EP0314721B1 - Alignment process for gun fire control device and gun fire control device for implementation of the process - Google Patents
Alignment process for gun fire control device and gun fire control device for implementation of the process Download PDFInfo
- Publication number
- EP0314721B1 EP0314721B1 EP88903826A EP88903826A EP0314721B1 EP 0314721 B1 EP0314721 B1 EP 0314721B1 EP 88903826 A EP88903826 A EP 88903826A EP 88903826 A EP88903826 A EP 88903826A EP 0314721 B1 EP0314721 B1 EP 0314721B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- measuring
- gun
- alignment
- guns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 75
- 238000009434 installation Methods 0.000 claims abstract description 12
- 238000012937 correction Methods 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 25
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 9
- 238000003384 imaging method Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000010972 statistical evaluation Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/32—Devices for testing or checking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/32—Devices for testing or checking
- F41G3/323—Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G5/00—Elevating or traversing control systems for guns
- F41G5/26—Apparatus for testing or checking
Definitions
- the invention is in the field of error measurement and error compensation and relates to a method for determining and correcting errors from mechanical tolerance deviations or changes in the mountings of fire control and weapon systems and their beddings, with the purpose of achieving a precise mutual alignment of fire control and Weapon systems.
- Alignment errors are errors that contain a deviation from a defined (common) geometry, regardless of whether these errors occur during installation or after installation due to changes in the base, as can be the case with ships, for example.
- Alignment errors caused by mechanical inaccuracies must first be measured to correct them, then corrected and possibly subsequently measured again and possibly corrected to detect time-dependent errors.
- the aim of the invention is to provide an alignment method with a simple method that can be used as often as required to determine the deviations and to correct them for the purpose of correcting alignment errors. It should also be possible with the method according to the invention to also detect and correct time-dependent errors (slow changes).
- the aim of the invention is to be able to measure system deviations from a defined (ideal) geometry and to provide the values obtained for the calculation of the control variables for the carriage servos and to use them in shooting operation.
- the invention is derived from the following idea: It is known that mechanically caused alignment errors of the components of inertial navigation devices can not only be corrected mechanically (adjusted, adjusted), but also in a computationally compensatory procedure.
- the mechanical errors determined by measurement for example the deviation from the ideal orthogonality of the main axes, as self-parameters, which are something like "personal” error sizes, are directly linked to control and / or regulation data and in real-time processing by means of compensating control corrected.
- the fault data inherent in a mechanical device are given to it, for example in the form of a protocol, and can be used directly in terms of calculation.
- This type of procedure is known and is used in conjunction with the "strapdown inertial navigation" technique, which means "tied inertial navigation technology".
- US-A-3955292 shows an application to practice shooting without ammunition.
- the guns of an anti-aircraft battery are tracked by a target tracking device without reserve.
- the target is provided with a special reflector for the laser beams.
- a laser transmitter / receiver mounted on the gun and aligned with the shooting axis emits pulses and receives reflected pulses.
- the device makes it possible to determine theoretical hits. However, an angle measurement is not provided and therefore no quantitative information about the orientation of the devices is possible.
- a zero test is now carried out on the same measurement target with two devices provided with measuring devices, a deviation is observed for each measurement, which contains device and system errors, e.g. assembly errors.
- the zero test thus determines an observable overall error composed of different error components.
- a zero test is understood to be a number of measurements in different spatial directions.
- the alignment error vector, the scalar components of which are the various device and system errors taken into account, can then be calculated from the deviations determined.
- Fire control devices and guns are manufactured with economically viable, normal tolerances and precisely measured before installation on the bedding surfaces, if possible at the place of manufacture. Mechanical adjustment devices are not to be provided. The normal mechanical tolerances (specifications) result in deviations from the desired geometry that are too great with regard to the required precision. However, from now on, the precisely measured deviations should be able to be taken into account electronically (using a computer), both in measuring and in shooting.
- the alignment measurements i.e. the determination of the positions of the bedding in relation to each other with the usual measuring accuracy (i.e. alignment measurements that measure the original rough position of approx. one angular degree with a measuring accuracy of approx. 2 angular minutes). From now on, the results of these alignment measurements will also be taken into account in the measuring and shooting operation.
- the subsequent fine measurement in measurement mode is independent of the ship's position and can be carried out at sea. All devices involved have target measurement sensors which, taking into account the results of parts 1 and 2, measure a common measurement target in different positions relative to the devices. From a sufficient number of positional deviations determined in different directions, the remaining inaccuracies not recorded in the measurement from part 2 are determined with a measuring accuracy of a few tenths of an angular minute in a kind of regression or error compensation calculation and from then on are also taken into account in measuring and shooting operation.
- part 3 Repeated execution of part 3, among other things, enables slow changes in the ship's geometry, which also lead to alignment errors, to be determined and corrected. These changes arise, for example, from loading and unloading the ship and are usually reversible. Permanent changes due to external influences such as accruing, bumping, strong shocks, but also normal aging can be determined and taken into account. With the method according to the invention, it is possible to maintain a high level of precision in the fire control throughout the entire life of the ship. The particular advantage of this measurement mode is that it can be carried out on the high seas without, as is usually the case in Part 2, decommissioning the ship.
- the assembly devices for example the mount of a fire control device (sensor) or a weapon system (effector). are also manufactured with the usual tolerances and then measured (still in the factory) and the own parameters determined.
- highly precise measuring equipment is used so that the results obtained and therefore the parameters are within the required overall tolerances.
- a gain in precision is easier to achieve by measuring the dimensions and taking them into account than by narrow manufacturing tolerances and assembly instructions.
- the evaluation of the zero test measurements should be limited to as few parameters as possible. It follows that as many own parameters as possible are determined beforehand with sufficient accuracy - still in the factory. In this way, the time-invariant system parameters can be treated.
- the geometry of the superstructures on the ship i.e. the alignment of the assembly devices with each other changes over time or only occasionally. It contains the parameters which indicate the relationship between the individual bodywork devices and that of the bodybuilding devices to the ship, for example orientations, inclinations or inclinations etc. They are monitored with the aid of the method according to the invention and the deviations which occur over time are compensated accordingly .
- a common measurement target is measured by all sensors of the bodywork device, independent of the ship coordinates. These measurements result in e.g. Deviations from the common target observable on the gun, which are the result of the remaining alignment errors, taking into account the parameters measured so far.
- a peculiarity of the method can also be seen in the fact that, in addition to determining the parameters, an assessment of the system quality is possible.
- the residual errors resulting from e.g. deviations observed on the gun after application of the results from part 3 still remain, calculated and statistically evaluated.
- the residual errors are a consequence of the fact that on the one hand only the most important, but not all, parameters are estimated and taken into account, and on the other hand that the measuring equipment is not ideal.
- Statistical criteria for the system quality are derived from the remaining errors.
- the tracking sensors of the fire control devices and TV cameras arranged on the guns are used as measuring equipment.
- the guns can of course also be provided with other sensors (for example lasers); however, it is important that the line of sight of the selected sensor is in a precisely known, preferably determined by the factory measurements, fixed position to the line of fire of the associated gun, for example in parallel.
- the common measurement target is now measured with these sensors, ie the deviations in the position of the measurement target as measured by the various sensors in relation to one another are determined.
- the target measurement sensor of the target tracking device can determine the position of the common measurement target and readjust the associated gun. In the target measuring sensor of the gun the position between the target and the sight line is immediately visible.
- the gun can also be equipped with directional means and independently pursue the common measurement target and determine its position; that is, it is a target tracking device itself. The storage between independent target tracking devices results from the difference between the measured locations of the measurement target.
- a preferred embodiment of a target measurement sensor for a gun is a TV camera with a fixed focal length and depth of field to infinity (fixed focus TV camera) and with a two-dimensional arrangement of light-sensitive recording cells in the image plane, for example so-called charge coupled devices (CCD array).
- CCD array charge coupled devices
- Such a camera has the advantage of high dimensional accuracy without using a control device.
- the image captured in this way can be scaled and calibrated.
- a front lens can be used to focus on targets in the close range (less than 100 m).
- the storage measurement is advantageously carried out by measuring a calibrated television image from a camera of the type mentioned above.
- the camera's line of sight which is in a fixed, known direction to the firing line or sensor line - for example parallel to it - is marked by a Crosshair marked.
- a mark is also shown, which can be positioned with the aid of a joystick or similar means for moving a pointer onto a screen (mouse, trackball, pointer deflection keys).
- the target now generally appears on the monitor image with a certain amount of crosshairs to be registered. Registration is done by positioning the marker on the target and then pressing a key switch; the current file, which is known from the brand generator, is saved.
- the quality of the measurement depends on the "visibility" of the measurement target for the various sensors used in the system. If, for example, the target is tracked with radar means and measured in a TV image from a gun camera, it is important that the center of gravity of the target is known and visible in the TV image. Just like that When using IR sensors, the aim should be that the IR focus is defined. Suitable targets include Lüneburglinsen, radar angle mirrors with heating and lighting, etc.
- a radar reflecting or for the sensors (FLIR, laser) "visible" target body is guided as a common measuring target, for example by means of a helicopter at different heights around the ship at sea and constantly measured by the target tracking sensor.
- the distance is preferably chosen to be approximately 1.5 km, the elevation preferably varies between 5 and 70 degrees.
- the measurement target must be placed in different positions relative to the ship. This can be done, for example, by means of a helicopter, which carries the target body Z on an approximately 80 m long suspension cable 12. Starting at a height of approx. 150 m, the helicopter circles the ship, with one or more target tracking sensors tracking and measuring the target.
- the computer determines the alignment errors, for example between radar sensor axes and gun sensor axes.
- the alignment error vector can be determined more and more precisely and continuously taken into account by means of a recursion calculation that is constantly running or a repeated regression calculation. The errors remaining from the rough alignment according to part 2 are eliminated. The deviations can be shown in a diagram.
- a suspected, time-independent error for example, can also be checked for its actual time independence, since the all-round target measurements can be repeated at any time intervals.
- Figure 1 shows a setup of three sensor groups G, T and R. These are a search radar R, two aiming devices (tracking radar) T1, T2 and three computer-controlled guns G1, G2 and G3. All of these construction devices are in their beddings and are roughly aligned mechanically. Possible alignment errors are on the one hand the tilt angles Tx, Ty, Tz, small inclination angles of the bedding with respect to the ship coordinate system around the axes x or y or z, as shown in a schematic representation for different devices in FIG. 2, on the other hand the small twists of the coordinate system of the upper mount compared to the ideal coordinate system, originating from eg Residual errors from the measurements according to part 1 of the procedure.
- one or more alignment error vectors B11 (gun 1 to aiming device 1), B12 (gun 1 to aiming device 2), B21, B22, B31, B32, A1 (aiming device 1 to circular search radar), A2 (aiming device 2 to search radar).
- the measurements of the data sets from which the alignment error vectors are calculated can be nested in time.
- a specific alignment error vector, for example B12 results for the gun 1, for example, in the tilt with respect to T2 and the zero offset in elevation of the sensor sight line.
- FIG. 3 This is shown schematically in an example in FIG. 3, in which a gun G3 with a TV sensor B, a straightening device T2 that controls the gun by means of control data and a helicopter 10 with a measurement target Z attached to the suspension cable 12, for example, are shown.
- the two attachments, the aiming device and the gun are on deck S in their beddings and, as I said, are roughly aligned mechanically. This rough location was measured with the usual accuracy according to part 2 of the procedure and has been taken into account since then.
- the own parameters of the mountings which are measured as precisely as possible (part 1 of the procedure), are known and also included.
- the straightening device T2 controls the gun G3 via data or signal lines 11. With this arrangement, the alignment error vector B32 according to FIG. 1 is determined.
- the sensor sight line of the gun (not the firing line) is automatically aimed as best as possible at the target.
- the cross point of the crosshair points in the direction in which the measurement target is expected.
- the measurement target in its actual position is generally be visible with a certain offset d from the cross point of the crosshair, in Fig. 4A in a schematic representation e.g. in the upper left quadrant of the picture.
- This immediately visible position error is the result of all kinds of system errors, such as mechanical tolerances, residual errors in the rough position measurement, target tracking errors, etc.
- the deviations between the gun line of sight, represented by the crosshairs, and the measurement target are recorded at intervals of a few seconds and together with the target data of the Stored target continuously moved in space by aligning a measuring mark with the measuring target image using the joystick and initiating storage of the data by pressing a trigger button.
- the data set of measurements recorded in this way can be e.g. as illustrated in FIG. 4B with 8 measuring points.
- Each new measurement value is immediately included in the calculation of the alignment error vector.
- Measured values from different directions of the measurement target relative to the aiming device and the gun converge the components of the alignment error vector.
- a statistical evaluation of the data set enables an indication of the quality of the result.
- the alignment error vector After completing a series of measurements, when the alignment error vector has been determined with sufficient accuracy, it is added to the previous value and the new value is used from then on, both in measuring and in shooting operation.
- FIG. A directional device T2 a gun G3 with TV sensor and a data processing system (fire control computer) DV are connected as shown. From a hierarchical perspective, the computer is the data manager and data converter for the straightening device T2. The aiming device itself supplies target data for one or more guns.
- the same procedure is used to determine the alignment error vector A2 between the search radar R and the directional device T2, only the search radar only evaluates the side angle here.
- the measured value can be recorded automatically, since both devices track the measurement target independently of one another and deliver target data.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Description
Die Erfindung liegt auf dem Gebiet der Fehlermessung und Fehlerkompensation und betrifft ein Verfahren zur Bestimmung und Korrektur von Fehlern aus mechanischen Toleranzabweichungen bzw. Veränderungen bei Lafetten von Feuerleit- und Waffenanlagen und deren Bettungen, mit dem Zweck der Erzielung einer präzisen gegenseitigen Ausrichtung von Feuerleit- und Waffenanlagen.The invention is in the field of error measurement and error compensation and relates to a method for determining and correcting errors from mechanical tolerance deviations or changes in the mountings of fire control and weapon systems and their beddings, with the purpose of achieving a precise mutual alignment of fire control and Weapon systems.
Das Zusammenwirken von Feuerleitanlagen unter sich, von Feuerleitanlagen und durch diese gesteuerte Waffenanlagen und von Waffenanlagen unter sich, welche Anlagen koordinatenmässig zueinander in Beziehung stehen (müssen), wird in der Regel durch sogenannte Ausrichtfehler beeinträchtigt. Ausrichtfehler sind Fehler, die eine Abweichung von einer definierten (gemeinsamen) Geometrie beinhalten, egal, ob diese Fehler beim Einbau geschehen oder nach dem Einbau durch Veränderungen der Unterlage, wie dies bspw. bei Schiffen der Fall sein kann.The interaction of fire control systems among themselves, between fire control systems and weapon systems controlled by them, and between weapon systems among themselves, which systems are (must) coordinate in relation to one another, is generally impaired by so-called alignment errors. Alignment errors are errors that contain a deviation from a defined (common) geometry, regardless of whether these errors occur during installation or after installation due to changes in the base, as can be the case with ships, for example.
Durch mechanische Ungenauigkeiten bewirkte Ausrichtfehler müssen zu ihrer Behebung zuerst gemessen, anschliessend korrigiert und evtl. zur Erfassung zeitabhängiger Fehler nachträglich wieder gemessen und möglicherweise korrigiert werden. Es ist Ziel der Erfindung, ein Ausrichtverfahren mit einem einfachen, beliebig oft einsetzbaren Verfahren zur Bestimmung der Abweichungen und zur Korrektur derselben zwecks Behebung von Ausrichtfehlern anzugeben. Es soll ferner mit dem Verfahren gemäss Erfindung möglich sein, auch zeitabhängige Fehler (langsame Veränderungen) zu erfassen und zu korrigieren.Alignment errors caused by mechanical inaccuracies must first be measured to correct them, then corrected and possibly subsequently measured again and possibly corrected to detect time-dependent errors. The aim of the invention is to provide an alignment method with a simple method that can be used as often as required to determine the deviations and to correct them for the purpose of correcting alignment errors. It should also be possible with the method according to the invention to also detect and correct time-dependent errors (slow changes).
Letztlich ist es das Ziel der Erfindung, Systemabweichungen von einer definierten (idealen) Geometrie messen zu können und die gewonnenen Werte für die Berechnung der Steuergrössen für die Lafettenservos bereitzustellen und im Schiessbetrieb zu verwenden.Ultimately, the aim of the invention is to be able to measure system deviations from a defined (ideal) geometry and to provide the values obtained for the calculation of the control variables for the carriage servos and to use them in shooting operation.
Dieses Ziel wird durch die im kennzeichnenden Teil des Verfahrensanspruchs 1 und des Vorrichtungsanspruchs 9 definierte Erfindung erreicht.This aim is achieved by the invention defined in the characterizing part of method claim 1 and device claim 9.
Die Erfindung leitet sich aus folgender Idee ab: Es ist bekannt, dass mechanisch bedingte Ausrichtfehler der Komponenten von Trägheits-Navigationsgeräten nicht nur mechanisch (justiert, abgeglichen), sondern auch in einem rechnerisch-kompensatorischen Vorgehen korrigiert werden können. Dazu werden die durch Messung ermittelten mechanischen Fehler, bspw. die Abweichung von der idealen Orthogonalität der Hauptachsen, als Eigenparameter, das sind so etwas wie "persönliche" Fehlergrössen, direkt mit Steuerungs- und/oder Regelungsdaten verknüpft und in Echtzeitverarbeitung mittels kompensierender Steuerung/Regelung korrigiert. Die einer mechanischen Vorrichtung eigenen Fehlerdaten werden dieser bspw. in Form eines Protokolls mitgegeben und sind rechnerisch direkt einsetzbar. Diese Art Vorgehen ist bekannt und wird angewendet in Verbindung mit der "strapdown inertial navigation" Technik, das bedeutet soviel wie "gefesselte Trägheits-Naviagationstechnik".The invention is derived from the following idea: It is known that mechanically caused alignment errors of the components of inertial navigation devices can not only be corrected mechanically (adjusted, adjusted), but also in a computationally compensatory procedure. For this purpose, the mechanical errors determined by measurement, for example the deviation from the ideal orthogonality of the main axes, as self-parameters, which are something like "personal" error sizes, are directly linked to control and / or regulation data and in real-time processing by means of compensating control corrected. The fault data inherent in a mechanical device are given to it, for example in the form of a protocol, and can be used directly in terms of calculation. This type of procedure is known and is used in conjunction with the "strapdown inertial navigation" technique, which means "tied inertial navigation technology".
Eine entsprechende Anwendung auf die Bettung der Geräte der Feuerleitsysteme und Waffenanlagen auf einem Kampfschiff ist aus der GB-A-2112965 bekannt.A corresponding application to the bedding of the devices of fire control systems and weapon systems on a battleship is known from GB-A-2112965.
Des weiteren ist aus der Flab-Artillerie ein sogenannter Zero-Test bekannt, bei welchem unter Ausschaltung dynamischer Kompensationen (Vorhalt) und ballistischer Einflüsse die Ausrichtung von Geschützen und Richtmitteln auf ein gemeinsames Ziel überprüft wird.Furthermore, a so-called zero test is known from the Flab artillery, in which the alignment of guns and aiming devices is checked for a common target with the exclusion of dynamic compensations (lead) and ballistic influences.
Die US-A-3955292 zeigt hierzu eine Anwendung auf ein Uebungsschiessen ohne Munition. Die Geschütze einer Fliegerabwehr-Batterie werden von einem Zielverfolgungsgerät ohne Vorhalt dem Ziel nachgesteuert. Das Ziel ist mit einem speziellen Reflektor für die Laserstrahlen versehen. Ein am Geschütz montierter, zur Schiessachse ausgerichteter Laser-Sender/-Empfänger gibt Impulse ab und empfängt reflektierte Impulse. Die Vorrichtung ermöglicht es, theoretische Treffer festzustellen. Eine Winkelmessung ist allerdings nicht vorgesehen und daher sind auch keine quantitativen Angaben über die Ausrichtung der Geräte möglich.US-A-3955292 shows an application to practice shooting without ammunition. The guns of an anti-aircraft battery are tracked by a target tracking device without reserve. The target is provided with a special reflector for the laser beams. A laser transmitter / receiver mounted on the gun and aligned with the shooting axis emits pulses and receives reflected pulses. The device makes it possible to determine theoretical hits. However, an angle measurement is not provided and therefore no quantitative information about the orientation of the devices is possible.
Wird nun mit jeweils zwei mit Messmitteln versehenen Geräten ein Zero-Test an einem gleichen Messziel durchgeführt, so beobachtet man für jede Messung eine Abweichung, die Geräte- und Systemfehler, bspw. Montagefehler, enthält. Der Zero-Test ermittelt also einen aus verschiedenen Fehlerkomponenten zusammengesetzten, beobachtbaren Gesamtfehler. Als Zero-Test wird für die Anwendung gemäss Erfindung eine Anzahl Messungen in verschiedenen Raumrichtungen verstanden. Aus den dabei ermittelten Abweichungen lässt sich dann der Ausrichtfehlervektor errechnen, dessen skalare Komponenten die verschiedenen berücksichtigten Geräte- und Systemfehler sind.If a zero test is now carried out on the same measurement target with two devices provided with measuring devices, a deviation is observed for each measurement, which contains device and system errors, e.g. assembly errors. The zero test thus determines an observable overall error composed of different error components. For the application according to the invention, a zero test is understood to be a number of measurements in different spatial directions. The alignment error vector, the scalar components of which are the various device and system errors taken into account, can then be calculated from the deviations determined.
Es ist nun wichtig, dass für die nachfolgende Diskussion eines Ausführungsbeispiels des erfindungsgemässen Mess- und Steuerverfahrens zwischen Schiessbetrieb und dem Messbetrieb (das ist die Durchführung des Messverfahrens) klar unterschieden wird. Beim Schiessbetrieb werden die aus dem Messverfahren gewonnenen Werte zur Nachführung der Lafetten mitverwendet, indem sie in den normalen ballistischen und geometrischen Berechnungen berücksichtigt werden. Der Messbetrieb hingegen ignoriert alle ballistischen Aspekte und befasst sich nur mit der Geometrie der Messaxen im Raum, d.h. deren gegenseitigem Bezug und deren Abweichungen von der gewünschten Geometrie. Im Messbetrieb werden also Abweichungen ermittelt, und daraus wird der gesuchte Ausrichtfehlervektor errechnet und bereitgestellt zur schliesslichen Verwendung bei der Ansteuerung der Lafetten während des Schiessbetriebs.It is now important that for the subsequent discussion of an exemplary embodiment of the measurement and control method according to the invention, a clear distinction is made between shooting operation and measurement operation (that is, the implementation of the measurement method). During shooting, the values obtained from the measuring process are used to track the gun carriages by taking them into account in the normal ballistic and geometric calculations. The measuring mode, however, ignores all ballistic aspects and deals only with the geometry of the measuring axes in space, ie their mutual relationship and their deviations from the desired geometry. Deviations are thus determined in the measuring operation, and from this the sought alignment error vector is calculated and made available for the final use in the control of the mountings during the shooting operation.
Als konkretes Beispiel für die Anwendung der Erfindung wird im folgenden das Vorgehen an einem Kampfschiff erläutert.The procedure on a battleship is explained below as a concrete example of the application of the invention.
Alle auf Lafetten montierten und in Bettungen plazierten Feuerleitgeräte und Geschütze sowie die Bettungen selbst weisen normale mechanische Toleranzen auf.All fire control devices and guns mounted on the carriage and placed in the bedding as well as the bedding itself have normal mechanical tolerances.
Feuerleitgeräte und Geschütze werden mit wirtschaftlich tragbaren, normalen Toleranzen gefertigt und vor der Montage auf den Bettungsflächen, möglichst noch am Herstellungsort, exakt vermessen. Mechanische Justiervorrichtungen sind nicht vorzusehen. Die normalen mechanischen Toleranzen (Vorgaben) ergeben bezüglich der geforderten Präzision noch zu grosse Abweichungen von der gewünschten Geometrie. Jedoch sollen die exakt vermessenen Abweichungen fortan sowohl im Mess- wie auch im Schiessbetrieb elektronisch (mittels Rechner) berücksichtigt werden können.Fire control devices and guns are manufactured with economically viable, normal tolerances and precisely measured before installation on the bedding surfaces, if possible at the place of manufacture. Mechanical adjustment devices are not to be provided. The normal mechanical tolerances (specifications) result in deviations from the desired geometry that are too great with regard to the required precision. However, from now on, the precisely measured deviations should be able to be taken into account electronically (using a computer), both in measuring and in shooting.
Nach Installation der Feuerleitgeräte und Geschütze in ihren Bettungen auf dem Schiff, bspw. noch im Dock, werden unter Berücksichtiung der schon bekannten Messergebnisse die Ausrichtmessungen, d.h. die Bestimmung der Lagen der Bettungen zueinander, mit der üblichen Messgenauigkeit (also Ausrichtmessungen, die die ursprüngliche Groblage von ca. einem Winkelgrad mit einer Messgenauigkeit von ca. 2 Winkelminuten erfassen) durchgeführt. Die Ergebnisse dieser Ausrichtmessungen werden ebenfalls fortan im Mess- und Schiessbetrieb rechnerisch berücksichtigt.After installing the fire control devices and guns in their beddings on the ship, e.g. still in the dock, taking the known measurement results into account, the alignment measurements, i.e. the determination of the positions of the bedding in relation to each other with the usual measuring accuracy (i.e. alignment measurements that measure the original rough position of approx. one angular degree with a measuring accuracy of approx. 2 angular minutes). From now on, the results of these alignment measurements will also be taken into account in the measuring and shooting operation.
Die im Messbetrieb nun folgende Feinmessung ist schiffslageunabhängig und kann auf See ausgeführt werden. Alle einbezogenen Geräte tragen Zielmessensoren, welche unter Berücksichtigung der Ergebnisse von Teil 1 und 2 ein gemeinsames Messziel in relativ zu den Geräten verschiedenen Positionen vermessen. Aus einer ausreichenden Zahl in unterschiedlichen Richtungen ermittelter Lageabweichungen werden in einer Art Regressions- oder Fehlerausgleichsrechnung auch die restlichen, bei der Messung aus Teil 2 nicht erfassten Ungenauigkeiten mit einer Messgenauigkeit von wenigen Zehntel Winkelminuten ermittelt und fortan im Mess- und Schiessbetrieb ebenfalls berücksichtigt.The subsequent fine measurement in measurement mode is independent of the ship's position and can be carried out at sea. All devices involved have target measurement sensors which, taking into account the results of parts 1 and 2, measure a common measurement target in different positions relative to the devices. From a sufficient number of positional deviations determined in different directions, the remaining inaccuracies not recorded in the measurement from part 2 are determined with a measuring accuracy of a few tenths of an angular minute in a kind of regression or error compensation calculation and from then on are also taken into account in measuring and shooting operation.
Durch wiederholte Duchführung des Teils 3 sind unter anderem langsame Veränderungen in der Schiffsgeometrie, die auch zu Ausrichtfehlern führen, ermittelbar und korrigierbar. Diese Veränderungen entstehen bspw. durch Be- und Entladen des Schiffes und sind in der Regel reversibel. Bleibende Veränderungen durch Fremdeinwirkung wie Auflaufen, Anstossen, starke Erschütterungen, aber auch die normale Alterung können festgestellt und mitberücksichtigt werden. Mit dem erfindungsgemässen Verfahren ist es möglich, eine hohe Präzision der Feuerleitung während der ganzen Schiffslebensdauer aufrechtzuerhalten. Der besondere Vorteil dieses Messbetriebs besteht darin, dass er auf hoher See erfolgen kann, ohne, wie im Teil 2 üblicherweise vorgegangen wird, das Schiff stillzulegen.Repeated execution of part 3, among other things, enables slow changes in the ship's geometry, which also lead to alignment errors, to be determined and corrected. These changes arise, for example, from loading and unloading the ship and are usually reversible. Permanent changes due to external influences such as accruing, bumping, strong shocks, but also normal aging can be determined and taken into account. With the method according to the invention, it is possible to maintain a high level of precision in the fire control throughout the entire life of the ship. The particular advantage of this measurement mode is that it can be carried out on the high seas without, as is usually the case in Part 2, decommissioning the ship.
Wie eingangs schon erwähnt, weisen alle mechanisch hergestellten Teile wie Einbauvorrichtung und Bettungen mechanische Toleranzen auf, aber sie bestimmen die Genauigkeit dieses Systems während des Schiessbetriebs nicht mehr, da im (Fein-) Messbetrieb gewonnene Ausrichtfehlerdaten im Feuerleitrechner abgespeichert werden, um sie fortan bei den Berechnungen von Koordinaten zu berücksichtigen. Sie haben eine die Fehlausrichtung in Echtzeit korrigierende Wirkung und können von Zeit zu Zeit neu gemessen und den sich verändernden masslichen Verhältnissen eines Schiffes nachgeführt werden.As already mentioned at the beginning, all mechanically produced parts such as the installation device and bedding have mechanical tolerances, but they no longer determine the accuracy of this system during shooting operation, since alignment (error) data obtained in (fine) measuring mode are stored in the fire control computer so that they can be used from then on Consider calculations of coordinates. They have a real-time correcting effect on misalignment and can be remeasured from time to time and adjusted to the changing dimensions of a ship.
Selbstverständlich sind nicht alle mechanischen Abmessungen und deren Toleranzen von gleicher Wichtigkeit im Hinblick auf die Ausrichtgenauigkeit, wobei auch zu beachten ist, dass die einen Werkstücke sehr leicht innerhalb sehr enger Toleranzen gefertigt werden können, andere dagegen nur mit grossem Aufwand oder gar nicht.Of course, not all mechanical dimensions and their tolerances are of equal importance with regard to the alignment accuracy, whereby it should also be noted that the one workpieces are very light within very tight tolerances can be manufactured, others, however, only with great effort or not at all.
Ganz generell können drei Gruppen von Werkstücken unterschieden werden, charakterisiert durch den Einfluss ihrer Toleranzen auf die Systemgüte:In general, three groups of workpieces can be distinguished, characterized by the influence of their tolerances on the system quality:
Werkstücke mit Abmessungen, deren Herstellungstoleranzen so sind, dass sie die Systemgüte
- 1. nicht negativ beeinflussen. In diesen Fällen sind die masslichen Abweichungen vernachlässigbar;
- 2. zwar beeinträchtigen, jedoch nicht so stark, dass eine spezielle Berücksichtigung im einzelnen notwendig wäre. Es ergeben sich Ungenauigkeiten, welchen als statistische Grössen Rechnung getragen wird;
- 3. in unzulässigen Mass beeinträchtigen. In diesen Fällen werden Eigenparameter ermittelt durch Messungen, welche die nötige Genauigkeit aufweisen. Die Parameter werden als Dimension berücksichtigt.
- 1. do not influence negatively. In these cases, the significant deviations are negligible;
- 2. adversely affect, but not so much that a special consideration would be necessary in detail. There are inaccuracies which are taken into account as statistical values;
- 3. impair to an impermissible degree. In these cases, eigen parameters are determined by measurements that have the necessary accuracy. The parameters are considered as dimensions.
Diese Überlegungen gelten nicht nur für einzelne Werkstücke, sondern auch für zusammengebaute Einzelteile (Baugruppen), wobei die Messung im Fall der Gruppe 3 über alles erfolgt.These considerations apply not only to individual workpieces, but also to assembled individual parts (assemblies), whereby the measurement in the case of group 3 takes place over everything.
Die Aufbauvorrichtungen, bspw. die Lafette eines Feuerleitgeräts (Sensor) oder einer Waffenanlage (Effektor). werden ebenfalls mit den üblichen Toleranzen gefertigt und anschliessend (noch im Werk) genau ausgemessen und die Eigenparameter ermittelt. Dazu werden möglichst hochpräzise Messmittel verwendet, damit die ermittelten Resultate und damit auch die Parameter innerhalb der geforderten Gesamttoleranzen liegen. Ein Präzisionsgewinn ist durch Messung der Dimensionen und deren Berücksichtigung leichter zu erzielen als durch enge Fertigungstoleranzen und Montagevorschriften. Die Auswertung der Zero-Test-Messungen soll auf möglichst wenige Parameter beschränkt bleiben. Daraus folgt, dass möglichst viele Eigenparameter mit genügend hoher Genauigkeit vorweg - noch im Werk - bestimmt werden. Auf diese Weise können die zeitinvarianten Systemparameter behandelt werden.The assembly devices, for example the mount of a fire control device (sensor) or a weapon system (effector). are also manufactured with the usual tolerances and then measured (still in the factory) and the own parameters determined. For this purpose, highly precise measuring equipment is used so that the results obtained and therefore the parameters are within the required overall tolerances. A gain in precision is easier to achieve by measuring the dimensions and taking them into account than by narrow manufacturing tolerances and assembly instructions. The evaluation of the zero test measurements should be limited to as few parameters as possible. It follows that as many own parameters as possible are determined beforehand with sufficient accuracy - still in the factory. In this way, the time-invariant system parameters can be treated.
Die Geometrie der Aufbauten auf dem Schiff hingegen, d.h. die Ausrichtung der Aufbauvorrichtungen zueinander, verändert sich mit der Zeit oder nur gelegentlich. In ihr sind die Parameter enthalten, welche die Beziehung zwischen den einzelnen Aufbauvorrichtungen und jene der Aufbauvorrlchtungen zum Schiff angeben, bspw. Ausrichtungen, Neigungen oder Schiefen etc. Sie werden mit Hilfe des Verfahrens gemäss Erfindung überwacht und die mit der Zeit sich einstellenden Abweichungen entsprechend kompensiert.The geometry of the superstructures on the ship, however, i.e. the alignment of the assembly devices with each other changes over time or only occasionally. It contains the parameters which indicate the relationship between the individual bodywork devices and that of the bodybuilding devices to the ship, for example orientations, inclinations or inclinations etc. They are monitored with the aid of the method according to the invention and the deviations which occur over time are compensated accordingly .
Nach der Installation der Feuerleitgeräte und Geschütze in die Bettungen auf dem Schiff werden die üblichen Ausrichtarbeiten vorgenommen mit Klinometern, Theodoliten und so weiter, und eine Messung der Groblage gemäss Teil 2 wird durchgeführt.After installing the fire control devices and guns in the bedding on the ship, the usual alignment work is carried out with clinometers, theodolites and so on, and a measurement of the rough position according to part 2 is carried out.
Zur anschliessenden Feinmessung gemäss Teil 3, im wesentlichen ein Satz von Zero-Test-Messungen, wird, unter Berücksichtigung der Resultate der Werksmessung und der Groblagemessung, von allen Sensoren der Aufbauvorrichtung ein von den Schiffskoordinaten unabhängiges, gemeinsames Messziel vermessen. Diese Messungen ergeben die z.B. am Geschütz beobachtbaren Abweichungen vom gemeinsamen Ziel, die das Resultat der verbleibenden Ausrichtfehler, unter Berücksichtigung der bisher gemessenen Parameter, sind.For the subsequent fine measurement according to Part 3, essentially a set of zero test measurements, taking into account the results of the factory measurement and the rough position measurement, a common measurement target is measured by all sensors of the bodywork device, independent of the ship coordinates. These measurements result in e.g. Deviations from the common target observable on the gun, which are the result of the remaining alignment errors, taking into account the parameters measured so far.
Eine Besonderheit des Verfahrens ist auch darin zu sehen, dass nebst der Ermittlung der Parameter eine Beurteilung der Systemgüte möglich ist. Zu diesem Zweck werden die Restfehler, die aus den z.B. am Geschütz beobachteten Abweichungen nach Anwendung der Resultate aus Teil 3 noch verbleiben, berechnet und statistisch ausgewertet. Die Restfehler sind eine Folge davon, dass einerseits nur die wichtigsten, aber nicht sämtliche Parameter geschätzt und berücksichtigt werden und dass andererseits die Messmittel nicht ideal sind. Aus den Restfehlern werden also statistische Kriterien für die Systemgüte abgeleitet.A peculiarity of the method can also be seen in the fact that, in addition to determining the parameters, an assessment of the system quality is possible. For this purpose, the residual errors resulting from e.g. deviations observed on the gun after application of the results from part 3 still remain, calculated and statistically evaluated. The residual errors are a consequence of the fact that on the one hand only the most important, but not all, parameters are estimated and taken into account, and on the other hand that the measuring equipment is not ideal. Statistical criteria for the system quality are derived from the remaining errors.
Zur Feinmessung mit Hilfe eines Zero-Tests werden als Messmittel die Verfolgungssensoren der Feuerleitgeräte und an den Geschützen angeordnete TV-Kameras verwendet. Die Geschütze können natürlich auch mit anderen Sensoren (bspw. Laser) versehen sein; wichtig ist jedoch, dass die Visierlinie des gewählten Sensors in genau bekannter, vorzugsweise durch die Werksmessungen ermittelter fester Lage zur Schusslinie des zugehörigen Geschützes, z.B. paralell, ist. Mit diesen Sensoren wird nun das gemeinsame Messziel vermessen, d.h., es werden die Abweichungen der Lage des Messziels, wie sie die verschiedenen Sensoren im Verhältnis zueinander vermessen, festgestellt. Hierfür kann der Zielmessensor des Zielverfolgungsgeräts die Lage des gemeinsamen Messziels bestimmen und das zugehörige Geschütz nachsteuern. Im Zielmessensor des Geschützes wird dann die Ablage zwischen Ziel und Visierlinie unmittelbar sichtbar. Es kann aber auch das Geschütz mit Richtmitteln versehen sein und das gemeinsame Messziel unabhängig verfolgen und dessen Lage betimmen; d.h., es ist selber ein Zielverfolgungsgerät. Die Ablage zwischen unabhängigen Zielverfolgungsgeräten ergibt sich aus der Differenz der gemessenen Lagen des Messziels.For fine measurement with the help of a zero test, the tracking sensors of the fire control devices and TV cameras arranged on the guns are used as measuring equipment. The guns can of course also be provided with other sensors (for example lasers); however, it is important that the line of sight of the selected sensor is in a precisely known, preferably determined by the factory measurements, fixed position to the line of fire of the associated gun, for example in parallel. The common measurement target is now measured with these sensors, ie the deviations in the position of the measurement target as measured by the various sensors in relation to one another are determined. For this purpose, the target measurement sensor of the target tracking device can determine the position of the common measurement target and readjust the associated gun. In the target measuring sensor of the gun the position between the target and the sight line is immediately visible. However, the gun can also be equipped with directional means and independently pursue the common measurement target and determine its position; that is, it is a target tracking device itself. The storage between independent target tracking devices results from the difference between the measured locations of the measurement target.
Eine bevorzugte Ausführungsform eines Zielmessensors für ein Geschütz ist eine TV-Kamera mit fester Brennweite und Schärfentiefe auf unendlich (Fixfokus-TV-Kamera) und mit einer zweidimensionalen Anordnung lichtempfindlicher Aufnahmezellen in der Bildebene, z.B. sogenannter charge coupled devices (CCD-Array). Eine solche Kamera hat den Vorteil hoher Masshaltigkeit ohne Verwendung einer Regeleinrichtung. Das so erfasste Bild lässt sich skalieren und eichen. Für das allfällige Scharfeinstellen auf Ziele im Nahbereich (unter 100 m) kann eine Vorsatzlinse dienen.A preferred embodiment of a target measurement sensor for a gun is a TV camera with a fixed focal length and depth of field to infinity (fixed focus TV camera) and with a two-dimensional arrangement of light-sensitive recording cells in the image plane, for example so-called charge coupled devices (CCD array). Such a camera has the advantage of high dimensional accuracy without using a control device. The image captured in this way can be scaled and calibrated. A front lens can be used to focus on targets in the close range (less than 100 m).
Die Ablagemessung erfolgt in vorteilhafter Weise durch das Ausmessen eines geeichten Fernsehbildes aus einer Kamera der obengenannten Art. Zu diesem Zweck ist die Visierlinie der Kamera, die in fester, bekannter Richtung zur Schusslinie bzw. Sensorlinie - bspw. parallel zu ihr - liegt, durch ein Fadenkreuz markiert. Weiter wird eine Marke eingeblendet, welche sich mit Hilfe eines Steuerknüppels oder ähnlicher Mittel zum Verschieben eines Zeigers auf einen Bildschirm (Maus, Rollkugel, Zeigerablenktasten) positionieren lässt. Diese Marken werden schaltungsmassig bei der Bildauswertung ab CCD generiert und nicht etwa erst bei der Wiedergabe auf dem Monitor eingeblendet, so dass die Masshaltigkeit gewährleistet ist.The storage measurement is advantageously carried out by measuring a calibrated television image from a camera of the type mentioned above. For this purpose, the camera's line of sight, which is in a fixed, known direction to the firing line or sensor line - for example parallel to it - is marked by a Crosshair marked. A mark is also shown, which can be positioned with the aid of a joystick or similar means for moving a pointer onto a screen (mouse, trackball, pointer deflection keys). These marks are generated in terms of circuitry when evaluating images from a CCD and are not only shown on the monitor during playback, so that the dimensional accuracy is guaranteed.
Im Zero-Test erscheint nun das Ziel im allgemeinen im Monitorbild mit einer gewissen Ablage vom Fadenkreuz, die es zu registrieren gilt. Die Registrierung erfolgt, indem die Marke auf das Ziel positioniert und dann ein Tastenschalter betätigt wird; dabei wird die momentane Ablage, die aus dem Markengenerator bekannt ist, abgespeichert.In the zero test, the target now generally appears on the monitor image with a certain amount of crosshairs to be registered. Registration is done by positioning the marker on the target and then pressing a key switch; the current file, which is known from the brand generator, is saved.
Die Qualität der Messung hängt ab von der "Sichtbarkeit" des Messziels für die verschiedenen, im System verwendeten Sensoren. Wird beispielsweise das Ziel mit Radarmitteln verfolgt und in einem TV-Bild einer Geschützkamera vermessen, so ist es wichtig, dass der Radarschwerpunkt des Messziels bekannt und im TV-Bild sichtbar ist. Genauso ist bei der Verwendung von IR-Sensoren anzustreben, dass der IR-Schwerpunkt definiert ist. Geeignete Messziele sind beispielsweise Lüneburglinsen, Radar-Winkelspiegel mit Heizung und Beleuchtung usw.The quality of the measurement depends on the "visibility" of the measurement target for the various sensors used in the system. If, for example, the target is tracked with radar means and measured in a TV image from a gun camera, it is important that the center of gravity of the target is known and visible in the TV image. Just like that When using IR sensors, the aim should be that the IR focus is defined. Suitable targets include Lüneburglinsen, radar angle mirrors with heating and lighting, etc.
Das erfindungsgemässe Vorgehen wird mit Hilfe der nachfolgenden Figuren in einer beispielsweisen Durchführungsart erläutert.
- Fig. 1
- zeigt in skizzenhafter Darstellung die gegenseitige Vernetzung von Sensoren und Effektoren bezüglich ihrer Lage und
- Fig. 2
- zeigt die Problematik der mechanischen Fehlausrichtung.
- Fig. 3
- zeigt eine Einzelbeobachtung bei der Feinmessung gemäss Erfindung und
- Fig. 4
- A/B zeigen einerseits das Resultat der Einzelbeobachtung gemäss Figur 3 und andererseits die Darstellung des Resultats eines ganzen Satzes von Beobachtungen einer Feinmessung.
- Fig. 5
- zeigt eine schematische Darstellung für Verfahrensdetails.
- Fig. 1
- shows in a sketchy representation the mutual networking of sensors and effectors with regard to their position and
- Fig. 2
- shows the problem of mechanical misalignment.
- Fig. 3
- shows a single observation in the fine measurement according to the invention and
- Fig. 4
- A / B show on the one hand the result of the individual observation according to FIG. 3 and on the other hand the representation of the result of an entire set of observations of a fine measurement.
- Fig. 5
- shows a schematic representation for process details.
Zunächst wird in einer gerafften Übersicht das Verfahren gemäss Vorgehen nach Teil 3 am Beispiel eines Kampfschiffes kurz diskutiert. Ein radarreflektierender bzw. für die Sensoren (FLIR, Laser) "sichtbarer" Zielkörper wird als gemeinsames Messziel z.B. mittels eines Helikopters in verschiedenen Höhen rund um das sich auf See befindende Schiff geführt und vom Zielverfolgungssensor ständig vermessen. Der Abstand wird vorzugsweise mit ungefähr 1.5 km gewählt, die Elevation vorzugsweise zwischen 5 und 70 Grad variiert. Das Messziel muss relativ zum Schiff in verschiedene Positionen gebracht werden. Dies kann beispielsweise durch einen Helikopter geschehen, der an einem ca. 80 m langen Tragseil 12 den Zielkörper Z trägt. Beginnend in einer Höhe von ca. 150 m, umkreist der Helikopter das Schiff, wobei mit einem oder mehreren Zielverfolgungssensoren das Messziel verfolgt und gemessen wird. Dieser Vorgang setzt sich in immer grösserer Höhe fort, wobei das Messziel ständig vermessen wird. Im Fall der Messung zwischen Richtgerät mit Radar (Zielverfolgungsradar) und Geschütz sind die Geschütze, von den Richtgeräten gesteuert, auf dasselbe Messziel gerichtet, welches durch die den Geschützen zugeordneten TV-Kameras beobachtet und angezeigt wird. Die aus den verschiedenen Messwinkeln sich ergebenden Messwerte sind Vergleichswerte zwischen jeweils zwei Sensoren. Der Computer ermittelt die Ausrichtfehler, bspw. zwischen Radarsensoraxen und Geschützsensoraxen. Durch eine ständig mitlaufende Rekursionsrechnung oder eine wiederholte Regressionsrechnung lässt sich der Ausrichtfehlervektor immer genauer ermitteln und laufend berücksichtigen. Die vom Grobausrichten gemäss Teil 2 verbliebenen Fehler werden eliminiert. In einem Diagramm können die Abweichungen abgebildet werden.First, the procedure according to Part 3 is briefly discussed using the example of a battleship in a nifty overview. A radar reflecting or for the sensors (FLIR, laser) "visible" target body is guided as a common measuring target, for example by means of a helicopter at different heights around the ship at sea and constantly measured by the target tracking sensor. The distance is preferably chosen to be approximately 1.5 km, the elevation preferably varies between 5 and 70 degrees. The measurement target must be placed in different positions relative to the ship. This can be done, for example, by means of a helicopter, which carries the target body Z on an approximately 80 m
Damit oder durch Anzeige von Kennziffern hat man eine ständige Kontrolle der Verbesserung der Präzision. Es kann auch, nach ermitteltem Wert für die vorgenannte Systemgüte, ein bspw. vermuteter, zeitunabhängiger Fehler auf seine tatsächlichen Zeitunabhängigkeiten geprüft werden, da die Rundum-Zielmessungen in beliebigen Zeitabständen wiederholt werden können.With this or by displaying code numbers, one has constant control of the improvement in precision. According to the determined value for the aforementioned system quality, a suspected, time-independent error, for example, can also be checked for its actual time independence, since the all-round target measurements can be repeated at any time intervals.
Weitere Details zur Erfindung ergeben sich aus der nachfolgenden Betrachtung anhand der Figuren.Further details on the invention result from the following consideration with reference to the figures.
Figur 1 zeigt eine Aufbauvorrichtung von drei Sensorgruppen G, T und R. Es sind dies ein Rundsuchradar R, zwei Richtgeräte (Zielverfolgungsradar) T1, T2 und drei rechnergesteuerte Geschütze G1, G2 und G3. Alle diese Aufbauvorrichtungen stehen in ihren Bettungen und sind mechanisch grob ausgerichtet. Mögliche Ausrichtfehler sind einerseits die Tiltwinkel Tx, Ty, Tz, kleine Neigungswinkel der Bettungen bezüglich des Schiffkoordinatensystems um die Achsen x bzw. y bzw. z, wie in schematischer Darstellung für verschiedene Geräte in Figur 2 gezeigt, andererseits die kleinen Verdrehungen des Koordinatensystems der Oberlafette gegenüber dem idealen Koordinatensystem, herrührend von z.B. Restfehlern aus den Messungen gemäss Teil 1 des Vorgehens.Figure 1 shows a setup of three sensor groups G, T and R. These are a search radar R, two aiming devices (tracking radar) T1, T2 and three computer-controlled guns G1, G2 and G3. All of these construction devices are in their beddings and are roughly aligned mechanically. Possible alignment errors are on the one hand the tilt angles Tx, Ty, Tz, small inclination angles of the bedding with respect to the ship coordinate system around the axes x or y or z, as shown in a schematic representation for different devices in FIG. 2, on the other hand the small twists of the coordinate system of the upper mount compared to the ideal coordinate system, originating from eg Residual errors from the measurements according to part 1 of the procedure.
Mit jeder Rundum-Zielmessung können einzelne oder mehrere Ausrichtfehlervektoren B11 (Geschütz 1 zu Richtgerät 1), B12 (Geschütz 1 zu Richtgerät 2), B21, B22, B31, B32, A1 (Richtgerät 1 zu Rundsuchradar), A2 (Richtgerät 2 zu Rundsuchradar) gewonnen werden. Die Messungen der Datensätze, aus welchen die Ausrichtfehlervektoren berechnet werden, können zeitlich ineinander verschachtelt werden. Ein bestimmter Ausrichtfehlervektor, bspw. B12, ergibt für das Geschütz 1 beispielsweise den Tilt gegenüber T2 und den Höhenwinkel-Nullversatz der Sensorvisierlinie.With each all-round target measurement, one or more alignment error vectors B11 (gun 1 to aiming device 1), B12 (gun 1 to aiming device 2), B21, B22, B31, B32, A1 (aiming device 1 to circular search radar), A2 (aiming device 2 to search radar). The measurements of the data sets from which the alignment error vectors are calculated can be nested in time. A specific alignment error vector, for example B12, results for the gun 1, for example, in the tilt with respect to T2 and the zero offset in elevation of the sensor sight line.
Das Vorgehen zur Ermittlung eines Ausrichtfehlervektors wird nun anhand einer einzelnen Geschütz-Richtgerät-Beziehung erklärt.The procedure for determining an alignment error vector is now explained using a single gun-aiming device relationship.
In einem Beispiel zeigt dies schematisch Figur 3, in der ein Geschütz G3 mit TV-Sensor B, ein das Geschütz mittels Steuerdaten steuerndes Richtgerät T2 und ein Helikopter 10 mit bspw. am Tragseil 12 angehängtem Messziel Z abgebildet sind. Die beiden Aufbauvorrichtungen Richtgerät und Geschütz stehen auf dem Deck S in ihren Bettungen und sind, wie gesagt, mechanisch grob ausgerichtet. Diese Groblage wurde mit üblicher Genauigkeit gemäss Teil 2 des Vorgehens ausgemessen und seitdem berücksichtigt. Die möglichst sehr genau ausgemessenen Eigenparameter der Lafetten (Teil 1 des Vorgehens) sind bekannt und ebenfalls einbezogen.This is shown schematically in an example in FIG. 3, in which a gun G3 with a TV sensor B, a straightening device T2 that controls the gun by means of control data and a helicopter 10 with a measurement target Z attached to the
Das Richtgerät T2 steuert über Daten- bzw. Signalleitungen 11 das Geschütz G3. Mit dieser Anordnung wird also der Ausrichtfehlervektor B32 gemäss Figur 1 ermittelt.The straightening device T2 controls the gun G3 via data or signal lines 11. With this arrangement, the alignment error vector B32 according to FIG. 1 is determined.
Auf Grund der vom Richtgerät ermittelten Zieldaten und unter Berücksichtigung aller bisher bekannten Parameter wird die Sensorvisierlinie des Geschützes (nicht die Schusslinie) automatisch bestmöglichst auf das Ziel gerichtet. Der Kreuzungspunkt des Fadenkreuzes zeigt also in die Richtung, in welcher das Messziel erwartet wird. Das Messziel in seiner tatsächlichen Lage wird i.a. mit einer gewissen Ablage d vom Kreuzungspunkt des Fadenkreuzes sichtbar sein, in Fig. 4A in schematischer Darstellung z.B. im linken oberen Quadranten des Bildes. Dieser unmittelbar sichtbare Lagefehler ist die Folge aller irgendwie gearteten Systemfehler, wie mechanische Toleranzen, Restfehler der Groblagemessung, Zielverfolgungsfehler usw. Die Abweichungen zwischen der GeschützVisierlinie, repräsentiert durch das Fadenkreuz, und dem Messziel werden in Abständen von wenigen Sekunden erfasst und zusammen mit den Richtdaten des laufend im Raum bewegten Ziels abgespeichert, indem eine Messmarke mittels Steuerknüppel mit dem Messzielbild zur Deckung gebracht und eine Abspeicherung der Daten durch Betätigen einer Auslösetaste veranlasst wird. Der so festgehaltene Datensatz von Messungen lässt sich, z.B. wie in Figur 4B mit 8 Messpunkten gezeichnet, veranschaulichen.Based on the target data determined by the aiming device and taking into account all previously known parameters, the sensor sight line of the gun (not the firing line) is automatically aimed as best as possible at the target. The cross point of the crosshair points in the direction in which the measurement target is expected. The measurement target in its actual position is generally be visible with a certain offset d from the cross point of the crosshair, in Fig. 4A in a schematic representation e.g. in the upper left quadrant of the picture. This immediately visible position error is the result of all kinds of system errors, such as mechanical tolerances, residual errors in the rough position measurement, target tracking errors, etc. The deviations between the gun line of sight, represented by the crosshairs, and the measurement target are recorded at intervals of a few seconds and together with the target data of the Stored target continuously moved in space by aligning a measuring mark with the measuring target image using the joystick and initiating storage of the data by pressing a trigger button. The data set of measurements recorded in this way can be e.g. as illustrated in FIG. 4B with 8 measuring points.
Jeder neue Messwert geht unmittelbar in die Berechnung des Ausrichtfehlervektors ein. Mit zunehmender Zahl von Messwerten aus verschiedenen Richtungen des Messzieles relativ zum Richtgerät und zum Geschütz konvergieren die Komponenten des Ausrichtfehlervektors. Eine statistische Auswertung des Datensatzes ermöglicht eine Angabe über die Güte des Resultats.Each new measurement value is immediately included in the calculation of the alignment error vector. With increasing number of Measured values from different directions of the measurement target relative to the aiming device and the gun converge the components of the alignment error vector. A statistical evaluation of the data set enables an indication of the quality of the result.
Nach Abschluss einer Messreihe, wenn der Ausrichtfehlervektor genügend genau bestimmt ist, wird dieser den bisherigen Wert zugeschlagen und fortan der neue Wert verwendet, sowohl im Mess- als auch im Schiessbetrieb.After completing a series of measurements, when the alignment error vector has been determined with sufficient accuracy, it is added to the previous value and the new value is used from then on, both in measuring and in shooting operation.
Solch ein Vorgang für eine beispielsweise Ermittlung des Ausrichtfehlervektors B32 ist in Figur 5 ablaufmässig dargestellt. Ein Richtgerät T2, ein Geschütz G3 mit TV-Sensor und eine Datenverarbeitungsanlage (Feuerleitcomputer) DV sind wie dargestellt miteinander verbunden. Hierarchisch gesehen, ist der Computer der Datenverwalter und Datenumrechner für das Richtgerät T2. Das Richtgerät selber liefert Zieldaten für eines oder mehrere Geschütze.Such a procedure for, for example, determining the alignment error vector B32 is shown in FIG. A directional device T2, a gun G3 with TV sensor and a data processing system (fire control computer) DV are connected as shown. From a hierarchical perspective, the computer is the data manager and data converter for the straightening device T2. The aiming device itself supplies target data for one or more guns.
Die verschiedenen Blöcke im Ablaufschema sind von A bis I durchbezeichnet und bedeuten folgendes bzw. arbeiten folgendermassen:
- A- ist die Zieldatenaufbereitung des Richtgeräts. Von dort wird die Zielposition gemeldet;
- B- ist im wesentlichen die Geschützsteuerung. Sie berücksichtigt u.a. die verschiedenen Parallaxen zwischen dem Sensor des Richtgeräts, dem Geschützsensor (TV) und dem Messziel sowie den aus I (weiter unten) gewonnenen Ausrichtfehlervektor zwischen den Lafetten des Richtgeräts T2 und des Geschützes G3;
- C- ermittelt den Geschütz-Datensatz, d.h. die Seiten- und Höhenwinkel;
- D- enthält die Messungen der Zielabweichung (Messziel/Fadenkreuz, Fig. 4);
- E- berechnet als Teil der Datenverarbeitunganlage mit Hilfe eines Programms laufend den Ausrichtfehlervektor aus den gesammelten Abweichungsdaten und Richtungen im Verlauf der Messungen (Messablauf während der Rundummessung);
- F- berechnet die Restfehler, deren Standardabweichungen und Mittelwerte sowie die Konvergenz der Messreihe;
- G- Stellt die verschiedenen Ergebnisse dar und ermöglicht die Abschätzung der durch die Korrektur erreichbaren Verbesserung;
- H- stellt die angewendeten Korrekturen in Form einer chronologischen Auflistung dar, wobei die neuen Ergebnisse die alten ergänzen. Die Darstellung dient als Benützerhilfsmlttel und kann für weitere Analysen protokolliert werden;
- I- speichert den wirksamen Ausrichtfehlervektor. Während des Messvorgangs werden (ständig) die vorhandenen alten Daten verwendet (alt bedeutet bisher ermittelter Ausrichtfehlervektor). Nach Abschluss des Messvorgangs wird der berechnete, neue Ausrichtfehlervektor, der z.B. infolge Schiffsdeformation seit der letzten Ermittlung ungleich null ist, zum bisher verwendeten Ausrichtfehlervektor kumuliert. Der kumulierte, neue Ausrichtfehlervektor B32 wird zu B zurückgeführt zur künftigen Verwendung im Mess- und Schiessbetrieb.
- A- is the target data preparation of the straightener. The target position is reported from there;
- B- is essentially gun control. It takes into account, among other things, the different parallaxes between the sensor of the aiming device, the gun sensor (TV) and the target, and the alignment error vector obtained from I (below) between the mountings of the aiming device T2 and the gun G3;
- C- determines the gun record, ie the side and elevation angles;
- D- contains the measurements of the target deviation (target / crosshair, Fig. 4);
- As part of the data processing system, E- continuously calculates the alignment error vector from the collected deviation data and directions in the course of the measurements using a program (measurement sequence during the all-round measurement);
- F- calculates the residual errors, their standard deviations and mean values as well as the convergence of the series of measurements;
- G- represents the various results and enables the improvement achievable by the correction to be estimated;
- H- shows the corrections applied in the form of a chronological list, with the new results supplementing the old ones. The illustration serves as a user aid and can be logged for further analysis;
- I- stores the effective alignment error vector. The existing old data are used (continuously) during the measuring process (old means the alignment error vector determined up to now). After completion of the measuring process, the calculated new alignment error vector, which has not been zero, for example due to ship deformation since the last determination, is cumulated to the alignment error vector previously used. The accumulated, new alignment error vector B32 is returned to B for future use in measuring and shooting operations.
Prinzipiell derselbe Ablauf dient der Ermittlung des Ausrichtfehlervektors A2 zwischen dem Rundsuchradar R und dem Richtgerät T2, nur wird hier vom Rundsuchradar nur der Seitenwinkel ausgewertet. Dafür kann die Messwertaufnahme automatisch erfolgen, da beide Geräte das Messziel unabhängig voneinander verfolgen und Zieldaten liefern.In principle, the same procedure is used to determine the alignment error vector A2 between the search radar R and the directional device T2, only the search radar only evaluates the side angle here. For this purpose, the measured value can be recorded automatically, since both devices track the measurement target independently of one another and deliver target data.
Claims (14)
- Process for the correction of alignment errors between carriages and thereon arranged units of gun fire control systems and weapon installations, utilizing equipment correction values ex factory and measuring values of a rough position of installed equipment, which has been measured with the gun fire control systems and the gun installations in their inoperative state, and their consideration in servo controls of the carriages, characterised by the following process stages:a: Installation of target measuring sensors for target angle determination (B, TV) on guns with servo-controlled carriages (G1, G2, G3) and alignment of the target-measuring sensor line of sight with the firing line of the gun;b: alignment of guns (G1, G2, G3) with target measuring sensors (B, TV) by means of a target tracking unit (T1, T2) and target tracking units (R, T1, T2) to a common measuring target (Z);c: detection of the difference (d) between the position of the measuring target (Z) and the position of the target measuring sensor line of sight in the target measuring sensor (B, TV) of the gun (G1, G2, G3) which is controlled by the target tracking unit (T1, T2), and detection of the difference between the position of the measuring target (Z) as detected by the target tracking unit (T1, T2) and that detected by an additional target tracking unit (R, T1, T2);
orb': alignment of guns (G1, G2, G3) with target measuring sensors and aiming devices and of target tracking units (R, T1, T2) to a common measuring target (Z);c': detection of the difference between the position of the measuring target (Z) as detected by the target measuring sensor and the aiming device of a gun (G1, G2, G3) or of another target tracking unit (R, T1, T2) and that detected by the target measuring sensor and aiming device of an additional gun (G1, G2, G3) or of another target tracking device (R, T1, T2);d: evaluation of said difference in position and establishment of an alignment error vector (Aj, Bij; i=1,2,3, j=1,2) for taking into account in the gun servo control;e: correction of control signals which occur in firing operations by means of an alignment error vector (Aj, Bij; i=1,2,3, j=1,2). - Process according to claim 1, characterised in that the detection of a plurality of spatially arranged measuring positions of the measuring target (Z) are provided for determining the alignment error vector (Aj, Bij, i=1,2,3, j=1,2) of a gun (G1, G2, G3).
- Process according to claim 2, characterised in that substantially equidistant lateral angles and/or elevations are selected for the measuring target positions relative to the gun to be aligned (G1, G2, G3).
- Process according to claim 2 or 3, characterised in that there is a relative movement between the measuring target (Z) and the gun installation to be measured.
- Process according to one of claims 2 to 4, characterised in that the measuring target (Z) is guided in space in specified paths.
- Process according to claim 5, characterised in that the measuring target (Z) is guided through space by a helicopter (10̸).
- Process according to one of claims 1 to 6, characterised in that, for the purpose of measuring the gun fire control systems and gun installations, each gun (G1, G2, G3) is aimed by each aiming unit (T1. T2) at the common measuring target (Z).
- Process according to one of claims 2 to 7, characterised in that the evaluation of the position deviation measurements includes a residual error analysis which delivers a quality value for each pairing of guns.
- Device for guns (G1, G2, G3) and target tracking devices (R, T1, T2) which are equipped with gun fire control systems and gun installations, for correcting alignment errors between carriages and equipment arranged thereon with a known rough position, which has been measured with the gun fire control systems and the gun installations in their inoperative state, and with storage and computer means for taking correcting value into account in servo controls of the carriages, characterised bya: target measuring sensors for detection of the target angle (B, TV), on guns (G1, G2, G3) with servo-controlled carriages, their target measuring sensor line of sight being aligned at a precisely known angle to the firing line of the gun (G1, G2, G3);b: target tracking devices (T1, T2) and thereto effectively connected servo-controlled guns (G1, G2, G3) with their target measuring sensors (B, TV) for detection of a common measuring target (Z) and for alignment of the gun (G1, G2, G3) with the measuring target (Z);
orb': target tracking devices (R, T1, T2) and guns (G1, G2, G3) equipped with target measuring sensors and aiming means for detection of a common measuring target (Z);c: means for the detection of a difference (d) between the position of the line of sight and the measuring target (Z) in the target measuring sensor (B, TV) of a gun (G1, G2, G3) which is servo-controlled by a target tracking device (T1, T2), and means for the detection of a difference between the position of the measuring target (Z), as detected by the target measuring sensor and aiming means of a gun (G1, G2, G3) or of another target aiming device (R, T1, T2), and the one detected by the target measuring sensor and aiming means of an additional gun (G1, G2, G3) or of another target tracking device (R, T1, T2);d: computer facilities (DV) for the evaluation of position differences (d) and for processing an alignment error vector (Aj, Bij; i=1,2,3, j=1,2) to be taken into account in the servo-control of the gun.e: computer facilities for the correction of control signals which occur in firing operations by means of an alignment error vector (Aj, Bij; i=1,2,3, j=1,2). - Device according to claim 9,characterised in that a fixed focus TV camera with CCD imaging element is used as target measuring sensor (TV).
- Device according to claim 9, characterised in that position differences (d) are entered by repositioning a mark in the indicator of the target measuring sensor (B, TV) towards the target (Z), in which respect the repositioning is carried out via movement devices on the operators panel, and the entry is carried out by key depression.
- Device according to claim 9, characterised in that the measuring target (Z) can be reached by the different types of target measuring sensors of all units and can be arbitrarily moved and directed in space.
- Device according to claim 12, characterised in that the measuring target (Z) has a large radar reflecting cross-section, the centre of which is defined and optically visible.
- Device according to claim 12 or 13, characterised in that the measuring target (Z) has a defined, optically visible infrared centre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1881/87 | 1987-05-15 | ||
CH188187 | 1987-05-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0314721A1 EP0314721A1 (en) | 1989-05-10 |
EP0314721B1 true EP0314721B1 (en) | 1993-09-08 |
Family
ID=4220767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88903826A Expired - Lifetime EP0314721B1 (en) | 1987-05-15 | 1988-05-02 | Alignment process for gun fire control device and gun fire control device for implementation of the process |
Country Status (6)
Country | Link |
---|---|
US (1) | US5208418A (en) |
EP (1) | EP0314721B1 (en) |
KR (1) | KR960014641B1 (en) |
DE (1) | DE3883916D1 (en) |
TR (1) | TR27014A (en) |
WO (1) | WO1988008952A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0577017B1 (en) * | 1992-06-27 | 2001-03-07 | Hollandse Signaalapparaten B.V. | Device and method for testing the dynamic behaviour of guns |
EP1152206A1 (en) | 2000-04-26 | 2001-11-07 | Oerlikon Contraves Ag | Method and device for correcting aiming errors between apparatuses |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5456157A (en) * | 1992-12-02 | 1995-10-10 | Computing Devices Canada Ltd. | Weapon aiming system |
DE19716199A1 (en) * | 1997-04-18 | 1998-10-22 | Rheinmetall Ind Ag | Procedure for aiming the weapon of a weapon system and weapon system for implementing the method |
CH694382A5 (en) * | 1998-07-31 | 2004-12-15 | Contraves Ag | A method for controlling at least one flight destination by means of a fire group, the fire group of at least two fire units and use of the fire group. |
CH695248A5 (en) * | 2000-12-19 | 2006-02-15 | Contraves Ag | Method and apparatus for correcting errors shooting. |
WO2002101318A2 (en) * | 2001-06-08 | 2002-12-19 | Beamhit, Llc | Firearm laser training system and method facilitating firearm training for extended range targets with feedback of firearm control |
ATE284526T1 (en) * | 2001-11-23 | 2004-12-15 | Contraves Ag | METHOD AND DEVICE FOR ASSESSING AIMING ERRORS OF A WEAPON SYSTEM AND USE OF THE DEVICE |
ATE310225T1 (en) * | 2001-11-23 | 2005-12-15 | Contraves Ag | METHOD AND DEVICE FOR ASSESSING AIMING ERRORS OF A WEAPON SYSTEM AND USE OF THE DEVICE |
DE50204077D1 (en) * | 2002-01-16 | 2005-10-06 | Contraves Ag | Method and apparatus for compensating shooting defects and system computers for weapon systems |
IL148452A (en) * | 2002-02-28 | 2007-08-19 | Rafael Advanced Defense Sys | Method and device for prevention of gimbal-locking |
PT1371931E (en) * | 2002-06-14 | 2006-12-29 | Contraves Ag | Method and device for determining an angular error and use thereof |
RU2234040C2 (en) * | 2002-09-25 | 2004-08-10 | Государственное унитарное предприятие "Конструкторское бюро приборостроения" | Method for adjustment of alignment of sighting device and rotating member |
US20050153262A1 (en) * | 2003-11-26 | 2005-07-14 | Kendir O. T. | Firearm laser training system and method employing various targets to simulate training scenarios |
IL161082A (en) * | 2004-03-25 | 2008-08-07 | Rafael Advanced Defense Sys | System and method for automatically acquiring a target with a narrow field-of-view gimbaled imaging sensor |
JP2006112910A (en) * | 2004-10-14 | 2006-04-27 | Optex Co Ltd | Infrared sensing device and its installation method |
US8074394B2 (en) * | 2005-03-08 | 2011-12-13 | Lowrey Iii John William | Riflescope with image stabilization |
US20070190495A1 (en) * | 2005-12-22 | 2007-08-16 | Kendir O T | Sensing device for firearm laser training system and method of simulating firearm operation with various training scenarios |
IL172905A0 (en) * | 2005-12-29 | 2007-03-08 | Men At Work | Boresighting system and method |
US20100275491A1 (en) * | 2007-03-06 | 2010-11-04 | Edward J Leiter | Blank firing barrels for semiautomatic pistols and method of repetitive blank fire |
EP2536995B1 (en) * | 2010-02-16 | 2017-10-04 | TrackingPoint, Inc. | Method and system of controlling a firearm |
IL204455A (en) * | 2010-03-14 | 2015-03-31 | Shlomo Cohen | System and method for registration of artillery fire |
KR101485991B1 (en) * | 2010-11-10 | 2015-01-27 | 삼성테크윈 주식회사 | Method for detecting position of firing system and controlling of firing system |
US9482749B1 (en) * | 2012-08-09 | 2016-11-01 | Lockheed Martin Corporation | Signature detection in point images |
CN104089529B (en) * | 2014-05-22 | 2016-03-02 | 陈远春 | Use the method and apparatus that fibre optic gyroscope is calibrated fighter plane armament systems |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1064774A (en) * | 1963-07-01 | 1967-04-12 | Bofors Ab | Weapon firing control system |
US3415157A (en) * | 1967-05-11 | 1968-12-10 | Itek Corp | Alignment control apparatus |
CH520916A (en) * | 1970-02-18 | 1972-03-31 | Contraves Ag | System for the simultaneous testing and training of the operating teams of a large number of flame guns |
US3798795A (en) * | 1972-07-03 | 1974-03-26 | Rmc Res Corp | Weapon aim evaluation system |
US3803387A (en) * | 1972-09-20 | 1974-04-09 | Us Navy | Alignment error detection system |
AU6697874A (en) * | 1973-03-28 | 1975-09-25 | Commonwealth Of Australia, The | Optical collimating alignment units |
SE392644B (en) * | 1973-11-19 | 1977-04-04 | Saab Scania Ab | PROCEDURE AND DEVICE FOR CARRYING OUT A QUANTITATIVE SUMMARY CONTROL OF FIRE PREPARATIONS, TEMPLE FOLLOWING IN APPLICATION EXERCISES WITH SIMULATED FIRE DEPARTMENT AGAINST A FLYING FIRE TARGET AT AN AIRCRAFT STRAP |
US4020739A (en) * | 1976-07-16 | 1977-05-03 | The United States Of America As Represented By The Secretary Of The Army | Fire control system |
US4606256A (en) * | 1977-11-01 | 1986-08-19 | The Marconi Company Limited | Sight system for a stabilized gun |
DE2951108C2 (en) * | 1979-12-19 | 1983-11-17 | Krauss-Maffei AG, 8000 München | Method and device for checking the synchronization of the line of sight of a periscope with elements that can be aimed at target points |
FR2491611A1 (en) * | 1980-10-03 | 1982-04-09 | France Etat | Shock-resistant weapon sight - includes gyroscopically stabilised mirror and angular position sensor indicating movements of optical system |
SE453430B (en) * | 1981-05-15 | 1988-02-01 | Barr & Stroud Ltd | ADAPTATION LINK BETWEEN AIM AND DIRECTION DEVICE |
DE3150895A1 (en) * | 1981-12-22 | 1983-07-14 | Blohm + Voss Ag, 2000 Hamburg | FIGHTING SHIP WITH SYSTEMS CONNECTED TO ELECTRONIC CONTROL UNITS |
GB2123935A (en) * | 1982-07-22 | 1984-02-08 | British Aerospace | Relative attitude determining system |
US4760770A (en) * | 1982-11-17 | 1988-08-02 | Barr & Stroud Limited | Fire control systems |
US4570530A (en) * | 1983-12-14 | 1986-02-18 | Rca Corporation | Workpiece alignment system |
-
1988
- 1988-04-21 TR TR00296/88A patent/TR27014A/en unknown
- 1988-05-02 EP EP88903826A patent/EP0314721B1/en not_active Expired - Lifetime
- 1988-05-02 WO PCT/EP1988/000365 patent/WO1988008952A1/en active IP Right Grant
- 1988-05-02 US US07/294,489 patent/US5208418A/en not_active Expired - Lifetime
- 1988-05-02 KR KR1019890700066A patent/KR960014641B1/en not_active Expired - Lifetime
- 1988-05-02 DE DE88903826T patent/DE3883916D1/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0577017B1 (en) * | 1992-06-27 | 2001-03-07 | Hollandse Signaalapparaten B.V. | Device and method for testing the dynamic behaviour of guns |
EP1152206A1 (en) | 2000-04-26 | 2001-11-07 | Oerlikon Contraves Ag | Method and device for correcting aiming errors between apparatuses |
Also Published As
Publication number | Publication date |
---|---|
KR890701975A (en) | 1989-12-22 |
US5208418A (en) | 1993-05-04 |
DE3883916D1 (en) | 1993-10-14 |
AU1688388A (en) | 1988-12-06 |
KR960014641B1 (en) | 1996-10-19 |
WO1988008952A1 (en) | 1988-11-17 |
AU605591B2 (en) | 1991-01-17 |
EP0314721A1 (en) | 1989-05-10 |
TR27014A (en) | 1994-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0314721B1 (en) | Alignment process for gun fire control device and gun fire control device for implementation of the process | |
EP2603767B1 (en) | Method for calibrating a measurement system and device for carrying out the method | |
DE2901873A1 (en) | FIRE DEVICE | |
DE3341232A1 (en) | FIRE CONTROL SYSTEM | |
DE69214582T2 (en) | Method and device for suppressing traceable sub-images | |
DE3442598C2 (en) | Guidance system for missiles | |
EP1154219A1 (en) | Method and apparatus for correcting dynamic errors of a gun barrel | |
EP2508835B1 (en) | Target device | |
EP0359950B1 (en) | Method and sighting apparatus for the coarse alignment of fire and weapon control systems | |
DE3019783A1 (en) | METHOD FOR PREVENTING MISTAKES OF AUTOMATIC SHOTS, AND ARRANGEMENT FOR IMPLEMENTING THE METHOD | |
DE3131089C2 (en) | Reconnaissance and fire control system | |
CH635428A5 (en) | DEVICE FOR DETERMINING THE SOLDERING DIRECTION IN A SYSTEM ATTACHED ON A MOVABLE BASE. | |
EP1314950A1 (en) | Method and device for assessing the aiming errors of a weapon system and use of the device | |
DE69214583T2 (en) | Method and device for tracking a target point with any sub-images | |
DE102012016073A1 (en) | Arrangement for determination of effector position or effector offset of mechanism, comprises radiation pattern positioning sensor attached to effector, where complete or partial position of effector is calculated by computing device | |
EP1152206A1 (en) | Method and device for correcting aiming errors between apparatuses | |
DE10118514B4 (en) | Method for operating point stabilization in contactless 3D position detection of an object to be measured by means of digital cameras | |
DE3504198A1 (en) | Method for monitoring the achievement of hits by tank gunners in firing training | |
DE69029631T2 (en) | Leading visor | |
EP0207521A1 (en) | Target measurement system | |
DE3217980A1 (en) | COUPLING COUPLING SYSTEM | |
DE2602767C2 (en) | Fire control system | |
DE102009040280A1 (en) | Modular adjusting device for adjusting axis of shooting simulator to line of sight of sighting unit of firearm, comprises display module and camera module, where display module displays cross-line projection unit | |
DE4007999C2 (en) | ||
EP1245344B1 (en) | Reintegration of a digital camera in an image processing system which is deplaced from a calibrated position in a non-calibrated position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880917 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OERLIKON-CONTRAVES AG |
|
17Q | First examination report despatched |
Effective date: 19911209 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3883916 Country of ref document: DE Date of ref document: 19931014 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940425 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940428 Year of fee payment: 7 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HOLLANDSE SIGNAALAPPARATEN B.V. Effective date: 19940602 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HOLLANDSE SIGNAALAPPARATEN B.V. |
|
EAL | Se: european patent in force in sweden |
Ref document number: 88903826.1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950531 Ref country code: CH Effective date: 19950531 Ref country code: BE Effective date: 19950531 |
|
BERE | Be: lapsed |
Owner name: OERLIKON-CONTRAVES A.G. Effective date: 19950531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: OERLIKON-CONTRAVES AG |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: OERLIKON-CONTRAVES AG |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19990519 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
NLS | Nl: assignments of ep-patents |
Owner name: OERLIKON CONTRAVES AG;CONTEXTRINA AG;WERKZEUGMASCH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070413 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070417 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070425 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070412 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070521 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070411 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20080501 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20080502 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20080501 |