
NL8403517A (nl) * 1984-11-19 1986-06-16 Rendamax Ag Absorptie-resorptie warmtepomp.
DE3536953C1 (en) * 1985-10-17 1987-01-29 Thermo Consulting Heidelberg Resorption-type heat converter installation with two solution circuits
US4777802A (en) * 1987-04-23 1988-10-18 Steve Feher Blanket assembly and selectively adjustable apparatus for providing heated or cooled air thereto
US4745768A (en) * 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption

Also Published As

Publication number Publication date
JPH02500128A (ja) 1990-01-18
DE3723938A1 (de) 1989-02-02
WO1989000665A1 (en) 1989-01-26
EP0324021A1 (de) 1989-07-19
US4955931A (en) 1990-09-11
DE3723938C2 (de) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0597822B1 (de) Mehrstufige Einrichtung mit Arbeitsfluid- und Absorptionsmittel-Kreisläufen, und Verfahren zum Betrieb einer solchen Einrichtung
EP1567811B1 (de) Verfahren und vorrichtung zum kühlen von umluft
EP1831617B1 (de) Adsorptionsmaschine mit wärmerückgewinnung
EP0324021B1 (de) Resorptions-wärmewandleranlage
DE2131793A1 (de) Verfahren und Anlage zur Schaffung und Erhaltung angenehmer Aufenthaltsbedingungen in Gebaeuderaeumen
DE3225613C2 (de) Absorptionswärmepumpensystem
DE69509870T2 (de) Wärmeaustauschvorrichtung und verfahren für wärmeaustausch zwischen austreiber und absorber und anwendung derselben in einer wärmepumpe
DE3536953C1 (en) Resorption-type heat converter installation with two solution circuits
EP0152931B1 (de) Verfahren zum Betreiben einer Generator-Absorptionswärmepumpen-Heizanlage für die Raumheizung, Warmwasserbereitung und dergl. und Generator-Absorptionswärmepumpen-Heizanlage
EP0260367B1 (de) Kälteanlage
EP0019297A2 (de) Verfahren und Vorrichtung zum Erzeugen von Dampf
EP0314719B1 (de) Zweistoff-kompressions-wärmepumpe mit lösungskreislauf
DE3015746A1 (de) Waermepumpe
EP0524269B1 (de) Hochtemperatur-wärmepumpentransformator
EP1010954A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes
DE3018476A1 (de) Verfahren zur gewinnung von stickstoff in einer niederdruck-lufttrennvorrichtung
EP1204811B1 (de) Kraftwerk, insbesondere industriekraftwerk
DE3424949C2 (de) Resorptions-Wärmetransformatoranlage
DE19538348A1 (de) Absorptionswärmetransformationsanlage mit Zusatzkomponenten zur Steigerung der Nutzleistung bzw. Erweiterung der Grenzen für die Antriebs-, Nutz- oder Kühltemperaturen
DE3432888C2 (de) Absorptionskälteanlage mit räumlich getrenntem Hochdruck- und Niederdruckteil
DE19816022B4 (de) Abwärmerückgewinnungsanlage
DE2938565A1 (de) Verfahren zum anheben des temperaturniveaus von waerme mit hilfe einer absorptionswaermepumpe
WO2007065642A1 (de) Adsorptionsmaschine
DE9303177U1 (de) Trennvorrichtung für eine Fahrzeugklimaanlage
DE3204902A1 (de) Einrichtung zum nutzbarmachen von waermeenergie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 62991

Country of ref document: AT

Date of ref document: 19910515

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920615

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920617

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920625

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920710

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920805

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930707

Ref country code: AT

Effective date: 19930707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: TCH THERMO-CONSULTING-HEIDELBERG G.M.B.H.

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 88907049.6

Effective date: 19940210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050707