EP0315060A1 - Equipement d'autocalibrage pour une rectifieuse plane - Google Patents

Equipement d'autocalibrage pour une rectifieuse plane Download PDF

Info

Publication number
EP0315060A1
EP0315060A1 EP88117923A EP88117923A EP0315060A1 EP 0315060 A1 EP0315060 A1 EP 0315060A1 EP 88117923 A EP88117923 A EP 88117923A EP 88117923 A EP88117923 A EP 88117923A EP 0315060 A1 EP0315060 A1 EP 0315060A1
Authority
EP
European Patent Office
Prior art keywords
grinding wheel
nozzle
measuring head
measuring
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88117923A
Other languages
German (de)
English (en)
Inventor
Hans Sigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meseltron SA
Original Assignee
Meseltron SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meseltron SA filed Critical Meseltron SA
Publication of EP0315060A1 publication Critical patent/EP0315060A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/08Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving liquid or pneumatic means

Definitions

  • the present invention relates to self-calibrating equipment for flat grinders which conventionally comprise a horizontal table for carrying workpieces and a grinding wheel disposed above this table, which has a slice by which it machines these parts and which, by a movement of advance and retreat, can respectively come into contact with and deviate from them.
  • the subject of the invention is self-calibrating equipment which comprises a measuring head fixed to the table of the grinding machine to produce, during the machining of the parts, an electrical output signal which passes through an extreme value each time the grinding wheel passes over it, this extreme value being a function of the distance which then separates the grinding wheel from the table, means for memorizing values which correspond to at least some of the values taken by the output signal from the head measurement and means for producing signals for controlling the movement of the grinding wheel forward and backward when the stored values correspond to set values.
  • the measuring heads are mechanical heads which include a measuring key which palpates the edge of the grinding wheel by exerting on it a certain measuring force created by a spring and an inductive or capacitive transducer which produces the electrical output signal just discussed, in response to movement of this key.
  • the edge of the grinding wheel is worn irregularly by the measuring key and conversely the key is worn by the grinding wheel, which inevitably leads to measurement errors which increase over time.
  • the moving parts of the measuring head such as the key, the connection piece between it and the transducer, the movable part of it and the spring which creates the measuring force, are subjected to positive and negative accelerations and vibrations of the table and this is another source of errors for measures.
  • the object of the invention is to provide self-calibrating equipment which does not have these drawbacks and it is achieved thanks to the fact that in the equipment according to the invention the measuring head comprises a pneumatic circuit with a first branch of very small internal volume, provided with an inlet nozzle and a measurement outlet nozzle oriented so as to blow towards the edge of the grinding wheel, a second branch provided with an inlet nozzle and an outlet nozzle reference, means for connecting the inlet nozzles of these branches to an installation supplying compressed air at a regulated pressure, and a differential pressure transducer with semiconductor element for detecting the difference between the pressures prevailing in said branches and produce the aforementioned electrical output signal.
  • the air stream which leaves the measuring nozzle does not wear out the grinding wheel and since there is no longer any contact between this grinding wheel and the measuring head the latter is also not subject to wear.
  • the shavings and seeds of the grinding wheel can no longer have a harmful influence on the measurements.
  • the measuring head preferably comprises, in addition, at least one cleaning nozzle also oriented so as to blow towards the edge of the grinding wheel in order to separate the coolant used for the machining of the parts from the place to which the measurement nozzle blows and from means for supplying compressed air to this cleaning nozzle.
  • the plane grinding machine which has been shown both partially and schematically in FIG. 1 comprises a frame 2 which carries, for example by means of an oil film, a horizontal sweeping table 4 which can perform on this frame 2 a linear back-and-forth movement between two extreme positions, in the direction of the double arrow F.
  • the table 4 is obviously a circular grinding wheel 6 which can rotate around a horizontal axis 8, orthogonal to the direction of movement F of this table 4, and which is mounted on a support not shown so as to be able be moved vertically and possibly parallel to the axis 8 in order to be able to machine parts whose width is greater than the thickness of the grinding wheel and / or several rows of parts arranged side by side.
  • Figure 1 shows only two of these parts which are designated by the reference 10 and which are located at the end of a single row or not.
  • the self-calibrating equipment which is also shown in this figure comprises three parts: a measuring head 12 which is fixed to the table 4 of the grinding machine permanently or temporarily, for example by screwing, gluing or magnetization, in the extension of the row of parts 10 and in the field swept by the grinding wheel 6, an electronic measuring and control device 14 which will be discussed later, which is connected to the measuring head 12 by an electric cable 16, and an installation 18 for supplying this head 12 with compressed air.
  • the installation 18 is mainly constituted by a source of compressed air 20, capable of supplying air under a pressure ranging for example from 4 to 10 bars, a filter 22 placed at the outlet of this source. 20, a pipe 24 which directly brings part of the air transmitted by this filter 22 to the measuring head 12, a pressure regulator 26 which receives the other part of this air, another pipe 28 which connects this regulator 26 at the head 12 and a pressure gauge 30 to indicate the pressure in this line 28.
  • a source of compressed air 20 capable of supplying air under a pressure ranging for example from 4 to 10 bars
  • a filter 22 placed at the outlet of this source. 20
  • a pipe 24 which directly brings part of the air transmitted by this filter 22 to the measuring head 12
  • a pressure regulator 26 which receives the other part of this air
  • another pipe 28 which connects this regulator 26 at the head 12
  • a pressure gauge 30 to indicate the pressure in this line 28.
  • FIG. 2 schematically shows how the measuring head 12 is made.
  • This head 12 comprises a body 32, for example parallelepipedic or cylindrical, which has at one of its ends two end pieces 34 and 36 for the connection of the pipes, respectively, 28 and 24 which have just been mentioned and a terminal 38 for the connection of the electric cable 16 which, unlike the latter, is not visible in the figure.
  • the first, 42, of these branches is delimited by an inlet nozzle 46 and a measurement outlet nozzle 48 which is on the side or around the body 32, so as to be able to blow towards the edge of the grinding wheel 6 when the head 12 is fixed on the table 4 of the grinding machine.
  • the second branch 44 is delimited by another inlet nozzle 50 and an adjustable reference outlet nozzle 52.
  • this second branch opens on the side of the end pieces 34 and 36 but this is obviously not an obligation.
  • the main thing is that the compressed air which circulates there can always escape freely.
  • the two branches 42 and 44 each have a branch 54, respectively 56.
  • These branches 54 and 56 lead to a differential pressure transducer with semiconductor element 58 which is used to measure the pressure difference between the two branches 42, 44 and which is electrically connected to the aforementioned connection terminal 38 in order to be able to be supplied by the cable 16 and transmit to it the electric signal which it is responsible for producing.
  • This transducer 58 is essentially constituted by a semiconductor wafer in which a membrane has been produced, by chemical machining methods, and a bridge of piezoresistors formed on this membrane. Transducers of this kind are now well known. However, if one wishes to have more information on their structure, their operation and their manufacture one can refer to the French patent application No. 2 266 314.
  • the head 12 has another internal pipe 60 which starts from the end piece 36 and which terminates in another nozzle 62 placed near the measurement nozzle 48, so as to be able to separate the coolant, for example the oil, which is on the edge of the grinding wheel 6 from the place towards which this measuring nozzle 48 blows when the grinding wheel 6 passes over it.
  • the coolant for example the oil
  • the position of a cleaning nozzle like the nozzle 62 relative to the measuring nozzle 48 obviously depends on the way in which the head 12 is placed on the table 4, on the position it occupies and on the direction in which the grinding wheel 6 rotates.
  • the two nozzles 62 and 48 are substantially aligned in the direction of the length of the head 12 and the nozzle 62 is closer to the end where the end pieces 34 and 36 are located, but it could be that the measuring nozzle that is closer to this end. Furthermore, if the measuring head was arranged transversely to the direction of movement of the table and not longitudinally as in FIG. 1, the cleaning nozzle 62 should then be offset laterally with respect to the measuring nozzle 48.
  • the grinding wheel 6 passes above it or at least above the measuring nozzle and the cleaning nozzle (s) and that the pipes and the cable which connect it respectively to the installation 18 compressed air supply and the electronic measuring and control device are not subjected to excessive deformation and are not likely to cause or be damaged during a machining operation.
  • the measuring head that has just been described operates on exactly the same principle as the pins or rings that are currently used to pneumatically measure interior or exterior diameters.
  • the transducer 58 When there is nothing in front of the measurement nozzle 48 the compressed air escapes freely from the latter at a constant flow and if it is supplied the transducer 58 then produces an equally constant electrical output signal representative of the algebraic value of the pressure difference between branches 44 and 42 or 42 and 44, depending on how it is connected.
  • the flow of air that leaves through the nozzle 48 decreases, passes through a minimum value when the axis of the grinding wheel is located at the right of the center of the opening of the latter and then increases to resume the value that he had before the wheel went through.
  • the transducer 58 is connected so as to provide an output signal which represents the difference between the pressure in the branch 44 and the pressure in the branch 42. Under these conditions, each time that the grinding wheel 6 passes to the above the measuring nozzle 48, this output signal passes through a minimum value which is lower the lower the grinding wheel.
  • the transducer 58 is connected so as to provide an output signal which represents the difference between the pressure in branch 42 and the pressure in branch 44.
  • this signal no longer passes through a minimum value when the grinding wheel 6 is above the measuring nozzle 48 but, on the contrary, through a maximum value and this value becomes increasingly larger as and when that the grinding wheel is lowered.
  • the first which has already been alluded to, is that from the moment we want to make measurements the area of the outlet of the measuring nozzle 48 is larger than the area of the smallest surface which can be between the edge of this orifice and the edge of the grinding wheel 6, this smallest surface being of course that which exists when the axis of the grinding wheel 6 is exactly at the center of the orifice 48.
  • the second condition is linked to the invention and to the fact that the horizontal movement of the table 4 and of the head 12 is very rapid. For reasons of clarity the drawing does not take this into account.
  • This second condition is that the interior volume of the branch 42 and of its branching 54 is as low as possible or at least that it does not exceed a certain limit which is of the order of a few mm3.
  • This device firstly comprises an amplifier circuit 64 which receives the output signal from the transducer 58 via two conductors of the cable 16, the other conductors of this cable being connected to a power source, preferably a source current, not shown and a potentiometer 65 which acts on it to adjust the zero of the signal supplied by the transducer 58.
  • a power source preferably a source current, not shown
  • a potentiometer 65 which acts on it to adjust the zero of the signal supplied by the transducer 58.
  • This circuit 64 can be a simple differential amplifier or a more complicated circuit. It could for example comprise a first operational amplifier on which one could act by means of potentiometer 65 and a second operational amplifier connected following the first on which one could act by means of another potentiometer to adjust the gain of the whole.
  • a circuit of this kind is described in patent US-A-4,538,449.
  • the apparatus 14 also includes an analog memory 66 for storing the minimum values of the signal supplied by the amplifier circuit 64, which correspond to those of the output signal from the transducer 58, and a switch 68 which makes it possible to connect this memory 66 to a positive terminal of the electronic circuit of which it is a part to reinitialize are contained, more precisely to bring the latter to a determined maximum value.
  • This switch 68 can for example be a key switch which is actuated manually before the rectification of new parts or a relay controlled by the electrical control of the machine each time it is started for machining a series of coins.
  • It may also be a transistor which periodically receives, for example every ten seconds, the pulses produced by an electronic oscillator to become conductive.
  • FIG. 3 shows how memory 66 is produced.
  • This memory has two inputs 78 and 80 which are respectively connected to the output of the amplifier circuit 64 and to a terminal of the switch 68 and an output 82.
  • FIG. 1 also shows a display device 70 which is connected to the output of memory 66 and which is responsible for indicating the excess thickness of the pieces relative to their final dimension, and two Schmitt rockers (triggers) 72 and 76 also connected to the output of this memory 66.
  • a display device 70 which is connected to the output of memory 66 and which is responsible for indicating the excess thickness of the pieces relative to their final dimension
  • two Schmitt rockers (triggers) 72 and 76 also connected to the output of this memory 66.
  • the first, 72, of these flip-flops is responsible for constantly comparing the value contained in the memory 66 with a positive reference value which can be adjusted by means of a potentiometer 74 and for generating a control signal which makes it possible to pass the grinding machine from the roughing phase to the finishing phase when the parts have reached a certain dimension which corresponds to this set value.
  • the second flip-flop 76 it is used to compare the stored values to the zero value and to produce a signal which makes it possible to control the recoil of the grinding wheel 6 when the parts have reached their final dimension.
  • a first solution consists quite simply in replacing the amplifier circuit 64 with positive gain by an amplifier circuit with negative gain, which makes it possible to conserve the same memory 66 and the same switch 68.
  • amplifier circuit 64 to replace memory 66 by an analog memory capable of memorizing maximum values and switch 68 by a switch which makes it possible to connect this memory to ground and to predict in addition an operational amplifier, for example of gain -1, for transforming the stored values into corresponding minimum values.
  • the invention can also be applied to flat grinding machines with a sweeping table, the grinding wheel of which is not a horizontal but a vertical axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

L'invention concerne les équipements d'autocalibrage pour des rectifieuses planes qui comprennent une tête de mesure (12) fixée à la table (4) de la rectifieuse à laquelle ils sont associés pour mesurer la distance entre cette table et la meule (6) et un appareil électronique de mesure et de commande (14) qui reçoit le signal de sortie de la tête de mesure et qui produit des signaux pour commander le mouvement d'avance et de recul de cette meule. Dans l'équipement selon l'invention la tête de mesure comprend un circuit pneumatique avec une première branche de très faible volume interne, munie d'une buse d'entrée et d'une buse de sortie de mesure (48) orientée de façon à souffler vers la tranche de la meule, une deuxième branche munie d'une buse d'entrée et d'une buse de référence et des moyens pour relier les buses d'entrée de ces branches à une installation (18) fournissant de l'air comprimé à une pression régulée, et un transducteur de pression différentielle à élément semi-conducteur pour détecter la différence entre les pressions qui règnent dans les deux branches. Par rapport à une tête de mesure mécanique cette tête présente l'avantage de ne pas s'user et de ne pas user la meule. D'autre part elle permet d'éviter que les mesures soient faussées par la projection de copeaux et de grains de la meule.

Description

  • La présente invention concerne des équipements d'autocalibrage pour des rectifieuses planes qui comportent classiquement une table horizontale pour porter des pièces à usiner et une meule disposée au-dessus de cette table, qui présente une tranche par laquelle elle usine ces pièces et qui, par un mouvement d'avance et de recul, peut respectivement venir au contact et s'écarter de celles-ci.
  • Plus précisément l'invention a pour objet un équipement d'auto­calibrage qui comprend une tête de mesure fixée à la table de la rectifieuse pour produire, pendant l'usinage des pièces, un signal électrique de sortie qui passe par une valeur extrême chaque fois que la meule passe au-dessus d'elle, cette valeur extrême étant fonction de la distance qui sépare alors la meule de la table, des moyens pour mémoriser des valeurs qui correspondent à certaines au moins des valeurs prises par le signal de sortie de la tête de mesure et des moyens pour produire des signaux de commande du mouvement d'avance et de recul de la meule lorsque les valeurs mémorisées correspondent à des valeurs de consigne.
  • Dans les équipements connus de ce genre les têtes de mesure sont des têtes mécaniques qui comprennent une touche de mesure qui palpe la tranche de la meule en exerçant sur elle une certaine force de mesure créée par un ressort et un transducteur inductif ou capacitif qui produit le signal électrique de sortie dont on vient de parler, en réponse aux mouvements de cette touche.
  • De ce fait ces équipements connus présentent plusieurs incon­vénients :
  • Premièrement, la tranche de la meule est usée irrégulièrement par la touche de mesure et inversement la touche est usée par la meule, ce qui entraîne inévitablement des erreurs de mesure qui s'accentuent dans le temps.
  • Deuxièmement, comme la meule tourne très vite, des grains qui se détachent d'elle et des copeaux qui proviennent des pièces usinées sont projetés et viennent souvent frapper la touche, ce qui la fait osciller, parfois jusqu'à la résonance, et comme les valeurs mémori­sées, qui sont dans ce cas des valeurs minimales, sont alors, de ce fait, inférieures à ce qu'elles devraient être on peut passer prématurément d'une phase de la rectification à l'autre et le recul de la meule peut être commandé avant que les pièces aient atteint leur cote finale exacte. Ceci est d'autant plus vrai que l'on s'arrange généralement pour que la touche de mesure n'exerce sur la meule qu'une faible force de mesure afin que l'usure réciproque de cette touche et de cette meule soit limitée le plus possible.
  • Troisièmement, lorsque la table de la rectifieuse est du type "balayante", c est-à-dire lorsqu'elle effectue un mouvement linéaire de va-et-vient sous la meule, les pièces mobiles de la tête de mesure comme la touche, la pièce de raccordement entre elle et le transducteur, la partie mobile de celui-ci et le ressort qui crée la force de mesure, sont soumises aux accélérations positives et négatives et aux vibrations de la table et ceci est une autre source d'erreurs pour les mesures.
  • Le but de l'invention est de fournir un équipement d'autoca­librage qui ne présente pas ces inconvénients et il est atteint grâce au fait que dans l'équipement selon l'invention la tête de mesure comprend un circuit pneumatique avec une première branche de très faible volume interne, munie d'une buse d entrée et d'une buse de sortie de mesure orientée de façon à souffler vers la tranche de la meule, une deuxième branche munie d'une buse d'entrée et d'une buse de sortie de référence, des moyens pour relier les buses d'entrée de ces branches à une installation fournissant de l'air comprimé à une pression régulée, et un transducteur de pression différentielle à élément semi-conducteur pour détecter la différence entre les pressions qui règnent dans lesdites branches et produire le signal électrique de sortie précité.
  • Ainsi, la veine d'air qui sort de la buse de mesure n'use pas la meule et comme il n'y a plus de contact entre cette meule et la tête de mesure cette dernière n'est pas, elle non plus, soumise à l'usu­re.
  • D'autre part, dans le cas d'une table balayante, les accéléra­tions et les vibrations de celle-ci n'ont pas d'effet mesurable sur la veine d'air en question.
  • Enfin, comme la tête de mesure ne comporte plus de pièces mobiles susceptibles d'osciller et d'entrer en résonance les copeaux et les graines de la meule ne peuvent plus avoir d'influence néfaste sur les mesures.
  • Cela dit, dans un équipement d'autocalibrage selon l'invention la tête de mesure comprend de préférence, en plus, au moins un buse de nettoyage également orientée de facon à souffler vers la tranche de la meule pour écarter le liquide de refroidissement utilisé pour l'usinage des pièces de l'endroit vers lequel souffle la buse de mesure et des moyens pour amener de l'air comprimé à cette buse de nettoyage.
  • L'invention sera mieux comprise à la lecture de la description qui suit d'un mode d'exécution que l'on a choisi comme exemple pour l'illustrer. Cette description se réfère au dessin annexé sur lequel:
    • - la figure 1 montre schématiquement une rectifieuse plane, représentée partiellement, et l'équipement d'autocalibrage qui lui est associé;
    • - la figure 2 est une vue schématique en coupe longitudinale de la tête de mesure qui fait partie de cet équipement; et
    • - la figure 3 est le schéma d'une mémoire qui est utilisée dans l'appareil électronique de mesure et de commande qui forme une autre partie de cet équipement.
  • La rectifieuse plane que l'on a représentée à la fois partielle­ment et schématiquement sur la figure 1 comprend un bâti 2 qui porte, par exemple par l'intermédiaire d'un film d'huile, une table horizontale balayante 4 qui peut effectuer sur ce bâti 2 un mouve­ment linéaire de va-et-vient entre deux positions extrêmes, dans la direction de la double flèche F.
  • Au-dessus de la table 4 se trouve évidemment une meule circu­laire 6 qui peut tourner autour d'un axe horizontal 8, orthogonal à la direction de déplacement F de cette table 4, et qui est montée sur un support non représenté de façon à pouvoir être déplacée verticalement et éventuellement parallèlement à l'axe 8 afin de pouvoir usiner des pièces dont la largeur est supérieure à l'épais­seur de la meule et/ou plusieurs rangées de pièces disposées côte à côte.
  • La figure 1 ne montre que deux de ces pièces qui sont désignées par le repère 10 et qui sont situées au bout d'une rangée unique ou non.
  • L'équipement d'autocalibrage selon l'invention qui est lui aussi représenté sur cette figure comprend trois parties : une tête de mesure 12 qui est fixée sur la table 4 de la rectifieuse de façon permanente ou temporaire, par exemple par vissage, collage ou aimantation, dans le prolongement de la rangée de pièces 10 et dans le champ balayé par la meule 6, un appareil électronique de mesure et de commande 14 dont on parlera par la suite, qui est relié à la tête de mesure 12 par un cable électrique 16, et une installation 18 pour alimenter cette tête 12 en air comprimé.
  • Comme on peut le voir l'installation 18 est constituée principa­lement par une source d'air comprimé 20, capable de fournir de l'air sous une pression allant par exemple de 4 à 10 bars, un filtre 22 placé à la sortie de cette source 20, une conduite 24 qui amène directement une partie de l'air transmis par ce filtre 22 à la tête de mesure 12, un régulateur de pression 26 qui reçoit l'autre partie de cet air, une autre conduite 28 qui relie ce régulateur 26 à la tête 12 et un manomètre 30 pour indiquer la pression dans cette conduite 28.
  • La figure 2 montre schématiquement comment est faite la tête de mesure 12.
  • Cette tête 12 comprend un corps 32, par exemple parallèlépipé­dique ou cylindrique, qui présente à l'une de ses extrémités deux embouts 34 et 36 pour le raccordement des conduites, respectivement, 28 et 24 dont on vient de parler et une borne 38 pour le branchement du cable électrique 16 qui contrairement à ces dernières n'est pas visible sur la figure.
  • De l'embout 34 part une conduite interne 40 qui se divise à l'autre bout en deux branches 42 et 44.
  • La première,42, de ces branches est délimitée par une buse d'entrée 46 et une buse de sortie de mesure 48 qui se trouve sur le côté ou sur le pourtour du corps 32, de façon à pouvoir souffler vers la tranche de la meule 6 lorsque la tête 12 est fixée sur la table 4 de la rectifieuse.
  • La seconde branche 44 est délimitée, elle, par une autre buse d'entrée 50 et une buse de sortie de référence réglable 52.
  • Telle qu'elle est représentée sur la figure 2, cette seconde branche débouche du côté des embouts 34 et 36 mais ceci n'est évidemment pas une obligation. L'essentiel est que l'air comprimé qui y circule puisse toujours s'échapper librement.
  • D'autre part, on constate en regardant la figure 2 que les deux branches 42 et 44 présentent chacune une ramification 54, respec­tivement 56. Ces ramifications 54 et 56 aboutissent à un transduc­teur de pression différentielle à élément semi-conducteur 58 qui sert à mesurer la différence de pression entre les deux branches 42, 44 et qui est relié électriquement à la borne de branchement 38 précitée pour pouvoir être alimenté par le cable 16 et transmettre à celui-ci le signal électrique qu'il est chargé de produire.
  • Ce transducteur 58 est constitué essentiellement par une pla­quette semi-conductrice dans laquelle a été réalisée une membrane, par des procédés d'usinage chimique, et un pont de piézo-résistances formées sur cette membrane. Les transducteurs de ce genre sont maintenant bien connus. Toutefois, si l'on désire avoir plus de renseignements sur leur structure, leur fonctionnement et leur fabrication on peut se reporter à la demande de brevet français No 2 266 314.
  • Enfin, on constate également d'après la figure 2 que la tête 12 comporte une autre conduite interne 60 qui part de l'embout 36 et qui aboutit à une autre buse 62 placée près de la buse de mesure 48, de façon à pouvoir écarter le liquide de refroidissement, par exemple l'huile, qui se trouve sur la tranche de la meule 6 de l'endroit vers lequel cette buse de mesure 48 souffle au moment où la meule 6 passe au-dessus d'elle.
  • D'une manière générale la position d'une buse de nettoyage comme la buse 62 par rapport à la buse de mesure 48 dépend évidemment de la façon dont la tête 12 est placée sur la table 4, de la position qu'elle occupe et du sens dans lequel la meule 6 tourne.
  • Dans le cas présent les deux buses 62 et 48 sont sensiblement alignées dans le sens de la longeur de la tête 12 et la buse 62 est plus proche de l'extrémité où se trouvent les embouts 34 et 36 mais il se pourrait que ce soit la buse de mesure qui soit plus près de cette extrémité. Par ailleurs, si la tête de mesure était disposée transversalement par rapport à la direction de déplacement de la table et non pas longitudinalement comme sur la figure 1 la buse de nettoyage 62 devrait alors être décalée latéralement par rapport à la buse de mesure 48.
  • A noter que l'on pourrait aussi prévoir non pas une seule buse de nettoyage mais deux ou plus réparties autour de la buse de mesure.
  • Cela dit, comme il est question en ce moment de la façon dont la tête 12 est placée sur la table 4 on peut en profiter pour indiquer qu'il n'est pas nécessaire qu'elle se trouve au bout de la ou d'une rangée de pièces 10. Elle pourrait aussi se trouver à côté des pièces 10 ou parmi elles et si ces pièces étaient trop minces pour qu'elle soit mise sur la table elle pourrait être accrochée à la paroi latérale de celle-ci. L'essentiel est que la meule 6 passe au-dessus d'elle ou tout au moins au-dessus de la buse de mesure et de la ou des buses de nettoyage et que les conduites et le câble qui la relient respectivement à l'installation 18 d'alimentation en air comprimé et à l'appareil électronique de mesure et de commande ne soient pas soumis à des déformations trop importantes et ne risquent pas de provoquer ou de subir des dégâts pendant une opération d'usinage.
  • La tête de mesure que l'on vient de décrire fonctionne exacte­ment selon le même principe que les broches ou les bagues que l'on utilise actuellement pour mesurer pneumatiquement des diamètres intérieurs ou extérieurs.
  • Lorsqu'il n'y a rien devant la buse de mesure 48 l'air comprimé s'échappe librement de celle-ci à un débit constant et si il est alimenté le transducteur 58 produit alors un signal électrique de sortie également constant et représentatif de la valeur algébrique de la différence de pression qui existe entre les branches 44 et 42 ou 42 et 44, selon la façon dont il est branché.
  • Par contre, lorsque la meule 6 passe au-desssus de la buse 48, à partir d'un certain moment l'air comprimé ne peut plus sortir de celle-ci qu'en rayonnant autour de son orifice de sortie, comme le montrent les flèches représentées sur la figure 2, et si la condi­tion que l'on indiquera par la suite est respectée le débit de cet air devient fonction de l'aire de la surface annulaire qui se trouve entre le bord de cet orifice et la tranche de la meule et par conséquent de la distance moyenne entre ce bord et cette tranche.
  • Autrement dit, le débit de l'air qui sort par la buse 48 dé­croit, passe par une valeur minimale lorsque l'axe de la meule se trouve au droit du centre de l'ouverture de celle-ci et croit ensuite pour reprendre la valeur qu'il avait avant le passage de la meule.
  • Inversement, la pression de l'air dans la branche 42 et sa ramification 54 croit jusqu'à une valeur maximale qui correspond à la valeur minimale du débit et décroit ensuite.
  • D'autre part, il est clair que plus la meule avance plus cette valeur minimale du débit est faible et plus la valeur maximale de la pression est grande.
  • Supposons tout d'abord que le transducteur 58 est branché de façon à fournir un signal de sortie qui représente la différence entre la pression dans la branche 44 et la pression dans la branche 42. Dans ces conditions, chaque fois que la meule 6 passe au-dessus de la buse de mesure 48 ce signal de sortie passe par une valeur minimale qui est d'autant plus faible que la meule est basse.
  • La différence avec le débit de l'air qui sort par la buse 48 c'est que cette valeur minimale du signal peut en principe être négative. Pour cette raison on ne peut pas dire qu'elle est toujours vraiment représentive de la distance entre la meule et la table. Par contre elle est bien toujours fonction de celle-ci.
  • Dans la pratique on s'arrangera généralement dans ce cas pour aboutir au même résultat qu'avec les têtes de mesure mécaniques que l'on utilise actuellement, c'est-à-dire que l'on réglera la buse de référence de façon que les pressions dans les branches deviennent sensiblement égales lorsque les pièces auront atteint leur cote finale et on finira d'adjuster le zéro du signal de sortie du trans­ducteur au moyen d'un potentionmètre prévu dans l'appareil de mesure et de commande pour obtenir un signal dont les valeurs minimales représentent exactement la surépaisseur des pièces par rapport à cette cote finale.
  • Théoriquement, on pourrait aussi régler la buse de référence et le potentionmètre de façon que le zéro du signal corresponde à une distance nulle entre la meule et la table afin que les valeurs minimales obtenues représentent la cote nominale des pièces. Mais ce que l'on préfère connaître en général lorsque l'on rectifie des pièces c'est bien leur surépaisseur et non pas leur cote.
  • Supposons maintenant que le transducteur 58 est branché de façon à fournir un signal de sortie qui représente la différence entre la pression dans la branche 42 et la pression dans la branche 44.
  • A ce moment là, ce signal ne passe plus par une valeur minimale lorsque la meule 6 se trouve au-dessus de la buse de mesure 48 mais au contraire par une valeur maximale et cette valeur devient de plus en plus grande au fur et à mesure que la meule est abaissée.
  • Comme on le verra par la suite il est facile alors d'obtenir la même information que dans le cas précèdent en modifiant légèrement le circuit électronique de l'appareil de mesure et de commande.
  • En fait , pour que la tête de mesure 12 puisse fonctionner correctement, comme on vient de l'indiquer, il faut que deux condi­tions soient respectées.
  • La première, à laquelle on a déjà fait allusion, c'est qu'à partir du moment où l'on veut effectuer des mesures l'aire de l'orifice de sortie de la buse de mesure 48 soit plus grande que l'aire de la plus petite surface qui peut se trouver entre le bord de cet orifice et la tranche de la meule 6, cette plus petite surface étant bien entendu celle qui existe lorsque l'axe de la meule 6 est exactement au droit du centre de l'orifice 48.
  • Si ceci est vrai au départ çà l'est forcément lorsque la meule 6 continue ensuite d'avancer.
  • Cette condition est tout à fait comparable à celle qui doit être remplie lorsqu'on procède à des mesures de diamètres intérieurs ou extérieurs au moyen des broches ou des bagues dont on a déjà parlé. Si elle n'était pas respectée il n y aurait pas de mesure possible car le débit de l'air comprimé qui sortirait par la buse 48 et la pression dans la branche 42 ne varieraient pas.
  • La deuxième condition, elle, est liée à l'invention et au fait que le mouvement horizontal de la table 4 et de la tête 12 est très rapide. Pour une raison de clarté le dessin n'en tient pas compte.
  • Cette deuxième condition c'est que le volume intérieur de la branche 42 et de sa ramification 54 soit le plus faible possible ou tout au moins qu'il ne dépasse pas une certaine limite qui est de l'ordre de quelques mm³.
  • En effet, vu que le diamètre de la meule 6 est grand, on peut considérer qu'au moment où son axe passe au-dessus de la buse de mesure 48 l'aire de la surface comprise entre sa tranche et le bord de l'orifice de cette buse 48 reste constante pendant un certain temps. Mais ce temps est très court et pour que la mesure soit correcte il faut qu'il soit suffisant pour permettre à la pression dans la branche 42 et sa ramification 54 de s'uniformiser.
  • Or, plus le volume de la branche et de sa ramification est petit plus cette uniformisation est rapide.
  • On va maintenant décrire l'appareil électronique de mesure et de commande 14 qui est représenté sur la figure 1 et qui correspond à la première situation que l'on a envisagée précèdemment en ce qui concerne le branchement du transducteur.
  • Cet appareil comprend tout d'abord un circuit amplificateur 64 qui reçoit le signal de sortie du transducteur 58 par l'intermé­diaire de deux conducteurs du câble 16, les autres conducteurs de ce câble étant reliés à une source d'alimentation, de préférence une source de courant, non représentée et un potentiomètre 65 qui permet d'agir sur lui pour ajuster le zéro du signal fourni par le trans­ducteur 58.
  • Ce circuit 64, dont le gain doit être positif, peut être un simple amplificateur différentiel ou un circuit plus compliqué. Il pourrait comprendre par exemple un premier amplificateur opération­nel sur lequel on pourrait agir grâce au potentiomètre 65 et un second amplificateur opérationnel branché à la suite du premier sur lequel on pourrait agir au moyen d'un autre potentiomètre pour régler le gain de l'ensemble. Un circuit de ce genre est décrit dans le brevet US-A-4 538 449.
  • Cela dit, l'appareil 14 comprend également une mémoire analogi­que 66 pour mémoriser les valeurs minimales du signal fourni par le circuit amplificateur 64, qui correspondent à celles du signal de sortie du transducteur 58, et un commutateur 68 qui permet de relier cette mémoire 66 à une borne positive du circuit électronique dont elle fait partie pour réinitialiser sont contenu, plus précisément pour ramener celui-ci à une valeur maximale déterminée.
  • Ce commutateur 68 peut être par exemple un commutateur à touche que l'on actionne manuellement avant la rectification de nouvelles pièces ou un relais commandé par la commande électrique de la machine à chaque mise en marche de celle-ci pour l'usinage d'une série de pièces.
  • Il peut s'agir également d'un transistor qui reçoit périodique­ment, par exemple toutes les dix secondes, les impulsions produites par un oscillateur électronique pour devenir conducteur.
  • La figure 3 montre comment est réalisée la mémoire 66.
  • Cette mémoire présente deux entrées 78 et 80 qui sont reliées respectivement à la sortie du circuit amplificateur 64 et à une borne du commutateur 68 et une sortie 82.
  • D'autre part, elle se compose d'un amplificateur opérationnel 84 dont l'entrée non-inverseuse est reliée à la borne 78, d'une diode 86 dont la cathode est connectée à la sortie de l'amplificateur 84 et l'anode à la fois aux bornes 80 et 82 et à l'entrée inverseuse de cet amplificateur 84 et d'un condensateur 88, branché entre l'anode de la diode 86 et la masse, qui constitue l'élément de mémorisation et qui peut être rechargé grâce au commutateur 68.
  • Les mémoires de ce genre sont bien connues et, comme on le sait, tant qu'elles ne sont pas réinitialisées elles ne peuvent mémoriser que des valeurs successives qui vont en décroissant.
  • Par conséquent, si la meule 6 passe plusieurs fois au-dessus de la tête de mesure 12 en restant au même niveau et si une valeur minimale du signal fourni par le circuit amplificateur 64 est légèrement supérieure à celle qui précède, cette valeur n'est pas mémorisée, sauf si le condensateur 88 a été rechargé entre temps, ce qui peut arriver s'il l'est périodiquement.
  • Enfin, la figure 1 montre également un dispositif d'affichage 70 qui est relié à la sortie de la mémoire 66 et qui est chargé d'indi­quer la surépaisseur des pièces par rapport à leur cote finale, et deux bascules (triggers) de Schmitt 72 et 76 connectées elles aussi à la sortie de cette mémoire 66.
  • La première, 72, de ces bascules est chargée de comparer en permanence la valeur contenue dans la mémoire 66 à une valeur de consigne positive qui peut être réglée au moyen d'un potentiomètre 74 et de générer un signal de commande qui permet de faire passer la rectifieuse de la phase d'ébauchage à la phase de finition lorsque les pièces ont atteint une certaine cote qui correspond à cette valeur de consigne.
  • Quant à la deuxième bascule 76, elle sert à comparer les valeurs mémorisés à la valeur zéro et à produire un signal qui permet de commander le recul de la meule 6 lorsque les pièces ont atteint leur cote finale.
  • Bien entendu, dans la réalité l'appareil de mesure et de comman­de d'une rectifieuse n'est pas aussi simple que celui de la figure 1 mais il serait inutile de parler ici de tous les moyens supplémen­taires de commutation, de réglage et d'indication qui font habituel­lement partie d'un appareil de ce genre et que l'homme de métier connait bien.
  • Voyons plutôt comment on peut modifier cet appareil que l'on a décrit en partie pour l'adapter au cas où le transducteur 58 de la tête de mesure 12 est branché pour fournir un signal qui représente la différence entre la pression dans la branche 44 et celle dans la branche 42 (voir figure 2).
  • Une première solution consiste tout simplement à remplacer le circuit amplificateur 64 à gain positif par un circuit amplificateur à gain négatif, ce qui permet de conserver la même mémoire 66 et le même commutateur 68.
  • Une autre solution c'est de garder au contraire le même circuit amplificateur 64, de remplacer la mémoire 66 par une mémoire analo­gique capable de mémoriser des valeurs maximales et le commutateur 68 par un commutateur qui permet de relier cette mémoire à la masse et de prévoir en plus un amplificateur opérationnel, par exemple de gain -1, pour transformer les valeurs mémorisées en des valeurs minimales correspondantes.
  • Comme on le sait, on peut très facilement obtenir une mémoire de valeurs maximales à partir de la mémoire qui est représentée sur la figure 3 en inversant seulement le sens de branchement de la diode 86.
  • Par ailleurs, il est clair que l'invention n'est pas limitée à la façon d'exécution que l'on a décrite et à celles que l'on a déjà envisagées.
  • En effet, on pourrait très bien imaginer par exemple une autre forme d'exécution dans laquelle la buse de référence ne serait pas réglable et dans laquelle le zéro du signal de sortie de la tête de mesure ne pourrait être ajusté que par un ou deux potentiomètres prévus dans l'appareil de mesure et de commande.
  • De plus, l'invention peut aussi s'appliquer à des rectifieuses planes à table balayante dont la meule n'est pas à axe horizontal mais vertical.
  • Elle peut même être étendue à des rectifieuses planes à table tournante mais il faut alors prévoir par exemple des raccords rotatifs et une bague collectrice pour permettre respectivement aux conduites d'amenée d'air comprimé et au câble qui relie la tête de mesure â l'appareil électronique de mesure et de commande de suivre le mouvement de cette table.

Claims (3)

1. Equipement d' autocalibrage pour une rectifieuse plane qui comporte une table horizontale (4) pour porter des pièces à usiner (10) et une meule (6) disposée au-dessus de cette table, qui présen­te une tranche par laquelle elle usine lesdites pièces et qui, par un mouvement d'avance et de recul, peut respectivement venir au contact et s'écarter de celles-ci, équipement qui comprend une tête de mesure (12) fixée à la table de la rectifieuse pour produire, pendant l'usinage des pièces, un signal électrique de sortie qui passe par une valeur extrême chaque fois que la meule passe au-­dessus d'elle, cette valeur extrême étant fonction de la distance qui sépare alors la meule de la table, des moyens (66) pour mémo­riser des valeurs qui correspondent à certaines au moins des valeurs successives prises par le signal de sortie de la tête de mesure et des moyens (72 - 76) pour produire des signaux de commande du mouvement d'avance et de recul de la meule lorsque les valeurs mémorisées correspondent à des valeurs de consigne, caractérisé par le fait que la tête de mesure comprend un circuit pneumatique avec une première branche (42, 54) de très faible volume interne, munie d'une buse d'entrée (46) et d'une buse de sortie de mesure (48) orientée de façon à souffler vers la tranche de la meule, une deuxième branche (44, 56) munie d'une buse d'entrée (50) et d'une buse de sortie de référence (52) et des moyens (40) pour relier les buses d'entrée de ces branches à une installation (18) fournissant de l'air comprimé à une pression régulée, et un transducteur de pression différentielle (58) à élément semi-conducteur pour détecter la différence entre les pressions qui règnent dans lesdites branches et produire ledit signal de sortie.
2. Equipement d'autocalibrage selon la revendication 1, carac­térisé par le fait que les valeurs extrêmes du signal de sortie produit par le transducteur (58) de la tête de mesure (12) et les valeurs correspondantes mémorisées sont des valeurs minimales.
3. Equipement d'autocalibrage selon la revendication 1 ou 2, caractérisé par le fait que la tête de mesure (12) comprend au moins une buse supplémentaire de nettoyage (62) également orientée de façon à souffler vers la tranche de la meule (6), pour écarter le liquide de refroidissement utilisé pour l'usinage des pièces (10) de l'endroit vers lequel souffle la buse de sortie de mesure (48) et des moyens (60) pour amener de l'air comprimé à cette buse de nettoyage.
EP88117923A 1987-11-02 1988-10-27 Equipement d'autocalibrage pour une rectifieuse plane Withdrawn EP0315060A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8715263A FR2622492B1 (fr) 1987-11-02 1987-11-02 Equipement d'autocalibrage pour une rectifieuse plane
FR8715263 1987-11-02

Publications (1)

Publication Number Publication Date
EP0315060A1 true EP0315060A1 (fr) 1989-05-10

Family

ID=9356462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117923A Withdrawn EP0315060A1 (fr) 1987-11-02 1988-10-27 Equipement d'autocalibrage pour une rectifieuse plane

Country Status (4)

Country Link
US (1) US4912884A (fr)
EP (1) EP0315060A1 (fr)
JP (1) JPH01153270A (fr)
FR (1) FR2622492B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800247A (en) * 1996-04-19 1998-09-01 Centerline Engineering, Inc. Non-contact gaging apparatus and method
US6018865A (en) * 1998-01-20 2000-02-01 Mcms, Inc. Method for calibrating the Z origin position

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079740A (en) * 1959-11-24 1963-03-05 Besly Welles Corp Method of positioning grinding disks
US3455064A (en) * 1966-04-15 1969-07-15 Skf Ind Inc Preloaded pivot type feed for grinders
FR2157422A5 (fr) * 1971-10-13 1973-06-01 Sim Sa Ets
US4270382A (en) * 1979-12-31 1981-06-02 Polaroid Corporation Gap measurement apparatus
DE3105578A1 (de) * 1980-12-23 1982-07-15 Maag-Zahnräder & -Maschinen AG, 8023 Zürich Vorrichtung zum positionieren einer schleifscheibe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704557A (en) * 1970-11-30 1972-12-05 American Gage & Mach Machine tool and gaging apparatus
US3862517A (en) * 1972-01-03 1975-01-28 Jr Wallace M Porter Method and apparatus for machining a workpiece to a selected dimension
JPS58202765A (ja) * 1982-05-14 1983-11-26 Nippon Seiko Kk 超仕上盤における砥石摩耗と砥石折損検出装置
US4538449A (en) * 1982-11-22 1985-09-03 Meseltron S.A. Pneumatic measuring device for measuring workpiece dimension

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079740A (en) * 1959-11-24 1963-03-05 Besly Welles Corp Method of positioning grinding disks
US3455064A (en) * 1966-04-15 1969-07-15 Skf Ind Inc Preloaded pivot type feed for grinders
FR2157422A5 (fr) * 1971-10-13 1973-06-01 Sim Sa Ets
US4270382A (en) * 1979-12-31 1981-06-02 Polaroid Corporation Gap measurement apparatus
DE3105578A1 (de) * 1980-12-23 1982-07-15 Maag-Zahnräder & -Maschinen AG, 8023 Zürich Vorrichtung zum positionieren einer schleifscheibe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 8, no. 47 (M-280)[1484], 2 mars 1984, page 161 M 280; & JP-A-58 202 765 (NIPPON SEIKO K.K.) 26-11-1983 *

Also Published As

Publication number Publication date
JPH01153270A (ja) 1989-06-15
FR2622492A1 (fr) 1989-05-05
US4912884A (en) 1990-04-03
FR2622492B1 (fr) 1990-01-26

Similar Documents

Publication Publication Date Title
CA1093339A (fr) Appareil de mesure de durete
FR2567058A1 (fr) Dispositif pour une machine-outil, en particulier une rectifieuse, et destine a mesurer le diametre de pieces tournant excentriquement
FR2889331A1 (fr) Appareil et procede de compensation de derive d'une horloge locale utilisee comme frequence d'echantillonnage
FR2494164A1 (fr) Robot industriel
FR2630673A1 (fr) Dispositif et procede pour detecter le debit massique et la vitesse de grenaillage
FR2896682A1 (fr) Dispositif de mesure de l'angle, pour un patient porteur de lunettes, entre la vision de loin et la vision de pres.
EP0374606A1 (fr) Procédé et dispositif de positionnement angulaire d'une pièce sur une machine-outil au moyen d'un faisceau laser
WO2007080283A1 (fr) Pressiometre de precision automatise
FR2910980A1 (fr) Appareil de blocage de lentille
FR2920288A1 (fr) Procede pour compter le nombre de tours d'une meule d'un moulin a cafe et appareil comprenant un tel moulin
EP0315060A1 (fr) Equipement d'autocalibrage pour une rectifieuse plane
EP0066916A1 (fr) Dispositif de mesure dynamique de la mobilité dentaire
FR2574932A1 (fr) Appareil de mesure des caracteristiques debit-pression d'un gaz traversant un echantillon de produit a deux faces
EP0816795B1 (fr) Instrument pour mesurer des longueurs ou des angles
CH618590A5 (fr)
CH452384A (fr) Rectifieuse pour cônes et cylindres
EP1977048B1 (fr) Sonde pour pressiometre et pressiometre
EP0244324A1 (fr) Capteur de force à jauges résistives
EP3587363A1 (fr) Dispositif de laminage a interstice mesurable
CH657553A5 (en) Method and device for determining the deflection of an electrical-discharge cutting wire
FR2934903A1 (fr) Appareil de lecture de la geometrie d'un drageoir.
BE1003913A6 (fr) Dispositif pour mesurer la rugosite de la surface d'un produit metallique en mouvement.
CH503338A (fr) Dispositif d'identification de pièces de monnaie
FR2788594A1 (fr) Dipositif pour controler la valeur du rayon externe d'une roue, notamment d'une roue d'engrenage
CH640942A5 (en) Quartz thermometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 19891011

17Q First examination report despatched

Effective date: 19910114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920222