DE4007999C2 - - Google Patents

Info

Publication number
DE4007999C2
DE4007999C2 DE4007999A DE4007999A DE4007999C2 DE 4007999 C2 DE4007999 C2 DE 4007999C2 DE 4007999 A DE4007999 A DE 4007999A DE 4007999 A DE4007999 A DE 4007999A DE 4007999 C2 DE4007999 C2 DE 4007999C2
Authority
DE
Germany
Prior art keywords
qpd
missile
remote
formula
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE4007999A
Other languages
German (de)
Other versions
DE4007999A1 (en
Inventor
Hermann Dipl.-Ing. 8012 Ottobrunn De Siebert
Lothar Dipl.-Ing. 8014 Neubiberg De Hawlitschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LFK Lenkflugkoerpersysteme GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE4007999A priority Critical patent/DE4007999A1/en
Publication of DE4007999A1 publication Critical patent/DE4007999A1/en
Application granted granted Critical
Publication of DE4007999C2 publication Critical patent/DE4007999C2/de
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die Erfindung betrifft einen fernlenkbaren Flugkörper und dessen Lenkung. Dieser hat einen Zielsuchkopf und darin einen abbildenden Sensor, z. B. eine Fernsehkamera, die ihre Bilder zur Bodenstation (Lenkstand) sendet.The invention relates to a guided missile and its Steering. This has a target seeker and an imaging one Sensor, e.g. B. a television camera sending their pictures to the ground station (Steering position) sends.

Solche Fernlenkverfahren, z. B. für unbemannte Flugkörper, sind bekannt (vergleiche EP 01 48 704 A1).Such remote control methods, e.g. B. for unmanned aerial vehicles are known (compare EP 01 48 704 A1).

Das erfindungsgemäße Abbildungsverfahren und seine Auswertung soll der verbesserten Höhenhaltung eines Flugkörpers dienen, bei Anwendung einer bekannten inertial stabilisierten Kamera-Plattform.The imaging method according to the invention and its evaluation is intended to serve to improve the attitude of a missile when using a known inertial stabilized camera platform.

Gelöst wird diese blitzgestützte Höhenhaltung auf einfache Weise gemäß den Ansprüchen. Dabei kann ein üblicher Lenkrechner für relativ kleine Datenmengen verwendet werden.This lightning-assisted height maintenance is solved in a simple manner the claims. It can be a conventional steering computer for relatively small Amounts of data are used.

Die Erfindung wird in den Zeichnungen näher erläutert. Es zeigtThe invention is explained in more detail in the drawings. It shows

Fig. 1 eine Messung der Bildverschiebung, Fig. 1 is a measurement of the image shift,

Fig. 2 die Höhenhaltung mittels Winkelregler, Fig. 2, the height control by the angle controller,

Fig. 3 die schematische Darstellung der Höhenhaltung mittels Winkelregler, Fig. 3 is a schematic illustration of the height control by the angle controller,

Fig. 4 die Bildverarbeitung bei variabler Sichtentfernung, Fig. 4, the image processing at a variable viewing distance,

Fig. 5 die Bildverarbeitung zu Variante A und Fig. 5, the image processing to variant A and

Fig. 6 die Bildverarbeitung zu Variante B. Fig. 6, the image processing to variant B.

Die Erfindung geht aus von folgenden Grundlagen:The invention is based on the following basics:

Aus zwei Verschiebevektoren , , die rechts und links von der Bildmitte aus in zwei aufeinanderfolgenden Bildern durch Korrelation ermittelt werden, lassen sich die entsprechenden Gier-, Nick-, und Rollbewegungen des mittleren Bildteils ermitteln (Fig. 1).The corresponding yaw, pitch and roll movements of the central part of the image can be determined from two displacement vectors, which are determined to the right and left of the image center by correlation in two successive images ( FIG. 1).

Bei bekannter Fluggeschwindigkeit können aus diesen Vektoren zusätzlich Hilfsgrößen für die Lenkverfahren (Fig. 2) abgeleitet werden, wie z. B.If the airspeed is known, auxiliary variables for the steering method ( FIG. 2) can be derived from these vectors, such as. B.

  • - Sichtentfernung zum Aufpunkt der Sensorachse,- line of sight to the point of the sensor axis,
  • - Höhe,- Height,
  • - Kurs,- Course,
  • - Rollreferenz.- Roll reference.

Die im folgenden beschriebenen Verfahren betreffen drei verschiedene Verfahren zur bildgestützten Höhenhaltung, d. h. zum Ersatz eines Höhenmessers im Flugkörper. In allen Fällen wird der vertikale Winkel RP zwischen der FK-Längsachse und der optischen Achse der Kamera durch Steuerung des Flugkörpers so geregelt, daß eine konstante Flughöhe H eingehalten wird (Fig. 3).The methods described below relate to three different methods for image-based altitude maintenance, ie to replace an altimeter in the missile. In all cases, the vertical angle RP between the FK longitudinal axis and the optical axis of the camera is controlled by controlling the missile so that a constant flight height H is maintained ( FIG. 3).

Unterschiede bestehen lediglich in der Berechnung der Solldrehgeschwindigkeit QPD der Kamera-Plattform (Fig. 4 bis 6).The only differences are in the calculation of the target rotation speed QPD of the camera platform ( FIGS. 4 to 6).

Fixiert man nach Erreichen einer bestimmten Flughöhe den Aufpunkt der Kamera manuell oder mit Hilfe eines Hintergrundtracken in einer bekannten Entfernung, so läßt sich über einen Sollwert QPD=f(T) nahezu jedes beliebige Höhenprofil erzeugen. Die Reichweite dieses Verfahrens ist allerdings auf die maximale Sichtweite begrenzt (Fig. 4).If, after reaching a certain flight altitude, the camera point is fixed manually or with the help of background tracking at a known distance, then almost any height profile can be generated via a setpoint QPD = f (T). However, the range of this method is limited to the maximum visibility ( Fig. 4).

Das folgende Ausführungsbeispiel benötigt keinen festen Haltepunkt und ist daher für beliebige Reichweiten geeignet.The following embodiment does not require a fixed breakpoint and is therefore suitable for any range.

Hat der Flugkörper am Ende der Umlenkphase die gewünschte Flughöhe annähernd erreicht, wird die Solldrehgeschwindigkeit der Kamera-Plattform nach folgender Formel berechnet:Does the missile have the desired flight altitude at the end of the redirection phase  is approximately reached, the target rotational speed of the Camera platform calculated using the following formula:

worin bedeutet:in which means:

K = Verstärkungsfaktor,
ΔN = gemessene Nickverschiebung,R = aus den Verschiebevektoren (re. und li. von der Bildmittel und aus zwei aufeinanderfolgenden Bildern ermittelte Sichtentfernung und
vorgegeben sind:
K = gain factor,
ΔN = measured pitch shift, R = from the shift vectors (right and left of the image means and from two successive images the visual distance and
the following are specified:

HS = Sollflughöhe,
V = Fluggeschwindigkeit,
ΔT = Bildintervall.
HS = target flight altitude,
V = flight speed,
ΔT = image interval.

Der Vorteil dieses Rechenansatzes besteht darin, daß die Flughöhe ausschließlich von den Toleranzen der Fluggeschwindigkeit abhängt. Die übrigen Fehler beeinflussen nur den Sichtlinienwinkel und die daraus resultierende Sichtenfernung (Fig. 5), wobei diese Abweichungen langfristig über QPD kompensiert werden können.The advantage of this calculation approach is that the altitude depends solely on the tolerances of the airspeed. The remaining errors only influence the line of sight angle and the resulting distance of view ( FIG. 5), and these deviations can be compensated for in the long term via QPD.

Bei dem Ausführungsbeispiel nach Patentanspruch 2 wird die Sichtentfernung unmittelbar über die Plattform auf den Sollwert RD ausgeregelt (Fig. 6). Die gewünschte Sichtentfernung wird in diesem Fall schneller erreicht und exakt eingehalten, während Toleranzen des Anstellwinkels zu Abweichungen von der Sollflughöhe führen.In the embodiment according to claim 2, the visual distance is corrected directly to the target value RD via the platform ( FIG. 6). In this case, the desired line of sight is reached more quickly and adhered to exactly, while tolerances of the angle of attack lead to deviations from the target flight altitude.

Claims (2)

1. Fernlenkbarer Flugkörper, der den üblichen Höhenmesser ersetzt durch Auswertung einer Bildinformation des im Flugkörper vorhandenen, nach vorne blickenden, abbildenden Sensors (Kamera) im Suchkopf, dadurch gekennzeichnet, daß die vertikale Solldrehgeschwindigkeit (QPD) des optischen Sensors berechnet wird nach der Formel: worin bedeutetK = Verstärkungsfaktor,
ΔN = gemessene Nickverschiebung,
R = aus den Verschiebevektoren (re. und li. von der Bildmitte V₁ und V₂ aus zwei aufeinanderfolgenden Bildern ermittelte Sichtentfernung
und vorgegeben sind:HS = Sollflughöhe
V = Fluggeschwindigkeit
ΔT = Bildintervall
1.Remote-guided missile which replaces the usual altimeter by evaluating image information from the forward-looking imaging sensor (camera) present in the missile in the search head, characterized in that the vertical target rotational speed (QPD) of the optical sensor is calculated according to the formula: where K = gain factor,
ΔN = measured pitch shift,
R = from the displacement vectors (right and left. From the center of the picture V₁ and V₂ from two successive pictures determined viewing distance
and the following are specified: HS = target flight altitude
V = flight speed
ΔT = image interval
2. Fernlenkbarer Flugkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Plattform-Solldrehgeschwindigkeit unmittelbar aus der Sichtentfernung berechnet wird, nach der Formel: QPD = K(RD-R).2. Remote-guided missile according to claim 1, characterized characterized that the platform target rotational speed immediately is calculated from the visual distance, according to the formula: QPD = K (RD-R).
DE4007999A 1990-03-13 1990-03-13 Remote controlled projectile or missile - uses camera as sensor for holding missile at required height Granted DE4007999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4007999A DE4007999A1 (en) 1990-03-13 1990-03-13 Remote controlled projectile or missile - uses camera as sensor for holding missile at required height

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4007999A DE4007999A1 (en) 1990-03-13 1990-03-13 Remote controlled projectile or missile - uses camera as sensor for holding missile at required height

Publications (2)

Publication Number Publication Date
DE4007999A1 DE4007999A1 (en) 1991-09-19
DE4007999C2 true DE4007999C2 (en) 1992-08-06

Family

ID=6402102

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4007999A Granted DE4007999A1 (en) 1990-03-13 1990-03-13 Remote controlled projectile or missile - uses camera as sensor for holding missile at required height

Country Status (1)

Country Link
DE (1) DE4007999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339187C1 (en) * 1993-11-16 1995-04-13 Mafo Systemtech Gmbh & Co Kg Procedure for determining the line of sight rotation rate with a rigid search head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2855951A1 (en) * 1978-12-23 1980-07-10 Messerschmitt Boelkow Blohm Missile guidance system - using laser beams for scanning, correlating reflected rays and sequentially scanning terrain elements
FR2557971B1 (en) * 1984-01-06 1988-05-27 Thomson Csf PILOTLESS AIRCRAFT MONITORING SYSTEM FOR OBJECTIVE LOCATION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339187C1 (en) * 1993-11-16 1995-04-13 Mafo Systemtech Gmbh & Co Kg Procedure for determining the line of sight rotation rate with a rigid search head

Also Published As

Publication number Publication date
DE4007999A1 (en) 1991-09-19

Similar Documents

Publication Publication Date Title
DE3426505C2 (en)
EP2381208B1 (en) Method for determining positional data of a target object in a reference system
DE3442598C2 (en) Guidance system for missiles
DE3436839A1 (en) STEERING PROCESSOR
EP1094002A2 (en) Satellite control system and method
DE69823167T2 (en) DEVICE FOR DETERMINING THE DIRECTION OF A TARGET IN A PREFERRED INDEX MARKING
EP2719990B1 (en) Device for optical target assignment and guidance of a missile
DE1901984A1 (en) Optical system with stabilized line of sight
DE2124634A1 (en) AIRCRAFT CONTROL SYSTEM
DE4007999C2 (en)
DE102014117277B4 (en) carrier system
EP0653600B1 (en) Method for determining the rotation speed of the aiming line with a strapped down seeker head
DE69912053T2 (en) Method and device for directing a missile, in particular a missile, to a target
DE3044348A1 (en) AUTOMATIC AIR-AIR OR AIR-FLOOR FIRE CONTROL SYSTEM
CH635428A5 (en) DEVICE FOR DETERMINING THE SOLDERING DIRECTION IN A SYSTEM ATTACHED ON A MOVABLE BASE.
DE3019743A1 (en) Gyroscopic platform for inertial guidance system - has gimbal mounted platform with motor-driven gyroscopic stabilisation system
DE3835883C2 (en) Procedure for target detection for missiles with a seeker head
DE2827056C2 (en) Missile guidance system
DE2252301C2 (en) Device for stabilizing the aiming and aiming of a movable organ
DE2718698C2 (en) Procedures for commanding aircraft
DE2158244C3 (en) Method and device for holding a target for a viewing device arranged on a stabilized platform of a vehicle
DE1937356A1 (en) Device for determining the angular velocity of a target
DE4223531A1 (en) High speed missile inertial reference optical support and re-initialising system - derives alignment error estimates from comparison of outputs of video camera sensors of reference points located on launcher with values from guidance system
DE102009060901A1 (en) Landing aid device for vertical landing aircrafts, particularly helicopter, has image capturing unit for optical acquisition of spaces directly below a vertical landing aircraft, and evaluation unit
DE3124945A1 (en) Recording theodolite

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT, 80804 M

8327 Change in the person/name/address of the patent owner

Owner name: LFK LENKFLUGKOERPERSYSTEME GMBH, 81669 MUENCHEN, D

8339 Ceased/non-payment of the annual fee