EP0317452B1 - Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés - Google Patents

Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés Download PDF

Info

Publication number
EP0317452B1
EP0317452B1 EP88420383A EP88420383A EP0317452B1 EP 0317452 B1 EP0317452 B1 EP 0317452B1 EP 88420383 A EP88420383 A EP 88420383A EP 88420383 A EP88420383 A EP 88420383A EP 0317452 B1 EP0317452 B1 EP 0317452B1
Authority
EP
European Patent Office
Prior art keywords
nickel
diamond
chromium
support
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420383A
Other languages
German (de)
English (en)
Other versions
EP0317452A1 (fr
Inventor
Jean-Michel Cerceau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrielle de Combustible Nucleaire Ste
Original Assignee
Industrielle de Combustible Nucleaire Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrielle de Combustible Nucleaire Ste filed Critical Industrielle de Combustible Nucleaire Ste
Publication of EP0317452A1 publication Critical patent/EP0317452A1/fr
Application granted granted Critical
Publication of EP0317452B1 publication Critical patent/EP0317452B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/001Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as supporting member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/932Abrasive or cutting feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S76/00Metal tools and implements, making
    • Y10S76/12Diamond tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a composite diamond abrasive product, its preparation process and the drilling or machining tools which are equipped with it.
  • the present invention relates more particularly to abrasive composite products of the type having a part consisting of a "compact" containing diamond grains representing more than 80% by volume of the compact, each grain being bonded directly to its neighbors to present a rendered polycrystalline structure.
  • integral with a hard and refractory support consisting essentially of a refractory carbide such as tungsten carbide.
  • compact designates a sintered product consisting of grains linked together by bridges created by diffusion of material in the plastic state also called bridging. This plastic phase sintering is obtained at pressures and temperatures of the order of magnitude of the pressures and temperatures used for the synthesis of diamond grains.
  • compact does not cover abrasive products comprising a support made of silicon carbide and of polycrystalline diamond, unsintered since not subjected, during manufacture, to temperatures and pressures sufficient to allow inter-growth of the diamond grains between them; in these products, the voids between grains of the composite are occupied by a compound of silicon and a metal such as nickel (US-A-4241135). These products exhibit poor abrasion resistance due to the absence of sintering.
  • FR-A-2089415 describes such a composite product consisting of a diamond compact on a tungsten carbide support; the compact and the carbide contain the same additive which can be cobalt, nickel or iron, this additive playing on the one hand the role of diamond catalyst solvent and on the other hand the role of carbide sintering binder.
  • Diamond abrasive products not associated with a tungsten carbide support, which are produced by direct sintering of diamond grains in the presence of a nickel-containing binder, have recently been proposed (JP-A-56164073; EP-A-0198653). example of nickel alloyed with chromium.
  • the object of the invention is to propose a diamond abrasive product on a brazable support which better meets those previously known than the requirements of the practice, in particular in that it comprises a compact in which the diamond grains are directly linked together by bridging, with increased thermostability.
  • the Applicant has been able to determine that the use as a sintering binder of the tungsten carbide support of a nickel-chromium binder made it possible to obtain a composite diamond abrasive product having, compared to a similar product with tungsten carbide support with cobalt binder, equivalent abrasion resistance, increased thermostability and better resistance to corrosion of the carbide support; the product is, moreover, endowed with non-magnetic properties.
  • the composite diamond abrasive product according to the invention is characterized in that the tungsten carbide support and the active part comprise a nickel-chromium binding phase.
  • the active part contains at least 80% by volume of diamond.
  • the diamond catalyst binder is a nickel-chromium binder originating from the binder phase of the support.
  • the bonding phase of the support represents from 6 to 15% and preferably 10% by volume of the carbide.
  • the relative proportions by weight of nickel and chromium of the binding phase vary in the range from 60 to 90% for nickel and from 40 to 10% for chromium.
  • the new binding phase of the tungsten carbide support has the advantage of avoiding the oxidation problems which may arise at the support / active part interface during the diffusion of the binder in the diamond.
  • the powder intended to constitute the active layer of the product is placed; it is a mixture of diamond grains with a grain size is chosen according to the application envisaged, this particle size being generally higher for drilling products than for machining products.
  • diamond powder for products intended for machining, diamond powder can be used, the average grain size of which is between 0.5 and 30 microns; for products intended for drilling, an average grain size of 20 to 150 microns is preferred.
  • This piece is generally cylindrical in shape. Its face in contact with the diamond mixture can be flat, hemispherical or grooved. The shape of this interface depends on the use of the composite.
  • the cup is crimped onto the carbide pin so as to ensure a good seal and to avoid any pollution of the active part.
  • the powdery components of the support are placed on the diamond powder layer, ie a tungsten carbide powder added with 6 to 15% of a nickel-chromium mixture, the relative proportions of nickel. and chromium which can vary in a range of 60 to 90% and 40 to 10%.
  • a pressure transmitting material which can be chosen from sodium chloride, hexagonal boron nitride, talc or any other suitable material.
  • the whole is placed in a metal or graphite resistor.
  • the whole is surrounded by a material that transmits pressure and can form seals like pyrophyllite.
  • This "cell” is then introduced into a press which can develop ultra-high pressures as well as high temperatures.
  • the pressure is first applied in order to place itself in the thermodynamic stability zone of the diamond, then the heating (by resistance).
  • the operating conditions are between 40 and 60 Kbars and 1250 ° to 1550 ° C for two to fifteen minutes; we prefer to work at 55 Kbars and 1400 ° C for three minutes.
  • the diamond grains bond together and form a network of intergranular bridges, the voids between grains being filled by the binding phase.
  • the compact After sintering under high pressure and temperature, the heating is stopped; allowed to cool to about 100 ° C and then the pressure is canceled.
  • the compact is recovered after removing the various materials surrounding it.
  • the metal cup is sandblasted or chemically etched with acid.
  • the compact is then ground and rectified. It can be cut into precise shapes by EDM or laser.
  • nickel-chromium mixture is added to the diamond grains of the active part.
  • a layer of nickel-chromium alloy is placed in contact with the diamond grains; this layer can be placed between the diamond powder and the support or on the upper part of the active part.
  • an intermediate layer (diffusion barrier) is placed between the active part and the support, consisting exclusively of diamond, tungsten carbide and / or nickel and chromium.
  • the characteristics of the product thus obtained were determined compared to the standard product only available on the market, in which the binder of the tungsten carbide support is a cobalt binder.
  • the product according to the invention can therefore be used for dry machining.
  • This characteristic is also very useful in the case of drilling tools: poor cooling of the drilling head is no longer a problem with the product according to the invention. This characteristic also allows the brazing of the tools according to a less restrictive operating process.
  • the corrosion resistance as well as the non-magnetic characteristics of nickel-chromium allow applications (press anvils) using an induction heating for example that the standard product does not offer.
  • the invention also relates to tools equipped with the composite diamond abrasive product described above and, more specifically, tools intended for machining as well as drilling.
  • the quantities of powder used are such that the thicknesses in the final sintered product are 0.7 mm for the active layer and 0.2 mm for the diffusion barrier.
  • the tungsten carbide support is 0.9 mm thick.
  • the cup is crimped onto the carbide pin, then the assembly is placed in a cell. This is subjected to a pressure of 60 kbar approximately and a temperature of 1500 ° C for three minutes. After cooling, the pressure is removed.
  • the composite product recovered is then freed from its cup by chemical attack and then lapped on both sides. Shapes were then cut by electroerosion in this part and then mounted by brazing on a cutting tool support. After sharpening and polishing, the tools thus obtained were used for dry machining of tungsten deposition on cathodes for X-ray tubes. The results concerning the service life were two to three times greater than those obtained with conventional tools with cobalt bond.
  • the thicknesses of the various layers are identical to those of Example 1.
  • the cup is crimped on the pin, then the whole is placed in a cell. This is subjected to a pressure of approximately 60 kbar and a temperature of 1500 ° C. for three minutes. After cooling, the pressure is removed.
  • the composite product is treated in an identical manner to that of Example 1.
  • the cutting tools produced were used for the machining of agglomerated wood panels. The performance obtained was 10% higher than that of a part with a cobalt binder.
  • the quantities of powder used are such that the thicknesses in the final sintered product are 0.7 mm for the active layer and 0.15 mm for the diffusion barrier.
  • the tungsten carbide support is 7.4 mm thick.
  • the assembly After crimping the cup onto the carbide pin, the assembly is placed in a subjected cell, after reaching a pressure of 55 kbar, at a temperature of 1400 ° C. for 3.5 minutes. After cooling, the pressure is removed.
  • the composite product (picot) is then rid of its cup by sandblasting. It is then prowled on both sides and then ground to the standard diameter. It was then brazed on a drilling tool head.
  • This support is 3.2 mm.
  • the manufacturing cycle was identical to that of the previous example.
  • the manufactured pins made it possible to carry out the comparative tests with the standard product with cobalt binder.
  • the quantities of powder used are such that the respective thicknesses of the layers in the final sintered product are 0.3 mm, 0.4 mm and 0.5 mm on the support with a total height of 16 mm.
  • the assembly After crimping the cup onto the carbide pin, the assembly is placed in a subjected cell, after reaching a pressure of 55 kbar, at a temperature of 1450 ° C. for four minutes. After cooling, the pressure is removed.
  • the composite product thus produced (dome) is then freed from its cup by sandblasting. It is then rectified to the nominal diameter and then bevelled into a cone on the rear face.
  • This product by its shape and its intermediate layers which act as a shock absorber, is particularly well suited to work involving shocks. It was mounted on a percussion tool. The results were 1.2 times better than the performance usually achieved with products having a cobalt binder.
  • Example 5 The product identical to that obtained under the conditions of Example 5 was used at the periphery of the cones on the drill heads in tricones. The results were equivalent to those of the product of the prior art with a cobalt binder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Description

  • La présente invention concerne un produit abrasif diamanté composite, son procédé de préparation ainsi que les outils de forage ou d'usinage qui en sont équipés.
  • La présente invention concerne plus particulièrement les produits abrasifs composites du type ayant une partie constituée par un "compact" contenant des grains de diamant représentant plus de 80% en volume du compact, chaque grain étant lié directement à ses voisins pour présenter une structure polycristalline rendue solidaire d'un support dur et réfractaire, constitué essentiellement d'un carbure réfractaire tel que le carbure de tungstène.
  • Le terme "compact" désigne un produit fritté constitué par des grains liés entre eux par des ponts créés par diffusion de matière à l'état plastique encore appelée pontage. Ce frittage en phase plastique est obtenu à des pressions et des températures de l'ordre de grandeur des pressions et températures utilisées pour la synthèse des grains de diamant.
  • Le terme "compact" ne couvre pas les produits abrasifs comportant un support en carbure de silicium et du diamant polycristallin, non fritté puisque non soumis, lors de la fabrication, à des températures et à des pressions suffisantes pour permettre l'inter-croissance des grains de diamant entre eux; dans ces produits, les vides entre grains du composite sont occupés par un composé de silicium et d'un métal tel que le nickel (US-A-4241135). Ces produits présentent une mauvaise résistance à l'abrasion du fait de l'absence de frittage.
  • Il n'inclut pas de même les produits abrasifs composites (US-A-4124401) comprenant une masse de diamant polycristallin cimentée par un liant contenant du silicium associée à un support en carbure dont la cohésion est assurée par du cobalt. L'absence de catalyseur et de frittage lors de la fabrication de la masse diamantée empêche toutefois la formation de pontages directs entre les grains de diamant. On obtient non pas un compact fritté ayant un squelette de grande rigidité, mais un produit qu'on peut qualifier de cimenté par le liant. Un tel produit est appelé quelquefois "cémenté", suivant une terminologie dérivée de l'anglais.
  • Dans certains compacts du type défini ci-dessus (US-A-3239921) obtenus à une température pouvant dépasser 1750°C, les vides du compact sont occupés par du catalyseur de conversion, tel que Co, Va, Ti, Zr, Cr, Si. Ces produits ont l'inconvénient de se dégrader rapidement (mauvaise résistance à l'abrasion) car le frittage est effectué en l'absence d'une quantité suffisante de grains de diamant.
  • On connaît des produits dans lesquels un compact est directement lié à un support de carbure métallique (carbure de tungstène en général). FR-A-2089415 décrit un tel produit composite constitué d'un compact de diamant sur un support en carbure de tungstène; le compact et le carbure contiennent un même additif qui peut être le cobalt, le nickel ou le fer, cet additif jouant d'une part le rôle de solvant-catalyseur du diamant et d'autre part le rôle de liant de frittage du carbure. Ces produits présentent l'inconvénient de se dégrader rapidement lorsque la partie active est portée à une température dépassant environ 700°C en raison, d'une part, des contraintes induites dans la matrice métallique par suite de la dilatation thermique de cette même matrice, et d'autre part, de la tendance du diamant en contact avec le catalyseur à revenir à l'état de graphite lorsqu'il est porté à haute température sans être en même temps soumis à une pression élevée. Cette graphitisation affecte l'intégrité structurelle du composite.
  • Un tel produit avec un liant cobalt, disponible sur le marché et couramment employé, est donc inutilisable pour des travaux qui le portent à des températures supérieures à 750°C.
  • L'utilisation d'un liant nickel permettrait de résoudre en partie ces problèmes mais les propriétés mécaniques du carbure de tungstène comportant un tel additif sont très inférieures à celles du carbure de tungstène à liant cobalt, ce qui justifie que ces produits n'aient pas jusqu'à présent rencontré d'applications industrielles.
  • On a récemment proposé (JP-A-56164073; EP-A-0198653) des produits abrasifs diamantés, non associés à un support carbure de tungstène, qui sont réalisés par frittage direct de grains de diamant en présence de liant comportant du nickel, par exemple du nickel allié à du chrome.
  • Ces produits présentent l'inconvénient de ne pas pouvoir être brasés sur des outils, ce qui limite très sérieusement leurs applications et donc leur utilisation.
  • Il n'existe donc aucun produit abrasif composite, c'est-à-dire constitué d'un compact et d'un support qui lui est solidaire, qui assure simultanément les qualités de thermostabilité et de résistance à l'abrasion souhaitables pour les abrasifs actuels.
  • L'invention s'est donné pour but de proposer un produit abrasif diamanté sur support brasable répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en ce qu'il comporte un compact où les grains de diamant sont directement liés entre eux par pontages, présentant une thermostabilité accrue.
  • La demanderesse a pu déterminer que l'utilisation comme liant de frittage du support en carbure de tungstène d'un liant nickel-chrome permettait d'obtenir un produit abrasif diamanté composite présentant comparativement à un produit similaire à support carbure de tungstène à liant cobalt, une résistance à l'abrasion équivalente, une thermostabilité accrue et une meilleure résistance à la corrosion du support carbure; le produit est, de plus, doué de propriétés amagnétiques.
  • Le produit abrasif diamanté composite selon l'invention, dont la partie active est constituée d'un produit fritté comprenant des grains de diamant, chaque grain étant lié directement à ses voisins par pontage pour présenter une structure polycristalline, associée à un support essentiellement constitué de carbure de tungstène, est caractérisé en ce que le support en carbure de tungstène et la partie active comportent une phase liante nickel-chrome.
  • La partie active comporte au moins 80% en volume de diamant.
  • Selon un mode de réalisation préféré de l'invention, le liant catalyseur du diamant est un liant nickel-chrome provenant de la phase liante du support.
  • La phase liante du support représente de 6 à 15% et de préférence 10% en volume du carbure.
  • Les proportions relatives en poids de nickel et de chrome de la phase liante varient dans une plage de 60 à 90% pour le nickel et de 40 à 10% pour le chrome.
  • En dehors des avantages mentionnés plus haut, la nouvelle phase liante du support carbure de tungstène présente l'avantage d'éviter les problèmes d'oxydation pouvant survenir à l'interface support/partie active lors de la diffusion du liant dans le diamant.
  • Le procédé de fabrication du produit abrasif diamanté selon l'invention va maintenant être décrit en détail.
  • Dans une coupelle de métal protecteur réfractaire (de préférence en molybdène), on place la poudre destinée à constituer la couche active du produit; il s'agit d'un mélange de grains de diamant dont la granulométrie est choisie en fonction de l'application envisagée, cette granulométrie étant généralement plus élevée pour les produits de forage que pour les produits d'usinage.
  • C'est ainsi que, pour les produits destinés à l'usinage, on pourra prendre une poudre de diamant dont la taille moyenne des grains se situe entre 0,5 et 30 microns; pour les produits destinés au forage, on préfèrera une taille moyenne des grains de 20 à 150 microns.
  • On place ensuite, sur la couche ainsi formée, une pièce de carbure de tungstène déjà fritté et contenant, comme liant de frittage, un liant nickel-chrome. Cette pièce, appelée pion, est généralement de forme cylindrique. Sa face en contact avec le mélange diamanté peut être plane, hémisphérique ou rainurée. La forme de cette interface dépend de l'utilisation du composite.
  • La coupelle est sertie sur le pion carbure de façon à assurer une bonne étanchéité et à éviter toute pollution de la partie active.
  • Selon un autre mode de réalisation, on place, sur la couche de poudre de diamant, les composants pulvérulents du support, soit une poudre de carbure de tungstène additionnée de 6 à 15% d'un mélange nickel-chrome, les proportions relatives de nickel et de chrome pouvant varier dans une plage de 60 à 90% et de 40 à 10%.
  • L'assemblage ainsi obtenu est alors entouré par un matériau transmetteur de pression qui peut être choisi parmi le chlorure de sodium,le nitrure de bore hexagonal, le talc ou tout autre matériau convenable.
  • L'ensemble est placé dans un résistor de métal ou graphite. Le tout est entouré par un matériau transmetteur de pression et pouvant former les joints d'étanchéité comme la pyrophyllite.
  • Cette "cellule" est ensuite introduite dans une presse pouvant développer des ultra-hautes pressions ainsi que de hautes températures.
  • Le brevet US-A-3913280 décrit une presse de ce type.
  • On applique tout d'abord la pression, afin de se placer dans la zone de stabilité thermodynamique du diamant, puis ensuite le chauffage (par résistance).
  • Les conditions opératoires se situent entre 40 et 60 Kbars et 1250° à 1550°C pendant deux à quinze minutes; on préfère travailler à 55 Kbars et 1400°C pendant trois minutes.
  • Il est bien évident que les conditions opératoires pourront varier selon le type de presse et le type de cellule utilisées pour obtenir un bon frittage. Il est connu de l'homme de l'art que les conditions optima pour assurer le frittage de la partie active doivent être déterminées expérimentalement.
  • Dans les conditions opératoires décrites ci-dessus et avec l'aide de la phase liante du support carbure qui diffuse par capillarité vers la couche de produit ultra-dur, les grains de diamant se lient entre eux et forment un réseau de ponts intergranulaires, les vides entre grains étant remplis par la phase liante.
  • Après le frittage sous hautes pression et température, le chauffage est arrêté; on laisse refroidir jusqu'à 100°C environ puis la pression est annulée. On récupère le compact après avoir enlevé les différents matériaux l'enveloppant. La coupelle métallique est sablée ou attaquée chimiquement à l'acide. Le compact est alors rodé et rectifié. Il peut être découpé en formes précises par électro-érosion ou par laser.
  • Dans une variante de réalisation, on ajoute aux grains de diamant de la partie active entre 5 et 15% en poids de mélange nickel-chrome.
  • Dans une autre variante de réalisation, une couche d'alliage nickel-chrome est placée au contact des grains de diamant; cette couche peut être placée entre la poudre de diamant et le support ou sur la partie supérieure de la partie active.
  • Dans une dernière variante, on place entre la partie active et le support, une couche intermédiaire (barrière de diffusion) constituée exclusivement de diamant, de carbure de tungstène et/ou de nickel et de chrome.
  • Les caractéristiques du produit ainsi obtenu ont été déterminées comparativement au produit standard seul disponible sur le marché, dans lequel le liant du support carbure de tungstène est un liant cobalt.
  • L'usure en dépouille a été étudiée en fonction de la vitesse de coupe tant pour le produit standard que pour le produit selon l'invention obtenu dans les conditions décrites dans l'exemple 4 ci-après.
  • Les conditions de coupe sont les suivantes:
  • a (profondeur de passe) =
    0,5 mm
    f (avance) =
    0,7 mm/tr
    Volume usiné =
    100 cm³/passe
    Matériau usiné =
    granit à sec

  • L'examen des résultats permet de distinguer trois zones distinctes:
    • ― la première zone (100 à 200 m/min) représente l'usure de l'outil dûe essentiellement à une dégradation par abrasion. Les grains de diamant sont arrachés de l'outil les uns après les autres. L'usure mesure cette tendance au "déchaussement" donc la qualité du pontage des grains de diamant dans la partie active de l'outil. L'énergie nécessaire à la coupe sert essentiellement à enlever de la matière et à user l'outil. Dans le cas présent, le produit standard et le produit selon l'invention ont une résistance à l'abrasion à faible vitesse équivalente (usures équivalentes);
    • ― la deuxième zone (200 à 250 m/min) est une zone intermédiaire entre la première et la dernière zone décrite ci-dessous;
    • ― la troisième zone (supérieure à 250 m/min) représente l'usure de l'outil dûe essentiellement à une dégradation thermique. L'énergie nécessaire à la coupe qui sert à enlever de la matière et à user l'outil (comme dans la première zone) sert aussi à échauffer l'outil. En effet, l'outil s'échauffe beaucoup lors du travail à ces vitesses élevées et les contraintes dûes à cette augmentation de température sont prépondérantes: si l'outil n'est pas thermostable, une dégradation thermochimique s'ajoute à l'usure par abrasion : la dilatation du liant de la partie diamantée a tendance à fragiliser les pontages intergranulaires du diamant et ainsi à favoriser l'usure. Dans le cas présent, le produit selon l'invention présente une usure nettement plus faible que le produit standard et ceci indique une meilleure tenue en température du produit de l'invention (thermostabilité accrue). En effet, la dégradation thermochimique est inexistante. Toute l'énergie de coupe est transformée en enlèvement de matière et en chaleur qui réduit la part de dégradation de type abrasif.
  • Le produit selon l'invention, à la différence du produit standard, peut donc être utilisé pour l'usinage à sec.
  • Cette caractéristique est aussi très utile dans le cas d'outils de forage: un mauvais refroidissement de la tête de forage n'est plus un problème avec le produit selon l'invention. Cette caractéristique permet aussi le brasage des outils selon un processus opératoire moins contraignant.
  • On a, par ailleurs, effectué des tests d'endommagement thermique du produit selon l'invention et on a pu ainsi constater que ce produit conserve ses caractéristiques d'usure après un chauffage à 850°C, alors que, dans les mêmes conditions, le produit standard ne coupe plus.
  • Des tests de résistance aux chocs ont montré, par ailleurs, que le produit selon l'invention donne des résultats équivalents ou légèrement supérieurs à ceux du produit standard.
  • Pour conclure, on peut donc dire que, comparativement au produit standard, le produit selon l'invention présente les caractéristiques suivantes:
    • ― une résistance à l'abrasion équivalente,
    • ― une résistance aux chocs améliorée,
    • ― une thermostabilité accrue,
    • ― des qualités amagnétiques,
    • ― une résistance à la corrosion du support accrue.
  • La résistance à la corrosion ainsi que les caractéristiques amagnétiques du nickel-chrome permettent des applications (enclumes de presse) utilisant un chauffage par induction par exemple que le produit standard n'offre pas.
  • L'invention concerne également les outils équipés du produit abrasif diamanté composite décrit ci-avant et, plus spécialement, les outils destinés à l'usinage ainsi qu'au forage.
  • Les exemples suivants illustrent l'invention sans toutefois la limiter.
  • Exemple 1
  • Dans une coupelle de molybdène, on place en couches successives:
    • ― un mélange constituant la couche active comprenant 87% en poids de grains de diamant ayant une répartition semi-logarithmique de granulométrie maximum 20 microns et 13% en poids de solvant-catalyseur constitué de poudre de nickel et chrome de granulométrie équivalente à celle du diamant dans un rapport massique de 80/20;
    • ― un mélange constituant la barrière de diffusion comprenant 50% en volume de poudre de carbure de tungstène fritté à 8% en poids de nickel de granulométrie 200/325 mesh (45 à 80 microns) et 50% en volume de grains de diamant de granulométrie 20 microns mélangés à 13% en poids de nickel et chrome dans un rapport massique de 40/60;
    • ― un disque de carbure de tungstène fritté à 10% en poids de phase liante constituée de nickel et de chrome dans un rapport massique de 80/20.
  • Les quantités de poudre utilisées sont telles que les épaisseurs dans le produit final fritté sont de 0,7 mm pour la couche active et de 0.2 mm pour la barrière de diffusion. Le support de carbure de tungstène est de 0,9 mm d'épaisseur.
  • La coupelle est sertie sur le pion carbure, puis l'ensemble est placé dans une cellule. Celle-ci est soumise à une pression de 60 kbar environ et une température de 1500°C pendant trois minutes. Après refroidissement, la pression est enlevée. Le produit composite récupéré est alors débarrassé de sa coupelle par attaque chimique puis rodé sur les deux faces. Des formes ont alors été découpées par électroérosion dans cette pièce puis montées par brasage sur un support d'outil de coupe. Après affûtage et polissage, les outils ainsi obtenus ont été utilisés pour l'usinage à sec de dépôt de tungstène sur des cathodes pour tubes à rayons X. Les résultats concernant la durée de vie ont été deux à trois fois supérieurs à ceux obtenus avec des outils conventionnels à liant cobalt.
  • Exemple 2
  • Dans une coupelle de molybdène, on place en couches successives:
    • ― un mélange constituant la couche active de composition identique à celle de l'exemple 1 à l'exception de la granulométrie maximum qui est de 8 microns;
    • ― un mélange constituant la barrière de diffusion comprenant 50% en volume de poudre de carbure de tungstène fritté à 8% en poids de nickel de granulométrie 325 mesh (80 microns) et 50% en volume de poudre de diamant de granulométrie 20 microns mélangés à 13% en poids de nickel et de chrome dans un rapport massique de 90/10;
    • ― un disque de carbure de tungstène fritté à 10% en poids de phase liante constituée de nickel et de chrome dans un rapport massique de 80/20 recouvert sur sa partie en contact avec la poudre d'un revêtement de 20 microns de chrome obtenu par PVD (Physical Vapor Deposition).
  • Les épaisseurs des diverses couches sont identiques à celles de l'exemple 1.
  • La coupelle est sertie sur le pion, puis l'ensemble est placé dans une cellule. Celle-ci est soumise à une pression de 60 kbar environ et une température de 1500°C pendant trois minutes. Après refroidissement, on enlève la pression. Le produit composite est traité de façon identique à celui de l'exemple 1. Les outils de coupe fabriqués ont été utilisés pour l'usinage de panneaux de bois agglomérés. Les performances obtenues ont été de 10% supérieures à celles d'une pièce à liant cobalt.
  • Exemple 3
  • Dans une coupelle de molybdène, on place en couches successives:
    • ― la poudre constituant la couche active comprenant 100% de grains de diamant de granulométrie comprise entre 20 et 60 microns;
    • ― le mélange constituant la barrière de diffusion comprenant 50% en volume de poudre de carbure de tungstène électrofondu 325 mesh (80 microns) et 50% en volume de poudre de diamant de granulométrie 60 microns;
    • ― un cylindre de carbure de tungstène fritté à 11% en poids de phase liante constituée de nickel et de chrome dans un rapport massique de 85/15.
  • Les quantités de poudre utilisées sont telles que les épaisseurs dans le produit final fritté sont de 0,7 mm pour la couche active et de 0,15 mm pour la barrière de diffusion. Le support de carbure de tungstène est de 7,4 mm d'épaisseur.
  • Après sertissage de la coupelle sur le pion carbure, l'ensemble est placé dans une cellule soumise, après avoir atteint une pression de 55 kbar, à une température de 1400°C pendant 3,5 minutes. Après refroidissement, la pression est enlevée. Le produit composite (picot) est alors débarrassé de sa coupelle par sablage. Il est ensuite rôdé sur les deux faces puis rectifié au diamètre standard. Il a été alors brasé sur une tête d'outil de forage. Les picots placés sur la périphérie de la tête, zone la plus sollicitée en température, ont été notablement moins usés que ceux du produit standard à liant Cobalt.
  • Exemple 4
  • Dans une coupelle de molybdène, on place en couches successives:
    • ― la poudre constituant la couche active comprenant 100% de grains de diamant de granulométrie comprise entre 20 et 60 microns en quantité suffisante pour former une couche frittée de 0,7 mm;
    • ― un cylindre de carbure de tunsgtène fritté à 11% en poids de phase liante constituée de nickel et de chrome dans un rapport massique de 85/15.
  • L'épaisseur de ce support est de 3,2 mm.
  • Le cycle de fabrication a été identique à celui de l'exemple précédent.
  • Les picots fabriqués ont permis de faire les tests comparatifs avec le produit standard à liant cobalt.
  • Exemple 5
  • Dans une coupelle à fond hémisphérique de molybdène, on place successivement de façon uniformément répartie en demi-sphère:
    • ― une couche constituant la partie active comprenant 87% en poids de grains de diamant de granulométrie 0,5-8 microns et 13% en poids de solvant-catalyseur constitué de poudre de nickel et de chrome de granulométrie équivalente à celle du diamant dans un rapport massique de 85/15;
    • ― une couche constituée de 80% en volume du mélange précédent et de 20% en volume de carbure de tungstène fritté à 8% de nickel de granulométrie 200/325 Mesh (45 à 80 microns);
    • ― une couche constituée des mêmes composants que la précédente mais où les rapports volumiques sont de 40/60 au lieu de 80/20;
    • ― un pion cylindrique terminé d'un côté par une demi-sphère constitué de carbure de tungstène fritté avec 6% de phase liante en Ni/Cr dans un rapport massique de 85/15.
  • Les quantités de poudre utilisées sont telles que les épaisseurs respectives des couches dans le produit final fritté sont de 0,3 mm, 0,4 mm et 0,5 mm sur le support de hauteur totale 16 mm.
  • Après sertissage de la coupelle sur le pion carbure, l'ensemble est placé dans une cellule soumise, après avoir atteint une pression de 55 kbar, à une température de 1450°C pendant quatre minutes. Après refroidissement, la pression est enlevée. Le produit composite ainsi fabriqué (dôme) est alors débarrassé de sa coupelle par sablage. Il est ensuite rectifié au diamètre nominal puis chanfreiné en cône sur la face arrière.
  • Ce produit, de par sa forme et ses couches intermédiaires qui jouent le rôle d'amortisseur, est particulièrement bien adapté à un travail comportant des chocs. Il a été monté sur un outil à percussion. Les résultats ont été 1,2 fois supérieurs aux performances habituellement atteintes avec les produits ayant un liant cobalt.
  • Exemple 6
  • Le produit identique à celui obtenu dans les conditions de l'exemple 5 a été utilisé en périphérie des cônes sur les têtes de forage en tricônes. Les résultats ont été équivalents à ceux du produit de l'art antérieur à liant Cobalt.

Claims (17)

1. Produit abrasif diamanté composite dont la partie active est constituée d'un produit fritté comprenant des grains de diamant, chaque grain étant lié directement à ses voisins par pontage pour présenter une structure polycristalline, associée à un support essentiellement constitué de carbure de tungstène, caractérisé en ce que le support en carbure de tungstène et la partie active comportent une phase liante nickel-chrome.
2. Produit selon la revendication 1, caractérisé en ce que la partie active comporte au moins 80% en volume de diamant.
3. Produit selon la revendication 1 et la revendication 2, caractérisé en ce que la phase liante du support représente de 6 à 15% en volume du carbure.
4. Produit selon la revendication 3, caractérisé en ce que la phase liante du support représente 10% en volume du carbure.
5. Produit selon l'une des revendications 1 à 4, caractérisé en ce que les proportions relatives en poids de nickel et de chrome de la phase liante varient dans une plage de 60 à 90% et de 40 à 10%.
6. Produit selon l'une des revendications 1 à 5, caractérisé en ce que le liant catalyseur du diamant est du nickel-chrome provenant de la phase liante du support.
7. Procédé de fabrication d'un produit abrasif diamanté thermostable, caractérisé en ce qu'il consiste:
― à placer dans une coupelle une couche de grains de diamant destinée à constituer la couche active du produit;
― à placer sur la couche ainsi formée une couche de carbure de tungstène additionné d'un mélange nickel-chrome, destinée à constituer le support;
― à soumettre l'empilement ainsi réalisé à une température et une pression suffisantes pour provoquer le frittage en phase plastique des grains de diamant entre eux et assurer la liaison du compact ainsi obtenu sur le support.
8. Procédé selon la revendication 7, caractérisé en ce que la couche active du produit contient au moins 80% en volume de diamant.
9. Procédé selon les revendications 7 et 8, caractérisé en ce que la couche destinée à constituer le support est une pièce de carbure de tungstène déjà fritté contenant de 6 à 15% en volume de phase liante nickel-chrome.
10. Procédé selon les revendications 7 et 8, caractérisé en ce que la couche destinée à constituer le support est une poudre de carbure de tungstène contenant de 6 à 15% d'un mélange pulvérulent de nickel-chrome.
11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce qu'on ajoute aux grains de diamant de la partie active entre 5 et 15% en poids d'un mélange nickel-chrome.
12. Procédé selon l'une des revendications 7 à 11, caractérisé en ce que les proportions relatives en poids de nickel et de chrome se situent respectivement dans une plage de 60 à 90% et de 40 à 10%.
13. Procédé selon l'une quelconque des revendications 7 à 10 et 12, caractérisé en ce qu'une couche d'alliage nickel-chrome est placée au contact des grains de diamant.
14. Procédé selon l'une quelconque des revendications 7 à 13, caractérisé en ce qu'une couche intermédiaire, constituée exclusivement de diamant et de carbure de tungstène, est placée entre la partie active et le support.
15. Procédé selon la revendication 14, caractérisé en ce que la couche intermédiaire comporte, en outre, un mélange nickel-chrome.
16. Outil d'usinage équipé du produit abrasif diamanté composite selon l'une quelconque des revendications 1 à 6.
17. Outil de forage équipé du produit abrasif diamanté composite selon l'une quelconque des revendications 1 à 6.
EP88420383A 1987-11-17 1988-11-16 Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés Expired - Lifetime EP0317452B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8716140A FR2623201B1 (fr) 1987-11-17 1987-11-17 Produit abrasif diamante composite, son procede de preparation et les outils de forage ou d'usinage qui en sont equipes
FR8716140 1987-11-17

Publications (2)

Publication Number Publication Date
EP0317452A1 EP0317452A1 (fr) 1989-05-24
EP0317452B1 true EP0317452B1 (fr) 1991-08-14

Family

ID=9357021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420383A Expired - Lifetime EP0317452B1 (fr) 1987-11-17 1988-11-16 Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés

Country Status (4)

Country Link
US (1) US5002828A (fr)
EP (1) EP0317452B1 (fr)
DE (1) DE3864240D1 (fr)
FR (1) FR2623201B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349834A (ja) * 1989-07-14 1991-03-04 Sumitomo Electric Ind Ltd 金を接合材とする工具及びその製造方法
US5170683A (en) * 1990-12-27 1992-12-15 Konica Corporation Method for surface-processing of a photoreceptor base for electrophotography
JPH07331376A (ja) * 1994-06-03 1995-12-19 Sumitomo Electric Ind Ltd 非磁性若しくは弱磁性ダイヤモンド焼結体とその製法
DE69806502T3 (de) * 1997-12-11 2007-04-19 Element Six (Pty) Ltd. Kristallwachstum
US6173798B1 (en) * 1999-02-23 2001-01-16 Kennametal Inc. Tungsten carbide nickel- chromium alloy hard member and tools using the same
AU2011311951B2 (en) 2010-10-06 2015-08-13 Saint-Gobain Abrasifs Nonwoven composite abrasive comprising diamond abrasive particles
WO2014089451A1 (fr) * 2012-12-07 2014-06-12 Petree Rusty Compact de diamant polycristallin ayant une résistance au choc améliorée

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208414A2 (fr) * 1985-06-07 1987-01-14 De Beers Industrial Diamond Division (Proprietary) Limited Corps compact et abrasif en diamant thermiquement stable

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7104326A (fr) * 1970-04-08 1971-10-12 Gen Electric
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US3912500A (en) * 1972-12-27 1975-10-14 Leonid Fedorovich Vereschagin Process for producing diamond-metallic materials
IE42084B1 (en) * 1974-09-18 1980-06-04 De Beers Ind Diamond Abrasive bodies
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
US4259090A (en) * 1979-11-19 1981-03-31 General Electric Company Method of making diamond compacts for rock drilling
CA1193870A (fr) * 1980-08-14 1985-09-24 Peter N. Tomlinson Produit abrasif
JPS5747771A (en) * 1980-09-06 1982-03-18 Sumitomo Electric Industries Sintered body for linedrawing dice and manufacture
US4311490A (en) * 1980-12-22 1982-01-19 General Electric Company Diamond and cubic boron nitride abrasive compacts using size selective abrasive particle layers
SE457537B (sv) * 1981-09-04 1989-01-09 Sumitomo Electric Industries Diamantpresskropp foer ett verktyg samt saett att framstaella densamma
DE3372267D1 (en) * 1982-03-31 1987-08-06 De Beers Ind Diamond Abrasive bodies
FR2598644B1 (fr) * 1986-05-16 1989-08-25 Combustible Nucleaire Produit abrasif diamante thermostable et procede de fabrication d'un tel produit
IE60131B1 (en) * 1986-09-24 1994-06-01 De Beers Ind Diamond Thermally stable diamond abrasive compact body
FR2616780B1 (fr) * 1987-06-16 1992-08-28 Combustible Nucleaire Procede de fabrication de produit abrasif thermostable composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208414A2 (fr) * 1985-06-07 1987-01-14 De Beers Industrial Diamond Division (Proprietary) Limited Corps compact et abrasif en diamant thermiquement stable

Also Published As

Publication number Publication date
US5002828A (en) 1991-03-26
FR2623201B1 (fr) 1993-04-16
EP0317452A1 (fr) 1989-05-24
DE3864240D1 (de) 1991-09-19
FR2623201A1 (fr) 1989-05-19

Similar Documents

Publication Publication Date Title
EP0246118B1 (fr) Produit abrasif diamanté thermostable et procédé de fabrication d'un tel produit
EP0351287B1 (fr) Elément de coupe composite contenant du nitrure de bore cubique et procédé de fabrication d'un tel élément
EP0398776B1 (fr) Outil composite comportant une partie active en diamant polycristallin
EP0264674B1 (fr) Procédé pour lier des diamants polycristallins à basse pression
EP0296055B1 (fr) Procédé de fabrication de produit abrasif thermostable composite
US5030276A (en) Low pressure bonding of PCD bodies and method
US4943488A (en) Low pressure bonding of PCD bodies and method for drill bits and the like
US5116568A (en) Method for low pressure bonding of PCD bodies
US5096465A (en) Diamond metal composite cutter and method for making same
EP1975264B1 (fr) Procédé pour fabriquer une pièce comprenant au moins un bloc en matériau dense constitué de particules dures dispersées dans une phase liante : application à des outils de coupe ou de forage.
FR2715929A1 (fr) Synthèse d'un nitrure de bore cubique polycristallin.
FR2561969A1 (fr) Outil abrasif ayant une partie rapportee contenant des particules de diamant
CH647740A5 (fr) Procede d'obtention de nitrure de bore cubique, produit et utilisation du produit.
WO1996014963A1 (fr) Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil
US6432150B1 (en) Diamond-containing stratified composite material and method of manufacturing the same
FR2473106A1 (fr) Comprimes de diamant composites pour trepans et scies
CN1474792A (zh) 具有催化材料减少表面的聚晶金刚石
EP0369852B1 (fr) Procédé composite abrasif comportant une partie active de matériau ultra-dur et procédé de fabrication d'un tel produit
EP0317452B1 (fr) Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés
JP3549424B2 (ja) 硬質焼結体工具及びその製造方法
GB2486800A (en) Composite part including a cutting element
WO2003037823A1 (fr) Procede de metallisation et/ou de brasage par un alliage de silicium de pieces en ceramique oxyde non mouillable par ledit alliage
US9199356B2 (en) Cutting element
FR2498962A1 (fr) Pastille frittee composite destinee a etre utilisee dans un outil et procede pour sa fabrication
BE833497A (fr) Corps abrasifs compacts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19890708

17Q First examination report despatched

Effective date: 19900511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI SE

REF Corresponds to:

Ref document number: 3864240

Country of ref document: DE

Date of ref document: 19910919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931025

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931104

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 88420383.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 88420383.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051116