EP0305574B1 - Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device - Google Patents

Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device Download PDF

Info

Publication number
EP0305574B1
EP0305574B1 EP87112881A EP87112881A EP0305574B1 EP 0305574 B1 EP0305574 B1 EP 0305574B1 EP 87112881 A EP87112881 A EP 87112881A EP 87112881 A EP87112881 A EP 87112881A EP 0305574 B1 EP0305574 B1 EP 0305574B1
Authority
EP
European Patent Office
Prior art keywords
input
value
output
mixing
kalman filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112881A
Other languages
German (de)
French (fr)
Other versions
EP0305574A1 (en
Inventor
Hans-Ulrich Dr.-Ing. Frenzel
Fred Enz
Karl-Heinz Prof. Dr. Schmelovsky
Wolfgang Dr. Tänzler
Wilfried Bartusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WOLFGANG TARTSCH UNTERNEHMENSBERATUNG KG
Original Assignee
Wolfgang Tartsch Unternehmensberatung KG
Akademie der Wissenschaften der DDR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfgang Tartsch Unternehmensberatung KG, Akademie der Wissenschaften der DDR filed Critical Wolfgang Tartsch Unternehmensberatung KG
Priority to DE8787112881T priority Critical patent/DE3766961D1/en
Priority to AT87112881T priority patent/ATE59596T1/en
Priority to EP87112881A priority patent/EP0305574B1/en
Publication of EP0305574A1 publication Critical patent/EP0305574A1/en
Application granted granted Critical
Publication of EP0305574B1 publication Critical patent/EP0305574B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • B28C7/022Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component
    • B28C7/026Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component by measuring data of the driving system, e.g. rotational speed, torque, consumed power

Definitions

  • the invention relates to a method and a circuit arrangement for controlling the consistency of fresh concrete in stationary concrete mixing plants, the amount of water required to ensure the target consistency being adaptively determined and supplied during the mixing process.
  • the water-cement ratio and the consistency of the fresh concrete have a particular influence on the concrete quality. Both are decisively influenced by the intrinsic moisture of the aggregates, which, however, can vary greatly in practice due to storage options, storage conditions, weather conditions, etc. So that the quality of the hardened concrete is always ensured, the risk of fresh concrete production resulting from the unknown moisture content of the aggregates has been reduced by adding cement.
  • An obvious procedure for determining the intrinsic moisture of the additives is to use moisture measuring probes, e.g. B. microwave or neutron probes. With these Probes measure the moisture of the fine-grained aggregates directly before each mixture and these values are used to calculate a corrected amount of water. Disadvantages of these probes are the high cost and the susceptibility to failure due to the complicated structure.
  • the consistency measurement is usually carried out indirectly by measuring the electrical resistance of the material to be mixed (DE-OS 1 784 920) or by determining the active power of the drive motor of the mixing drum.
  • the effective power of the motor is proportional to the frictional resistance of the mix (this value corresponds to the consistency) (DE-OS 1 683 778).
  • DE-OS 2 855 324 describes a method which uses this curve profile. For each recipe, consistency setpoints are determined for an ideal mixture at time-equidistant intervals, these are converted into active power values and saved in a table as setpoints. The required amount of residual water is determined by comparison with corresponding measured values.
  • DE-AS 2 432 609 proposes to keep the inflow rate of the water very low. However, this leads to uneconomical mixing times, and there is also the risk of segregation of the concrete. Try other methods, a defined initial moisture z. B. by saturating the additives with water and then controlled partial removal of the water (DE-OS 2 756 039) or by supplying the water in vapor form (DE-OS 1 950 910). These processes require additional equipment and increased time per mixture.
  • the aim of the invention is to adaptively determine the expected consistency value of the mixture at the earliest possible time by means of a method and a circuit arrangement for controlling the consistency of fresh concrete, so that the amount of water required to achieve the desired consistency is supplied to the concrete mixture in a controlled manner already during the mixing phase can, whereby an overdose of cement can be avoided.
  • the purpose of the invention is furthermore to avoid water metering errors which can result from the unknown initial moisture and from quantitative changes in a determined active power-time curve.
  • the invention has for its object to provide a method and a circuit arrangement for controlling the consistency of fresh concrete, which during the wet mixing phase, ie. H. From the beginning of the water supply, the expected consistency value of the mix currently in the drum is determined at discrete time intervals.
  • the target-actual value comparison for controlling the water supply is to be reduced to the comparison of only a known consistency value, namely the stationary end value according to the recipe, with the adaptively determined predicted end value.
  • the circuit arrangement is also intended to enable the expansion of conventional conventional concrete mixing plants, so that automatic control of the consistency of the fresh concrete to the consistency setpoint is possible in a time-optimized manner by means of controlled water metering.
  • a final power value i. H. a value representative of a corresponding degree of filling of the mixing device or of a recipe specification is determined.
  • the expected final output values are determined once according to the respective filling level and can be fixed as a system parameter.
  • a dry mixing power value is also determined, for example by determining the active power of the drive motor of the mixing plant.
  • the dry mix output value and the final output value corresponding to the respective degree of filling or the recipe specification are stored for the further implementation of the consistency control process. Accordingly, at the beginning of the dry mixing process there is a final power value and a dry mixed value in the memory of the mixing plant. From the beginning of the dry mixing process to the end of the mixing, for example, also the determination of the active power of the drive motor of the mixing plant, an average power value is recorded at equidistant time intervals. The actual dry mixing phase takes place in a known manner.
  • the power averages are processed using a suitable discrete Kalman filter of the 1st order in such a way that a pseudo actual value, ie a value approximating the actual power value at the end of the dry mixing phase is derivable.
  • the derived pseudo actual value is used as the initial value of a first component of a state vector containing three components.
  • the other components can be freely selected within the system under consideration.
  • the measured power means (measured) values are used to transfer the measurable state variable - amount of water supplied - to the non-measurable state variable - mixed quantity of water - which ultimately determines the consistency of the mix, within the time period from the start of the water supply until the end of the water supply.
  • These values now available represent the dependency between the performance of the motor of the mixing plant and the amount of water mixed in.
  • the control system can be completely described on the basis of the further knowledge mentioned at the outset, ie the depictable relationship between the performance and the amount of water mixed in.
  • control components are provided as estimated values, ie it is determined which values are to be expected at the time of the next power measurements. These control components correlate with the expected final power value.
  • the control variable for stopping or continuing the water supply can be derived with high accuracy from the comparison of the expected end value with the stored power end value.
  • 1a shows the time course of the active power of the motor of the mixing plant with superimposed interference signals during the mixing of a conventional recipe.
  • the average active power of the drive motor is advantageously determined by measuring current and voltage at time-equidistant intervals and calculating the product sums.
  • the mixing drum is loaded in the time phase from t0 to t1 with the dry components of the concrete and a small amount of water, which determines the initial moisture content W0 with the unknown moisture content of the additives.
  • the dry components are mixed.
  • the active power N correlating with the consistency is constant for this.
  • the numerical size of these constants varies depending on the initial moisture W0 and on the weighing inaccuracies.
  • N k + 1 N k and the recorded measured values, which are superimposed with disturbances of the variance R, the estimated value N ⁇ k + 1 of the active power and the error covariance matrix P k + 1 are determined.
  • the values N ⁇ k are shown in Figure 1b.
  • the estimated value N ⁇ k + 1 of the filter is compared with the determined system and recipe parameters N2.
  • the power value N ⁇ 0 predicted at the time t2 correlates with the initial moisture W0 and is used as the initial value for the estimation of the other power values N ⁇ during the following phases.
  • D is the non-equidistant step size between two performance values, as a result of the transformation of the performance values Non-equidistance occurs in W2.
  • the predicted state vector N ⁇ K and the total amount of water W G given by the recipe become the final power value according to the relationship certainly.
  • the water supply valve is closed before reaching the specified amount of recipe water, in the opposite case the valve must be closed later.
  • the duration of the changed valve timing is determined from the absolute value of the difference.
  • the state vector continues to be used with the method step described determined.
  • time t5 all of the water is mixed in, and a comparison of N ⁇ end with N6 can be carried out again for quality control.
  • the state vector can be used to determine the components of the state vector be used.
  • component N ⁇ 0 is determined during the dry mixing phase.
  • the component ⁇ is a constant and can be adopted directly.
  • the component N ⁇ 0 is based on the relationship found with the relationship certainly
  • the final values of the components of the error covariance matrix of the Kalman filter are converted in a suitable form and used as initial values at time t 2.
  • Fig. 1e shows the progression of the predicted end values N ⁇ end during a further mixture if the above learning process took place in the period between t5 and t6.
  • a system metering device known per se is expanded by an output and two inputs, the expansion inlet with the output of the timing control, the first extension input with the input of the emergency switch and the second extension input with the control input of the water valve of the known one Plant are connected.
  • Current and voltage transformers are arranged in the feed lines of the drive motor of the mixing plant.
  • the output of the converter unit formed here is connected to the input of an active power measuring device.
  • the output of the active power measuring device leads to the switching input of an electronic switch with three outputs.
  • the control input of the electronic switch is connected to the extension output of the known system metering device.
  • the first output of the electronic switch leads to a first order Kalman filter, the second output to a first transducer unit and the third output to a second transducer unit.
  • the output of the first order Kalman filter is connected both to a first input of a first differential amplifier and to a first initial value setting input of a third order Kalman filter.
  • the second input of the first differential amplifier is connected to the output of a first read-only memory.
  • the output of the first differential amplifier leads to the input of a first evaluation circuit, the output of which is linked to the first extension input of the system metering device.
  • the outputs of the first and second transducer units are connected to one another and lead to the information input of the third order Kalman filter, its second initial value set input leads to the output of a computing circuit and its third initial value setting input is connected to a first output of a final value determination circuit, the second output of which leads to the input of the computing circuit.
  • a first, second and third input of the final value determination circuit are connected to the first, second and third output of the third order Kalman filter.
  • the third output of the final value determination circuit is connected to the first input of a second differential amplifier, the second input of which leads to the output of a second read-only memory.
  • the output of the second differential amplifier leads to a second evaluation circuit, the output of which is connected to a display unit and to the second extension input of the system metering device.
  • circuit arrangement according to the invention is described on the basis of the time course of a typical mixing process according to the consistency control method already described.
  • the measured value of the current active power is available at time-equidistant intervals at the output of the active power measuring device.
  • the electronic changeover switch is switched during the dry mixing phase so that the input is connected to the first output and thus the current active power measurement value is present at the input of the Kalman filter of the first order and the filtered active power measurement value is available at its output. This value is compared in the first differential amplifier with the first one-time determined and fixed system and recipe parameter, which is stored in the first read-only memory.
  • the electronic changeover switch is switched via its control input by the system dosing device in such a way that the switch input is connected to the second output of the changeover switch.
  • the output signal of the first differential amplifier exceeds a system-specific threshold.
  • the accident is also triggered, otherwise the filtered active power measurement value is taken over at the end of the dry mixing phase via the first initial value input into the third-order Kalman filter.
  • any initial values or those selected depending on the result of the previous mixture are present at the second and third initial value setting inputs, the output signal of the arithmetic circuit being present at the second setting input and the output signal of the first output of the final value determining circuit being present at the third setting input, thereby improving the accuracy of the Output signals of the third order Kalman filter is reached.
  • the output variable of the first transducer unit in which the active power measured value is transformed with the aid of a defined relationship between the amount of water added and the amount of water mixed in during the time of water supply.
  • the filtered values describing the consistency are available at the outputs of the third order Kalman filter. These values are led to the inputs of the final value determination circuit, with which the values which characterize the consistency of the material to be mixed at the end of the mixing phase are already determined during the mixing phase.
  • the signal representing the final active power is present at the third output of the final value determination circuit and is used in a second differential amplifier with the second fixed system and recipe. parameter is compared.
  • the output signal of the second differential amplifier is fed to a second evaluation circuit.
  • the output of the second evaluation circuit is connected to a display unit which is used for the visual control of the control variable for the water metering. Furthermore, the output of the second evaluation circuit is connected to the second extension input of the system metering device, the opening time of the water valve being controlled as a function of the sign and size of the output signal. After the water valve is closed, the electronic switch is brought into a third state. The active power measured values now reach the information input of the third order Kalman filter via the second measured value converter unit, in which the measured values are transformed according to a defined relationship that applies when the water is only mixed in.
  • the predicted final values are provided in an analogous manner and can be passed from the first output of the final value determination circuit and from the second output via the arithmetic circuit to the third-order initial value setting inputs of the Kalman filter at the end of the overall mixing phase and can be used on the display unit to control the final consistency value reached.
  • the mixing drum 5, which is mechanically connected to the drive unit 6, is fed via the silos 1, 2 and 3 and the water valve 4.
  • the metering of the additives and the binder according to the present recipe is carried out by the known system metering device 28.
  • the control of the water valve 4 takes place via the connection of the output A1 of the system metering device 28 with the water valve 4.
  • the current transformers 7, 9 and 11 and the voltage transformers 8, 10 and 12 are switched on.
  • the outputs of the converter lead to the inputs of the active power measuring device 13.
  • the output of the active power measuring device 13 is connected to the input E3 of the electronic switch 14.
  • the input E4 of the electronic switch 14 is connected to the extension output A5 of the system metering device 28.
  • the output A6 of the switch 14 are connected to the input of the first order Kalman filter 15, the output A7 to the input of the first transducer unit 16 and the output A8 to the input of the second transducer unit 17.
  • the output of the first order Kalman filter 15 leads to the input E5 of the first differential amplifier 19 and to the input E7 of the third order Kalman filter 20.
  • the input E6 of the first differential amplifier 19 is connected to the output of the read-only memory 21.
  • the output of the first differential amplifier 19 is connected to the input of a first evaluation circuit 18 and the output of this evaluation circuit to the first extension input E 1 of the system metering device 28.
  • the outputs of the first and second transducer units 16, 17 lead to the input E 10 of the third order Kalman filter 20.
  • the input E8 of the Kalman filter 20 is connected to the output of a computing circuit 22 and the input E9 is connected to the output A9 of a final value determination circuit 23 .
  • the outputs of the Kalman filter 20 are connected to the inputs of the final value determination circuit 23.
  • the output A 10 of the final value determination circuit 23 leads to the input of the computing circuit 22, the output A 11 of the final value determination circuit 23 connected to the input E 12 of the second differential amplifier 24, and the input E 11 of this differential amplifier 24 is connected to the output of the second read-only memory 25. Furthermore, the output of the second differential amplifier 24 is connected to the input of the second evaluation circuit 27. The output of the evaluation circuit 27 is connected to the second expansion input E2 of the system metering device 28 and to the input of the display unit 26.

Abstract

According to the method of the invention, the final power value which occurs at the end of the mixing process is forecast during the mixing process as early as the water inflow phase with a discrete Kalman filter, using a relationship between the mean power value of the mixing motor, which correlates with the consistency, and the quantity of water currently admixed. This forecast final power value is compared to a desired final power value, which is fixed as a device and formulation parameter, and the difference is used to determine the residual quantity of water required and hence for controlling the water valve. The circuitry consists essentially of an active-power measuring device (13), which is connected via a time-controlled electronic change-over switch (14) to a first-order Kalman filter (15) or via measuring-transducer units (16, 17) to a third-order Kalman filter (20) and a circuit (23) for determining the final value. The signal present at the output of the circuit (23) for determining the final value, which signal characterises the consistency, is compared to a device and formulation parameter, fixed in a read-only memory, (25) by means of a differential amplifier (24). An evaluation circuit (27) uses the difference to derive the water-valve control times of the mixing installation (5).

Description

Die Erfindung betrifft ein Verfahren sowie eine Schaltungsan­ordnung zur Steuerung der Konsistenz von Frischbeton in statio­nären Betonmischanlagen, wobei während des Mischprozesses die erforderliche Wassermenge zur Gewährleistung der Sollkonsistenz adaptiv ermittelt und zugeführt wird.The invention relates to a method and a circuit arrangement for controlling the consistency of fresh concrete in stationary concrete mixing plants, the amount of water required to ensure the target consistency being adaptively determined and supplied during the mixing process.

Um bei der üblichen chargenweisen Herstellung von Frischbeton reproduzierbare Güteeigenschaften des Betons zu erreichen, ist es notwendig die laut Betonrezeptur geforderten Mengenrela­tionen und Eigenschaften von Zement, Wasser, Zuschlagstoffen und weiteren Zusatzmitteln genau einzuhalten. Die genaue Ana­lyse aller Komponenten wäre deshalb vor jeder Mischung erfor­derlich, ist aber in der Praxis aus zeitlichen und ökonomi­schen Gründen nicht durchführbar.In order to achieve reproducible quality properties of the concrete in the usual batch-wise production of fresh concrete, it is necessary to exactly adhere to the quantity relationships and properties of cement, water, additives and other additives required by the concrete recipe. A precise analysis of all components would therefore be necessary before each mixture, but is not feasible in practice for time and economic reasons.

Besonderen Einfluß auf die Betongüte haben das Wasser-Zement-­Verhältnis und die Konsistenz des Frischbetons. Beide werden entscheidend durch die Eigenfeuchte der Zuschlagstoffe beein­flußt, die aber in der Praxis durch Lagerungsmöglichkeiten, Lagerstättengegebenheiten, Witterungseinflüsse usw. stark veränderlich ist. Damit die Güte des ausgehärteten Betons immer gesichert ist, wird bisher durch erhöhte Zementzugabe das infolge nicht bekannter Eigenfeuchte der Zuschlagstoffe entstehende Risiko bei der Frischbetonproduktion verringert. Ein naheliegendes Vorgehen zur Ermittlung der Eigenfeuchte der Zuschlagstoffe besteht in der Anwendung von Feuchtemeß­sonden, z. B. Mikrowellen- oder Neutronensonden. Mit diesen Sonden wird die Feuchte der feinkörnigen Zuschlagstoffe vor jeder Mischung direkt gemessen und diese Werte werden zur Be­rechnung einer korrigierten Wassermenge benutzt. Nachteile dieser Sonden sind der hohe Kostenaufwand und die Störanfäl­ligkeit infolge des komplizierten Aufbaus. Die Inhomogenität den Meßgutes, das zusätzlich Fremdkörper enthalten kann, ist die Ursache dafür, daß die alleinige Anwendung von Feuchte­meßsonden bisher nicht zu praktisch wirksamen Anlagen führte. Es wurden deshalb Verfahren entwickelt, in denen die Messung der Eigenfeuchte und die Messung der Konsistenz kombiniert werden. So ist es bekannt, mit der gemessenen Anfangsfeuchte die notwendige Wassermenge zu berechnen, einen Hauptteil der Wassermenge zuzuführen und zu einem Zeitpunkt während der Mischphase, an dem ein vorgegebener Konsistenzwert auftritt, den Rest als Nachdosierung zuzugeben (DD-WP 141 129).The water-cement ratio and the consistency of the fresh concrete have a particular influence on the concrete quality. Both are decisively influenced by the intrinsic moisture of the aggregates, which, however, can vary greatly in practice due to storage options, storage conditions, weather conditions, etc. So that the quality of the hardened concrete is always ensured, the risk of fresh concrete production resulting from the unknown moisture content of the aggregates has been reduced by adding cement. An obvious procedure for determining the intrinsic moisture of the additives is to use moisture measuring probes, e.g. B. microwave or neutron probes. With these Probes measure the moisture of the fine-grained aggregates directly before each mixture and these values are used to calculate a corrected amount of water. Disadvantages of these probes are the high cost and the susceptibility to failure due to the complicated structure. The inhomogeneity of the material to be measured, which may additionally contain foreign bodies, is the reason why the sole use of moisture measuring probes has not hitherto led to systems which are effective in practice. Methods have therefore been developed in which the measurement of the inherent moisture and the measurement of the consistency are combined. It is known, for example, to calculate the necessary amount of water with the measured initial moisture, to add a major part of the amount of water and to add the rest at a time during the mixing phase at which a predetermined consistency value occurs (DD-WP 141 129).

Die Konsistenzmessung erfolgt üblicherweise indirekt über die Messung des elektrischen Widerstandes des Mischgutes (DE-OS 1 784 920) oder über die Wirkleistungsbestimmung des Antriebsmotors der Mischtrommel. Die Wirkleistung des Motors ist dem Reibungswiderstand des Mischgutes (dieser Wert ent­spricht der Konsistenz) proportional (DE-OS 1 683 778).The consistency measurement is usually carried out indirectly by measuring the electrical resistance of the material to be mixed (DE-OS 1 784 920) or by determining the active power of the drive motor of the mixing drum. The effective power of the motor is proportional to the frictional resistance of the mix (this value corresponds to the consistency) (DE-OS 1 683 778).

Die Messung der Wirkleistung in Abhängigkeit von der Zeit während der Mischphase ergibt eine charakteristische Kurve, die entsprechend dem aktuellen Konsistenzgrad des Mischgutes drei wesentliche Abschnitte besitzt

  • 1. konstanter Verlauf während der Trockenmischphase,
  • 2. Anstieg, Maximum und Abfall während der Zeit der Wasser­zufuhr und -untermischung,
  • 3. konstanter Endwert, wenn das gesamte zugeführte Wasser untergemischt ist.
The measurement of the active power as a function of time during the mixing phase results in a characteristic curve which has three essential sections in accordance with the current degree of consistency of the mixture
  • 1. constant course during the dry mixing phase,
  • 2. increase, maximum and decrease during the time of water supply and mixing,
  • 3. Constant final value when all the water supplied is mixed in.

In der DE-OS 2 855 324 wird ein Verfahren beschrieben, das diesen Kurvenverlauf ausnutzt. Für jede Rezeptur werden für eine Idealmischung in zeitäquidistanten Abständen Konsistenz­sollwerte ermittelt, diese in Wirkleistungswerte umgerechnet und in einer Tabelle als Sollwerte gespeichert. Durch Ver­gleich mit entsprechenden Meßwerten wird die erforderliche Restwassermenge bestimmt.DE-OS 2 855 324 describes a method which uses this curve profile. For each recipe, consistency setpoints are determined for an ideal mixture at time-equidistant intervals, these are converted into active power values and saved in a table as setpoints. The required amount of residual water is determined by comparison with corresponding measured values.

Nachteile dieses Verfahrens bestehen darin, daß eine Viel­zahl von Meßwerten für jede Rezeptur ermittelt und gespeichert werden muß. Hinzu kommt, daß erstens der quantitative Kurven­verlauf und die zeitliche Lage des Kurvenmaximums von Anfangs­feuchte, Sieblinie und Korngeometrie der Zuschlagstoffe abhängen und zweitens durch harmonische und stochastische Störungen der Mischanlage die Meßwerte verfälscht werden. Dies erschwert die Berechnung der erforderlichen Restwassermenge. Eine exakte Be­stimmung der Restwassermenge ist unbedingt notwendig, da durch eine zu hohe Wasserzugabe unbrauchbarer Beton entsteht.Disadvantages of this method are that a large number of measured values must be determined and stored for each recipe. In addition, the quantitative curve shape and the temporal position of the curve maximum depend on the initial moisture, sieve line and grain geometry of the aggregates, and secondly, the measured values are falsified by harmonic and stochastic disturbances of the mixing plant. This makes it difficult to calculate the amount of residual water required. An exact determination of the amount of residual water is absolutely necessary, because too much water is used to make unusable concrete.

In der DE-AS 2 432 609 wird vorgeschlagen, die Zuflußgeschwin­digkeit des Wassers sehr gering zu halten. Dies führt aber zu unökonomischen Mischzeiten, wobei außerdem die Gefahr der Ent­mischung des Betons auftritt. Weitere Verfahren versuchen, eine definierte Anfangsfeuchte z. B. durch Sättigung der Zuschlagstof­fe mit Wasser und danach kontrollierte teilweise Entfernung des Wassers (DE-OS 2 756 039) oder durch Zuführung des Wassers in Dampfform (DE-OS 1 950 910) zu erzielen. Diese Verfahren erfordern einen zusätzlichen apparativen Aufwand und erhöhten Zeit­bedarf pro Mischung.DE-AS 2 432 609 proposes to keep the inflow rate of the water very low. However, this leads to uneconomical mixing times, and there is also the risk of segregation of the concrete. Try other methods, a defined initial moisture z. B. by saturating the additives with water and then controlled partial removal of the water (DE-OS 2 756 039) or by supplying the water in vapor form (DE-OS 1 950 910). These processes require additional equipment and increased time per mixture.

Fernen wird in der DE-A-2124697 und in der US-A- 3593966 vorgeschlagen, daß bei einer Materialaufbereitungsanlage der von dem Antriebsmotor des Mischers aufgenommene Strom dem Wassergehalt des aufbereiteten Materials, d.h. der Plastizität des Materials, reziprok proportional ist, so daß für eine Regelung des Wassergehaltes nummehr ein Istwert vorlieght.Furthermore, it is proposed in DE-A-2124697 and in US-A-3593966 that in a material processing system the current taken up by the drive motor of the mixer is reciprocally proportional to the water content of the processed material, ie the plasticity of the material, so that for a regulation of the water content is merely an actual value.

Ziel der Erfindung ist es, mittels eines Verfahrens und einer Schaltungsanordnung zur Steuerung der Konsistenz von Frischbe­ton zum frühest möglichen Zeitpunkt den zu erwartenden Konsistenz­wert der Mischung adaptiv zu bestimmen, so daß die zur Erzie­lung der Sollkonsistenz erforderliche Wassermenge dem Betonge­misch bereits während der Untermischphase gesteuert zugeführt werden kann, wodurch sich eine Überdosierung von Zement vermei­den läßt. Zweck der Erfindung ist weiterhin die Vermeidung von Wasserdosierfehlern, die sich durch die unbekannte Anfangsfeuch­te und durch quantitative Veränderungen einer ermittelten Wirk­leistungs-Zeit-Kurve ergeben können.The aim of the invention is to adaptively determine the expected consistency value of the mixture at the earliest possible time by means of a method and a circuit arrangement for controlling the consistency of fresh concrete, so that the amount of water required to achieve the desired consistency is supplied to the concrete mixture in a controlled manner already during the mixing phase can, whereby an overdose of cement can be avoided. The purpose of the invention is furthermore to avoid water metering errors which can result from the unknown initial moisture and from quantitative changes in a determined active power-time curve.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Schaltungsanordnung zur Steuerung der Konsistenz von Frisch­beton anzugeben, womit während der Naßmischphase, d. h. vom Beginn der Wasserzuführung an, in diskreten Zeitabständen der zu erwartende Konsistenzwert des Mischgutes, das sich aktuell in der Trommel befindet, bestimmt wird. Der Soll-Ist-Wertver­gleich zur Steuerung der Wasserzufuhr soll sich hierbei auf den Vergleich nur eines bekannten Konsistenzwertes, nämlich des sta­tionären Endwertes entsprechend der Rezeptur, mit dem adaptiv ermittelten prognostizierten Endwert reduzieren.The invention has for its object to provide a method and a circuit arrangement for controlling the consistency of fresh concrete, which during the wet mixing phase, ie. H. From the beginning of the water supply, the expected consistency value of the mix currently in the drum is determined at discrete time intervals. The target-actual value comparison for controlling the water supply is to be reduced to the comparison of only a known consistency value, namely the stationary end value according to the recipe, with the adaptively determined predicted end value.

Die Schaltungsanordnung soll weiterhin die Erweiterung üblicher konventioneller Betonmischanlagen ermöglichen, so daß eine auto­matische Steuerung der Konsistenz des Frischbetons auf den Kon­sistenzsollwert durch kontrollierte Wasserdosierung zeitoptimal möglich ist.The circuit arrangement is also intended to enable the expansion of conventional conventional concrete mixing plants, so that automatic control of the consistency of the fresh concrete to the consistency setpoint is possible in a time-optimized manner by means of controlled water metering.

Ausgehend von der Erkenntnis, daß die Konsistenz des Mischgutes nur durch die aktuell untergemischte Wassermenge bestimmt wird und die direkt nicht meßbare Zustandsgröße - untergemischte Wassermenge - sich durch die meßbare Zustandsgröße - zugeführte Wassermenge - beschreiben läßt, ist die Durchführung des im folgenden beschriebenen Konsistenzsteuerverfahrens möglich. Weiterhin wurde ein Zusammenhang zwischen dem Verlauf der Wirkleistung in Abhängigkeit von der untergemischten Wasser­menge gefunden und zur Realisierung des Steuerverfahrens be­nutzt.Based on the knowledge that the consistency of the material to be mixed is determined only by the amount of water currently mixed in and the directly measurable state quantity - mixed quantity of water - is supplied by the measurable state quantity Amount of water - can be described, it is possible to carry out the consistency control process described below. Furthermore, a relationship between the course of the active power as a function of the amount of water mixed in was found and used to implement the control method.

Die genannte Aufgabe wird erfindungsgemäß durch das Verfah­ren gemäß Patentanspruch 1 und durch die Schaltungsanordnung gemäß Patentanspruch 3 gelöst.The stated object is achieved according to the invention by the method according to claim 1 and by the circuit arrangement according to claim 3.

Eine vorteilhafte Weiterbildung des Verfahrens ist im Pa­tentanspruch 2 gekennzeichnet.An advantageous development of the method is characterized in claim 2.

Erfindungsgemäß wird also vor Beginn der eigentlichen Misch­phase ein Leistungsendwert, d. h. ein für einen entsprechen­den Füllungsgrad der Mischeinrichtung bzw. für eine Rezep­turvorschrift repräsentativer Wert, ermittelt. Die Bestim­mung der zu erwartenden Leistungsendwerte entsprechend dem jeweiligen Füllungsgrad erfolgt einmalig und ist als Anla­genparameter fixierbar. Während der in bekannter Weise er­folgenden Beschickung der Mischanlage wird weiterhin ein Trockenmischleistungswert, beispielsweise durch die Bestim­mung der Wirkleistung des Antriebsmotors der Mischanlage, ermittelt.According to the invention, therefore, before the beginning of the actual mixing phase, a final power value, i. H. a value representative of a corresponding degree of filling of the mixing device or of a recipe specification is determined. The expected final output values are determined once according to the respective filling level and can be fixed as a system parameter. During the loading of the mixing plant, which takes place in a known manner, a dry mixing power value is also determined, for example by determining the active power of the drive motor of the mixing plant.

Der Trockenmischleistungswert und der entsprechend dem je­weiligen Füllungsgrad bzw. der Rezepturvorschrift repräsen­tative Leistungsendwert werden für die weitere Durchführung des Konsistenzsteuerfahrens abgespeichert. Zum Beginn des Trockenmischvorganges befinden sich dementsprechend ein Lei­stungsendwert und ein Trockenmischwert im Speicher der Mischanlage. Vom Beginn des Trockenmischvorganges bis zur Beendigung des Mischens wird, beispielsweise ebenfalls durch die Bestimmung der Wirkleistung des Antriebsmotors der Mischanlage, in äquidistanten Zeitabständen ein Leistungs­mittelwert erfaßt. Die eigentliche Trockenmischphase erfolgt in bekannter Weise. Während der Trockenmischphase werden er­findungsgemäß innerhalb des Konsistenzsteuerverfahrens in äquidistanten Zeitabständen die Leistungsmittel(-meß)-werte unter Verwendung eines geeigneten diskreten Kalman-Filters 1. Ordnung derart verarbeitet, daß ein Pseudo-Istwert, d. h. ein dem tatsächlichen Leistungswert am Ende der Trocken­mischphase nahekommender Wert, ableitbar ist.The dry mix output value and the final output value corresponding to the respective degree of filling or the recipe specification are stored for the further implementation of the consistency control process. Accordingly, at the beginning of the dry mixing process there is a final power value and a dry mixed value in the memory of the mixing plant. From the beginning of the dry mixing process to the end of the mixing, for example, also the determination of the active power of the drive motor of the mixing plant, an average power value is recorded at equidistant time intervals. The actual dry mixing phase takes place in a known manner. During the dry mixing phase, according to the invention, within the consistency control process, the power averages (measurements) are processed using a suitable discrete Kalman filter of the 1st order in such a way that a pseudo actual value, ie a value approximating the actual power value at the end of the dry mixing phase is derivable.

Die Bestimmung des Pseudo-Istwertes und der Vergleich mit dem jeweiligen Leistungsmittel(meß)-wert lassen Fehldosie­rungen, d. h. Beschickungsfehler und grobe Abweichungen von der zulässigen Solleigenfeuchte der Zuschlagstoffe sofort erkennen.The determination of the pseudo actual value and the comparison with the respective power mean (measurement) value leave incorrect doses, i. H. Detect loading errors and gross deviations from the permissible nominal moisture content of the additives immediately.

Zum Beginn der Wasserzuführung wird der abgeleitete Pseudo-­Istwert als Anfangswert einer ersten Komponente eines drei Komponenten enthaltenden Zustandsvektors benutzt. Die weite­ren Komponenten sind innerhalb des betrachteten Systems frei wählbar.At the start of the water supply, the derived pseudo actual value is used as the initial value of a first component of a state vector containing three components. The other components can be freely selected within the system under consideration.

Entsprechend der eingangs genannten Erkenntnis erfolgt mittels der erfaßten Leistungsmittel(-meß)-werte eine Übertragung der meßbaren Zustandsgröße - zugeführte Wassermenge - auf die nicht meßbare Zustandsgröße - untergemischte Wassermenge -, die letztendlich die Konsistenz des Mischgutes bestimmt, inner­halb des Zeitabschnittes vom Beginn der Wasserzuführung bis zum Ende der Wasserzuführung. Diese jetzt zur Verfügung ste­henden Werte repräsentieren die Abhängigkeit zwischen der Leistung des Motors der Mischanlage und der untergemischten Wassermenge. Auf Grund der weiteren eingangs genannten Erkennt­nis, d. h. des darstellbaren Zusammenhanges zwischen dem Verlauf der Leistung und der untergemischten Wassermenge, ist das Steuersystem vollständig beschreibbar. Mittels eines geeigne­ten diskreten Kalman-Filters 3. Ordnung werden Steuerkomponen­ten als Schätzwerte bereitgestellt, d. h. es wird festge­stellt, welche Werte zum Zeitpunkt der nächsten Leistungsmes­sungen zu erwarten sind. Diese Steuerkomponenten korrelieren mit dem zu erwartenden Leistungsendwert. Aus dem Vergleich des zu erwartenden Endwertes mit dem abgespeicherten Leistungsend­wert läßt sich die Steuergröße zur Beendigung oder Fortführung der Wasserzufuhr mit hoher Genauigkeit ableiten.According to the above-mentioned knowledge, the measured power means (measured) values are used to transfer the measurable state variable - amount of water supplied - to the non-measurable state variable - mixed quantity of water - which ultimately determines the consistency of the mix, within the time period from the start of the water supply until the end of the water supply. These values now available represent the dependency between the performance of the motor of the mixing plant and the amount of water mixed in. The control system can be completely described on the basis of the further knowledge mentioned at the outset, ie the depictable relationship between the performance and the amount of water mixed in. Using a suitable discrete 3rd order Kalman filter, control components are provided as estimated values, ie it is determined which values are to be expected at the time of the next power measurements. These control components correlate with the expected final power value. The control variable for stopping or continuing the water supply can be derived with high accuracy from the comparison of the expected end value with the stored power end value.

Wird im nächstfolgenden Mischprozeß eine gleiche Rezeptur verarbeitet, so ist es zweckmäßig, die ermittelten Steuer­komponenten, d. h. den Schätzendwert, zum Zeitpunkt der ge­samten Untermischung des Wassers festzuhalten, diesen Wert auf den Anfangswert zu übertragen und als Ausgangskompo­nente, d. h. als Schätzanfangswert im Steuerprozeß einzu­setzen. Eine derartige Verfahrensweise sichert eine geringe Einschwingzeit des Gesamtsteuerprozesses und beeinflußt den Mischprozeß in zeitlicher und qualitativer Hinsicht positiv.If an identical recipe is processed in the next mixing process, it is expedient to control the determined control components, i. H. the final estimated value, to be recorded at the time of the total mixing of the water, to transfer this value to the initial value and as a starting component, d. H. to be used as an initial estimate in the tax process. Such a procedure ensures a short settling time of the overall control process and has a positive influence on the mixing process in terms of time and quality.

Die Erfindung wird anhand der Zeichnung näher erläutert; darin zeigen:

  • Fig. 1 ein Diagramm zur Veranschaulichung der Verfahrensschritte; und
  • Fig. 2 ein Schaltschema der Schaltungsanordnung.
The invention is explained in more detail with reference to the drawing; show in it:
  • 1 shows a diagram for illustrating the method steps; and
  • Fig. 2 is a circuit diagram of the circuit arrangement.

Der zeitliche Ablauf der erfindungsgemäßen Verfahrens­schritte soll nun anhand eines Ausführungsbeispiels und der Figur 1 näher erläutert werden.The time sequence of the method steps according to the invention will now be explained in more detail using an exemplary embodiment and FIG. 1.

Fig. 1a zeigt den zeitlichen Verlauf der Wirkleistung des Motors der Mischanlage mit überlagerten Störsignalen während der Mischung einer üblichen Rezeptur.1a shows the time course of the active power of the motor of the mixing plant with superimposed interference signals during the mixing of a conventional recipe.

Die mittlere Wirkleistung des Antriebsmotors wird vorteil­hafterweise durch Messung von Strom und Spannung in zeit­äquidistanten Abständen und Berechnung der Produktsummen bestimmt.The average active power of the drive motor is advantageously determined by measuring current and voltage at time-equidistant intervals and calculating the product sums.

Auf der Abszisse der Figur 1 sind die Zeitmarken t₀ bis t₆ angegeben, die den wesentlichen Schritten des erfindungs­gemäßen Verfahrens entsprechen.On the abscissa of Figure 1, the time marks t₀ to t₆ are given, which correspond to the essential steps of the inventive method.

Hierbei bedeuten:Here mean:

t₀ t₀
- Beginn der Beschickung- start of loading
t₁ t₁
- Beginn der Trockenmischphase- Start of the dry mixing phase
t1.1 t 1.1
- Beginn des Vergleichs von Anfangswert des Filters mit Anlagenparameter- Start of the comparison of the initial value of the filter with the system parameters
t₂ t₂
- Ende der Trockenmischphase und Beginn der Wasserzulauf- und Untermischphase- End of the dry mixing phase and start of the water supply and mixing phase
t₃ t₃
- Zeitpunkt der Übereinstimmung zwischen Prognose- und Sollendwert- Time of correspondence between forecast and target end value
t₄ t₄
- Ende der Untermischphase- End of the mixing phase
t₅ t₅
- Beginn der Lernphase- Start of the learning phase
t₆ t₆
- Ende der Lernphase- End of the learning phase

Zur Nutzung des Verfahrens ist es erforderlich, für jede Betonrezeptur einmalig eine Eichmischung mit bekannten Mengen­relationen und Eigenschaften aller eingesetzten Komponenten herzustellen und den Leistungswert N₂ an der Zeitmarke t₂ und den Leistungswert N₆ als Anlagen- und Rezepturparameter an der Zeitmarke t₆ zu fixieren.To use the method, it is necessary to produce a calibration mixture with known quantity relations and properties of all components used once for each concrete formulation and to fix the performance value N₂ at the time stamp t₂ and the performance value N₆ as system and formulation parameters at the time stamp t₆.

In bekannter Weise wird die Mischtrommel in der Zeitphase von t₀ bis t₁ mit den Trockenkomponenten des Betons und einer ge­ringen Wassermenge, die mit der unbekannten Eigenfeuchte der Zuschlagstoffe die Anfangsfeuchte W₀ bestimmt, beschickt.In a known manner, the mixing drum is loaded in the time phase from t₀ to t₁ with the dry components of the concrete and a small amount of water, which determines the initial moisture content W₀ with the unknown moisture content of the additives.

In der Trockenmischphase t₁ bis t₂ werden die Trockenkomponen­ten durchmischt. Die mit der Konsistenz korrelierende Wirk­leistung N ist hierfür konstant. Die zahlenmäßige Größe dieser Konstanten variiert in Abhängigkeit von der Anfangsfeuchte W₀ und von den Wägeungenauigkeiten.In the dry mixing phase t₁ to t₂, the dry components are mixed. The active power N correlating with the consistency is constant for this. The numerical size of these constants varies depending on the initial moisture W₀ and on the weighing inaccuracies.

Diese Konstante, die infolge der überlagerten Störungen direkt schwierig meßbar ist, wird mit Hilfe der erfindungsgemäßen An­wendung eines diskreten Kalman-Filters prognostiziert.This constant, which is directly difficult to measure due to the superimposed interference, is predicted with the use of a discrete Kalman filter according to the invention.

Mit Hilfe des einfachen Modells Nk+1 = Nk und der aufgenomme­nen Meßwerte, die mit Störungen der Varianz R überlagert sind, werden der Schätzwert N̂k+1 der Wirkleistung und die Fehlerkova­rianzmatrix Pk+1 ermittelt. Die Werte N̂k sind in Figur 1b dar­gestellt.With the help of the simple model N k + 1 = N k and the recorded measured values, which are superimposed with disturbances of the variance R, the estimated value N̂ k + 1 of the active power and the error covariance matrix P k + 1 are determined. The values N̂ k are shown in Figure 1b.

Vom Zeitpunkt t1.1 an wird der Schätzwert N̂k+1 des Filters mit den ermittelten Anlagen-und Rezepturparametern N₂ verglichen.From time t 1.1 onwards, the estimated value N̂ k + 1 of the filter is compared with the determined system and recipe parameters N₂.

Bei grober Abweichung kann entweder ein Beschickungsfehler aufgetreten sein oder eine ungewöhnlich große Eigenfeuchte der Ausgangsstoffe vorliegen. In beiden Fällen erfolgen ent­sprechende Reaktionen. Der zum Zeitpunkt t₂ prognostizierte Leistungwert N̂₀ korreliert mit der Anfangsfeuchte W₀ und wird als Anfangswert für die Schätzung der weiteren Leistungswerte N̂ während der folgenden Phasen benutzt.In the case of a gross deviation, either a loading error has occurred or there is an unusually high intrinsic moisture content of the starting materials. Appropriate reactions take place in both cases. The power value N̂₀ predicted at the time t₂ correlates with the initial moisture W₀ and is used as the initial value for the estimation of the other power values N̂ during the following phases.

Mit Beginn der Zulauf- und Untermischphase von t₂ bis t₄ fließt Wasser mit konstanter Fließgeschwindigkeit Aw in die Mischtrommel (Fig. 1c). Entsprechend der Erkenntnis, daß nur die aktuell untergemischte Wassermenge W₂ die Konsistenz be­stimmt, wird die untergemischte Wassermenge mit der Beziehung
W₂(t) = A w t - A w/α · (1-e -αt ) + W₀

Figure imgb0001

indirekt bestimmt, wobei α die Zeitkonstante der Mischanlage darstellt.With the start of the feed and mixing phase from t₂ to t₄ water flows at a constant flow rate A w into the mixing drum (Fig. 1c). According to the knowledge that only the currently mixed amount of water W₂ determines the consistency, the amount of water mixed with the relationship
W₂ (t) = A w t - A w / α · (1-e -αt ) + W₀
Figure imgb0001

indirectly determined, where α represents the time constant of the mixing plant.

Die Abhängigkeit der Wirkleistung N von der untergemischten Wassermenge W₂ wird durch ein Polynom 2. Grades, wie folgt be­schrieben

Figure imgb0002
The dependency of the active power N on the mixed amount of water W₂ is described by a 2nd degree polynomial as follows
Figure imgb0002

Da die Konstante A des Polynoms ebenfalls unbekannt ist, wird der gefundene Zusammenhang unter Verwendung eines er­weiterten Zustandsvektors mit 3 Komponenten in diskreter Form dargestellt, wobei beachtet werden muß, daß die Leistungs­werte N jetzt von W₂ abhängen (N = N(W₂)):

Figure imgb0003
Since the constant A of the polynomial is also unknown, the relationship found is shown using an extended state vector with 3 components in discrete form, whereby it must be noted that the power values N now depend on W₂ (N = N (W₂)):
Figure imgb0003

D ist hierbei die nichtäquidistante Schrittweite zwischen zwei Leistungswerten, da infolge der Transformation der Leistungswerte

Figure imgb0004

Nichtäquidistanz in W2 auftritt.D is the non-equidistant step size between two performance values, as a result of the transformation of the performance values
Figure imgb0004

Non-equidistance occurs in W2.

Mit der Meßgleichung yk = ( 1 0 0) Nk + Vk kann die Kalman­Beziehung für ein Filter 3. Ordnung aufgestellt werden. Dies führt zur optimalen Prognose eines Zustandsvektors

Figure imgb0005
With the measurement equation yk = (1 0 0) N k + V k , the Kalman relationship can be established for a 3rd order filter. This leads to the optimal forecast of a state vector
Figure imgb0005

In einem weiteren Verfahrensschritt wird mit dem prognosti­zierten Zustandsvektor K und der durch die Rezeptur vorge­gebenen Gesamtwassermenge WG der Leistungsendwert nach der Beziehung

Figure imgb0006

bestimmt.In a further method step, the predicted state vector K and the total amount of water W G given by the recipe become the final power value according to the relationship
Figure imgb0006

certainly.

Den Verlauf des prognostizierten Endwertes N̂ end während der Naßmischphase zeigt Fig. 1d.The course of the predicted final value N̂ end during the wet mixing phase is shown in FIG. 1d.

Es wurde gefunden, daß spätestens zum Zeitpunkt t₃, der noch innerhalb der Wasserzulaufphase liegt, der prognosti­zierte Endwert mit dem zeitlich später auftretenden tat­sächlichen Endwert ausreichend genau übereinstimmt. Deshalb wird zu diesem Zeitpunkt ein Vergleich zwischen dem Sollend­wert N₆ und dem prognostizierten Endwert N̂ end durchgeführt. Die Differenz zwischen beiden dient als Kriterium zur Steue­rung des Wasserzulaufventils.It has been found that at the latest at time t 3, which is still within the water supply phase, the predicted end value coincides with the actual end value occurring later in time with sufficient accuracy. Therefore, a comparison between the target end value N₆ and the predicted end value N̂ end is carried out at this time. The difference between the two serves as a criterion for controlling the water inlet valve.

Ist die Differenz zwischen Sollendwert und prognostiziertem Endwert zum Zeitpunkt des Vergleichs größer als Null, wird das Wasserzulaufventil vor dem Erreichen der vorgegebenen Rezepturwassermenge geschlossen, im umgekehrten Fall ist das Ventil später zu schließen.If the difference between the target end value and the predicted end value at the time of the comparison is greater than zero, the water supply valve is closed before reaching the specified amount of recipe water, in the opposite case the valve must be closed later.

Aus dem Absolutwert der Differenz wird die Zeitdauer der veränderten Ventilsteuerzeiten bestimmt.The duration of the changed valve timing is determined from the absolute value of the difference.

Nach dem Schließen des Wasserzulaufventils wird im Zeitraum t₄ bis t₅ das restliche Wasser untergemischt, wobei nach dem gefundenen Zusammenhang jetzt folgende Beziehung gilt:

Figure imgb0007
After closing the water supply valve, the remaining water is mixed in in the period t Zeitraum to t₅, whereby the following relationship now applies according to the relationship found:
Figure imgb0007

Zur Kontrolle des Mischvorganges wird mit dem beschriebenen Verfahrensschritt weiterhin der Zustandsvektor

Figure imgb0008

ermittelt. Zum Zeitpunkt t₅ ist das gesamte Wasser untergemischt, und es kann nochmals ein Vergleich von N̂ end mit N₆ zur Qualitätskon­trolle durchgeführt werden.To control the mixing process, the state vector continues to be used with the method step described
Figure imgb0008

determined. At time t₅, all of the water is mixed in, and a comparison of N̂end with N₆ can be carried out again for quality control.

Werden mehrere Chargen gleicher Rezeptur hintereinader ge­mischt kann der Zustandsvektor

Figure imgb0009

zur Bestimmung der Kom­ponenten des Zustandsvektors
Figure imgb0010

verwendet werden. Erfindungs­gemäß wird die Komponente N̂₀ während der Trockenmischphase ermittelt. Die Komponente  ist eine Konstante und kann direkt übernommen werden. Die Komponente N̂ ₀ wird auf Grund des ge­fundenen Zusammenhanges mit der Beziehung
Figure imgb0011

bestimmtIf several batches of the same recipe are mixed in series, the state vector can be used
Figure imgb0009

to determine the components of the state vector
Figure imgb0010

be used. According to the invention, component N̂₀ is determined during the dry mixing phase. The component  is a constant and can be adopted directly. The component N̂ ₀ is based on the relationship found with the relationship
Figure imgb0011

certainly

Gleichzeitig werden die Endwerte der Komponenten der Fehlerko­varianzmatrix des Kalman-Filters in geeigneter Form umgewandelt und als Anfangswerte zum Zeitpunkt t₂ verwendet.At the same time, the final values of the components of the error covariance matrix of the Kalman filter are converted in a suitable form and used as initial values at time t 2.

Fig. 1e zeigt den Verlauf der prognostizierten Endwerte N̂end während einer weiteren Mischung, wenn obiger Lernprozeß im Zeitraum zwischen t₅ und t₆ stattfand.Fig. 1e shows the progression of the predicted end values N̂ end during a further mixture if the above learning process took place in the period between t₅ and t₆.

Für die erfindungsgemäße Schaltungsanordnung zur Steuerung der Konsistenz wird eine an sich bekannte Anlagen­dosiervorrichtung durch einen Ausgang und zwei Eingänge er­weitert, wobei der Erweiterungsaugsang mit dem Ausgsang der Zeitsteuerung, der erste Erweiterungseingang mit dem Eingang des Havarieschalters und der zweite Erweiterungseingang mit dem Steuereingang des Wasserventils der bekannten Anlage ver­bunden sind. In den Speiseleitungen des Antriebsmotors der Mischanlage sind Strom- und Spannungswandler angeordnet. Der Ausgang der hierbei gebildeten Wandlereinheit ist mit dem Eingang einer Wirkleistungsmeßeinrichtung verbunden. Der Aus­gang der Wirkleistungsmeßeinrichtung führt zum Schalteingang eines elektronischen Umschalters mit drei Ausgängen. Der Steuereingang des elektronischen Umschalters ist mit dem ge­nannten Erweiterungsausgang der bekannten Anlagendosiervor­richtung verbunden.For the circuit arrangement according to the invention for controlling the consistency, a system metering device known per se is expanded by an output and two inputs, the expansion inlet with the output of the timing control, the first extension input with the input of the emergency switch and the second extension input with the control input of the water valve of the known one Plant are connected. Current and voltage transformers are arranged in the feed lines of the drive motor of the mixing plant. The output of the converter unit formed here is connected to the input of an active power measuring device. The output of the active power measuring device leads to the switching input of an electronic switch with three outputs. The control input of the electronic switch is connected to the extension output of the known system metering device.

Der erste Ausgang des elektronischen Umschalters führt zu einem Kalman-Filter erster Ordnung, der zweite Ausgang zu einer ersten Meßwertwandlereinheit und der dritte Ausgang zu einer zweiten Meßwertwandlereinheit. Der Ausgang des Kalman-Filters erster Ordnung ist sowohl mit einem ersten Eingang eines ersten Differenzverstärkers als auch mit einem ersten Anfangswertsetzeingang eines Kalman­Filters dritter Ordnung verbunden. Der zweite Eingang des ersten Differenzverstärkers ist mit dem Ausgang eines ersten Festwertspeichers verbunden. Der Ausgang des ersten Differenz­verstärkers führt zum Eingang einer ersten Bewertungsschaltung, deren Ausgang mit dem ersten Erweiterungseingang der Anlagendo­siervorrichtung verknüpft ist.The first output of the electronic switch leads to a first order Kalman filter, the second output to a first transducer unit and the third output to a second transducer unit. The output of the first order Kalman filter is connected both to a first input of a first differential amplifier and to a first initial value setting input of a third order Kalman filter. The second input of the first differential amplifier is connected to the output of a first read-only memory. The output of the first differential amplifier leads to the input of a first evaluation circuit, the output of which is linked to the first extension input of the system metering device.

Die Ausgänge der ersten und zweiten Meßwertwandlereinheit sind miteinander verbunden und führen zum Informationseingang des Kalman-Filters dritter Ordnung, dessen zweiter Anfangswert­ setzeingang zum Ausgang einer Rechenschaltung führt und dessen dritter Anfangswertsetzeingang mit einem ersten Ausgang einer Endwertbestimmungschaltung verbunden ist, deren zweiter Ausgang zum Eingang der Rechenschaltung führt. Ein erster, zweiter und dritter Eingang der Endwertbestim­mungsschaltung sind mit dem ersten, zweiten und dritten Aus­gang des Kalman-Filters dritter Ordnung verbunden. Der dritte Ausgang der Endwertbestimmungsschaltung ist mit dem ersten Eingang eines zweiten Differenzverstärkers verbunden, dessen zweiter Eingang zum Ausgang eines zweiten Festwertspeichers führt. Der Ausgang des zweiten Differenzverstärkers führt zu einer zweiten Bewertungsschaltung, deren Ausgang mit einer Anzeigeeinheit und mit dem zweiten Erweiterungseingang der Anlagendosiervorrichtung verbunden ist.The outputs of the first and second transducer units are connected to one another and lead to the information input of the third order Kalman filter, its second initial value set input leads to the output of a computing circuit and its third initial value setting input is connected to a first output of a final value determination circuit, the second output of which leads to the input of the computing circuit. A first, second and third input of the final value determination circuit are connected to the first, second and third output of the third order Kalman filter. The third output of the final value determination circuit is connected to the first input of a second differential amplifier, the second input of which leads to the output of a second read-only memory. The output of the second differential amplifier leads to a second evaluation circuit, the output of which is connected to a display unit and to the second extension input of the system metering device.

Die Beschreibung der Funktionsweise der erfindungsgemäßen Schaltungsanordnung erfolgt anhand des Zeitverlaufs eines typischen Mischprozesses nach dem bereits dargelegten Kon­sistenzsteuerverfähren.The operation of the circuit arrangement according to the invention is described on the basis of the time course of a typical mixing process according to the consistency control method already described.

Nach der Beschickung der Mischtrommel mit den der Rezeptur entsprechenden Mengen von Zuschlagstoffen und Bindemitteln liegt am Ausgang der Wirkleistungsmeßeinrichtung der Meßwert der augenblicklichen Wirkleistung in zeitäquidistanten Ab­ständen vor. Der elektronische Umschalter ist während der Trockenmischphase so geschaltet, daß der Eingang mit dem ersten Ausgang verbunden ist und damit der aktuelle Wirklei­stungsmeßwert am Eingang des Kalman-Filters erster Ordnung anliegt und an dessen Ausgang der gefilterte Wirkleistungsmeß­wert vorhanden ist. Im ersten Differenzverstärker erfolgt der Vergleich dieses Wertes mit dem ersten einmalig ermittelten und fixierten Anlagen- und Rezepturparameter, der im ersten Festwertspeicher gespeichert ist. Am Ende der Trockenmisch-­ phase wird der elektronische Umschalter über seinen Steuer­eingang von der Anlagendosiervorrichtung so umgeschaltet, daß der Schalteingang mit dem zweiten Ausgang des Umschalters verbunden ist. Gleichzeitig wird geprüft, ob das Ausgangs­signal des ersten Differenzverstärkers eine anlagenspezifi­sche Schwelle überschreitet. Geebenenfalls wird Havarie ausge­löst, ansonsten erfolgt die Übernahme des gefilterten Wirklei­stungsmeßwertes am Ende der Trockenmischphase über den ersten Anfangswertsetzeingang in das Kalman-Filter dritter Ordnung. Am zweiten und dritten Anfangswertsetzeinang liegen bei einer ersten Mischung beliebige oder in Abhängikeit vom Er­ebnis der vorangegangenen Mischung ausgewählte Anfangswerte an, wobei am zweiten Setzeingang das Ausgangssignal der Rechen­schaltung und am dritten Setzeingang das Ausgangssignal des ersten Ausgans der Endwertbestimmungsschaltung anliegen,wo­durch eine Verbesserung der Genauigkeit der Ausgangssignale des Kalman-Filters dritter Ordnung erreicht wird.After loading the mixing drum with the quantities of additives and binders corresponding to the recipe, the measured value of the current active power is available at time-equidistant intervals at the output of the active power measuring device. The electronic changeover switch is switched during the dry mixing phase so that the input is connected to the first output and thus the current active power measurement value is present at the input of the Kalman filter of the first order and the filtered active power measurement value is available at its output. This value is compared in the first differential amplifier with the first one-time determined and fixed system and recipe parameter, which is stored in the first read-only memory. At the end of the dry mix phase, the electronic changeover switch is switched via its control input by the system dosing device in such a way that the switch input is connected to the second output of the changeover switch. At the same time, it is checked whether the output signal of the first differential amplifier exceeds a system-specific threshold. The accident is also triggered, otherwise the filtered active power measurement value is taken over at the end of the dry mixing phase via the first initial value input into the third-order Kalman filter. With a first mixture, any initial values or those selected depending on the result of the previous mixture are present at the second and third initial value setting inputs, the output signal of the arithmetic circuit being present at the second setting input and the output signal of the first output of the final value determining circuit being present at the third setting input, thereby improving the accuracy of the Output signals of the third order Kalman filter is reached.

Am Eingang des Kalman-Filters dritter Ordnung liegt die Aus­gangsgröße der ersten Meßwertwandlereinheit vor, in welcher der Wirkleistungsmeßwert mit Hilfe eines definierten Zusam­menhanges zwischen zugeführter und untergemischter Wasser­menge während der Zeit der Wasserzuführung umgeformt wird. An den Ausgängen des Kalman-Filters dritter Ordnung liegen die die Konsistenz beschreibenden, gefilterten Werte vor. Diese Werte werden zu den Eingängen der Endwertbestimmungsschal­tung geführt, mit der die Werte, die am Ende der Mischphase die Konsistenz des Mischgutes charakterisieren, bereits wäh­rend der Mischphase bestimmt werden. Am dritten Ausgang der Endwertbestimmungsschaltung liegt das die Endwirkleistung repräsentierende Signal an, das in einem zweiten Differenz­verstärker mit dem zweiten fixierten Anlagen- und Rezeptur-­ parameter verglichen wird. Das Ausgangssignal des zweiten Differenzverstärkers wird einer zweiten Bewertungsschal­tung zugeführt. Der Ausgang der zweiten Bewertungsschaltung ist mit einer Anzeigeeinheit verbunden, die zur visuellen Kontrolle der Steuergröße für die Wasserdosierung dient. Weiterhin ist der Ausgang der zweiten Bewertungsschaltung mit dem zweiten Erweiterungseingang der Anlagendosiervorrich­tung verbunden, wobei in Abhängigkeit von Vorzeichen und Größe des Ausgangssignals die Öffnungszeit des Wasserventils ge­steuert wird. Nach dem Schließen des Wasserventils wird der elektronische Umschalter in einen dritten Zustand gebracht. Die Wirkleistungsmeßwerte gelangen jetzt über die zweite Meß­wertwandlereinheit, in der die Meßwerte nach einem definier­ten Zusammenhang, der bei alleiniger Untermischung des Was­sers gilt, tranformiert werden, an den Informationseingang des Kalman-Filters dritter Ordnung. In analoger Weise werden die prognostizierten Endwerte bereitgestellt und können am Ende der Gesamtmischphase vom ersten Ausgang der Endwertbestim­mungsschaltung und vom zweiten Ausgang über die Rechenschal­tung an die Anfangswertsetzeingänge des Kalman-Filters dritter Ordnung gegeben und an der Anzeigeeinheit zur Kontrolle des erreichten Konsistenzendwertes benutzt werden.At the input of the third-order Kalman filter, there is the output variable of the first transducer unit, in which the active power measured value is transformed with the aid of a defined relationship between the amount of water added and the amount of water mixed in during the time of water supply. The filtered values describing the consistency are available at the outputs of the third order Kalman filter. These values are led to the inputs of the final value determination circuit, with which the values which characterize the consistency of the material to be mixed at the end of the mixing phase are already determined during the mixing phase. The signal representing the final active power is present at the third output of the final value determination circuit and is used in a second differential amplifier with the second fixed system and recipe. parameter is compared. The output signal of the second differential amplifier is fed to a second evaluation circuit. The output of the second evaluation circuit is connected to a display unit which is used for the visual control of the control variable for the water metering. Furthermore, the output of the second evaluation circuit is connected to the second extension input of the system metering device, the opening time of the water valve being controlled as a function of the sign and size of the output signal. After the water valve is closed, the electronic switch is brought into a third state. The active power measured values now reach the information input of the third order Kalman filter via the second measured value converter unit, in which the measured values are transformed according to a defined relationship that applies when the water is only mixed in. The predicted final values are provided in an analogous manner and can be passed from the first output of the final value determination circuit and from the second output via the arithmetic circuit to the third-order initial value setting inputs of the Kalman filter at the end of the overall mixing phase and can be used on the display unit to control the final consistency value reached.

Die vorstehend beschriebene Schaltungsanordnung soll anhand eines Beispiels und der Figur 2 näher erläutert werden.The circuit arrangement described above is to be explained in more detail using an example and FIG. 2.

Die Mischtrommel 5, welche mechanisch mit der Antriebsei­heit 6 verbunden ist, wird über die Silos 1, 2 und 3 sowie das Wasserventil 4 beschickt. Die Dosierung der Zuschlag­stoffe sowie des Bindemittels entsprechend der vorliegenden Rezeptur erfolgt durch die bekannte Anlagendosiervorrichtung 28. Hierfür sind die Ausgänge A₂, A₃ und A₄ der Anlagendosier­vorrichtung 28 mit den dazu erforderlichen Elementen der Silos 1, 2 und 3 verbunden. Die Steuerung des Wasserventils 4 erfolgt über die Verbindung des Ausgangs A₁ der Anlagendosier­vorrichtung 28 mit dem Wasserventil 4. In die Speiseleitunen der Antriebseinheit 6 sind die Stromwandler 7, 9 und 11 und die Spannungswandler 8, 10 und 12 eingeschaltet. Die Ausgänge der Wandler führen zu den Eingängen der Wirkleistungsmeßein­richtung 13. Der Ausang der Wirkleistungsmeßeinrichtung 13 ist mit dem Eingang E₃ des elektronischen Umschalters 14 ver­bunden. Der Eingang E₄ des elektronischen Umschalters 14 steht mit dem Erweiterungsausgang A₅ der Anlagendosiervor­richtung 28 in Verbindung. Weiterhin sind der Ausgang A₆ des Umschalters 14 mit dem Eingang des Kalman-Filters erster Ord­nung 15, der Ausgang A₇ mit dem Eingang der ersten Meßwert­wandlereinheit 16 und der Ausgang A₈ mit dem Eingang der zwei­ten Meßwertwandlereinheit 17 verbunden. Der Ausgang des Kalman­Filters erster Ordnung 15 führt zum Eingang E₅ des ersten Dif­ferenzverstärkers 19 und zum Eingang E₇ des Kalman-Filters dritter Ordnung 20. Der Eingang E₆ des ersten Differenzver­stärkers 19 ist mit dem Ausgang des Festwertspeichers 21 ver­bunden. Der Ausgang des ersten Differenzverstärkers 19 steht mit dem Eingang einer ersten Bewertungsschaltung 18 und der Ausgang dieser Bewertungsschaltung mit dem ersten Erweiterungs­eingang E₁ der Anlagendosiervorrichtung 28 in Verbindung. Die Ausgänge der ersten und der zweiten Meßwertwandlereinheit 16, 17 führen zum Eingang E10 des Kalman-Filters dritter Ordnung 20. Der Eingang E₈ des Kalman-Filters 20 ist am Ausgang einer Rechenschaltung 22 und der Eingang E₉ ist am Ausgang A₉ einer Endwertbestimmungsschaltung 23 angeschlossen. Die Ausgänge des Kalman-Filters 20 sind mit den Eingängen der Endwertbe­stimmungsschaltung 23 verbunden. Der Ausgang A10 der Endwert­bestimmungsschaltung 23 führt zum Eingang der Rechenschaltung 22, der Ausgang A11 der Endwertbestimmungsschaltung 23 ist mit dem Eingang E12 des zweiten Differenzverstärkers 24 ver­bunden,und der Eingang E11 dieses Differenzverstärkers 24 steht mit dem Ausgang des zweiten Festwertspeichers 25 in Verbindung. Weiterhin ist der Ausgang des zweiten Differenz­verstärkers 24 mit dem Eingang der zweiten Bewertungsschal­tung 27 verbunden. Der Ausgang der Bewertungsschaltung 27 ist am zweiten Erweiterungseingang E₂ der Anlagendosiervor­richtung 28 sowie am Eingang der Anzeigeeinheit 26 ange­schlossen.The mixing drum 5, which is mechanically connected to the drive unit 6, is fed via the silos 1, 2 and 3 and the water valve 4. The metering of the additives and the binder according to the present recipe is carried out by the known system metering device 28. For this purpose, the outputs A₂, A₃ and A₄ of the system metering device 28 with the elements required for this Silos 1, 2 and 3 connected. The control of the water valve 4 takes place via the connection of the output A₁ of the system metering device 28 with the water valve 4. In the feeder lines of the drive unit 6, the current transformers 7, 9 and 11 and the voltage transformers 8, 10 and 12 are switched on. The outputs of the converter lead to the inputs of the active power measuring device 13. The output of the active power measuring device 13 is connected to the input E₃ of the electronic switch 14. The input E₄ of the electronic switch 14 is connected to the extension output A₅ of the system metering device 28. Furthermore, the output A₆ of the switch 14 are connected to the input of the first order Kalman filter 15, the output A₇ to the input of the first transducer unit 16 and the output A₈ to the input of the second transducer unit 17. The output of the first order Kalman filter 15 leads to the input E₅ of the first differential amplifier 19 and to the input E₇ of the third order Kalman filter 20. The input E₆ of the first differential amplifier 19 is connected to the output of the read-only memory 21. The output of the first differential amplifier 19 is connected to the input of a first evaluation circuit 18 and the output of this evaluation circuit to the first extension input E 1 of the system metering device 28. The outputs of the first and second transducer units 16, 17 lead to the input E 10 of the third order Kalman filter 20. The input E₈ of the Kalman filter 20 is connected to the output of a computing circuit 22 and the input E₉ is connected to the output A₉ of a final value determination circuit 23 . The outputs of the Kalman filter 20 are connected to the inputs of the final value determination circuit 23. The output A 10 of the final value determination circuit 23 leads to the input of the computing circuit 22, the output A 11 of the final value determination circuit 23 connected to the input E 12 of the second differential amplifier 24, and the input E 11 of this differential amplifier 24 is connected to the output of the second read-only memory 25. Furthermore, the output of the second differential amplifier 24 is connected to the input of the second evaluation circuit 27. The output of the evaluation circuit 27 is connected to the second expansion input E₂ of the system metering device 28 and to the input of the display unit 26.

Claims (16)

1. A method of controlling the consistency of fresh concrete in stationary concrete-mixing plants, by measuring the active power of the motor driving the mixing plant, characterised in that
- a final power value representing a specified formulation or a corresponding filling ratio of the concrete-mixing plant is determnined once before the beginning of the mixing phase and is set as the plant parameter,
- a dry-mixing power value is obtained while the concrete-mixing plant is being loaded in known manner,
- the dry-mixing power value and the final power value determined in accordance with the respective filling ratio or specified formulation are stored,
- a mean power measurement is made at equidistant time intervals from the beginning of the dry-mixing phase to the end of the mixing operation,
- during the dry-mixing phase, which occurs in known manner, the mean power measurements are processed at equidistant time intervals in a discrete first-order Kalman filter in such a manner that a pseudo-actual value near the actual final power value at the end of the dry-mixing phase is forecast,
- the forecast pseudo-actual value is compared with the respective stored final power value and, if any difference is detected, known steps are taken to correct faulty metering or loading or deviations from the permitted set natural moisture content of the aggregates,
- at the beginning of the water supply operation, the forecast pseudo-actual value is used as the initial value of a first component of a vector of state containing three components and, by means of the measured mean power, the measured variable of state -­the amount of water supplied - is transferred to the non-measurable variable of state - the amount of water already present - within the time between the beginning of the water supply operation and the end of the mixing phase, and
- the expected final power value is derived by means of a discrete third-order Kalman filter, after which the expected value, with no change in the water supply, is compared with the stored final power value and the water supply is influenced in known manner on the basis of the comparison.
2. A method according to claim 1,
characterised in that
when a number of mixtures of identical formulation are made in succession, the forecast final values are transformed into the initial forecast value, constituting a learning phase of the system.
3. A circuit arrangement for controlling the consistency of fresh concrete in stationary concrete-mixing plants, using a plant metering device, characterised in that
- the plant metering device (28) comprises an extension output connected to a time control means (14), a first extension input connected to the damage switch and a second extension input connected to the control input of a water valve (4),
- the supply lines to the motor (6) of the concrete­mixing plant (5) contain a transducer unit made up of a current and voltage transformer (7-12), and the transducer unit is connected to the input of an active-­power meter (13),
- the output of the active-power meter (13) is connected to the switching input of an electronic change-over switch (14),
- the control input of the electronic change-over switch (14) is connected to the extension output of the plant metering device (28),
- the first output of the electronic change-over switch (14) is connected to a first-order Kalman filter (15), the second input is connected to a first measurement transformer unit (16) and the third input of the electronic change-over switch (14) is connected to a second measurement transformer unit (17),
- the output of the first-order Kalman filter (15) is connected to the first input of a first differential amplifier (19) and to the first initial-value setting input of a third-order Kalman filter (20),
- the second input of the first differential amplifier (19) is connected to a first fixed-value store (21),
- the output of the first differential amplifier (19) is connected to the input of a first evaluation circuit (18), and the evaluation circuit (18) is connected to the first extension input of the plant metering device (28),
- the output of the first measurement transformer unit (15) and the output of the second measurement transformer unit (17) are connected to the information input of the third-order Kalman filter (20),
- the second initial-value setting input of the third-­order Kalman filter (20) leads to the output of a computer circuit (22) and the third initial-value setting input of the third-order Kalman filter (20) is connected to the output of a final-value determination circuit (23), whose second output is connected to the input of the computer circuit (22),
- a number of inputs of the final-value determination circuit (23) are connected to the outputs of the third­order Kalman filter (20),
- the third output of the final-value determination circuit (23) is connected to the first input of a second differential amplifier (24) and the second input of the second differential amplifier (24) is connected to the output of a second fixed-value store (25), and
- the output of the second differential amplifier (24) is connected via a second evaluation circuit (27) to the second extension input of the plant metering device (28) and the input of a display unit (26).
EP87112881A 1987-09-03 1987-09-03 Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device Expired - Lifetime EP0305574B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8787112881T DE3766961D1 (en) 1987-09-03 1987-09-03 METHOD AND CIRCUIT ARRANGEMENT FOR CONTROLLING THE CONSISTENCY OF FRESH CONCRETE IN STATIONARY CONCRETE MIXING PLANTS.
AT87112881T ATE59596T1 (en) 1987-09-03 1987-09-03 METHOD AND CIRCUIT ARRANGEMENT FOR CONTROLLING THE CONSISTENCY OF FRESH CONCRETE IN STATIONARY CONCRETE BATCHING PLANTS.
EP87112881A EP0305574B1 (en) 1987-09-03 1987-09-03 Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87112881A EP0305574B1 (en) 1987-09-03 1987-09-03 Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device

Publications (2)

Publication Number Publication Date
EP0305574A1 EP0305574A1 (en) 1989-03-08
EP0305574B1 true EP0305574B1 (en) 1991-01-02

Family

ID=8197253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112881A Expired - Lifetime EP0305574B1 (en) 1987-09-03 1987-09-03 Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device

Country Status (3)

Country Link
EP (1) EP0305574B1 (en)
AT (1) ATE59596T1 (en)
DE (1) DE3766961D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237543A1 (en) * 1992-11-06 1994-05-11 Kilian Gottfried Dipl Wirtsch Prodn. of concrete with optimal consistency - involves monitoring of water addition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088827A1 (en) * 2018-11-27 2022-03-24 Officine Meccaniche Galletti O.M.G. S.R.L. Method to Control a Mixer and Corresponding Mixer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2045089A5 (en) * 1969-05-30 1971-02-26 Cer Etudes Batiment Tp
US3593966A (en) * 1969-09-24 1971-07-20 Columbia Machine Added-fluid-metering system
DE3001912A1 (en) * 1980-01-19 1981-07-23 Elba-Werk Maschinen-Gesellschaft Mbh & Co, 7505 Ettlingen Concrete mixture batching plant - has automatic consistency regulation process, which adds water dependent on values recorded in schedule
GB2171326A (en) * 1985-02-26 1986-08-28 Marshall Control Systems Limit Controlling mixing of slurries by power consumption

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237543A1 (en) * 1992-11-06 1994-05-11 Kilian Gottfried Dipl Wirtsch Prodn. of concrete with optimal consistency - involves monitoring of water addition
DE4237543C2 (en) * 1992-11-06 1999-01-21 Kilian Gottfried Dipl Wirtsch Process for adjusting the water content and the consistency of mortar or concrete

Also Published As

Publication number Publication date
ATE59596T1 (en) 1991-01-15
DE3766961D1 (en) 1991-02-07
EP0305574A1 (en) 1989-03-08

Similar Documents

Publication Publication Date Title
DE3933471C2 (en)
DE2855324C2 (en) Process for regulating the addition of water during concrete preparation and device for carrying out the process
EP0291553B1 (en) Method to control a differential metering balance, especially for bulk materials, and a differential metering balance for carrying out the method
DE2638096A1 (en) METHOD AND DEVICE FOR THICKNESS CONTROL IN TANDEM ROLLING MILLS
DE2300793A1 (en) METHOD FOR AUTOMATIC TITRATION AND DEVICE FOR CARRYING OUT THE METHOD
EP0305574B1 (en) Method and circuitry for controlling the consistency of fresh concrete in a fixed concrete mixing device
DE69832765T2 (en) Microwave concentration measuring apparatus
EP0095657B1 (en) Process for the automatic control of foundry sand plants
DE1277811B (en) Method and device for keeping the composition of the top or bottom product constant in a fractionation column
DE3910028A1 (en) Method and device for controlling the mass flow of a conveyed material
DE1584308B2 (en) PROCESS FOR Batch Manufacture OF CONCRETE AND EQUIPMENT FOR CARRYING OUT THE PROCESS
EP0632255B1 (en) Methods to control feedrate in a loss-in-weight feeder
DE69930001T2 (en) DEVICE AND METHOD FOR REGULATING STEEL LUBRICATION
DE2417012A1 (en) Concrete mixes from cement, aggregates and water - using memory stores to calculate exact amt. of water required
DE19536315A1 (en) Method for monitoring automated pH measurements
DD258673B5 (en) Method for the digital control of the liquid feed
DE4244616C2 (en) Device for dosing additives to a mixing device
EP0226969B1 (en) Device for making a reaction mixture from at least two components of a synthetic material
DE19648241C2 (en) Measuring method for the determination of masses
DD266778A1 (en) DEVICE FOR LOADING PARALLEL-OPERATED SHREDDING AGGREGATES
DD275822A1 (en) METHOD FOR THE AUTOMATIC CONTROL OF THE FORMULA COMPOSITION IN FOUNDRIES
DD258672A1 (en) CIRCUIT ARRANGEMENT FOR CONTROLLING THE CONSISTENCY OF FRESH BEVERAGE IN STATIONARY CONCRETE MIXING SYSTEMS
DE1301874B (en) Humidification process and device for mixed goods, especially foundry molding sands
DE3005589C2 (en) Process for the transport and production of building material mixtures
DE4408421A1 (en) Differential pressure measuring with periodic zero balance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19890510

17Q First examination report despatched

Effective date: 19900314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 59596

Country of ref document: AT

Date of ref document: 19910115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3766961

Country of ref document: DE

Date of ref document: 19910207

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WOLFGANG TARTSCH UNTERNEHMENSBERATUNG KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: WOLFGANG TARTSCH UNTERNEHMUNGSBERATUNG KG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930802

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930803

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930816

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940903

Ref country code: AT

Effective date: 19940903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 87112881.5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 87112881.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST