EP0319426A1 - Lanceur de projectile monoéclat à grande vitesse - Google Patents

Lanceur de projectile monoéclat à grande vitesse Download PDF

Info

Publication number
EP0319426A1
EP0319426A1 EP88403049A EP88403049A EP0319426A1 EP 0319426 A1 EP0319426 A1 EP 0319426A1 EP 88403049 A EP88403049 A EP 88403049A EP 88403049 A EP88403049 A EP 88403049A EP 0319426 A1 EP0319426 A1 EP 0319426A1
Authority
EP
European Patent Office
Prior art keywords
barrel
projectile
chamber
charge
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88403049A
Other languages
German (de)
English (en)
Inventor
Christian Pujols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0319426A1 publication Critical patent/EP0319426A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A1/00Missile propulsion characterised by the use of explosive or combustible propellant charges
    • F41A1/02Hypervelocity missile propulsion using successive means for increasing the propulsive force, e.g. using successively initiated propellant charges arranged along the barrel length; Multistage missile propulsion

Definitions

  • the invention relates to a high-speed or hypervelocity mono-flash projectile launcher, that is to say a few kilometers per second.
  • Such launchers are used mainly for the purpose of simulating the impacts of small celestial bodies such as meteorites and of fragments produced by the fragmentation of explosive projectiles.
  • the speed has been estimated at approximately 2.2 km / sec upstream of the accelerator and 2.85 km / sec approximately downstream, which remains relatively low.
  • the object of the invention is to avoid these drawbacks and to accelerate a projectile to speeds previously unknown, of the order of approximately 10 km / sec. It achieves this using a launcher comprising a chamber in which a charge of detonating explosive is placed and in which emerges a straight barrel in which the projectile is accelerated and whose tube has circumferential grooves which make it possible to attenuate considerably the intensity of the longitudinal shock wave.
  • a launcher comprising a chamber in which a charge of detonating explosive is placed and in which emerges a straight barrel in which the projectile is accelerated and whose tube has circumferential grooves which make it possible to attenuate considerably the intensity of the longitudinal shock wave.
  • Many particular constructions of these grooves can be proposed, but it is advantageous that they are mainly located on the part of the barrel close to the chamber, that they are deep, that is to say that they do not allow to remain. that a small thickness of the tube and that they are located outside the tube so as to maintain a perfectly smooth and cylindrical
  • shock wave which can be produced by an increase in the quantity of explosive in the immediate vicinity. of the barrel and by placing the detonator (s) on the regions of the explosive furthest from the tube or barrel.
  • the performance of such a launcher is superior to that of the launcher of the second article cited, although no attempt is made to confine the explosion gases.
  • the launcher can thus be devoid of a rear breech.
  • Another advantage of using explosives is being able to predict with much greater precision the times of passage of the projectile in the barrel, so that we can interpose, as in the first article cited but with much greater efficiency, an accelerator consisting of a second charge of explosive. It is useless to seek to locate the passage of the projectile by an instrument whose indications can never be sufficiently precise or reliable; instead, provision is made to detonate the charge of the accelerator with a determined delay with respect to the charge contained in the chamber.
  • the chamber is cylindro-conical and the conical part corresponds to a convergent opening into the barrel. The explosive then partially fills this convergent.
  • the accelerator which has been mentioned above may advantageously consist of a cylindrical charge of detonating explosive, placed coaxially with the core and hollowed out at the location of the core, which is initiated simultaneously from several regions of the outer periphery of the cylinder and angularly distributed evenly.
  • the chamber therefore comprises a cylindrical part 1 and a conical or convergent part 2 delimited by a wall 3 which is extended, at its end on the side of the convergent 2, by a circumferential crown 4 intended to place and center the barrel 5.
  • the barrel 5, welded to the crown 4 or simply maintained by bonding, comprises a tube 6 which surrounds a smooth and cylindrical core 7 to prevent excessive deformation of the projectile which is brought to the plastic state during the detonation.
  • the tube 6 is made of metal, in principle of steel.
  • the core 7 opens into the converging 2 through an orifice 8 located at the top thereof; it opens at its other end, which constitutes the mouth 9 of the barrel 5, on the outside.
  • a projectile 10 is placed in the core 7 near the convergent 2. It is a small cylinder which can advantageously be of aluminum in order to obtain a higher speed.
  • An accelerator 11 is interposed approximately in the middle of the barrel 5.
  • This accelerator 11 consists of two circular flanges 12 and 13, parallel and perpendicular to the core 7 (but which can also be inclined relative to the latter), and connected to their outer periphery by a circular wall 14.
  • the assembly formed by these flanges and this circular wall defines an internal cylindrical volume and coaxial with the core 7.
  • the flanges 12 and 13 are also connected to the tube 6 at their center.
  • a second convergent 15 can be provided to connect the internal cylindrical volume to the core 7 on the side of the mouth 9.
  • the tube 6 is notched with deep circumferential grooves 16 located, for the majority of them, near the wall 3 of the chamber.
  • the grooves 16 are established on the outside of the tube 6 and have a great depth so as to leave only a small part of the thickness of the tube 6 around the core 7 (at most half and preferably a few tenths of the thickness elsewhere).
  • the grooves 16 can be fine and have only a few millimeters in width.
  • a charge of detonating explosive 10 is introduced into the chamber by the part opposite to the orifice 8.
  • the load 20 fills almost all of the cylindrical part 1 of the chamber and most of the convergent 2 from the wall from which it is only separated by a slight clearance. This produces excellent filling of the chamber and in particular of its part close to the projectile 10, which makes it possible to obtain much more violent shock waves and to print the projectile 10 much greater accelerations.
  • a certain distance from the charge 20 of the projectile 10 remains however necessary to avoid its disintegration during the first moments of its setting in speed.
  • a detonator 21 is placed on a cylinder head 22 which adjusts to an opening in the chamber opposite the orifice 8.
  • the detonator 21 is therefore in contact with the charge 20 opposite the projectile 10. This allows also to obtain a more violent shock wave on the projectile 10.
  • the cylinder head 22 is of relatively small thickness and is not intended to confine the explosion gases; its destruction is rapid on ignition. It is simply placed on the wall 3 by radial screws 23.
  • detonating explosive 24 is placed in the internal volume of the accelerator 11. This is a cylindrical cartridge hollowed out around its axis so as to delimit a passage 25 in the extension of the core 7 and with a slightly larger diameter.
  • a ring of detonators 26 is also provided on the circular wall 14. These detonators are here eight in number and angularly spaced by 45 °. According to the same principle as for the other charge of explosive 20, the hollow volume is therefore almost entirely filled with explosive and firing takes place from the most distant points of the projectile 10.
  • the launcher is completed by a firing device 30 from which comes a line 31 for firing the detonator 21 and a line 32 for firing the detonators 26. On this line 32 a timer 33 is set, which delays the update pulse fire of a specified period.
  • the operation of this launcher can be explained as follows.
  • the detonator 21 firstly causes the detonation of the charge 20; the compression gases are propelled against the projectile 10 at a speed close to that of the detonation wave. A fraction of the kinetic energy of the gases is communicated to the projectile 10 which is thus strongly accelerated.
  • a shock wave is communicated to the wall 3 and then to the barrel 5 at a speed greater than or close to that of sound in the material considered, that is to say 5.7 km / sec in the case of the steel.
  • This shock wave therefore precedes the projectile 10 during the speed-up phase of the projectile and experience proves that it has the effect, in the case of a regular tubular gun, of imploding it.
  • the projectile 10 would then be disintegrated.
  • the grooves 16 oppose this phenomenon by making it possible to filter most of the energy of the shock wave.
  • the projectile 10 then flows unimpeded in the core 7 up to the accelerator 11.
  • This load 20 can however have other forms.
  • the proper functioning of this stage however requires the implosion of detonation products on the axis of the barrel so that the overpressure of the gases on the axis is accompanied by a speed of ejection of the gases towards the projectile much larger than that of the latter before the operation of this stage.
  • This speed of ejection of the combustion gases in the direction of the projectile can be increased at leisure by increasing the external and lateral dimensions of this charge. Furthermore, it is not absolutely necessary to place the detonators at the periphery of the charge in order to produce this implosion.
  • the firing pulse which had hitherto been retained by the timer 33 completes to circulate in the line 32 and is communicated to the detonators 26 which surround the core 7.
  • the other charge 24 is then ignited in turn, and part of the combustion gases generates on the axis an excessively fast jet which flows in the core 7 and accelerates the projectile 10 again, all the more so as the detonation wave is centripetal.
  • the grooves 16 downstream of the accelerator 11 likewise serve to prevent the implosion of the barrel 5.
  • the projectile 10 is an aluminum cylinder 4 mm high and 4 mm in diameter and the explosive is Octolite, the charge 20 having approximately 80 mm in length and 40 mm in diameter in its cylindrical part, and the load 24 having about 40 mm in length and 140 mm in diameter.
  • the tube 6 has an outside diameter of 40 mm and the grooves 16 have a width of 5 mm and extend up to 3 mm from the core 7.
  • FIG. 2 it can be seen that the shape of the chamber can be modified in such a way that the convergent 2 is connected to a cylindrical part 101 of larger diameter but not completely enveloping the charge of explosive 120 by a flat face. 102.
  • the charge of explosive 120 therefore has a larger diameter, which makes it possible to significantly increase the mass of the explosive. No cylinder head exists here.
  • the speed of the projectile 10 must therefore be higher if the projectile 10 is sufficiently distant from the charge so as to avoid its initial disintegration.
  • the cylindro-conical chamber can be replaced by a purely conical chamber 202.
  • the charge 220 is also conical with a spherical rear face, and it is advantageous to split the line 31 to allow several detonators 21 placed at regular intervals on the face of the charge 220 distant from the projectile 10 to be fired at the same time.
  • the gas flow produced by the explosion then converges towards the orifice 8 and here again increases the overpressure which is exerted on the projectile 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

Lanceur de projectile à grande vitesse. Il comprend une chambre (1, 2) remplie d'explosif détonant (20) accélérant le projectile (10). Le canon (5) est entaillé de rainures (16) qui filtrent l'onde de choc et empêchent le tube (6) d'imploser. Un accélérateur (11) peut être prévu. Application à la simulation des impacts d'éclats.

Description

  • L'invention concerne un lanceur de projectile monoéclat à grande vitesse ou hypervitesse, c'est-à-dire à quelques kilomètres par seconde. De tels lanceurs sont utilisés principalement à des fins de simulation d'impacts de petits corps célestes tels que des météorites et d'éclats produits par la fragmentation de projectiles explosifs.
  • Des raisons technologiques expliquent qu'il est difficile de parvenir à des vitesses suffisamment importantes. Dans un article intitulé "Acceleration of projectiles with the sequenced high explosive impulse launcher" de W.E. Fogg et C.W. Fleischer faisant partie des comptes-rendus du Quatrième Congrès "Hypervelocity impact" tenu en avril 1960 aux Etats-Unis, on décrit ainsi un lanceur constitué d'une chambre et d'un canon tubulaire dont l'âme débouche dans cette chambre et qui est par ailleurs équipé d'un étage accélérateur constitué par une cartouche d'explosif détonant. La chambre est remplie de poudre dont la déflagration provoque l'accélération du projectile contenu dans l'âme du canon ; un détecteur à ionisation surveille le passage du projectile juste en aval de l'accélérateur, et l'explosif constituant ce dernier est alors mis à feu à son tour. Le projectile est donc soumis à une seconde impulsion.
  • La conception de ce lanceur appelle des critiques. Il n'est tout d'abord guère possible de détecter avec une bonne précision la position du projectile en aval de l'accélérateur, si bien que la charge de l'accélérateur a toutes les chances d'être amorcée à un mauvais moment. En effet, les sondes à ionisation sont sujettes à un délai de réponse et ne détectent pas forcément le projectile lui-même mais éventuellement des gaz ionisés qui précèdent le projectile. De plus, le choix de poudre, c'est-à-­dire d'explosif présentant une déflagration relativement lente, permet au dire des auteurs d'obtenir des vitesses de sortie connues à quelques pour cent, mais qui n'en sont pas moins relativement faibles et qui sont liées à une incertitude de position car la mise en vitesse du projectile est relativement lente au début et ne peut être connue avec précision.
  • Pour un projectile d'acier, on a estimé la vitesse à environ 2,2 km/sec en amont de l'accélérateur et 2,85 km/sec environ en aval, ce qui reste relativement faible.
  • Un lanceur plus récent est décrit dans un article de W.H. Holt, W.F. Soper et W. Mock, Jr., dans "International Journal of Impact Engineering", vol. 5, pp. 357-362, publié par Pergamon Journals Ltd en 1987. Ce lanceur est dépourvu d'accélérateur et comprend simplement une chambre cylindro-­conique créant un confinement des gaz d'explosion et au sommet de laquelle l'âme du canon débouche. La partie conique de la chambre est en fait un convergent qui permet de guider les gaz d'explosion. La charge occupe la partie cylindrique de la chambre et est constituée d'un explosif détonant dont la mise à feu est beaucoup plus rapide que celle de la poudre. On obtient des ondes de choc beaucoup plus violentes qui permettent donc d'imprimer des accélérations et des vitesses plus importantes au projectile. Le lanceur est endommagé à la première utilisation, ce que l'on peut toutefois accepter en raison de sa grande simplicité. Par contre, l'inventeur du présent lanceur a constaté que l'onde de choc communiquée au lanceur qui précède le projectile du fait de la grande vitesse de propagation des ondes dans le métal, tend à contracter le tube du canon devant le projectile et à le faire imploser, ce qui provoque la destruction du projectile ou même son arrêt dans le tube du canon. C'est probablement pour éviter ce phénomène que la réalisation de ce second lanceur de l'art antérieur utilise une charge qui n'occupe qu'une partie relativement faible de la chambre et qui est amorcée au centre, ce qui conduit à des énergies moins importantes et à une action plus faible sur le tube.
  • Quoique le confinement rigide de la charge et l'emploi d'explosif détonant soient bénéfiques en eux-mêmes, on ne peut ainsi toujours pas obtenir ds vitesses très importantes : on a mesuré une vitesse de 3,2 km/sec pour une bille d'acier, et on peut espérer obtenir une vitesse de 4,5 km/sec environ pour une bille d'aluminium à cause de sa densité plus faible.
  • L'invention a pour objet en évitant ces inconvénients, d'accélérer un projectile jusqu'à des vitesses inconnues auparavant, de l'ordre de 10 km/sec environ. Elle y parvient à l'aide d'un lanceur comprenant une chambre dans laquelle on place une charge d'explosif détonant et dans laquelle débouche un canon rectiligne dans lequel le projectile est accéléré et dont le tube présente des rainures circonférentielles qui permettent d'atténuer considérablement l'intensité de l'onde de choc longitudinale. De nombreuses constructions particulières de ces rainures peuvent être proposées, mais il est avantageux qu'elles se situent principalement sur la partie du canon proche de la chambre, qu'elles soient profondes, c'est-à-dire qu'elles ne laissent subsister qu'une faible épaisseur du tube et qu'elles soient situées à l'extérieur du tube de manière à conserver une âme parfaitement lisse et cylindrique, car le projectile est à l'état plastique et serait détruit par expansion dans des élargissements de l'âme.
  • Dans ces conditions, il n'y a plus à redouter de pincement ou de contraction du canon et on peut soumettre le dispositif à une onde de choc beaucoup plus importante, qui peut être produite par une augmentation de la quantité d'explosif à proximité immédiate du canon et par un placement du ou des détonateurs sur les régions de l'explosif les plus éloignées du tube cu canon.
  • Les performances d'un tel lanceur sont supérieures à celles du lanceur du second article cité quoique l'on ne recherche pas à confiner les gaz d'explosion. Le lanceur peut ainsi être dépourvu d'une culasse arrière.
  • Un autre avantage de l'utilisation d'explosif consiste à pouvoir prédire avec une précision beaucoup plus grande les temps de passage du projectile dans le canon, si bien qu'on peut interposer, comme dans le premier article cité mais avec une efficacité beaucoup plus grande, un accélérateur constitué d'une deuxième charge d'explosif. Il est inutile de chercher à repérer le passage du projectile par un instrument dont les indications ne peuvent jamais être suffisamment précises ou fiables ; au lieu de cela, on prévoit de faire exploser la charge de l'accélérateur avec un retard déterminé par rapport à la charge contenue dans la chambre.
  • D'autres accélérateurs disposés en série peuvent également être prévus sans sortir du cadre de l'invention, mais un seul semble toutefois suffisant pour satisfaire aux exigences actuelles des essais de simulation.
  • Dans une réalisation envisagée, la chambre est cylindro-conique et la partie conique correspond à un convergent débouchant dans le canon. L'explosif emplit alors partiellement ce convergent.
  • L'accélérateur que l'on a évoqué plus haut peut consister avantageusement en une charge cylindrique d'explosif détonant, placée coaxialement à l'âme et évidée à l'emplacement de l'âme, que l'on amorce simultanément à partir de plusieurs régions de la périphérie extérieure du cylindre et angulairement réparties de façon régulière.
  • On va à présent décrire l'invention plus en détail à l'aide des dessins suivants annexés à titre illustratif et non limitatif :
    • - la figure 1 représente une vue générale d'un lanceur selon l'invention, et
    • - les figures 2 et 3 représentent deux variantes possibles de réalisation de la chambre contenant l'explosif.
  • La chambre comprend donc une partie cylindrique 1 et une partie conique ou convergent 2 délimitées par une paroi 3 qui se prolonge, à son extrémité du côté du convergent 2, par une couronne 4 circonférentielle destinée à placer et centrer le canon 5.
  • Le canon 5, soudé à la couronne 4 ou simplement maintenu par collage, comprend un tube 6 qui entoure une âme 7 lisse et cylindrique pour empêcher des déformations excessives du projectile qui est porté à l'état plastique pendant la détonation. Le tube 6 est en métal, en principe en acier. L'âme 7 débouche dans le convergent 2 par un orifice 8 situé au sommet de celui-ci ; elle débouche à son autre extrémité, qui constitue la bouche 9 du canon 5, sur l'extérieur.
  • Un projectile 10 est placé dans l'âme 7 à proximité du convergent 2. Il s'agit d'un petit cylindre qui peut être avantageusement d'aluminium afin d'obtenir une vitesse plus importante.
  • Un accélérateur 11 est interposé à peu près au milieu du canon 5. Cet accélérateur 11 se compose de deux flasques circulaires 12 et 13, parallèles et perpendiculaires à l'âme 7 (mais qui peuvent être également inclinés par rapport à celle-­ci), et raccordés à leur périphérie extérieure par une paroi circulaire 14. L'ensemble formé par ces flasques et cette paroi circulaire délimite un volume interne cylindrique et coaxial à l'âme 7. Les flasques 12 et 13 se raccordent par ailleurs au tube 6 à leur centre. Un deuxième convergent 15 peut être prévu pour raccorder le volume interne cylindrique à l'âme 7 du côté de la bouche 9.
  • Le tube 6 est entaillé de profondes rainures circonférentielles 16 situées, pour la plupart d'entre elles, à proximité de la paroi 3 de la chambre. Les rainures 16 sont établies sur l'extérieur du tube 6 et ont une grande profondeur de manière à ne laisser subsister qu'une faible partie de l'épaisseur du tube 6 autour de l'âme 7 (au plus la moitié et de préférence quelques dixièmes de l'épaisseur ailleurs). Les rainures 16 peuvent être fines et n'avoir que quelques millimètres de largeur.
  • D'autres rainures 16 ont été prévues aux jonctions des flasques 12 et 13 avec le tube 6 ainsi que près du second convergent 15.
  • Une charge d'explosif détonant 10 est introduite dans la chambre par la partie opposée à l'orifice 8. La charge 20 emplit la quasi-totalité de la partie cylindrique 1 de la chambre et la majeure partie du convergent 2 de la paroi duquel elle n'est séparée que par un faible jeu. On réalise ainsi un excellent remplissage de la chambre et notamment de sa partie proche du projectile 10, qui permet d'obtenir des ondes de choc beaucoup plus violentes et d'imprimer au projectile 10 des accélérations beaucoup plus importantes. Un certain éloignement de la charge 20 du projectile 10 reste cependant nécessaire pour éviter sa désintégration lors des premiers instants de sa mise en vitesse.
  • Un détonateur 21 est placé sur une culasse 22 qui s'ajuste sur une ouverture de la chambre à l'opposé de l'orifice 8. Le détonateur 21 est donc au contact de la charge 20 à l'opposé du projectile 10. Ceci permet également d'obtenir une onde de choc plus violente sur le projectile 10.
  • La culasse 22 est d'épaisseur relativement faible et n'est pas prévue pour confiner les gaz d'explosion ; sa destruction est rapide à la mise à feu. Elle est simplement mise en place sur la paroi 3 par des vis 23 radiales.
  • Une autre charge d'explosif détonant 24 est placée dans le volume interne de l'accélérateur 11. Il s'agit ici d'une cartouche cylindrique évidée autour de son axe de manière à délimiter un passage 25 dans le prolongement de l'âme 7 et avec un diamètre un peu plus important. Une couronne de détonateurs 26 est également prévue sur la paroi circulaire 14. Ces détonateurs sont ici au nombre de huit et espacés angulairement de 45°. Selon le même principe que pour l'autre charge d'explosif 20, le volume creux est donc presque entièrement rempli d'explosif et la mise à feu s'effectue à partir des points les plus éloignés du projectile 10.
  • Le lanceur est complété par un dispositif de mise à feu 30 dont est issue une ligne 31 de mise à feu du détonateur 21 et une ligne 32 de mise à feu des détonateurs 26. Sur cette ligne 32 un temporisateur 33 est fixé, qui retarde l'impulsion de mise à feu d'un délai déterminé.
  • Le fonctionnement de ce lanceur peut être expliqué comme suit. Le détonateur 21 provoque tout d'abord la détonation de la charge 20 ; les gaz de compression sont propulsés contre le projectile 10 à une vitesse proche de celle de l'onde de détonation. Une fraction de l'énergie cinétique des gaz est communiquée au projectile 10 qui est ainsi vivement accéléré. Cependant, une onde de choc est communiquée à la paroi 3 puis au canon 5 à une vitesse supérieure ou voisine de celle du son dans le matériau considéré, c'est-à-dire 5,7 km/sec dans le cas de l'acier. Cette onde de choc précède donc le projectile 10 durant la phase de mise en vitesse du projectile et l'expérience prouve qu'elle a pour effet, dans le cas d'un canon tubulaire régulier, de l'imploser. Le projectile 10 serait alors désintégré. Mais les rainures 16 s'opposent à ce phénomène en permettant de filtrer la majeure partie de l'énergie de l'onde de choc. Le projectile 10 circule alors sans entrave dans l'âme 7 jusqu' à l'accélérateur 11.
  • Cette charge 20 peut toutefois présenter d'autres formes. Le bon fonctionnement de cet étage nécessite cependant l'implosion de produits de détonation sur l'axe du canon de manière à ce que la surpression des gaz sur l'axe s'accompagne d'une vitesse d'éjection des gaz vers le projectile beaucoup plus grande que celle de ce dernier avant le fonctionnement de cet étage.
  • Cette vitesse d'éjection des gaz de combustion dans la direction du projectile peut être à loisir accrue en augmentant les dimensions extérieures et latérales de cette charge. Il n'est en outre pas absolument nécessaire de disposer les détonateurs à la périphérie de la charge pour réaliser cette implosion.
  • Quand le projectile 10 a franchi le passage 25 et le second convergent 15 pour se retrouver de nouveau dans l'âme 7, l'impulsion de mise à feu qui avait jusqu'à présent été retenue par le temporisateur 33 achève de circuler dans la ligne 32 et est communiquée aux détonateurs 26 qui entourent l'âme 7. L'autre charge 24 est alors mise à feu à son tour, et une partie des gaz de combustion engendre sur l'axe un jet excessivement rapide qui s'écoule dans l'âme 7 et accélère de nouveau le projectile 10, d'autant plus que l'onde de détonation est centripète. Les rainures 16 en aval de l'accélérateur 11 servent de même à empêcher l'implosion du canon 5.
  • Avec ces dispositions avantageuses, on espère accélérer le projectile 10 jusqu'à environ 8 km à la seconde sans accélérateur 11 et au-delà de 10 km à la seconde avec un accélérateur. Dans une construction en vue d'essais, le projectile 10 est un cylindre d'aluminium de 4 mm de hauteur et 4 mm de diamètre et l'explosif est de l'Octolite, la charge 20 ayant environ 80 mm de longueur et 40 mm de diamètre dans sa partie cylindrique, et la charge 24 ayant environ 40 mm de longueur et 140 mm de diamètre. Le tube 6 a 40 mm de diamètre extérieur et les rainures 16 ont 5 mm de largeur et s'étendent jusqu'à 3 mm de l'âme 7.
  • Deux aménagements peuvent permettre d'obtenir éventuellement des performances encore meilleures. Sur la figure 2, on voit que la forme de la chambre peut être modifiée de telle sorte que le convergent 2 se raccorde à une partie cylindrique 101 de plus grand diamètre mais n'enveloppant pas totalement la charge d'explosif 120 par une face plane 102. La charge d'explosif 120 a donc un diamètre plus important ce qui permet d'accroître notablement la masse de l'explosif. Aucune culasse n'existe ici.
  • La vitesse du projectile 10 doit être de ce fait plus élevée si le projectile 10 est suffisamment éloigné de la charge de manière à éviter sa désintégration initiale.
  • D'après la figure 3, on peut remplacer la chambre cylindro-conique par une chambre purement conique 202. La charge 220 est également conique avec une face arrière sphérique, et il est avantageux de dédoubler la ligne 31 pour permettre à plusieurs détonateurs 21 placés à intervalles réguliers sur la face de la charge 220 éloignée du projectile 10 d'être mis à feu en même temps. L'écoulement de gaz produit par l'explosion converge alors vers l'orifice 8 et accroît ici encore la surpression qui s'exerce sur le projectile 10. Il n'existe pas, ici encore, de culasse arrière.

Claims (6)

1. Lanceur de projectile (10) à grande vitesse comprenant une chambre (1, 2, 101, 102, 202) dans laquelle on place une charge d'explosif détonant (20, 120, 220), un canon tubulaire (5) débouchant dans la chambre (2) par une extrémité (8) et comprenant une âme (7) dans laquelle on place le projectile (10), caractérisé en ce que le canon (5) est entaillé de rainures circonférientielles (16) sur sa surface extérieure.
2. Lanceur de projectile à grande vitesse suivant la revendication 1, caractérisé en ce que la charge (20) est amorcée (21) à partir d'une région de la chambre opposée au canon (5).
3. Lanceur de projectile à grande vitesse suivant l'une quelconque des revendications 1 ou 2, dans lequel le canon (5) débouche au sommet d'une partie conique (2) de la chambre, caractérisé en ce que la charge (20) emplit partiellement la partie conique.
4. Lanceur de projectile à grande vitesse suivant l'une quelconque des revendications 2 ou 3, caractérisé en ce que la chambre (202) est évasée en s'éloignant du canon et en ce que la charge (220) est amorcée simultanément en plusieurs régions opposées au canon et équidistantes du canon.
5. Lanceur de projectile à grande vitesse suivant l'une quelconque des revendications 1 à 4, dans lequel le canon est muni d'un accélérateur (11) formé d'une charge cylindrique (24) d'explosif détonant évidée (25) autour de l'âme (7), caractérisé en ce que la charge de l'accélérateur est amorcée (26) à partir de plusieurs régions éloignées de l'âme, et situées autour de l'âme.
6. Lanceur de projectile à grande vitesse suivant la revendication suivant la revendication 5, caractérisé en ce que la charge de l'accélérateur (24) est amorcée avec un retard déterminé (33) par rapport à la charge de la chambre (20, 120, 220).
EP88403049A 1987-12-04 1988-12-02 Lanceur de projectile monoéclat à grande vitesse Withdrawn EP0319426A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8716888 1987-12-04
FR8716888A FR2624269B1 (fr) 1987-12-04 1987-12-04 Lanceur de projectile monoeclat a grande vitesse

Publications (1)

Publication Number Publication Date
EP0319426A1 true EP0319426A1 (fr) 1989-06-07

Family

ID=9357501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88403049A Withdrawn EP0319426A1 (fr) 1987-12-04 1988-12-02 Lanceur de projectile monoéclat à grande vitesse

Country Status (2)

Country Link
EP (1) EP0319426A1 (fr)
FR (1) FR2624269B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493061A2 (fr) * 1990-12-22 1992-07-01 Edouard Cyril Marie Bruyneel Système de lancement de projectiles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR496791A (fr) * 1918-07-11 1919-11-15 Victor Julien Basbois Canon à pression progressive
GB139775A (en) * 1918-10-29 1920-12-02 Thomas Jefferson Bradford Improvements in multi-charge guns
US2360217A (en) * 1941-06-20 1944-10-10 Francis Louis Multicharge gun
US3503300A (en) * 1967-09-01 1970-03-31 Trw Inc High firing rate hypervelocity gun and ammunition therefor
DE2420035A1 (de) * 1974-04-25 1976-03-25 Hellmut Dipl Ing Galter Schiessgeraet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR496791A (fr) * 1918-07-11 1919-11-15 Victor Julien Basbois Canon à pression progressive
GB139775A (en) * 1918-10-29 1920-12-02 Thomas Jefferson Bradford Improvements in multi-charge guns
US2360217A (en) * 1941-06-20 1944-10-10 Francis Louis Multicharge gun
US3503300A (en) * 1967-09-01 1970-03-31 Trw Inc High firing rate hypervelocity gun and ammunition therefor
DE2420035A1 (de) * 1974-04-25 1976-03-25 Hellmut Dipl Ing Galter Schiessgeraet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, vol. 5, 1987, pages 357-362, Pergamon Journals Ltd, GB; W.H. HOLT et al.: "Explosive gun launcher for impact studies" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493061A2 (fr) * 1990-12-22 1992-07-01 Edouard Cyril Marie Bruyneel Système de lancement de projectiles
EP0493061A3 (en) * 1990-12-22 1993-03-31 Edouard Cyril Marie Bruyneel Projectile launching system

Also Published As

Publication number Publication date
FR2624269A1 (fr) 1989-06-09
FR2624269B1 (fr) 1993-02-12

Similar Documents

Publication Publication Date Title
EP3102906B1 (fr) Charge creuse et application pour la séparation de deux étages d'un engin aéronautique ou sa neutralisation
EP0373140B1 (fr) Projectile performant
WO1988009477A1 (fr) Perfectionnements apportes aux projectiles perforants
FR2534369A1 (fr) Projectile explosif perforant encartouche
FR2599134A1 (fr) Tete militaire pour engin
FR2533309A1 (fr) Projectile perfectionne a possibilites multiples et procedes de fabrication du projectile
FR2545923A1 (fr) Projectile assurant le percage des blindages
FR2561376A1 (fr) Engin explosif a fragmentation
EP1766323B1 (fr) Projectile, notamment bombe de penetration anti-infrastructure et procede de penetration d'un tel projectile a travers une paroi
EP2372295B1 (fr) Pénétrateur à énergie cinétique à profil étagé
FR2482665A1 (fr) Moteur-fusee a carburant solide et a poussee variable
FR2576405A1 (fr) Tete de combat a revetement en forme de cone effile formant un dard
FR2888317A1 (fr) Charge dosee d'un obus
EP0319426A1 (fr) Lanceur de projectile monoéclat à grande vitesse
FR2550857A1 (fr) Charge militaire explosive
BE555279A (fr)
FR2552871A1 (fr) Projectile antichar agissant en vitesse defilante
FR2678722A1 (fr) Generateur pyrotechnique a composition deflagrante et ses applications.
FR2975482A1 (fr) Tete militaire anti-infrastructure et projectile equipe d'une telle tete militaire
EP1521053A1 (fr) Munition anti bunker
FR2678055A1 (fr) Projectile concu pour etre lance a partir d'un accelerateur a effet stato et accelerateur a effet stato mis au point a cette fin.
FR2523713A1 (fr) Charge creuse
BE551367A (fr)
FR2536850A1 (fr) Procede pour l'amorcage de charges explosives
FR2652892A1 (fr) Tete militaire avec effet d'eclat renforce.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19891113

17Q First examination report despatched

Effective date: 19910418

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19911029