EP0313038B1 - Méthode pour la fabrication d'une plaque tubulaire d'un échangeur de chaleur - Google Patents

Méthode pour la fabrication d'une plaque tubulaire d'un échangeur de chaleur Download PDF

Info

Publication number
EP0313038B1
EP0313038B1 EP88117464A EP88117464A EP0313038B1 EP 0313038 B1 EP0313038 B1 EP 0313038B1 EP 88117464 A EP88117464 A EP 88117464A EP 88117464 A EP88117464 A EP 88117464A EP 0313038 B1 EP0313038 B1 EP 0313038B1
Authority
EP
European Patent Office
Prior art keywords
tube
metallic
plate structure
fibres
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117464A
Other languages
German (de)
English (en)
Other versions
EP0313038A1 (fr
Inventor
Klaus Hagemeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0313038A1 publication Critical patent/EP0313038A1/fr
Application granted granted Critical
Publication of EP0313038B1 publication Critical patent/EP0313038B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/471Plural parallel conduits joined by manifold
    • Y10S165/481Partitions in manifold define serial flow pattern for conduits/conduit groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • Y10T29/49368Sheet joined to sheet with inserted tubes

Definitions

  • the invention relates to a method for producing a tube sheet structure of a heat exchanger according to the preamble of patent claim 1.
  • the tube sheet is to be composed of a large number of precisely pre-shaped or pre-profiled elements; According to the number and the desired spacing of the profile tubes of the matrix, the relevant layer-to-layer elements should be pre-deformed in such a way that they can enclose half of the arranged tube ends of the matrix in a form-fitting manner.
  • the invention is based on the object of specifying a method in which the tube ends of a profile tube matrix of a heat exchanger can be optimally integrally bonded into a floor or distributor tube structure which is to be created essentially free of predetermined solid component specifications.
  • the rings forming the central tube plate are not made from solid material as already known, but from a fiber mesh.
  • the fiber braid is compressed under the action of axial joining forces in such a way that it nestles completely around the enclosed heat exchanger tubes.
  • the compression of the fiber structure is strongest locally where the surfaces of adjacent pipes are at the smallest distance from each other in the joining area of the heat exchanger pipe field.
  • Metallic material (metal matrix) is then infiltrated into this initially porous structure of the central tube sheet in this way, which fills the cavities of the fiber structure and also creates a material connection to the surfaces of the enclosed tubes and the fibers of the wickerwork.
  • the formation of the fiber rings can be designed in detail as follows.
  • Orientation of a certain proportion of fibers in the circumferential direction is desirable in order to absorb the high circumferential forces during operation of the heat exchanger which result from the internal pressure load on the central tube with the relevant heat exchanger base.
  • Another part of the fiber structure should protrude like bristles from the side surfaces of said fiber ring. When they are joined, these bristle structures of adjacent rings penetrate each other and, after infiltrating the metallic matrix, transmit the forces in the longitudinal direction of the central tube; the bristle structures also ensure that the areas that are least compressed during assembly, in particular on the leading and trailing edges of the heat exchanger tubes, are filled correctly and with a sufficient volume of the fiber material.
  • the fiber material should preferably be heat-resistant in accordance with the temperature load on the component, but not necessarily resistant to oxidation and corrosion. The latter is not the case if the fibers are completely enclosed by the system of the matrix, so that they are protected against the entry of aggressive media. So metallic, but also ceramic and carbon fibers come into question.
  • the fiber rings For assembling the heat exchanger, it can also be advantageous to enclose the fiber rings with solid rings.
  • the width of these rings corresponds to the closest local distances of the heat exchanger tubes in the field, so that the rings can ensure the required distances when they are joined or pressed together. Since they have to follow the corrugated track of the tube field in the circumferential direction, it is necessary to make them correspondingly flexible or to impress the corrugated shape on the rings before joining.
  • the infiltration of the fiber matrix can also be carried out as follows.
  • a lance-like cast crockery is passed inside the resulting central tube over its inner jacket and the molten matrix material is injected which, due to the capillary action, fills the fiber structure, binds with fibers and tube surfaces and solidifies.
  • the molten matrix material is injected which, due to the capillary action, fills the fiber structure, binds with fibers and tube surfaces and solidifies.
  • the above-mentioned massive ring which surrounds the fiber structure on the outside, as well as a corresponding, if necessary, corresponding, arranged on the inside diameter of the fiber structure massive ring similar construction can also be made of a material that becomes molten when heated in the furnace like a solder and by capillary action in the fiber structure penetrates to fill the matrix volume and make the bonds.
  • Pipes of the matrix and fibers or fiber braiding can be subjected to a surface pretreatment in all cases in order to achieve improved wetting and integration into the matrix.
  • Fig. 1 illustrates a heat exchanger 1 for guiding gases of very different temperatures
  • the cross-countercurrent matrix 2 in the hot gas flow G consists of separate compressed air lines 3 (Fig. 2), which on the one hand to a first stationary pipe guide 4 for the supply of cold compressed air D in the matrix 2 (cold) and on the other hand connected to a second stationary pipe guide 5, from which the compressed air D (hot) heated via the matrix 2 can be fed to a consumer.
  • the two pipe guides 4, 5 are arranged separately from one another and integrated in a common header pipe 6.
  • Each profile tube 3 of the matrix 2 - starting from its tube-side connections to the first 4 and second tube guide 5 of the header tube 6 - should initially run parallel to a laterally extended header tube meridian plane before it turns into a common, U deflecting the compressed air D by 180 ° -shaped wiring harness merges.
  • the matrix 2 should also flow through the hot gas G transversely to the elongated manifold meridian plane and while ensuring the permissible hot gas blockage between the adjacent profile tubes 3.
  • each profile tube 3 of the matrix 2 (FIG. 2) also contains two compressed air channels 8, 9 separated from one another by a profile web 7, which have triangular flow cross sections in the sense of the two tapered outer wall sections of the profile tubes 3 concerned.
  • two or more separate manifolds or manifolds for the compressed air supply into the matrix can also be used instead of the common manifold 6, essentially arranged one above the other or next to one another 2 or for the compressed air discharge (hot) from the matrix 2.
  • the invention therefore relates to the manufacture of the relevant floor structure 10, but in particular to the manufacture of the header pipe 6 together with the floor structure 10 or the manufacture of one or more header or distributor pipes in a heat exchanger of the cross-countercurrent construction discussed at the beginning.
  • a method for producing a tube sheet structure 10 or a header tube 6 of a heat exchanger using strip-shaped layers 11, 12 or 12, 13 (FIG. 5) is thus specified, between which tube ends of the profile tubes 3 of the matrix 2 are firmly integrated in a fluid-tight manner; the strip-shaped layers 11, 12; 12, 13 are to be produced from fibers which are initially bundled uniformly (fiber bundles 11 ', 12'; 12 ' , 13') between the tube ends of adjacent rows of profile tubes (tubes 3) and are thus deformed under pressure (arrow direction P, P ') They should form an initially porous bottom structure (Fig. 5) under half-sided pipe wrapping, into which a metallic material is then infiltrated in a molten state, in which all fibers including the pipe ends are integrally bonded.
  • the fiber bundles e.g. 12 ', composed of interwoven fiber layers with main fibers 14 running in the circumferential direction of the tube sheet structure and transverse fibers 15 running transversely thereto, such that the latter - after the pressing and deformation phase (FIG. 5) have been completed - engage in a bristle-like manner essentially outside the tube encapsulation areas.
  • the secondary fibers 15 of the adjacent fiber layers e.g. 12, 13, intertwine like bristles.
  • a complete interweaving of fibers should also be achieved in the respective profile end or tip areas.
  • the aforementioned contact planes 16 are arranged in a longitudinally symmetrical alignment with the profile longitudinal center planes E.
  • the fiber bundles, e.g. 12 ', 13' (Fig. 3) layers, e.g. 12, 13 (FIG. 5) are covered entirely or partially by metallic ring elements 17, 18 (FIG. 7) or 18, 19 (FIG. 8) extending along the inside and / or outside of the floor structure.
  • the ring elements mentioned can e.g. can be provided to stiffen the floor or pipe structure, and to protect the fiber structures from local environmental influences such as temperature influences.
  • the ring elements mentioned can also be aids in the infiltration process in that they are intended to prevent the infiltration agent from flowing off. If e.g. the infiltration process of a molten metallic material from the outside of a tube sheet into the fiber material, the relevant ring elements, e.g. 19 (Fig. 8) can only be arranged on the inside of the tube sheet to prevent the metallic material from flowing away. After infiltration has been completed, the ring elements, e.g. 19 (Fig. 8) can be removed again.
  • the metallic ring elements e.g. 18, 19 (FIG. 8) are manufactured from a solder material which ensures metallic infiltration.
  • the ring elements, e.g. 18, 19 (FIG. 8) on the inside and outside of the porous tube sheet structure as elements corrugated in the sense of the profile tube profile (FIG. 7) are placed on the fiber bundles 12 '(FIG. 8).
  • a metallic composite material (matrix) can be melted within a vacuum furnace via a lance-shaped casting tableware that sweeps the corrugated porous floor structure (FIG. 5) along the inside and outside of the tube sheet be injected.
  • the ends of the profile tubes 3 of the matrix which are open on the inside of the tube sheet can be closed before metallic infiltration is carried out from the inside of the base structure and can be opened again by mechanical processing after the infiltration has been completed.
  • the fibers of the fiber bundles) 11 ' , 12' or 12 ', 13' can be made from a metallic material or from wires, from a ceramic material, for example from partially stabilized zirconium oxide or from carbon.
  • the metallic material infiltrated after the pressing and deformation phase can be made from an aluminum alloy.
  • a circular cylindrical (Fig. 1, 6 or 8), square or rectangular header or distributor pipe of a cross-countercurrent heat exchanger can be used with the collector or distributor pipes, e.g. 6-fig. 1, U-shaped protruding profile tube matrix 2 are produced, the fiber bundles 11 ', 12' or 12 ', 13' (FIG. 3) being compressed to the desired length of header or distributor tube, including the required mutual profile tube spacing of the matrix 2, and the metallic infiltration, for example by means of the aforementioned crockery, can be carried out continuously over the entire circumference of the porous collecting or distribution pipe structure (FIG. 5).
  • rings made of a suitable plastic e.g. can be provided from a fiber-reinforced plastic or from a suitable ceramic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Claims (17)

1. Procédé pour réaliser une structure de plaque tubulaire d'un échangeur thermique, cette structure étant composée de couches en forme de bandes entre lesquelles sont fermement intégrées, de façon étanche aux fluides, les extrémités des tubes d'une matrice à tubes profilés, procédé caractérisé en ce que les couches en forme de bandes (12, 13) sont réalisées à partir de fibres qui sont disposées entre les extrémités des tubes de rangées de tubes profilés voisines et sont déformées sous pressage de façon qu'en étant respectivement serrées autour des moitiés latérales des tubes, elles constituent une structure tout d'abord poreuse de plaque tubulaire, dans laquelle est infiltré, à l'état fondu, un matériau métallique qui remplit la structure fibreuse par effet capillaire en établissant une liaison avec les fibres et les surfaces des tubes et qui se solidifie, si bien que l'ensemble des fibres et les extrémités des tubes, sont enveloppés dans ce matériau et bloqués par lui.
2. Procédé selon la revendication 1, caractérisé en ce que les faisceaux de fibres (12') sont composés par des couches de fibres reliées entre elles, avec des fibres principales (14) s'étendant en direction périphérique de la structure de plaque tubulaire et des fibres secondaires (15) s'étendant transversalement par rapport aux fibres principales, de sorte que ces fibres secondaires après que la phase de pressage et de déformation soit terminée, viennent en prise les unes dans les autres à la façon de soies de porc en dehors des zones où elles entourent les tubes.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que les couches (12) réalisées à partir de faisceaux de fibres (12') sont re- couvertes totalement ou partiellement par des éléments annulaires (18, 19) s'étendant le long de la face interne et/ou de la face externe de la structure de plaque tubulaire.
4. Procédé selon la revendication 3, caractérisé en ce que les éléments annulaires (18, 19) prévus sur la face interne et la face externe de la structure de plaque tubulaire, sont enlevés après que l'infiltration métallique ait été effectuée.
5. Procédé selon la revendication 3, caractérisé en ce que les éléments annulaires (17, 18), sont déformés conjointement avec les faisceaux de fibres (12', 13') en ménageant l'espacement nécessaire des tubes profilés dans la structure de plaque tubulaire.
6. Procédé selon la revendication 3 ou la revendication 4, caractérisé en ce que des éléments annulaires (18, 19) préformés ou ondulés dans le sens de l'allure finale des tubes profilés, sont mis en place sur les couches de fibres (12) contre la face interne ou la face externe de la plaque tubulaire avant l'infiltration métallique.
7. Procédé selon la revendication 3 ou la revendication 5, caractérisé en ce que les éléments annulaires (18, 19) sont réalisés en un matériau de brasure assurant l'infiltration métallique.
8. Procédé selon la revendication 7, caractérisé en ce que les éléments annulaires métalliques (18, 19) réalisés en un matériau de brasure sont placés sur les faisceaux de fibres (12') contre la face interne et contre la face externe de la structure poreuse de plaque tubulaire, sous la forme d'éléments ondulés de façon correspondante à l'allure des tubes profilés.
9. Procédé selon la revendication 7 ou la revendication 8, caractérisé en ce que la structure de plaque tubulaire équipée , avec des éléments annulaires métalliques en un matériau de brasure est chauffée dans un four pour permettre la fusion et l'infiltration de la brasure.
10. Procédé selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que le matériau métallique de liaison est injecté à l'état de fusion le long de la face interne et de la face externe de la plaque tubulaire à l'intérieur d'un four à vide et par l'intermédiaire d'un appareil de coulée réalisé sous la forme d'une lance et balayant la structure et ondulée par déformation de la plaque tubulaire.
11. Procédé selon la revendication 10, caractérisé en ce que les extrémités du tube de la matrice, ouvertes du côté interne de la plaque tubulaire, sont fermées avant une infiltration métallique effectuée à partir de la face interne de la structure de la plaque tubulaire, et sont à nouveau ouvertes par usinage mécanique après que l'infiltration ait été accomplie.
12. Procédé selon une ou plusieurs des revendications 1 à 11, caractérisé en ce que les fibres des faisceaux de fibres sont réalisées en un matériau métallique ou bien à partir de fils métalliques.
13. Procédé selon une ou plusieurs des revendications 1 à 11, caractérisé en ce que les fibres des faisceaux de fibres sont réalisées en un matériau céramique.
14. Procédé selon la revendication 13, caractérisé en ce que les fibres des faisceaux de fibres sont réalisées en oxyde de zirconium partiellement stabilisé.
15. Procédé selon la revendication 13 ou la revendication 14, caractérisé en ce que le matériau métallique infiltré après la phase de pressage et de déformation est réalisé à partir d'un alliage d'aluminium.
16. Procédé selon une ou plusieurs des revendications 1 à 11, caractérisé en ce que les fibres des faisceaux de fibres sont réalisées en carbone.
17. Procédé selon une ou plusieurs des revendications 1 à 16, caractérisé en ce que sur la structure de plaque tubulaire, est réalisé un tube collecteur ou bien un tube répartiteur (6) cylindrique circulaire, carré ou bien rectangulaire d'un échangeur thermique à contre courant croisé avec une matrice en tubes profilés (2) faisant saillie en forme de U à partir du tube collecteur ou répartiteur (6), les faisceaux de fibres (11', 12'; 12', 13') étant pressés ensemble sur la longueur souhaitée du tube collecteur ou répartiteur, en tenant compte de l'espacement nécessaire des tubes profilés de la matrice (2), et l'infiltration métallique étant effectuée sur toute la périphérie de la structure poreuse du tube collecteur ou répartiteur.
EP88117464A 1987-10-23 1988-10-20 Méthode pour la fabrication d'une plaque tubulaire d'un échangeur de chaleur Expired - Lifetime EP0313038B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3735846 1987-10-23
DE19873735846 DE3735846A1 (de) 1987-10-23 1987-10-23 Verfahren zur herstellung einer rohrbodenstruktur eines waermetauschers

Publications (2)

Publication Number Publication Date
EP0313038A1 EP0313038A1 (fr) 1989-04-26
EP0313038B1 true EP0313038B1 (fr) 1990-12-27

Family

ID=6338896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117464A Expired - Lifetime EP0313038B1 (fr) 1987-10-23 1988-10-20 Méthode pour la fabrication d'une plaque tubulaire d'un échangeur de chaleur

Country Status (5)

Country Link
US (1) US4893674A (fr)
EP (1) EP0313038B1 (fr)
JP (1) JPH01147295A (fr)
DE (2) DE3735846A1 (fr)
ES (1) ES2019682B3 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
US5177865A (en) * 1989-05-05 1993-01-12 Mtu Motoren-Und Turbinen-Union Method for making heat exchanger having at least two collecting pipes
US5269276A (en) * 1992-09-28 1993-12-14 Ford Motor Company Internal combustion engine fuel supply system
DE4322431C2 (de) * 1993-07-06 1997-04-10 Mtu Muenchen Gmbh Kühlstruktur und Verfahren zu ihrer Herstellung
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环系统
US7117680B2 (en) * 2004-04-22 2006-10-10 United Technologies Corporation Cooling scheme for scramjet variable geometry hardware
DE102006021436A1 (de) * 2006-05-09 2007-11-15 Mtu Aero Engines Gmbh Gasturbinentriebwerk
DE102010025587A1 (de) * 2010-06-29 2011-12-29 Mtu Aero Engines Gmbh Gasturbine mit Profilwärmetauscher
DE102010025998A1 (de) * 2010-07-03 2012-03-29 Mtu Aero Engines Gmbh Profilwärmetauscher und Gasturbine mit Profilwärmetauscher
US10190828B2 (en) * 2015-10-22 2019-01-29 Hamilton Sundstrand Corporation Heat exchangers
US11092384B2 (en) * 2016-01-14 2021-08-17 Hamilton Sundstrand Corporation Thermal stress relief for heat sinks
US11859910B2 (en) * 2021-05-14 2024-01-02 Rtx Corporation Heat exchanger tube support
US11892250B2 (en) 2021-05-14 2024-02-06 Rtx Corporation Heat exchanger tube support

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962488A1 (de) * 1968-12-13 1970-11-26 Dunlop Co Ltd Waermetauscher-Element
US3825063A (en) * 1970-01-16 1974-07-23 K Cowans Heat exchanger and method for making the same
FR2337867A1 (fr) * 1976-01-12 1977-08-05 Chausson Usines Sa Echangeur de chaleur a collecteurs epais
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
DE3310061A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung einer rohrverteileranordnung sowie ein nach diesem verfahren gefertigter waermetauscher-sammelbehaelter
US4512069A (en) * 1983-02-04 1985-04-23 Motoren-Und Turbinen-Union Munchen Gmbh Method of manufacturing hollow flow profiles
DE3329202A1 (de) * 1983-08-12 1985-02-21 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Profilrohr-waermetauscher
DE3447145A1 (de) * 1984-12-22 1986-06-26 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung zylindrische waermetauschersammelrohrstrukturen bildender ringscheibenartiger bauteile
DE3543893A1 (de) * 1985-12-12 1987-06-25 Mtu Muenchen Gmbh Waermetauscher
DE3635548C1 (de) * 1986-10-20 1988-03-03 Mtu Muenchen Gmbh Waermetauscher

Also Published As

Publication number Publication date
US4893674A (en) 1990-01-16
DE3861453D1 (de) 1991-02-07
ES2019682B3 (es) 1991-07-01
JPH01147295A (ja) 1989-06-08
EP0313038A1 (fr) 1989-04-26
DE3735846A1 (de) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0313038B1 (fr) Méthode pour la fabrication d'une plaque tubulaire d'un échangeur de chaleur
EP0881422A1 (fr) Elément de conduite avec au moins deux soufflets et un tuyau intermédiaire les connectant
WO2016138997A1 (fr) Élément de surface chauffante imprimé 3d pour un échangeur de chaleur à plaques
DE2733048A1 (de) Rohrverbindung und verfahren zu ihrer herstellung
WO2003015242A1 (fr) Moteur electrique a serpentin de refrigeration
WO1999059748A1 (fr) Procede et dispositif de production d'un corps creux metallique
EP0582985A1 (fr) Collecteur d'échappement
EP0298340B1 (fr) Dispositif pour la fabrication d'un tronçon d'un tuyau collecteur par la métallurgie de poudres
EP0265725A1 (fr) Echangeur de chaleur
DE102019101740B4 (de) Verfahren zur Herstellung eines Mikrokanalbündel-Wärmetauschers
EP2452805A1 (fr) Procédé de liaison de deux tirs d'une conduite de chauffage à distance
DE2539440A1 (de) Waermetauscher
EP1161626A1 (fr) Installation d'aspiration pour moteur a combustion interne
DE4321393C2 (de) Wandstruktur, insbesondere für ein Staustrahltriebwerk
DE3914773C2 (de) Wärmetauscher mit mindestens zwei Sammelrohren
EP0889768B1 (fr) Corps metalliques alveolaires brases munis d'ecarteurs situes dans les espaces de brasage, procede et metal d'apport de brasage pour les produire
WO2009106416A1 (fr) Élément alvéolaire pourvu d'une zone sans liaison
DE102020105454A1 (de) Verfahren zur Herstellung eines Mikrokanalbündel-Wärmetauschers und Verwendung eines Mikrokanalwärmetauschers
DE3803948A1 (de) Waermetauscher
EP0891510B1 (fr) Procede de production d'un element de robinetterie pour tubes, en materiau thermosoudable
DE4141393A1 (de) Spritzgiessverfahren zum herstellen eines rohres aus kunststoff
EP0331026B1 (fr) Procédé et dispositif pour la production d'un bloc pour échangeur de chaleur
EP1386066B1 (fr) Corps en nid d'abeilles et procede de fabrication dudit corps
EP1525377B1 (fr) Filtre a gaz d'echappement comportant au moins une couche filtrante et procede de production d'une couche filtrante
DE3324915C2 (de) Verfahren zur Herstellung eines Wärmetauscherblocks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19891023

17Q First examination report despatched

Effective date: 19900417

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3861453

Country of ref document: DE

Date of ref document: 19910207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 88117464.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041008

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041011

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041012

Year of fee payment: 17

Ref country code: FR

Payment date: 20041012

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041019

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051021

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051021