EP0320482B1 - Device for electrolytic metal deposition and operation method thereof - Google Patents

Device for electrolytic metal deposition and operation method thereof Download PDF

Info

Publication number
EP0320482B1
EP0320482B1 EP88870180A EP88870180A EP0320482B1 EP 0320482 B1 EP0320482 B1 EP 0320482B1 EP 88870180 A EP88870180 A EP 88870180A EP 88870180 A EP88870180 A EP 88870180A EP 0320482 B1 EP0320482 B1 EP 0320482B1
Authority
EP
European Patent Office
Prior art keywords
substrate
electrically conductive
electrolyte
conductive elements
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88870180A
Other languages
German (de)
French (fr)
Other versions
EP0320482A1 (en
Inventor
Marios Economopoulos
Robert Pirlet
Roger Franssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Recherches Metallurgiques CRM ASBL
Original Assignee
Centre de Recherches Metallurgiques CRM ASBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre de Recherches Metallurgiques CRM ASBL filed Critical Centre de Recherches Metallurgiques CRM ASBL
Priority to AT88870180T priority Critical patent/ATE79655T1/en
Publication of EP0320482A1 publication Critical patent/EP0320482A1/en
Application granted granted Critical
Publication of EP0320482B1 publication Critical patent/EP0320482B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers

Definitions

  • the present invention relates to a device for the electrolytic deposition of a metal on a mobile substrate.
  • the invention also relates to the method of using such a device, as well as to the product obtained by the implementation of this method.
  • foil preferably in iron
  • the invention is however not limited to this single application, and it extends in an equally advantageous manner to the formation of a permanent electrolytic deposit, in particular to the electrolytic coating of a steel strip.
  • the device of the invention belongs to the type described in patent BE-A-08700561, which reveals an electrode comprising a body, one wall of which is profiled so as to match the shape of the substrate.
  • this walls are provided with narrow and parallel slots, serving alternately to introduce the electrolyte into the electrolysis interval and to take it back from this interval; this arrangement ensures turbulent circulation and a short trajectory of the electrolyte between the electrodes as well as a uniform flow over the entire width of the substrate.
  • an increase in the current density in the electrolysis cells makes it possible, for a given deposit thickness, to reduce the number of electrolysis cells and / or to increase the speed of the substrate.
  • This current density is nevertheless limited by the phenomenon of concentration polarization, corresponding to a local depletion of the electrolyte near the electrodes, which results in the formation of fragile, even powdery deposits, called "burnt deposits".
  • the object of the present invention is to propose a device for the electrolytic deposition of a metal on a mobile substrate, which makes it possible to use the pulsed current technique under advantageous conditions not only from the economic point of view, but also from that of the flexibility of the deposition process and the quality of the products obtained.
  • a device for the electrolytic deposition of a metal on a mobile substrate which comprises an electrode having at least one wall, the outer surface of which is located opposite said substrate with which it delimits an electrolysis interval and a plurality of parallel slots formed in said wall and connected alternately to electrolyte supply means and to electrolyte discharge means, is characterized in that said wall consists of a plurality of electrically elements conductors separated by electrically insulating elements, in that at least part of the electrolyte supply slots are located in said electrically conductive elements, while part of the electrolyte discharge slots are located in said elements electrically insulating, and in that at least a portion of said electrically insulating elements conductors are connected to one terminal of a direct current source, the other terminal of the direct current source being connected to said substrate.
  • This arrangement makes it possible to create, in the electrolysis interval, a maximum electric field under the electrically conductive elements and a minimum electric field under the electrically insulating elements.
  • the substrate circulating in said electrolysis interval is thus alternately subjected to a maximum current density corresponding to the maximum electric field and to a minimum current density corresponding to the minimum electric field.
  • said electrically conductive elements separated by electrically insulating elements are only provided in an initial portion of said wall, considered in the direction of progression of said substrate.
  • This arrangement makes it possible to apply the technique of pulsed currents in the period when they are most useful, that is to say at the start of the electrolytic deposition, which corresponds to the birth of the bites.
  • the height of the electrolysis interval varies periodically and continuously between minima situated in line with the electrolyte supply slots and maxima situated in line with the discharge slots of the electrolyte, at least in the portion of the wall where said electrically conductive elements are separated by electrically insulating elements.
  • the low height of the electrolysis interval makes it possible on the one hand to reduce the ohmic losses in the zones corresponding to the high current densities and on the other hand to reduce the pressure losses and the energy consumption resulting in areas with low current density.
  • At least one of said electrically conductive elements is connected to a terminal of a direct current source, the polarity of which is opposite to that of the terminal to which the other electrically connected elements are connected conductive, the electrical potential of the substrate being intermediate between the respective potentials of said electrically conductive elements.
  • Such an arrangement makes it possible to intensify the effects of pulsed current electrolysis by interposing, preferably periodically, a current pulse of opposite direction in a succession of pulses of electrolysis current of direct direction.
  • the substrate is connected to the negative terminal of a source of direct electric current and that it thus constitutes the cathode of the electrolytic deposition device, while the anode consists in particular by the above electrically conductive elements.
  • said electrically conductive elements having said opposite polarity in fact constitute cathodes with respect to the substrate which is thus locally anodic.
  • said substrate can be either a temporary support such as a metal belt, for example made of titanium, on which a detachable film is deposited, or a product such as a steel strip on which one deposits a permanent coating.
  • a temporary support such as a metal belt, for example made of titanium, on which a detachable film is deposited, or a product such as a steel strip on which one deposits a permanent coating.
  • FIG. 1 the fragmentary views of Figs. 2 to 4 show portions of the wall of the electrode which faces the substrate and the general arrangement of which is visible in FIG. 1.
  • Fig. 1 schematically illustrates in partial section an electrolytic deposition device belonging to the prior art, in which an anode 1 and a mobile substrate 2 are connected respectively to the positive terminal and to the negative terminal of a direct current source.
  • the anode 1 has a flat wall 10 which faces the substrate 2 and which defines therewith an electrolysis interval 11 of constant height.
  • the wall 10 is provided with narrow parallel slots 5, 6 transverse to the substrate, which open into the electrolysis interval; these slots respectively provide the supply (5) of electrolyte and the evacuation (6) of the electrolyte from the electrolysis interval 11.
  • the electrolyte circuit is represented by the arrows a, b, c, d , e, f.
  • the electrolysis interval 11 is the seat of a constant electric field and the current density is normally uniform there.
  • the substrate 2 moves in the direction of the arrow g.
  • the wall fragment, according to the invention, illustrated in FIGS. 2 to 4 corresponds to a portion comprising two supply slots 5 and a discharge slot 6, such as the portion framed by a dashed line in FIG. 1.
  • the substrate 2 is covered with an electrolytic deposit 12; it is connected by means of brushes 13 to the negative terminal of a source of direct electric current 14.
  • Fig. 2 shows that, in accordance with the present invention, the wall 10 consists of electrically conductive elements 15, separated by electrically insulating elements 16.
  • the supply slots 5 are located in the conductive elements 15, while the slots discharge 6 are located in the insulating elements 16.
  • the conducting elements 15 are connected to the positive terminal of the source of direct electric current 14.
  • the conductive elements 15 In the direction of progression of the substrate 2, the conductive elements 15 have a length A and the insulating elements 16 have a length B.
  • each point of the substrate 2 is subjected to the above-mentioned electric field varying in space; the current density prevailing at this point therefore varies between a maximum value corresponding to the passage through a maximum of electric field and a minimum value corresponding to the passage through a minimum of field.
  • This minimum value can moreover be positive, zero or even negative.
  • the maximum value of the electric field, and consequently that of the current density is located under the conductive elements 15, and more precisely at the level of the slots. feed 5; similarly, the minimum value of the electric field, and consequently that of the current density, is located under the insulating elements 16, and more precisely at the level of the evacuation slots 6.
  • the electric field and the current density vary continuously between these extreme values.
  • the electrolytic deposition 12 on the substrate 2 is therefore carried out under pulsed current conditions, although the electric field does not vary over time and the electric supply voltage therefore remains constant.
  • FIG. 2 is only produced in the initial portion of the wall 10, with respect to the direction of progression of the substrate 2.
  • This portion is for example that which is included in the box in phantom in FIG. 1.
  • the rest of the wall 10 is then formed in accordance with the prior art, that is to say by a single conductive wall in which are formed the supply slots 5 and the discharge slots 6.
  • This arrangement allows reduce the energy consumption due to ohmic losses while maintaining the advantageous use of pulsed currents in the most interesting portion of the electrolysis interval. It is indeed in this initial portion that the pits responsible for the porosity of the electrolytic deposit arise.
  • the height of the electrolysis interval 11 varies periodically, and continuously, in the direction of movement of the substrate 2. This height is minimum in line with the feed slots 5, that is to say in areas with a maximum electric field and maximum current density. This low height is justified in these places, because it reduces ohmic losses and therefore the consumption of electrical energy. On the other hand, this height is maximum at the level of the evacuation slots 6, that is to say in areas where a minimum electric field and a current density prevail. minimum. In this zone, the ohmic losses are low and little influenced by the height of the electrolysis interval. On the other hand, a greater height of this electrolysis interval results in an increase in the cross-section of the electrolyte and a reduction in the pressure drops. This results in a reduction in energy consumption to ensure the circulation of the electrolyte.
  • FIG. 4 shows that an electrically conductive element such as 15a can be connected to the negative terminal of a direct current source 14a, while the other electrically conductive elements 15 are connected to the positive terminal of another source of direct electric current 14.
  • the substrate 2 is, via the brushes 13, connected between the two sources 14 and 14a placed in series.
  • the conductive element 15 is therefore anodic with respect to the substrate 2, while the element 15a is cathodic with respect to this substrate 2.
  • cathode elements 15a can be made up of any number of these conductive elements, and in any order relative to the anode elements 15.
  • the substrate 2 traversing the electrolysis interval 11 can be subjected to any desired sequence of anodic and cathodic pulses, caused by electric fields considered here as positive and negative respectively. This results in an accentuation of the effects of electrolysis, in particular an improvement in the regularity of the deposition of the metal.
  • the length of the electroplating device according to the invention depends in particular on the required production capacity and on the average current density.
  • the wall 10 of this device consists of conductive elements 15 of length A and insulating elements 16 of length B, the lengths A and B being considered in the direction of movement of the substrate 2.
  • the device includes a certain number n of identical groups (conductive element 15 - insulating element 16) and its total length is n (A + B).
  • the slots supply 5 and discharge 6 are preferably centered respectively in the conductive 15 and insulating 16 elements.
  • the electrolyte had the following composition: and a temperature of 98 ° C.
  • the device included 1622 identical A-B groups; all the conductive elements 15 were anodic.
  • the active length A was 12.5 mm, the inactive length B was 37.5 mm, and the resulting active ratio was thus 0.25.
  • the active period was 3 ms and the inactive period 9 ms.
  • the electrolysis interval was 1 mm high.
  • the electric generator supplied a current of 810.8 kA at a DC voltage of 10.25 V, which corresponded to an installed power of 8476 kW.
  • the peak current density Dc reached 320 A / dm2 and the average current density Dm was 80 A / dm2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The device comprises a wall consisting of a plurality of electrically conductive members (15) separated by electrically insulating members (16). A proportion of the slots (5) for feeding electrolyte are situated in the electrically conductive members, while a proportion of the slots (6) for removing the electrolyte are situated in the electrically insulating members. At least a proportion of the electrically conductive members are connected to a terminal of a source of direct current (14), the other terminal of the source of direct current being connected to the substrate (2). The height of the electrolysis gap (11) may vary periodically. <IMAGE>

Description

La présente invention concerne un dispositif pour le dépôt électrolytique d'un métal sur un substrat mobile. L'invention porte également sur le procédé d'utilisation d'un tel dispositif, ainsi que sur le produit obtenu par la mise en oeuvre de ce procédé.The present invention relates to a device for the electrolytic deposition of a metal on a mobile substrate. The invention also relates to the method of using such a device, as well as to the product obtained by the implementation of this method.

Pour fixer les idées, la description qui va suivre sera essentiellement consacrée à un dispositif destiné à la fabrication d'une feuille extra-mince, ci-après appelée foil, de préférence en fer, par dépôt électrolytique en continu sur un substrat mobile et séparation ultérieure du foil et du substrat. L'invention n'est cependant pas limitée à cette seule application, et elle s'étend d'une manière tout aussi avantageuse à la formation d'un dépôt électrolytique permanent, en particulier au revêtement électrolytique d'une bande d'acier.To fix the ideas, the description which follows will be essentially devoted to a device intended for the manufacture of an extra-thin sheet, hereafter called foil, preferably in iron, by continuous electrolytic deposition on a mobile substrate and separation foil and substrate. The invention is however not limited to this single application, and it extends in an equally advantageous manner to the formation of a permanent electrolytic deposit, in particular to the electrolytic coating of a steel strip.

Le dispositif de l'invention appartient au type décrit dans le brevet BE-A-08700561, qui révèle une électrode comprenant un corps dont une paroi est profilée de façon à épouser la forme du substrat. Dans cette paroi sont ménagées des fentes étroites et parallèles, servant alternativement à introduire l'électrolyte dans l'intervalle d'électrolyse et à le reprendre de cet intervalle; cette disposition permet d'assurer une circulation turbulente et une trajectoire courte de l'électrolyte entre les électrodes ainsi qu'un débit homogène sur toute la largeur du substrat.The device of the invention belongs to the type described in patent BE-A-08700561, which reveals an electrode comprising a body, one wall of which is profiled so as to match the shape of the substrate. In this walls are provided with narrow and parallel slots, serving alternately to introduce the electrolyte into the electrolysis interval and to take it back from this interval; this arrangement ensures turbulent circulation and a short trajectory of the electrolyte between the electrodes as well as a uniform flow over the entire width of the substrate.

Il est cependant apparu que ce dispositif connu ne permettait pas de produire des foils extrêmement minces et exempts de piqûres, par exemple des foils ayant une épaisseur inférieure à 9 µm et présentant une absence presque totale de porosité.However, it appeared that this known device did not make it possible to produce extremely thin and puncture-free foils, for example foils having a thickness of less than 9 μm and having an almost total absence of porosity.

Par ailleurs, la réduction des coûts d'installation et d'exploitation constitue toujours un facteur important qu'il convient de prendre en considération lors de la conception d'une installation industrielle de dépôt électrolytique.Furthermore, the reduction of installation and operating costs is always an important factor that should be taken into account when designing an industrial electroplating installation.

A cet égard, une augmentation de la densité de courant dans les cellules d'électrolyse permet, pour une épaisseur de dépôt donnée, de réduire le nombre de cellules d'électrolyse et/ou d'accroître la vitesse du substrat. Cette densité de courant est néanmoins limitée par le phénomène de polarisation de concentration, correspondant à un appauvrissement local de l'électrolyte à proximité des électrodes, qui se traduit par la formation de dépôts fragiles, voire pulvérulents, dénommés "dépôts brûlés".In this regard, an increase in the current density in the electrolysis cells makes it possible, for a given deposit thickness, to reduce the number of electrolysis cells and / or to increase the speed of the substrate. This current density is nevertheless limited by the phenomenon of concentration polarization, corresponding to a local depletion of the electrolyte near the electrodes, which results in the formation of fragile, even powdery deposits, called "burnt deposits".

Il existe plusieurs méthodes qui permettent d'atténuer les inconvénients qui viennent d'être mentionnés. On peut citer à cet égard l'introduction de divers additifs dans l'électrolyte, l'ajustement du pH et de la température de l'électrolyte ou encore l'agitation de celui-ci. Ces méthodes permettent de relever quelque peu la densité de courant admissible, mais ne résolvent pas de façon complète et satisfaisante les difficultés précitées.There are several methods that can alleviate the disadvantages just mentioned. In this regard, mention may be made of the introduction of various additives into the electrolyte, the adjustment of the pH and the temperature of the electrolyte or else the stirring of the latter. These methods make it possible to raise the admissible current density somewhat, but do not completely and satisfactorily resolve the above-mentioned difficulties.

Il est également possible de pratiquer le dépôt électrolytique en utilisant des courants pulsés. Cette technique améliore nettement la situation en ce qui concerne les piqûres dans le dépôt. Toutefois, l'application de cette technique n'est pas économiquement envisageable pour le dépôt électrolytique en raison du prix extrêmement élevé des générateurs d'impulsions.It is also possible to practice electrolytic deposition using pulsed currents. This technique clearly improves the situation with regard to stings in the depot. However, the application of this technique is not economically possible for electrolytic deposition because of the extremely high price of pulse generators.

La présente invention a pour objet de proposer un dispositif pour le dépôt électrolytique d'un métal sur un substrat mobile, qui permet d'utiliser la technique des courants pulsés dans des conditions avantageuses non seulement au point de vue économique, mais également à celui de la souplesse du procédé de dépôt et de la qualité des produits obtenus.The object of the present invention is to propose a device for the electrolytic deposition of a metal on a mobile substrate, which makes it possible to use the pulsed current technique under advantageous conditions not only from the economic point of view, but also from that of the flexibility of the deposition process and the quality of the products obtained.

Conformément à la présente invention, un dispositif pour le dépôt électrolytique d'un métal sur un substrat mobile, qui comprend une électrode présentant au moins une paroi dont la surface extérieure est située en face dudit substrat avec lequel elle délimite un intervalle d'électrolyse et une pluralité de fentes parallèles ménagées dans ladite paroi et raccordées en alternance à des moyens d'alimentation en électrolyte et à des moyens d'évacuation de l'électrolyte, est caractérisé en ce que ladite paroi est constituée d'une pluralité d'éléments électriquement conducteurs séparés par des éléments électriquement isolants, en ce qu'au moins une partie des fentes d'alimentation en électrolyte sont situées dans lesdits éléments électriquement conducteurs, tandis qu'une partie des fentes d'évacuation de l'électrolyte sont situées dans lesdits éléments électriquement isolants, et en ce qu'au moins une partie desdits éléments électriquement conducteurs sont raccordés à une borne d'une source de courant continu, l'autre borne de la source de courant continu étant raccordée audit substrat.According to the present invention, a device for the electrolytic deposition of a metal on a mobile substrate, which comprises an electrode having at least one wall, the outer surface of which is located opposite said substrate with which it delimits an electrolysis interval and a plurality of parallel slots formed in said wall and connected alternately to electrolyte supply means and to electrolyte discharge means, is characterized in that said wall consists of a plurality of electrically elements conductors separated by electrically insulating elements, in that at least part of the electrolyte supply slots are located in said electrically conductive elements, while part of the electrolyte discharge slots are located in said elements electrically insulating, and in that at least a portion of said electrically insulating elements conductors are connected to one terminal of a direct current source, the other terminal of the direct current source being connected to said substrate.

Cette disposition permet de créer, dans l'intervalle d'électrolyse un champ électrique maximum sous les éléments électriquement conducteurs et un champ électrique minimum sous les éléments électriquement isolants. Le substrat circulant dans ledit intervalle d'électrolyse est ainsi soumis alternativement à une densité de courant maximum correspondant au maximum de champ électrique et à une densité de courant minimum correspondant au minimum de champ électrique.This arrangement makes it possible to create, in the electrolysis interval, a maximum electric field under the electrically conductive elements and a minimum electric field under the electrically insulating elements. The substrate circulating in said electrolysis interval is thus alternately subjected to a maximum current density corresponding to the maximum electric field and to a minimum current density corresponding to the minimum electric field.

Suivant une variante particulière du dispositif de l'invention, lesdits éléments électriquement conducteurs séparés par des éléments électriquement isolants ne sont prévus que dans une portion initiale de ladite paroi, considérée dans le sens de progression dudit substrat.According to a particular variant of the device of the invention, said electrically conductive elements separated by electrically insulating elements are only provided in an initial portion of said wall, considered in the direction of progression of said substrate.

Cette disposition permet d'appliquer la technique des courants pulsés dans la période où ils sont le plus utiles, c'est-à-dire au début du dépôt électrolytique, qui correspond à la naissance des piqûres.This arrangement makes it possible to apply the technique of pulsed currents in the period when they are most useful, that is to say at the start of the electrolytic deposition, which corresponds to the birth of the bites.

Suivant une autre variante du dispositif de l'invention,la hauteur de l'intervalle d'électrolyse varie périodiquement et de façon continue entre des minima situés au droit des fentes d'alimentation en électrolyte et des maxima situés au droit des fentes d'évacuation de l'électrolyte, au moins dans la portion de la paroi où lesdits éléments électriquement conducteurs sont séparés par des éléments électriquement isolants.According to another variant of the device of the invention, the height of the electrolysis interval varies periodically and continuously between minima situated in line with the electrolyte supply slots and maxima situated in line with the discharge slots of the electrolyte, at least in the portion of the wall where said electrically conductive elements are separated by electrically insulating elements.

Dans cette variante, la faible hauteur de l'intervalle d'électrolyse permet d'une part de réduire les pertes ohmiques dans les zones correspondant aux densités de courant élevées et d'autre part de réduire les pertes de charge et la consommation d'énergie qui en résulte dans les zones où la densité de courant est faible.In this variant, the low height of the electrolysis interval makes it possible on the one hand to reduce the ohmic losses in the zones corresponding to the high current densities and on the other hand to reduce the pressure losses and the energy consumption resulting in areas with low current density.

Suivant encore une autre variante du dispositif de l'invention, au moins un desdits éléments électriquement conducteurs est raccordé à une borne d'une source de courant continu, dont la polarité est opposée à celle de la borne à laquelle sont raccordés les autres éléments électriquement conducteurs, le potentiel électrique du substrat étant intermédiaire entre les potentiels respectifs desdits éléments électriquement conducteurs.According to yet another variant of the device of the invention, at least one of said electrically conductive elements is connected to a terminal of a direct current source, the polarity of which is opposite to that of the terminal to which the other electrically connected elements are connected conductive, the electrical potential of the substrate being intermediate between the respective potentials of said electrically conductive elements.

Il s'est avéré particulièrement intéressant que lesdits éléments électriquement conducteurs présentant ladite polarité opposée soient intercalés périodiquement entre les autres éléments électriquement conducteurs.It has been found to be particularly advantageous that said electrically conductive elements having said opposite polarity are periodically inserted between the other electrically conductive elements.

Une telle disposition permet d'intensifier les effets de l'électrolyse à courants pulsés en intercalant, de préférence périodiquement, une impulsion de courant de sens inverse dans une succession d'impulsions de courant d'électrolyse de sens direct.Such an arrangement makes it possible to intensify the effects of pulsed current electrolysis by interposing, preferably periodically, a current pulse of opposite direction in a succession of pulses of electrolysis current of direct direction.

Il va de soi que, d'une manière générale, le substrat est relié à la borne négative d'une source de courant électrique continu et qu'il constitue ainsi la cathode du dispositif de dépôt électrolytique, tandis que l'anode est constituée notamment par les éléments électriquement conducteurs précités.It goes without saying that, in general, the substrate is connected to the negative terminal of a source of direct electric current and that it thus constitutes the cathode of the electrolytic deposition device, while the anode consists in particular by the above electrically conductive elements.

Il convient cependant de souligner que, dans la dernière variante mentionnée plus haut, lesdits éléments électriquement conducteurs présentant ladite polarité opposée constituent en fait des cathodes par rapport au substrat qui est ainsi localement anodique.It should however be emphasized that, in the last variant mentioned above, said electrically conductive elements having said opposite polarity in fact constitute cathodes with respect to the substrate which is thus locally anodic.

Dans le dispositif de l'invention, ledit substrat peut être aussi bien un support provisoire tel qu'une courroie métallique, par exemple en titane, sur lequel on dépose une pellicule détachable, qu'un produit tel qu'une bande d'acier sur laquelle on dépose un revêtement permanent.In the device of the invention, said substrate can be either a temporary support such as a metal belt, for example made of titanium, on which a detachable film is deposited, or a product such as a steel strip on which one deposits a permanent coating.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, de divers modes de réalisation du dispositif de l'invention. Cette description, qui est donnée dans le simple but d'illustrer la présente invention, fait référence aux dessins annexés, dans lesquels la :

  • Fig. 1 illustre schématiquement un dispositif de dépôt électrolytique appartenant à la technique antérieure; la
  • Fig. 2 présente le principe du dispositif de la présente invention, permettant la création de courants pulsés; la
  • Fig. 3 montre une première variante du dispositif de la Fig. 2, présentant un intervalle d'électrolyse de hauteur variable; et la
  • Fig. 4 illustre un montage destiné à produire des impulsions de courant de sens inverse intercalées dans une séquence d'impulsions de courant de sens direct.
Other characteristics and advantages of the present invention will appear on reading the description which follows, of various embodiments of the device of the invention. This description, which is given for the simple purpose of illustrating the present invention, refers to the appended drawings, in which the:
  • Fig. 1 schematically illustrates an electrolytic deposition device belonging to the prior art; the
  • Fig. 2 shows the principle of the device of the present invention, allowing the creation of pulsed currents; the
  • Fig. 3 shows a first variant of the device of FIG. 2, having an electrolysis interval of variable height; and the
  • Fig. 4 illustrates an assembly intended to produce pulses of current of opposite direction interspersed in a sequence of pulses of current of direct direction.

Dans toutes les figures, des éléments identiques ou analogues sont désignés par les mêmes repères numériques.Les sens de circulation de l'électrolyte et des courants électriques sont indiqués par des flèches appropriées. Enfin, on n'a pas représenté les éléments qui ne sont pas directement nécessaires à la compréhension de l'invention, afin de ne pas surcharger inutilement les dessins.In all the figures, identical or analogous elements are designated by the same reference numerals. The directions of circulation of the electrolyte and of the electric currents are indicated by appropriate arrows. Finally, the elements which are not directly necessary for understanding the invention have not been shown, so as not to unnecessarily overload the drawings.

En particulier, les vues fragmentaires des Fig. 2 à 4 montrent des portions de la paroi de l'électrode qui fait face au substrat et dont la disposition générale est visible dans la Fig. 1.In particular, the fragmentary views of Figs. 2 to 4 show portions of the wall of the electrode which faces the substrate and the general arrangement of which is visible in FIG. 1.

La Fig. 1 illustre schématiquement en coupe partielle un dispositif de dépôt électrolytique appartenant à la technique antérieure, dans lequel une anode 1 et un substrat mobile 2 sont raccordés respectivement à la borne positive et à la borne négative d'une source de courant continu. L'anode 1 comporte une paroi plane 10 qui fait face au substrat 2 et qui délimite avec celui-ci un intervalle d'électrolyse 11 de hauteur constante. La paroi 10 est pourvue de fentes parallèles étroites 5, 6 transversales par rapport au substrat, qui débouchent dans l'intervalle d'électrolyse; ces fentes assurent respectivement l'alimentation (5) en électrolyte et l'évacuation (6) de l'électrolyte de l'intervalle d'électrolyse 11. Le circuit de l'électrolyte est figuré par les flèches a, b, c, d, e, f. Dans cette réalisation connue, l'intervalle d'électrolyse 11 est le siège d'un champ électrique constant et la densité de courant y est normalement uniforme. Le substrat 2 se déplace dans le sens de la flèche g.Fig. 1 schematically illustrates in partial section an electrolytic deposition device belonging to the prior art, in which an anode 1 and a mobile substrate 2 are connected respectively to the positive terminal and to the negative terminal of a direct current source. The anode 1 has a flat wall 10 which faces the substrate 2 and which defines therewith an electrolysis interval 11 of constant height. The wall 10 is provided with narrow parallel slots 5, 6 transverse to the substrate, which open into the electrolysis interval; these slots respectively provide the supply (5) of electrolyte and the evacuation (6) of the electrolyte from the electrolysis interval 11. The electrolyte circuit is represented by the arrows a, b, c, d , e, f. In this known embodiment, the electrolysis interval 11 is the seat of a constant electric field and the current density is normally uniform there. The substrate 2 moves in the direction of the arrow g.

Le fragment de paroi, conforme à l'invention, illustré dans les figures 2 à 4 correspond à une portion comprenant deux fentes 5 d'alimentation et une fente 6 d'évacuation, telle que la portion encadrée par un trait mixte dans la Fig. 1. Le substrat 2 est recouvert d'un dépôt électrolytique 12; il est raccordé par l'intermédiaire de balais 13 à la borne négative d'une source de courant électrique continu 14.The wall fragment, according to the invention, illustrated in FIGS. 2 to 4 corresponds to a portion comprising two supply slots 5 and a discharge slot 6, such as the portion framed by a dashed line in FIG. 1. The substrate 2 is covered with an electrolytic deposit 12; it is connected by means of brushes 13 to the negative terminal of a source of direct electric current 14.

La Fig. 2 montre que, conformément à la présente invention, la paroi 10 se compose d'éléments électriquement conducteurs 15, séparés par des éléments électriquement isolants 16. Les fentes d'alimentation 5 sont situées dans les éléments conducteurs 15, tandis que les fentes d'évacuation 6 sont situées dans les éléments isolants 16. Les éléments conducteurs 15 sont raccordés à la borne positive de la source de courant électrique continu 14.Fig. 2 shows that, in accordance with the present invention, the wall 10 consists of electrically conductive elements 15, separated by electrically insulating elements 16. The supply slots 5 are located in the conductive elements 15, while the slots discharge 6 are located in the insulating elements 16. The conducting elements 15 are connected to the positive terminal of the source of direct electric current 14.

Dans la direction de progression du substrat 2, les éléments conducteurs 15 ont une longueur A et les éléments isolants 16 ont une longueur B.In the direction of progression of the substrate 2, the conductive elements 15 have a length A and the insulating elements 16 have a length B.

Ce dispositif fonctionne de la façon suivante.This device works as follows.

Lorsque les raccordements électriques indiqués sont réalisés, il s'établit dans l'intervalle d'électrolyse 11 un champ électrique variant de manière périodique suivant la direction de déplacement du substrat 2. Par contre, ce champ électrique doit être parfaitement uniforme dans le sens transversal.When the indicated electrical connections are made, there is established in the electrolysis interval 11 an electric field varying periodically according to the direction of movement of the substrate 2. On the other hand, this electric field must be perfectly uniform in the transverse direction .

Au cours de son déplacement dans l'intervalle d'électrolyse 11, chaque point du substrat 2 est soumis au champ électrique précité variant dans l'espace; la densité de courant régnant en ce point varie dès lors entre une valeur maximum correspondant au passage dans un maximum de champ électrique et une valeur minimum correspondant au passage dans un minimum de champ. Cette valeur minimum peut d'ailleurs être positive, nulle ou même négative. La valeur maximum du champ électrique, et par conséquent celle de la densité de courant, se situe sous les éléments conducteurs 15,et plus précisément au droit des fentes d'alimentation 5; de manière similaire, la valeur minimum du champ électrique, et par conséquent celle de la densité de courant, se situe sous les éléments isolants 16, et plus précisément au droit des fentes d'évacuation 6. Le champ électrique et la densité de courant varient de façon continue entre ces valeurs extrêmes.During its movement in the electrolysis interval 11, each point of the substrate 2 is subjected to the above-mentioned electric field varying in space; the current density prevailing at this point therefore varies between a maximum value corresponding to the passage through a maximum of electric field and a minimum value corresponding to the passage through a minimum of field. This minimum value can moreover be positive, zero or even negative. The maximum value of the electric field, and consequently that of the current density, is located under the conductive elements 15, and more precisely at the level of the slots. feed 5; similarly, the minimum value of the electric field, and consequently that of the current density, is located under the insulating elements 16, and more precisely at the level of the evacuation slots 6. The electric field and the current density vary continuously between these extreme values.

Le dépôt électrolytique 12 sur le substrat 2 est donc réalisé dans des conditions de courants pulsés, bien que le champ électrique ne varie pas dans le temps et que la tension électrique d'alimentation reste dés lors constante.The electrolytic deposition 12 on the substrate 2 is therefore carried out under pulsed current conditions, although the electric field does not vary over time and the electric supply voltage therefore remains constant.

Dans une réalisation particulière intéressante, qui n'est pas spécialement illustrée mais qui se comprend aisément, la disposition de la Fig. 2 n'est réalisée que dans la portion initiale de la paroi 10, par rapport au sens de progression du substrat 2. Cette portion est par exemple celle qui est comprise dans le cadre en trait mixte de la Fig. 1. Le reste de la paroi 10 est alors constitué conformément à la technique antérieure, c'est-à-dire par une paroi conductrice unique dans laquelle sont ménagées les fentes d'alimentation 5 et les fentes d'évacuation 6. Cette disposition permet de réduire la consommation d'énergie due aux pertes ohmiques tout en maintenant l'utilisation avantageuse des courants pulsés dans la portion la plus intéressante de l'intervalle d'électrolyse. C'est en effet dans cette portion initiale que prennent naissance les piqûres responsables de la porosité du dépôt électrolytique.In an interesting particular embodiment, which is not specially illustrated but which is easily understood, the arrangement of FIG. 2 is only produced in the initial portion of the wall 10, with respect to the direction of progression of the substrate 2. This portion is for example that which is included in the box in phantom in FIG. 1. The rest of the wall 10 is then formed in accordance with the prior art, that is to say by a single conductive wall in which are formed the supply slots 5 and the discharge slots 6. This arrangement allows reduce the energy consumption due to ohmic losses while maintaining the advantageous use of pulsed currents in the most interesting portion of the electrolysis interval. It is indeed in this initial portion that the pits responsible for the porosity of the electrolytic deposit arise.

Dans la variante du dispositif de l'invention illustrée dans la Fig. 3, la hauteur de l'intervalle d'électrolyse 11 varie périodiquement, et de manière continue, dans la direction de déplacement du substrat 2. Cette hauteur est minimum au droit des fentes d'alimentation 5, c'est-à-dire dans les zones où règnent un champ électrique maximum et une densité de courant maximum. Cette faible hauteur se justifie à ces endroits, car elle permet de réduire les pertes ohmiques et par conséquent la consommation d'énergie électrique. Par contre, cette hauteur est maximum au droit des fentes d'évacuation 6, c'est-à-dire dans les zones où règnent un champ électrique minimum et une densité de courant minimum. Dans cette zone, les pertes ohmiques sont faibles et peu influencées par la hauteur de l'intervalle d'électrolyse. En revanche, une plus grande hauteur de cet intervalle d'électrolyse entraîne une augmentation de la section de passage de l'électrolyte et une diminution des pertes de charges. Il en résulte une réduction de la consommation d'énergie pour assurer la circulation de l'électrolyte.In the variant of the device of the invention illustrated in FIG. 3, the height of the electrolysis interval 11 varies periodically, and continuously, in the direction of movement of the substrate 2. This height is minimum in line with the feed slots 5, that is to say in areas with a maximum electric field and maximum current density. This low height is justified in these places, because it reduces ohmic losses and therefore the consumption of electrical energy. On the other hand, this height is maximum at the level of the evacuation slots 6, that is to say in areas where a minimum electric field and a current density prevail. minimum. In this zone, the ohmic losses are low and little influenced by the height of the electrolysis interval. On the other hand, a greater height of this electrolysis interval results in an increase in the cross-section of the electrolyte and a reduction in the pressure drops. This results in a reduction in energy consumption to ensure the circulation of the electrolyte.

Enfin, la Fig. 4 montre qu'un élément électriquement conducteur tel que 15a peut être raccordé à la borne négative d'une source de courant continu 14a, tandis que les autres éléments électriquement conducteurs 15 sont raccordés à la borne positive d'une autre source de courant électrique continu 14. Dans ce montage, le substrat 2 est, par l'intermédiaire des balais 13, raccordé entre les deux sources 14 et 14a mises en série. L'élément conducteur 15 est donc anodique par rapport au substrat 2, tandis que l'élément 15a est cathodique par rapport à ce substrat 2.Finally, FIG. 4 shows that an electrically conductive element such as 15a can be connected to the negative terminal of a direct current source 14a, while the other electrically conductive elements 15 are connected to the positive terminal of another source of direct electric current 14. In this arrangement, the substrate 2 is, via the brushes 13, connected between the two sources 14 and 14a placed in series. The conductive element 15 is therefore anodic with respect to the substrate 2, while the element 15a is cathodic with respect to this substrate 2.

Il va de soi que l'on peut constituer en éléments cathodiques 15a un nombre quelconque de ces éléments conducteurs, et en ordre quelconque par rapport aux éléments anodiques 15. De cette façon, le substrat 2 parcourant l'intervalle d'électrolyse 11 peut être soumis à toute séquence désirée d'impulsions anodiques et cathodiques, provoquées par des champs électriques considérés ici respectivement comme positifs et négatifs. Il en résulte une accentuation des effets de l'électrolyse, en particulier une amélioration de la régularité du dépôt du métal.It goes without saying that cathode elements 15a can be made up of any number of these conductive elements, and in any order relative to the anode elements 15. In this way, the substrate 2 traversing the electrolysis interval 11 can be subjected to any desired sequence of anodic and cathodic pulses, caused by electric fields considered here as positive and negative respectively. This results in an accentuation of the effects of electrolysis, in particular an improvement in the regularity of the deposition of the metal.

La longueur du dispositif de dépôt électrolytique conforme à l'invention dépend en particulier de la capacité de production requise et de la densité de courant moyenne.The length of the electroplating device according to the invention depends in particular on the required production capacity and on the average current density.

Comme le montrent les Fig. 2 à 4, la paroi 10 de ce dispositif est constituée d'éléments conducteurs 15 de longueur A et d'éléments isolants 16 de longueur B, les longueurs A et B étant considérées dans le sens du déplacement du substrat 2. Au total, le dispositif comprend un certain nombre n de groupes identiques (élément conducteur 15 - élément isolant 16) et sa longueur totale vaut n (A + B). Les fentes d'alimentation 5 et d'évacuation 6 sont de préférence centrées respectivement dans les éléments conducteurs 15 et isolants 16.As shown in Figs. 2 to 4, the wall 10 of this device consists of conductive elements 15 of length A and insulating elements 16 of length B, the lengths A and B being considered in the direction of movement of the substrate 2. In total, the device includes a certain number n of identical groups (conductive element 15 - insulating element 16) and its total length is n (A + B). The slots supply 5 and discharge 6 are preferably centered respectively in the conductive 15 and insulating 16 elements.

On va maintenant décrire, à titre d'exemple, une réalisation préférée du dispositif de l'invention, dans laquelle il sera de nouveau fait référence à la Fig. 2.We will now describe, by way of example, a preferred embodiment of the device of the invention, in which reference will again be made to FIG. 2.

Les différentes grandeurs utilisées sont définies de la façon suivante :

  • longueur active : longueur correspondant au champ électrique de haute intensité; étant donné la faible hauteur de l'intervalle d'électrolyse, on peut considérer que la longueur active est sensiblement égale à la longueur "A" d'un élément électriquement conducteur;
  • longueur inactive : longueur correspondant à un champ électrique d'intensité moyenne quasi nulle; pour la même raison que ci-dessus, on peut considérer que la longueur inactive correspond sensiblement à la longueur "B" d'un élément électriquement isolant;
  • rapport actif : rapport w = A / (A + B) ;
  • période active : durée nécessaire à un point du substrat pour parcourir, à la vitesse V, la longueur active A;
  • période inactive : durée nécessaire à un point du substrat pour parcourir, à la vitesse V, la longueur inactive B;
  • densité de courant de crête (Dc) : valeur moyenne de la densité de courant pendant une période active;
  • densité de courant (Dm) : valeur moyenne de la densité de courant pendant une durée comprenant une période active et une période inactive; en négligeant le courant très faible correspondant à une période inactive, on peut écrire Dm = w. Dc
    Figure imgb0001
    avec une précision suffisante en exploitation industrielle.
The different quantities used are defined as follows:
  • active length : length corresponding to the high intensity electric field; given the small height of the electrolysis interval, it can be considered that the active length is substantially equal to the length "A" of an electrically conductive element;
  • inactive length : length corresponding to an electric field of almost zero average intensity; for the same reason as above, it can be considered that the inactive length corresponds substantially to the length "B" of an electrically insulating element;
  • active ratio : ratio w = A / (A + B);
  • active period : duration required at a point on the substrate to travel, at speed V, the active length A;
  • inactive period : time required at a point on the substrate to travel, at speed V, inactive length B;
  • peak current density (Dc) : average value of the current density during an active period;
  • current density (Dm) : average value of the current density over a period comprising an active period and an inactive period; neglecting the very weak current corresponding to an inactive period, we can write Dm = w. Dc
    Figure imgb0001
    with sufficient precision in industrial operation.

Par ailleurs, il est apparu que l'utilisation optimale du dispositif de l'invention en vue d'éliminer les piqûres même dans les foils les plus minces, impliquait le respect des conditions de fonctionnement suivantes :

  • l'électrolyte doit être à base de chlorures et il doit contenir 150 à 180 g/l Fe⁺⁺, 0,8 à 2 g/l Fe⁺⁺⁺, 20 à 30 g/l Ca⁺⁺, 0,01 à 0,001 g/l H⁺ et 2 à 3 ml/l d'agent mouillant;
  • la température d'électroformage doit être comprise entre 90°C et 100°C;
  • la densité de courant moyenne Dm doit être comprise entre 50 et 100 A/dm²;
  • la période active doit être comprise entre 1 et 10 ms;
  • le rapport actif w doit être compris entre 0,2 et 0,8.
Furthermore, it appeared that the optimal use of the device of the invention with a view to eliminating punctures even in the thinnest foils, implied compliance with the following operating conditions:
  • the electrolyte must be based on chlorides and it must contain 150 to 180 g / l Fe⁺⁺, 0.8 to 2 g / l Fe⁺⁺⁺, 20 to 30 g / l Ca⁺⁺, 0.01 to 0.001 g / l H⁺ and 2 to 3 ml / l of wetting agent;
  • the electroforming temperature must be between 90 ° C and 100 ° C;
  • the average current density Dm must be between 50 and 100 A / dm²;
  • the active period must be between 1 and 10 ms;
  • the active ratio w must be between 0.2 and 0.8.

On a appliqué ces conditions dans un dispositif de fabrication de foil de fer, en vue d'assurer une production de 736 kg/h de foil par dépôt électrolytique sur une cathode se déplaçant à une vitesse V = 250 m/min..These conditions were applied in an iron foil manufacturing device, with a view to ensuring a production of 736 kg / h of foil by electrolytic deposition on a cathode moving at a speed V = 250 m / min.

L'électrolyte avait la composition suivante :

Figure imgb0002
et une température de 98°C.The electrolyte had the following composition:
Figure imgb0002
and a temperature of 98 ° C.

Le dispositif comportait 1622 groupes A-B identiques; tous les éléments conducteurs 15 étaient anodiques. La longueur active A valait 12,5 mm, la longueur inactive B valait 37,5 mm, et le rapport actif résultant valait ainsi 0,25. La période active était de 3 ms et la période inactive de 9 ms. L'intervalle d'électrolyse avait une hauteur de 1 mm.The device included 1622 identical A-B groups; all the conductive elements 15 were anodic. The active length A was 12.5 mm, the inactive length B was 37.5 mm, and the resulting active ratio was thus 0.25. The active period was 3 ms and the inactive period 9 ms. The electrolysis interval was 1 mm high.

Le générateur électrique fournissait un courant de 810,8 kA sous une tension continue de 10,25 V, ce qui correspondait à une puissance installée de 8476 kW. La densité de courant de crête Dc atteignait 320 A/dm² et la densité de courant moyenne Dm valait 80 A/dm².The electric generator supplied a current of 810.8 kA at a DC voltage of 10.25 V, which corresponded to an installed power of 8476 kW. The peak current density Dc reached 320 A / dm² and the average current density Dm was 80 A / dm².

Dans ces conditions, on a fabriqué un foil de fer d'une largeur de 1250 mm et d'une épaisseur de 5 µm, exempt de piqûres. La consommation spécifique d'énergie s'élevait ici à 11,52 kWh/kg de foil de fer.Under these conditions, an iron foil with a width of 1250 mm and a thickness of 5 μm was produced, free of pitting. The specific energy consumption here amounted to 11.52 kWh / kg of iron foil.

En variante, on a utilisé un dispositif dans lequel seuls les 300 premiers éléments étaient constitués conformément à la présente invention. Tous les autres paramètres étant inchangés, on a fabriqué du foil de fer identique au précédent moyennant une consommation spécifique de 7,44 kWh/kg de foil de fer.Alternatively, a device was used in which only the first 300 elements were made in accordance with the present invention. All other parameters being unchanged, iron foil identical to the previous one was manufactured with a specific consumption of 7.44 kWh / kg of iron foil.

Il va de soi que, pour le dépôt électrolytique d'un revêtement permanent sur un substrat tel qu'une bande d'acier, les conditions opératoires, en particulier la composition de l'électrolyte, doivent être adaptées à chaque cas.It goes without saying that, for the electrolytic deposition of a permanent coating on a substrate such as a steel strip, the operating conditions, in particular the composition of the electrolyte, must be adapted to each case.

Claims (10)

1. Device for the electrolytic deposition of a metal on a mobile substrate (2), comprising an electrode having at least one wall (10) whose exterior surface faces the said substrate with which it delimits an electrolysis space (11), and a plurality of parallel slots (5,6) placed in the said wall and alternately connected to means for the introduction of electrolyte and to means for the discharge of electrolyte, characterised in that the said wall consists of a plurality of electrically conductive elements (15) separated by electrically insulating elements (16), in that at least some of the slots (5) for the introduction of electrolyte are located in the said electrically conductive elements, while some of the slots (6) for the discharge of electrolyte are located in the said electrically insulating elements, and in that at least some of said electrically conductive elements are connected to a terminal of a direct current source (14), while the other terminal of the direct current source is connected to the said substrate.
2. Device according to Claim 1, characterised in that said electrically conductive elements (15) separated by electrically insulating elements (16) are provided only in an initial section of said wall (10), relative to the direction of advance of the said substrate.
3. Device according to either of Claims 1 and 2, characterised in that the height of the electrolysis space (11) varies periodically and continuously between the minima located in line with the slots (5) for the introduction of electrolyte and the maxima located in line with the slots (6) for the discharge of electrolyte, at least in the section of the wall (10) where said electrically conductive elements are separated by electrically insulating elements.
4. Device according to one or other of Claims 1 to 3, characterised in that at least one of the said electrically conductive elements (15a) is connected to a terminal of a direct current source whose polarity is opposite to that of the terminal to which the other electrically conductive elements (15) are connected, the electrical potential of the substrate (2) being in between the corresponding potentials of the said electrically conductive elements (15, 15a).
5. Device according to Claim 4, characterised in that the electrically conductive elements (15a) having the said opposite polarity are periodically interposed between the other electrically conductive elements (15).
6. Process for the electrolytic deposition of a metal on a mobile substrate, in which said substrate moves along an electrode wall with which it delimits an electrolysis space in which an electrolyte is circulating, characterised in that a stationary electrical field whose intensity is variable in the direction of movement of the said substrate and substantially uniform in the direction perpendicular to this movement is generated in at least a portion of the said electrolysis space, this variable electrical field giving rise, within the electrolyte, to an electric current density which is variable in the direction of the movement of the said substrate and is substantially uniform in the direction perpendicular to this movement, and in that the substrate is made to move along in the said variable electrical field in such a manner that the said substrate is subjected to a plurality of successive electric current pulses.
7. Process according to Claim 6, characterised in that the intensity of the electrical field, and thus the electric current density in said electrolysis space, is varied periodically.
8. Process according to either of Claims 6 and 7, characterised in that the duration of an electric current pulse is between 1 ms and 10 ms.
9. Process according to one or other of Claims 6 to 8, characterised in that the ratio (w) of the duration of one electric current pulse to the interval between the beginning of two successive current pulses is between 0.2 and 0.8.
10. Process according to one or other of Claims 6 to 9, characterised in that the average current density (Dm) during the interval between the beginning of two successive current pulses is between 50 A/dm² and 100 A/dm² for the production of a film or between 200 A/dm² and 3 A/dm² for the formation of a permanent coating, respectively.
EP88870180A 1987-12-11 1988-12-06 Device for electrolytic metal deposition and operation method thereof Expired - Lifetime EP0320482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88870180T ATE79655T1 (en) 1987-12-11 1988-12-06 APPARATUS FOR ELECTROLYTIC METAL DEPOSITION AND METHOD OF APPLICATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE8701421 1987-12-11
BE8701421A BE1001295A6 (en) 1987-12-11 1987-12-11 Device for electrolytic deposit of metal and method of use.

Publications (2)

Publication Number Publication Date
EP0320482A1 EP0320482A1 (en) 1989-06-14
EP0320482B1 true EP0320482B1 (en) 1992-08-19

Family

ID=3883012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88870180A Expired - Lifetime EP0320482B1 (en) 1987-12-11 1988-12-06 Device for electrolytic metal deposition and operation method thereof

Country Status (4)

Country Link
EP (1) EP0320482B1 (en)
AT (1) ATE79655T1 (en)
BE (1) BE1001295A6 (en)
DE (1) DE3873892D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121032A1 (en) * 1991-06-26 1993-01-07 Schmid Gmbh & Co Geb DEVICE FOR TREATING PLATE-SHAPED OBJECTS, IN PARTICULAR BOARDS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2619821A1 (en) * 1976-05-05 1977-11-17 Hoechst Ag METHOD AND DEVICE FOR CONTINUOUS ELECTROLYTIC TREATMENT OF A METAL STRIP
BE905588A (en) * 1986-10-09 1987-04-09 Centre Rech Metallurgique Enhancing electrolytic deposition of metallic materials on substrates - with promotion of turbulence to permit use of higher current densities, useful for products and very thin coatings

Also Published As

Publication number Publication date
EP0320482A1 (en) 1989-06-14
BE1001295A6 (en) 1989-09-19
DE3873892D1 (en) 1992-09-24
ATE79655T1 (en) 1992-09-15

Similar Documents

Publication Publication Date Title
EP0201422B1 (en) Integrable solid cell and process for its manufacture
EP2020687A1 (en) Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus
EP0533576A1 (en) Process for the manufacture of collector-electrode sets for generators in thin films, collector-electrode sets and generators produced therefrom
TW575692B (en) Method for electroplating a strip of foam
FR2834301A1 (en) METHOD FOR PRODUCING AN ANODIC OXIDE FILM ON A ROW OF SLIDING CLOSURE CHAIN ELEMENTS AND DEVICE FOR PRODUCING THE SAME.
CA2159140A1 (en) High speed electrical discharge surface preparation of internal surfaces for thermal coatings
KR20120105464A (en) Photoplating of metal electrodes for solar cells
EP0320482B1 (en) Device for electrolytic metal deposition and operation method thereof
EP0123631B1 (en) Method and apparatus for electrolytically treating the surface of elongate metal articles
KR20120110101A (en) Method for the light-induced, galvanic pulsed deposition for forming a seed layer for a metal contact of a solar cell and for the subsequent reinforcement of said seed layer or said metal contact and arrangement for carrying out the method
FR2511546A1 (en) PROCESS FOR LOADING METAL BATTERY PLATES AND PLATES OBTAINED
EP1097773B1 (en) Process and apparatus for electric discharge machining
BE1001584A6 (en) Method and device for electrolytic deposition - of metal and moving substrate
EP0222724B1 (en) Process and apparatus for producing an extra-thin metal foil by electroplating
DK2982779T3 (en) Process for electrochemical separation of semiconducting materials and electrolytes therefor
FR2585372A1 (en) ELECTRODE FOR ELECTROLYSIS CELL
JP3587156B2 (en) Field emission type electron source and method of manufacturing the same
WO2014013004A1 (en) Electrochemical lead battery including a specific additive
US20220320607A1 (en) Charging and reconditioning an electrochemical cell
CH628687A5 (en) ELECTROLYSER.
EP0292466B1 (en) Electrode for an electrolytic cell
BE1002222A6 (en) Method for applying a copper layer on a metal strip by electrolysis
EP2173927A2 (en) Equipment and method for electrolytic tinning of steel strips using a non soluble anode
BE847650A (en) SELECTIVE ELECTROCHEMICAL COATING PROCESS,
RU97107452A (en) METHOD FOR CLEANING THE SURFACE OF A METAL PRODUCT IN ELECTROLYTE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19891130

17Q First examination report despatched

Effective date: 19911204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920819

Ref country code: GB

Effective date: 19920819

Ref country code: DE

Effective date: 19920819

Ref country code: AT

Effective date: 19920819

Ref country code: NL

Effective date: 19920819

REF Corresponds to:

Ref document number: 79655

Country of ref document: AT

Date of ref document: 19920915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3873892

Country of ref document: DE

Date of ref document: 19920924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921231

Ref country code: BE

Effective date: 19921231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19920819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR

Effective date: 19921231

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST