EP0320746B1 - Gasturbinenanlage - Google Patents

Gasturbinenanlage Download PDF

Info

Publication number
EP0320746B1
EP0320746B1 EP88120316A EP88120316A EP0320746B1 EP 0320746 B1 EP0320746 B1 EP 0320746B1 EP 88120316 A EP88120316 A EP 88120316A EP 88120316 A EP88120316 A EP 88120316A EP 0320746 B1 EP0320746 B1 EP 0320746B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
gas turbine
stage
turbine plant
plant according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120316A
Other languages
English (en)
French (fr)
Other versions
EP0320746A1 (de
Inventor
Günter. Prof. Dr.-Ing. Kappler
Dieter Dr. Ing. Rist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0320746A1 publication Critical patent/EP0320746A1/de
Application granted granted Critical
Publication of EP0320746B1 publication Critical patent/EP0320746B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Definitions

  • the invention relates to a gas turbine system of the type specified in the preamble of the first claim and to a method for operating such a gas turbine system according to the preamble of claim 18.
  • the influencing factors to be taken into account in the design which are decisive for the formation of pollutants, result from the analysis of the reaction kinetic processes in the combustion chamber.
  • the most important influencing factors here are the primary zone temperature and the equivalence ratio, the degree of premixing and the combustion homogeneity in the primary zone, the residence time of the combustion products in the primary zone, the "freezing" of the reaction products near the wall of the combustion chamber and the intermediate zone temperature and residence time.
  • the object of the present invention is to propose a space-saving structure for a gas turbine system with compressor and turbine impellers of the type mentioned at the outset.
  • this object is achieved by the characterizing features of the first claim.
  • the advantage of this solution is that compact dimensions of the entire system can be achieved, since all supply lines for the second stage of the combustion chamber in the Annulus can be placed.
  • the combustion air for the second stage has a cooling effect for this. This has become possible because the center of the combustion chamber forms a self-contained interior, which is connected to the combustion chambers only via the air supply openings. This will surely prevent flames from entering.
  • the flow restriction between the first and second stage - as the development according to claim 2 describes - has the advantage that flame flashbacks from the second stage of the combustion chamber are avoided.
  • the pre-evaporator (s) must be designed so that they cause a slight pressure loss and ensure a sufficient residence time for the fuel to evaporate almost completely.
  • the development according to claim 4 has the advantage that the already vaporized fuel is homogeneously mixed with the air. This prevents non-uniform mixing, so that no local fuel enrichment, which leads to the formation of flashbacks in the lean fuel-air mixture when stoichiometric conditions are reached, cannot take place.
  • the design of the mixing zone according to the principle of the diffusion burner also has the advantage that the mixing times are limited below the ignition delay times.
  • a preferred arrangement of the catalytic converter is described in claim 6.
  • the first are due to the progressive increase in temperature during fuel oxidation Catalyst segments constructed so that they become active at low reaction temperatures.
  • the subsequent catalyst segments have a high oxidation effect, so that the reaction temperature and thus the air heating increases.
  • catalyst segments are created that are economically producible. They are characterized by a support structure consisting of a substrate and an intermediate adhesive layer, onto which the catalyst is evaporated. Claims 8 and 9 describe suitable materials.
  • the porosity of the substrate is chosen so that the pressure loss is small. With the development according to claim 10, a pressure loss is achieved in the entire combustion chamber, which is not greater than 5%.
  • the combustion chamber is designed as an annular combustion chamber, the space lying in the longitudinal axis can be used for additional components - as taught in claim 12.
  • the air creates cooling and thermal insulation from the hot walls of the combustion chamber.
  • the fuel lines to the second stage of the combustion chamber can also be arranged there without additional heat insulation measures having to be provided, without which the fuel would evaporate in its lines, so that deposits could form which would lead to the lines becoming overgrown.
  • Claims 13 and 14 describe two alternative possibilities for controlling the air inlet openings.
  • a simplification - without negatively influencing the combustion in the second stage of the combustion chamber - describes the control of the air inlet opening.
  • Claims 18-20 describe a preferred method for operating the gas turbine system with the combustion chamber constructed according to the invention. For example, due to the design of the two-stage combustion chamber, combustion can be initiated to start it and the catalyst can be warmed up from the rear, as it were. This happens very quickly, so that the fuel oxidation can be initiated in the first stage of the combustion chamber shortly after the start.
  • the development according to claim 19 ensures that the temperature increase in the combustion chamber can be controlled in order to achieve optimum burnout levels.
  • the second stage of the combustion chamber is also suitable for achieving acceleration values of the gas turbine similar to the reciprocating piston engine and for covering power peaks.
  • a two-shaft gas turbine system is shown schematically as an example. It consists in a manner known per se from the compressor 1, the heat exchanger 2, the combustion chamber 3, the compressor turbine 4 and the power turbine 5.
  • a reduction gear 6 known per se is arranged on the output shaft of the power turbine 5, the output shaft of which - when using the Gas turbine system in a motor vehicle - is connected to the motor vehicle transmission.
  • the compressor 1 draws in ambient air and guides it through the heat exchanger 2, through which the heated exhaust gases flow after leaving the power turbine 5.
  • the compressed and heated air is passed into the combustion chamber 3, where it undergoes a further temperature increase with the aid of fuel. It is then passed to the compressor turbine 4 for driving the compressor 1 and to the utility turbine 5 for driving the reduction gear 6, from where it is discharged into the environment after flowing through the heat exchanger 2 and possibly silencing devices.
  • combustion chamber shown in FIG. 2 is provided.
  • the second shows a side view in the upper half of the figure and a schematic cross section through the combustion chamber 3 constructed according to the invention in the lower half of the figure.
  • This is constructed as a two-stage head-ring combustion chamber with a longitudinal axis 7 and the two stages 8 and 9.
  • the first stage 8 is designed as a main combustion chamber.
  • the fuel is introduced via pre-evaporators 10, which are arranged in a star shape on the outer end face 11.
  • the air necessary for fuel oxidation, compressed by the compressor 1 and heated via the heat exchanger 2 flows into the combustion chamber via air inlet openings 12, which are arranged on the diffuser-like circumference of the first stage 8.
  • air and vaporized fuel mix to form a homogeneous mixture, the mixing times remaining below the ignition delay times due to the design of the main combustion chamber.
  • the vaporous fuel-air mixture then arrives at the catalyst 14, which is constructed from individual annular segments 15 arranged coaxially to the longitudinal axis 7. This leads to a tiered catalysis.
  • segments 15 are used which are active at low reaction temperatures. They are followed by further segments 15 of high oxidation effectiveness, in which the reaction temperature and thus the air heating increases.
  • These catalytic segments are fastened in supporting structures and consist of a substrate and an intermediate adhesive layer, onto which the catalyst material from the platinum material group is evaporated. Due to the high operating temperatures of approx. 1450 ° K, high demands are placed on the materials.
  • the porosity of the substrate using magnesium, aluminum and titanium alloys is set so that the pressure drop is small. A pressure loss of the entire combustion chamber of no more than 5% can be achieved if the substrate structure has at least 50 cells / cm2.
  • the reaction products flow from the catalyst 14 through the flow restriction 16 into the second stage 9 of the combustion chamber 3.
  • the flow restriction 16 has the task of preventing flashbacks from the second stage of the combustion chamber into the catalyst, which would lead to its inevitable destruction.
  • the fuel is introduced into the second stage 9 of the combustion chamber 3 with the aid of air-assisted atomizing nozzles 17.
  • the spark plugs 18 are provided for igniting the fuel-air mixture located in the second stage 9.
  • the atomizer nozzles 17 are arranged on the inner wall of the combustion chamber and are supplied with fuel via fuel supply lines 19 located within the annular combustion chamber. These branch off from the main fuel line 20 to which the pre-evaporators 10 are connected.
  • the second stage 9 of the combustion chamber 3 has air inlet openings 21 and 22 distributed over its circumference, the air inlet openings 21 being arranged on the outside and the air inlet openings 22 being arranged on the inside of the annular head combustion chamber.
  • the inner air inlet openings 22 are provided with a perforated ring 23 which can be rotated by an actuator 24 via actuators 25. Both the servomotor 24 and the actuators 25 can be arranged coaxially to the longitudinal axis 7 of the combustion chamber will. Separate heat insulation means are not necessary here if the interior enclosed by the annular combustion chamber is cooled due to the air supplied.
  • the air supply via the perforated ring 23 and the fuel supply via the atomizing nozzles 17 are increased again in the second stage of the combustion chamber 3, so that a noticeable afterburning takes place and thus a noticeable increase in temperature. This is also done at full load.

Description

  • Die Erfindung bezieht sich auf eine Gasturbinenanlage der im Oberbegriff des ersten Anspruchs angegebenen Art sowie auf ein Verfahren zum Betreiben einer solchen Gasturbinenanlage nach dem Oberbegriff des Anspruchs 18.
  • Bei der bisherigen Auslegung von Brennkammern für Gasturbinen, die in Kraftfahrzeugen, insbesondere in Personenkraftwagen eingesetzt werden sollen, hat man bisher nur Wert darauf gelegt, einen hohen Ausbrenngrad und eine gleichmäßige Temperaturverteilung zu erzielen.
  • Aufgrund gesetzlicher Verschärfungen auf dem Abgassektor von Brennkraftmaschinen müssen nun auch bei der Konstruktion von Gasturbinen und hier insbesondere deren Brennkammern auf die festgelegten Schadstoffemissionsgrenzen erhöhter Wert gelegt werden. Die bei der Auslegung zu berücksichtigenden Einflußgrößen, die für die Schadstoffentstehung bestimmend sind, ergeben sich aus der Analyse der reaktionskinetischen Vorgänge in der Brennkammer. Die wichtigsten Einflußgrößen hierbei sind die Primärzonentemperatur und das Äquivalenzverhältnis, der Grad der Vorvermischung und der Verbrennungshomogenität in der Primärzone, die Verweilzeit der Verbrennungsprodukte in der Primärzone, das "Einfrieren" der Reaktionsprodukte in Wandnähe der Brennkammer und die Zwischenzonentemperatur und -verweilzeit.
  • Die Schwierigkeiten der Auslegung schadstoffarmer Brennkammern besteht in der gegensätzlichen Auswirkung der Einflußgrößen auf die einzelnen Schadstoffanteile. So führen z.B. niedrige Primärzonentemperaturen zu einer geringen NO-Emission, jedoch gleichzeitig zu einer hohen CO-Konzentration aufgrund der verminderten Oxidationsrate.
  • Um dieses Problem zu lösen, ist es aus der EP-A-0144094 bekannt, eine katalytisch unterstützte Verbrennung vorzusehen, indem ein Katalysator in der als Kopfbrennkammer ausgebildeten ersten Stufe der Zweistufenbrennkammer vorgesehen wurde. Aufgrund der katalytisch unterstützten Verbrennung kann die Brennstoffoxidation über die Erlöschgrenze hinaus zu sehr mageren Brennstoff-Luft-Verhältnissen und zu niedrigen Reaktionstemperaturen verlagert werden. Somit besteht eine Möglichkeit, gleichzeitig die NO- und CO-Emission zu vermindern, ohne die Leistungsausbeutung zu senken oder den Brennstoffverbrauch zu erhöhen. Als Brennstoffe können in der Brennkammer flüssige oder gasförmige Kohlenwasserstoffe, Kohlesuspension und Wasserstoff eingesetzt werden.
  • Aufgabe der vorliegenden Erfindung ist es, für eine Gasturbinenanlage mit Verdichter- und Turbinenlaufräder der eingangs genannten Art einen platzsparenden Aufbau vorzuschlagen.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des ersten Anspruchs gelöst. Der Vorteil dieser Lösung besteht darin, daß kompakte Abmessungen der gesamten Anlage erzielt werden, da sämtliche Versorgungsleitungen für die zweite Stufe der Brennkammer in den Ringraum gelegt werden können. Die Verbrennungsluft für die zweite Stufe übt hierfür eine Kühlwirkung aus. Dies ist möglich geworden, da das Zentrum der Brennkammer einen in sich abgeschlossenen Innenraum bildet, der mit den Brennkammern nur über die Luftzuführungsöffnungen in Verbindung steht. Dadurch wird sicher vermieden, daß dort Flammen eintreten können.
  • Aus der US-A-4,047,877 ist es bekannt, in Brennkammern kreisringförmige Katalysatoren zu verwenden. Diese Brennkammern können zwar auch als Energiequelle in einem Turbinensystem angewendet werden, wie eingangs in dieser Patentschrift ausgeführt ist. Diese Eignung ist jedoch bei den hier interessierenden Ausführungsbeispielen nach den Fig. 9 bis 12 ausgeschlossen, da nicht erkennbar ist, wie die notwendige Anordnung von Verdichter- und Turbinenrad samt Lagerung bewerkstelligt werden soll, da das Zentrum nicht frei von Flammen gehalten werden kann. Deshalb werden auch die Versorgungsleitungen für die zweite Stufe der Brennkammer von außen radial zugeführt.
  • Im Gegensatz hierzu wird jedoch gemäß der Erfindung die Anordnung der Versorgungsleitung außerhalb der Brennkammer vermieden und eine kompakte Anordnung der Gasturbinenanlage erzielt.
  • Die Strömungsverengung zwischen der ersten und zweiten Stufe ― wie die Weiterbildung nach Anspruch 2 beschreibt ― hat den Vorteil, daß hierdurch Flammenrückschläge aus der zweiten Stufe der Brennkammer vermieden werden.
  • Eine bevorzugte Einbringungsmöglichkeit des Brennstoffs in die erste Stufe der Brennkammer, die eine gute und schnelle Vermischung mit der Luft sicherstellt, beschreibt Anspruch 3. Hierbei ist bzw. sind der bzw. die Vorverdampfer so auszulegen, daß er bzw. sie einen geringen Druckverlust bewirken und eine ausreichende Aufenthaltszeit zur nahezu vollständigen Verdampfung des Brennstoffs gewährleisten.
  • Die Weiterbildung nach Anspruch 4 hat den Vorteil, daß dadurch der bereits verdampfte Brennstoff homogen mit der Luft gemischt wird. Dadurch wird eine ungleichförmige Vermischung verhindert, so daß keine lokalen Brennstoffanreicherungen, die bei Erreichen stöchiometrischer Verhältnisse zur Ausbildung von Flammenrückschlägen in das insgesamt magere Brennstoff-Luft-Gemischführen, stattfinden können. Die Auslegung der Vermischungszone nach dem Prinzip des Diffusionsbrenners hat darüber hinaus den Vorteil, daß die Mischungszeiten unterhalb der Zündverzugszeiten begrenzt werden.
  • Durch die Weiterbildung nach Anspruch 5 ist es möglich, einen einfach aufgebauten und zu fertigenden Katalysator zu schaffen, der den Erfordernissen nach einer vollständigen Verbrennung bei gleichzeitiger Verminderung der NO- und CO-Emission durch einen einfachen Aufbau gewährleistet.
  • Eine bevorzugte Anordnung des Katalysators beschreibt Anspruch 6. Aufgrund der fortschreitenden Temperaturerhöhung bei der Brennstoffoxidation sind die ersten Katalysatorsegmente so aufgebaut, daß sie bei niedrigen Reaktionstemperaturen aktiv werden. Die sich anschließenden Katalysatorsegmente weisen einen hohen Oxidationseffekt auf, so daß sich die Reaktionstemperatur und damit die Luftaufheizung erhöht.
  • Durch die Weiterbildung nach Anspruch 7 werden Katalysatorsegmente geschaffen, die wirtschaftlich herstellbar sind. Sie zeichnen sich durch eine Tragestruktur aus, die aus einem Substrat sowie einer Zwischenhaftschicht bestehen, auf die der Katalysator aufgedampft wird. Die Ansprüche 8 und 9 beschreiben geeignete Werkstoffe.
  • Die Porösität des Substrates wird so gewählt, daß der Druckverlust klein ist. Mit der Weiterbildung nach Anspruch 10 wird ein Druckverlust in der gesamten Brennkammer erreicht, der nicht größer als 5% ist.
  • Zur Steuerung der Verbrennung in der zweiten Stufe der Brennkammer wird die Weiterbildung nach Anspruch 11 vorgeschlagen. Damit wird eine gesteuerte Nachverbrennung zur Einstellung von maximalen Prozeßtemperaturen erreicht.
  • Da die Brennkammer als Ringbrennkammer ausgebildet ist, kann der in Längsachse liegende Raum für zusätzliche Bauteile ― wie Anspruch 12 lehrt ― genutzt werden. Hierbei wird durch die Luft eine Kühlung und Wärmeisolation gegenüber den heißen Wänden der Brennkammer geschaffen. Auch können dort die Brennstoffleitungen zur zweiten Stufe der Brennkammer angeordnet werden, ohne daß zusätzliche Wärmeisolationsmaßnahmen vorgesehen werden müssen, ohne die der Brennstoff in seinen Leitungen verdampfen würde, so daß sich Ablagerungen bilden könnten, die zu einem Zuwachsen der Leitungen führen würden.
  • Aufgrund der vorgeschlagenen Brennkammergeometrie ist hierbei auch eine ausreichende Lagerungsmöglichkeit für den Stellmotor und die Betätigungsglieder gegeben, so daß eine exakte Steuerung der Lufteinlaßöffnungen bei hoher Lebensdauer der Betätigungsglieder und des Stellmotors erzielt wird.
  • Zwei alternative Möglichkeiten zur Steuerung der Lufteinlaßöffnungen beschreiben Anspruch 13 und 14. Eine Vereinfachung ― ohne negative Beeinflußung der Verbrennung in der zweiten Stufe der Brennkammer ― der Steuerung der Lufteintrittsöffnung beschreibt Anspruch 15.
  • Um eine gute Zerstäubung zu erreichen, wird die Weiterbildung nach Anspruch 16 vorgeschlagen. Die Lage der notwendigen Zündeinrichtungen beschreibt Anspruch 17.
  • Die Ansprüche 18-20 beschreiben ein bevorzugtes Verfahren zum Betreiben der Gasturbinenanlage mit der erfindungsgemäß aufgebauten Brennkammer. So kann aufgrund der Ausbildung der zweistufigen Brennkammer dort die Verbrennung zum Starten eingeleitet werden und so der Katalysator gleichsam von rückwärts erwärmt werden. Dies geschieht sehr schnell, so daß bereits kurze Zeit nach dem Start die Brennstoffoxidation in der ersten Stufe der Brennkammer eingeleitet werden kann.
  • Durch die Weiterbildung nach Anspruch 19 wird erreicht, daß die Temperaturerhöhung in der Brennkammer gesteuert werden kann, um optimale Ausbrenngrade zu erzielen.
  • Um Beschleunigungswerte der Gasturbine ähnlich dem Hubkolbenmotor zu erzielen, sowie um Leistungsspitzen abzudecken, eignet sich ebenfalls die zweite Stufe der Brennkammer, wie Anspruch 20 vorschlägt.
  • Im folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher beschrieben. Es stellen dar:
  • Fig. 1
    einen schematisierten Aufbau einer Gasturbinenanlage für Fahrzeuge;
    Fig. 2
    eine Längsansicht, teilweise als Längsschnitt der erfindungsgemäß aufgebauten Brennkammer.

  • In Fig. 1 ist als Beispiel schematisiert einen Zweiwellen-Gasturbinenanlage dargestellt. Sie besteht in an sich bekannter Weise aus dem Verdichter 1, dem Wärmetauscher 2, der Brennkammer 3, der Verdichterturbine 4 sowie der Nutzturbine 5. An der Ausgangswelle der Nutzturbine 5 ist ein an sich bekanntes Untersetzungsgetriebe 6 angeordnet, dessen Ausgangswelle ― bei der Verwendung der Gasturbinenanlage in einem Kraftfahrzeug ― mit dem Kraftfahrzeuggetriebe verbunden ist.
  • Der Verdichter 1 saugt Umgebungsluft an und führt sie durch den Wärmetauscher 2, der von den erwärmten Abgasen nach Verlassen der Nutzturbine 5 durchströmt wird. Die so verdichtete und erwärmte Luft wird in die Brennkammer 3 geleitet, wo sie mit Hilfe von Brennstoff eine weitere Temperaturerhöhung erfährt. Sodann wird sie zu der Verdichterturbine 4 zum Antrieb des Verdichters 1 und zu der Nutzturbine 5 zum Antrieb des Untersetzungsgetriebes 6 geleitet, von wo aus sie nach Durchströmen des Wärmetauschers 2 und evtl. Schalldämpfeinrichtungen in die Umgebung abgeführt wird.
  • Um eine derartige Gasturbinenanlage mit max. Prozeßtemperaturen und geringer Schadstoffemission sowie optimalen Start- und Vollast- sowie Beschleunigungsbedingungen betreiben zu können, wird die in Fig. 2 dargestellte Brennkammer vorgesehen.
  • Fig. 2 zeigt in der oberen Bildhälfte eine Seitenansicht und in der unteren Bildhäfte einen schematisierten Querschnitt durch die erfindungsgemäß aufgebaute Brennkammer 3. Diese ist als zweistufige Kopf-Ringbrennkammer mit einer Längsachse 7 und den beiden Stufen 8 und 9 aufgebaut. Die erste Stufe 8 ist als Hauptbrennkammer ausgeführt. Der Brennstoff wird über Vorverdampfer 10, die sternförmig auf der äußeren Stirnseite 11 verteilt angeordnet sind, eingebracht. Über Lufteinlaßöffnungen 12, die auf dem diffusorartig ausgebildeten Umfang der ersten Stufe 8 angeordnet sind, strömt die zur Brennstoffoxidation notwendige, von dem Verdichter 1 verdichtete und über den Wärmetauscher 2 erhitzte Luft in die Brennkammer. In der Vorvermischungszone 13 mischen sich Luft und verdampfter Brennstoff zu einer homogenen Mischung, wobei die Mischungszeiten aufgrund der Auslegung der Hauptbrennkammer unterhalb der Zündverzugszeiten bleiben.
  • Sodann gelangt das dampfförmige Brennstoff-Luft-Gemisch zu dem Katalysator 14, welcher aus einzelnen koaxial zur Längsachse 7 angeordneten ringförmigen Segmenten 15 aufgebaut ist. Dadurch wird eine gestufte Katalyse bewirkt. Am Eintritt des Brennstoff-Luft-Gemisches werden Segmente 15 verwendet, die bei niedrigen Reaktionstemperaturen aktiv sind. Ihnen schließen sich weitere Segmente 15 hoher Oxidationseffektivität an, in denen sich die Reaktionstemperatur und damit die Luftaufheizung erhöht. Diese katalytischen Segmente sind in Tragstrukturen befestigt und bestehen aus einem Substrat sowie einer Zwischenhaftschicht, auf die der Katalysatorwerkstoff aus der Werkstoffgruppe des Platins aufgedampft ist. Aufgrund der hohen Betriebstemperaturen von ca. 1450° K werden hohe Anforderungen an die Werkstoffe gestellt. Die Porösität des Substrates, für das man Legierungen aus Magnesium, Aluminium und Titan verwendet, wird so eingestellt, daß der Druckverlust klein ist. Man kann einen Druckverlust der gesamten Brennkammer von nicht mehr als 5% erreichen, wenn die Substratstruktur mindestens 50 Zellen/cm² aufweist.
  • Aus dem Katalysator 14 strömen die Reaktionsprodukte durch die Strömungsverengung 16 in die zweite Stufe 9 der Brennkammer 3. Die Strömungsverengung 16 hat die Aufgabe, Flammenrückschläge aus der zweiten Stufe der Brennkammer in den Katalysator, die zu seiner unweigerlichen Zerstörung führen würden, zu verhindern.
  • In die zweite Stufe 9 der Brennkammer 3 wird der Brennstoff mit Hilfe luftunterstützter Zerstäuberdüsen 17 eingeleitet. Neben den Zerstäuberdüsen 17 sind die Zündkerzen 18 zum Zünden des in der zweiten Stufe 9 befindlichen Brennstoff-Luft-Gemisches vorgesehen. Aufgrund des Aufbaus der Ringbrennkammer werden die Zerstäuberdüsen 17 auf der Innenwand der Brennkammer angeordnet und über innerhalb der Ringbrennkammer liegende Brennstoffversorgungsleitungen 19 mit Brennstoff versorgt. Diese zweigen von der Hauptbrennstoffleitung 20, an die die Vorverdampfer 10 angeschlossen sind, ab.
  • Die zweite Stufe 9 der Brennkammer 3 weist auf ihrem Umfang verteilt angeordnete Lufteinlaßöffnungen 21 und 22 auf, wobei die Lufteinlaßöffnungen 21 auf der Außenseite und die Lufteinlaßöffnungen 22 auf der Innenseite der ringförmigen Kopfbrennkammer angeordnet sind. Zur Steuerung der Luftzufuhr in die zweite Stufe der Brennkammer sind die inneren Lufteinlaßöffnungen 22 mit einem Lochring 23 versehen, welcher von einem Stellmotor 24 über Betätigungsglieder 25 gedreht werden kann. Sowohl der Stellmotor 24 als auch die Betätigungsglieder 25 können koaxial zur Längsachse 7 der Brennkammer angeordnet werden. Separate Wärmeisolationsmittel sind hier nicht notwendig, wenn der von der Ringbrennkammer umschlossene Innenraum aufgrund der zugeführten Luft gekühlt wird.
  • In Strömungsrichtung der Reaktionsprodukte am Ausgang der zweiten Stufe der Brennkammer 9 sind weitere Lufteinlaßöffnungen 26 und 27 auf dem inneren bzw. äußeren Umfang der Brennkammer verteilt angeordnet. Durch diese Lufteinlaßöffnungen 26 und 27 kann das geforderte Temperaturprofil am Brennkammeraustritt, insbesondere in deren Wandbereich, beeinflußt werden.
  • Zum Starten der Gasturbinenanlage wird Brennstoff über die Leitungen 20 und 19 zu den luftummantelten Zerstäuberdüsen 17 geleitet. Gleichzeitig wird die Verdichterturbine über einen entsprechenden Anlassersatz beschleunigt, so daß verdichtete und mäßig erwärmte Luft über den noch kalten Wärmetauscher zu den Lufteinlaßöffnungen 12 sowie 21, 22 und 26, 27 in die erste und zweite Stufe der Brennkammer strömen kann. Da zum Starten der Gasturbinenanlage der Lochring 23 so eingestellt wird, daß der max. Öffnungsquerschnitt Lufteintrittsöffnung 22 freigegeben wird, kann sich dort ein brennfähiges Gemisch bilden, welches über die Zündeinrichtung 18 gezündet wird. Die dort eingeleitete Verbrennung bewirkt eine Erwärmung der Katalysatorsegmente 15 und liefert gleichzeitig erwärmte Reaktionsprodukte, die im Wärmetauscher 2 die von dem Verdichter 1 gelieferte verdichtete Luft weiter erwärmen.
  • Sobald der Katalysator 14 seine Arbeitstemperatur erreicht hat, wird Brennstoff über die Vorverdampfer 10 in die erste Stufe 8 der Brennkammer eingeleitet. Damit liefert die Brennkammer Reaktionsprodukte, die sowohl die Verdichterturbine 4 als auch die Nutzturbine 5 antreiben können. Die Verbrennung wird in der zweiten Stufe 9 der Brennkammer nach dem Anlaufen des Gasturbinensatzes zurückgefahren, indem der Lochring 23 so verdreht wird, daß sich die Lufteinlaßöffnungen 22 verschließen. Jedoch wird durch luftummantelten Verstäuberdüsen 17 weiterhin eine geringe Menge Brennstoff zugeführt, so daß dort eine Art Pilotflamme aufrechterhalten wird.
  • Zum Beschleunigen des von dem Gasturbinensatz angetriebenen Fahrzeuges wird in der zweiten Stufe der Brennkammer 3 die Luftzufuhr über den Lochring 23 sowie der Brennstoffzufuhr über die Zerstäuberdüsen 17 wieder erhöht, so daß hier eine merkliche Nachverbrennung stattfindet und damit eine merkliche Temperaturerhöhung. Ebenso wird dies bei Vollast durchgeführt.

Claims (20)

1. Gasturbinenanlage, insbesondere zum Antrieb von Kraftfahrzeugen, mit einer Brennkammer (3) zum Erzeugen des Arbeitsmediums der Nutzturbine (5), wobei die Brennkammer (3) als Zweistufenbrennkammer mit katalytischer Verbrennung in der als Kopfbrennkammer ausgebildeten ersten Stufe (8) aufgebaut ist, dadurch gekennzeichnet, daß die Brennkammer (3) als Ringbrennkammer mit einem als Ring ausgebildeten Katalysator (14) aufgebaut ist, wobei durch die Innenwand der Brennkammer (3) ein koaxial zur Achse (7) der Brennkammer (3) angeordneter, geschlossener Innenraum gebildet wird, in welchem die Zuleitungen (19, 25) für den Brennstoff und die Verbrennungsluft für die zweite Stufe (9) der Brennkammer (3) vorgesehen sind.
2. Gasturbinenanlage nach Anspruch 1, dadurch gekennzeichnet, daß zwischen der ersten (8) und zweiten Stufe (9) der Brennkammer (3) eine Strömungsverengung (16) in Richtung auf die zweite Stufe (9) vorgesehen ist.
3. Gasturbinenanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Brennstoff in die erste Stufe (8) über einen Vorverdampfer (10) eingebracht wird.
4. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Brennkammer (3) der ersten Stufe (8) aus einer Vorvermischungszone (13) nach dem Diffusionsbrennerprinzip und einer Verbrennungszone mit Katalysator (14) ― in dieser Reihenfolge in Strömungsrichtung der Luft betrachtet ― aufgebaut ist.
5. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Katalysator (14) aus mehreren ringförmigen Einzelscheibensegmenten (15) aufgebaut ist.
6. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß in Strömungsrichtung des Brennstoff-Luftgemisches zuerst die Segmente mit niedrigerer Reaktionstemperatur und dann anschließend die Segmente mit hoher Reaktionstemperatur angeordnet sind.
7. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Segmente aus einem Substrat mit einer Zwischenhaftungsschicht und einer darauf aufgebrachten Katalysatorschicht bestehen.
8. Gasturbinenanlage nach Anspruch 7, dadurch gekennzeichnet, daß das Substrat aus Legierungen aus Magnesium, Aluminium und Titan besteht.
9. Gasturbinenanlage nach Anspruch 7, dadurch gekennzeichnet, daß als Katalysatorwerkstoff Werkstoffe aus der Werkstoffgruppe des Platins vorgesehen sind.
10. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß jedes Katalysatorsegment zwecks geringen Druckverlustes mindestens 50 Zellen/cm² aufweist.
11. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die zweite Stufe (9) der Brennkammer (3) ansteuerbare, verstellbare Lufteinlaßöffnungen (22) aufweist.
12. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Steuerung der Lufteinlaßöffnungen (22) aus einem in der Längsachse (7) der Ring-Brennkammer (3) angeordneten Stellmotor (24) mit Betätigungsgliedern (25) besteht.
13. Gasturbinenanlage nach Anspruch 12, dadurch gekennzeichnet, daß die Größe der Lufteinlaßöffnungen (22) von einem verdrehbaren Lochring (23) bestimmt ist.
14. Gasturbinenanlage nach Anspruch 12, dadurch gekennzeichnet, daß die Größe der Lufteinlaßöffnungen (22) von einem verschiebbar angeordneten Ring bestimmt ist.
15. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Lufteintrittsöffnungen (21, 22, 26, 27) auf dem inneren und äußeren Umfang der zweiten Stufe (9) der Brennkammer (3) angeordnet sind und nur die inneren Lufteintrittsöffnungen (22) mit einem Ring (Lochring 23) versehen sind.
16. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß zur Einbringung des Brennstoffs in der zweiten Stufe (9) mindestens eine luftunterstützte Zerstäuberdüse (17) vorgesehen ist.
17. Gasturbinenanlage nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß in unmittelbarer Nähe der Zerstäuberdüse (17) eine Zündkerze (18) angeordnet ist.
18. Verfahren zum Betreiben der Gasturbinenanlage nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß zum Starten der Brennkraftmaschine die Verbrennung in der zweiten Stufe eingeleitet wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Steuerung der Luftzufuhr in der zweiten Stufe der Brennkammer in Abhängigkeit des Luftbedarfs im Katalysator durchgeführt wird.
20. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß beim Beschleunigen und bei Vollast die Leistungsabgabe der zweiten Stufe der Brennkammer erhöht wird.
EP88120316A 1987-12-17 1988-12-06 Gasturbinenanlage Expired - Lifetime EP0320746B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873742891 DE3742891A1 (de) 1987-12-17 1987-12-17 Gasturbinenanlage
DE3742891 1987-12-17

Publications (2)

Publication Number Publication Date
EP0320746A1 EP0320746A1 (de) 1989-06-21
EP0320746B1 true EP0320746B1 (de) 1991-09-25

Family

ID=6342883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120316A Expired - Lifetime EP0320746B1 (de) 1987-12-17 1988-12-06 Gasturbinenanlage

Country Status (4)

Country Link
US (1) US5003768A (de)
EP (1) EP0320746B1 (de)
DE (2) DE3742891A1 (de)
ES (1) ES2026244T3 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690977B1 (fr) * 1992-05-06 1995-09-01 Snecma Chambre de combustion comportant des passages reglables d'admission de comburant primaire.
IT1255613B (it) * 1992-09-24 1995-11-09 Eniricerche Spa Sistema di combustione a basse emissioni inquinanti per turbine a gas
AU681271B2 (en) * 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
US5628181A (en) * 1995-06-07 1997-05-13 Precision Combustion, Inc. Flashback system
US5826429A (en) * 1995-12-22 1998-10-27 General Electric Co. Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
US6223537B1 (en) * 1997-11-24 2001-05-01 Alliedsignal Power Systems Catalytic combustor for gas turbines
GB9809371D0 (en) 1998-05-02 1998-07-01 Rolls Royce Plc A combustion chamber and a method of operation thereof
DE10119035A1 (de) * 2001-04-18 2002-10-24 Alstom Switzerland Ltd Katalytisch arbeitender Brenner
US7117674B2 (en) * 2002-04-10 2006-10-10 The Boeing Company Catalytic combustor and method for substantially eliminating various emissions
DE102004005476A1 (de) * 2003-02-11 2004-12-09 Alstom Technology Ltd Verfahren zum Betrieb einer Gasturbogruppe
JP2004324618A (ja) * 2003-04-28 2004-11-18 Kawasaki Heavy Ind Ltd 吸気流量制御機構付きガスタービンエンジン
US6923001B2 (en) * 2003-07-14 2005-08-02 Siemens Westinghouse Power Corporation Pilotless catalytic combustor
US7469544B2 (en) * 2003-10-10 2008-12-30 Pratt & Whitney Rocketdyne Method and apparatus for injecting a fuel into a combustor assembly
US7421843B2 (en) * 2005-01-15 2008-09-09 Siemens Power Generation, Inc. Catalytic combustor having fuel flow control responsive to measured combustion parameters
US8495883B2 (en) * 2007-04-05 2013-07-30 Siemens Energy, Inc. Cooling of turbine components using combustor shell air
RU2010101978A (ru) * 2010-01-15 2011-07-20 Дженерал Электрик Компани (US) Соединительный узел для газовой турбины
EP3008391B1 (de) 2013-06-11 2020-05-06 United Technologies Corporation Brennkammer mit axialer stufung für einen gasturbinenmotor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1932881C3 (de) * 1969-06-28 1978-06-29 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Brennkammer für Gasturbinentriebwerke
US3982879A (en) * 1971-05-13 1976-09-28 Engelhard Minerals & Chemicals Corporation Furnace apparatus and method
US3940923A (en) * 1971-05-13 1976-03-02 Engelhard Minerals & Chemicals Corporation Method of operating catalytically supported thermal combustion system
US3846979A (en) * 1971-12-17 1974-11-12 Engelhard Min & Chem Two stage combustion process
US3859786A (en) * 1972-05-25 1975-01-14 Ford Motor Co Combustor
US3797231A (en) * 1972-07-31 1974-03-19 Ford Motor Co Low emissions catalytic combustion system
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
MX4352E (es) * 1975-12-29 1982-04-06 Engelhard Min & Chem Mejoras en metodo y aparato para quemar combustible carbonoso
US4040252A (en) * 1976-01-30 1977-08-09 United Technologies Corporation Catalytic premixing combustor
US4047877A (en) * 1976-07-26 1977-09-13 Engelhard Minerals & Chemicals Corporation Combustion method and apparatus
GB2053362B (en) * 1979-02-06 1983-01-26 Jahnig C E Gas turbine power system with fuel injection and combustion catalyst
US4263780A (en) * 1979-09-28 1981-04-28 General Motors Corporation Lean prechamber outflow combustor with sets of primary air entrances
US4402662A (en) * 1980-05-13 1983-09-06 Government Of The United States As Represented By The Environmental Protection Agency Thermal shock resistant split-cylinder structures
GB2101297A (en) * 1981-06-23 1983-01-12 Rolls Royce Evaluating the quality of mixing in a combustion chamber
JPS597722A (ja) * 1982-07-07 1984-01-14 Hitachi Ltd ガスタ−ビン触媒燃焼器
DE3474714D1 (en) * 1983-12-07 1988-11-24 Toshiba Kk Nitrogen oxides decreasing combustion method

Also Published As

Publication number Publication date
DE3742891A1 (de) 1989-06-29
EP0320746A1 (de) 1989-06-21
DE3865188D1 (de) 1991-10-31
US5003768A (en) 1991-04-02
ES2026244T3 (es) 1992-04-16

Similar Documents

Publication Publication Date Title
EP0320746B1 (de) Gasturbinenanlage
EP0767345B1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE69724031T2 (de) Vormischbrennkammer mit magerer Direkteinspritzung und geringem NOx-Ausstoss
EP1497589B1 (de) Brennkammer mit flammenloser oxidation
DE69828916T2 (de) Emissionsarmes Verbrennungssystem für Gasturbinentriebwerke
DE2839703C2 (de)
DE69729505T2 (de) Arbeitsweise einer Gasturbinenbrennkammer
DE69633535T2 (de) Brennkammer und Verfahren zum Betrieb einer mit gasförmigen oder flüssigem Brennstoff betriebenen Gasturbine
DE4110759A1 (de) Magere, abgestufte verbrennungsvorrichtung
CH627536A5 (de) Verfahren zur durchfuehrung einer kontinuierlichen verbrennung eines kohlenstoffhaltigen brennstoffes.
EP1319895B1 (de) Magervormischbrenner für eine Gasturbine sowie Verfahren zum Betrieb eines Magervormischbrenners
EP0238916A1 (de) Verfahren und Vorrichtung zur Regeneration von Abgas-Filtersystemen
DE4200073A1 (de) Dualer kraftstoff-brenner mit verringertem no(pfeil abwaerts)x(pfeil abwaerts)ausstoss
DE3841269A1 (de) Brennstoffduese mit katalytischem glueheinsatz
DE2503128A1 (de) Brenneinrichtung fuer eine gasturbine
DE2555085A1 (de) Brennkammer und verfahren zum erzeugen einer emissionsarmen verbrennung
DE3824121A1 (de) Gasturbine
EP0889289A2 (de) Gasturbinenaufbau
DE3328682A1 (de) Brennerauskleidung fuer ein gasturbinentriebwerk
DE102005061486B4 (de) Verfahren zum Betreiben einer Brennkammer einer Gasturbine
EP0252315B1 (de) Brennkammereinrichtung mit einer Vorbrennkammer für unterstöchiometrische Verbrennung
DE60125412T2 (de) Katalytische verbrennungsvorrichtung mit flüssigbrennstoffverdampfung auf heissen wänden
EP1150072A2 (de) Gasturbinenbrennkammer mit Zuleitungsöffnung
EP4314504A1 (de) Brenner für ein kraftfahrzeug sowie kraftfahrzeug mit wenigstens einem solchen brenner
EP1062461B1 (de) Brennkammer und verfahren zum betrieb einer brennkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890704

17Q First examination report despatched

Effective date: 19900125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3865188

Country of ref document: DE

Date of ref document: 19911031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2026244

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920901

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88120316.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19961125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961205

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961230

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971206

EUG Se: european patent has lapsed

Ref document number: 88120316.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051206