EP0304722B1 - Antenne directionnelle pour systèmes relais - Google Patents

Antenne directionnelle pour systèmes relais Download PDF

Info

Publication number
EP0304722B1
EP0304722B1 EP19880112946 EP88112946A EP0304722B1 EP 0304722 B1 EP0304722 B1 EP 0304722B1 EP 19880112946 EP19880112946 EP 19880112946 EP 88112946 A EP88112946 A EP 88112946A EP 0304722 B1 EP0304722 B1 EP 0304722B1
Authority
EP
European Patent Office
Prior art keywords
directional antenna
dielectric material
antenna according
coaxial line
dipole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880112946
Other languages
German (de)
English (en)
Other versions
EP0304722A1 (fr
Inventor
Uwe Dipl.-Ing. Leupelt
Heinz Dipl.-Ing.(FH) Lüdiger
Bernd Niemandt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP19880112946 priority Critical patent/EP0304722B1/fr
Publication of EP0304722A1 publication Critical patent/EP0304722A1/fr
Application granted granted Critical
Publication of EP0304722B1 publication Critical patent/EP0304722B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/134Rear-feeds; Splash plate feeds

Definitions

  • the invention relates to a directional radio antenna according to the preamble of patent claim 1.
  • Antennas that are used in military radio relay and in particular for mobile operation must have the smallest possible dimensions, be constructed lightly and have low visibility. They are therefore often made up of discrete radiator elements in the usual frequency ranges up to about 2 GHz and have maximum dimensions of about 5 to 6 wavelengths.
  • Known embodiments are, for example, dipole groups in front of flat or angular reflectors. Apart from the relatively complicated and complex structure, which is due to the use of many individual elements or distribution circuits with high accuracy requirements, they have radiation properties which are characterized by a relatively high level of sidelobes in the case of larger bandwidths. The reasons for this are, among other things, the tendencies typical for group antennas to form so-called secondary main lobes if the radiator element spacings become too large from an electrical point of view for large frequency bandwidths.
  • parabolic reflector antennas with a suitably constructed primary radiator system.
  • the outer conductor 11 of a coaxial line 2 is provided with two diametrically opposite longitudinal slots 13 and 14, which can have a length of approximately half a wavelength and a width of approximately 1/40 of this wavelength. Perpendicular to the plane in which the two longitudinal slots 13 and 14 lie, the two halves 15 and 16 of a dipole radiator are placed on the outer conductor 11.
  • the inner conductor 12 of the coaxial line 2 is short-circuited to the outer conductor 11 on one side by a metallic connecting pin 17. This short circuit is usually at the location of the dipole starting point.
  • FIG. 3 shows the field images in the slot area of the coaxial line 2.
  • a normal TEM wave is shown at the top left in FIG. 3. Due to the short circuit generated by means of the metal pin 17, a deformation of the field image is forced in the coaxial line 2. At the location of the short circuit, the tangential field strength becomes zero.
  • the field image is now symmetrical to the axis of the shorting pin 17.
  • the field image thus created now corresponds to that of the H 11-wave type in the coaxial line, which is shown at the top right in FIG. 3 and which is the undisturbed TEM wave type at the top left in this figure Coaxial line is superimposed. The resulting total field is shown in FIG.
  • the radiator arrangement shown in FIGS. 1 and 2 is placed in its focal point.
  • this known radiator arrangement as a primary radiator system in a reflector antenna would result in a relatively high overexposure at the reflector edge with correspondingly high secondary lobes due to insufficient bundling.
  • a directional antenna with a paraboloidal main reflector which is illuminated by a primary radiator system which is fed via a coaxial line led through a central opening of the main reflector.
  • a dipole is connected to the coaxial line via slot balancing.
  • On the side of the dipole facing away from the side of the main reflector is a reflector, for example in the form of a flat metallic plate.
  • a protective cover made of dielectric material is arranged around the primary radiator system, but this disadvantageously increases the antenna reflection factor.
  • This disadvantage is compensated for by providing the primary radiator system with at least one ring made of metallic material. With regard to its sub-lobe behavior, in particular on both sides of the main beam direction, this antenna hardly differs from that which has already been recognized above and is known from the book by S. Silver.
  • Another directional radio antenna with a primary radiator system for a parabolic reflector is known from DE-A-3 049 532. Due to the special design of the primary radiator system, the Attenuation of the side lobes near the main club can be improved.
  • the primary radiator system is fed via a coaxial line through a central opening in the main reflector. At the end of the coaxial line is provided with a dipole excited via a slot transformer, which in turn excites a H11 wave in a pot-like hollow line.
  • This H11 wave feeds a dielectric tube radiator which surrounds the coaxial line in a region between the dipole and the main reflector and fills the hollow line in its coaxial aperture.
  • a metallic ring around the tube heater reduces radiation in the reverse direction. Since in this known antenna the actual primary radiator is the dielectric tube radiator excited by the H11 wave of a waveguide, whereas in the generic directional antenna the effective primary radiator should be the dipole itself, there are two functionally very different systems.
  • the invention is based on the object of achieving the best possible and, in comparison to conventional antennas of the type shown, an auxiliary zip attenuation with a simple and easy construction of the entire arrangement in the case of an antenna which can be used in military radio relay and in particular for mobile operation.
  • An important aspect here is the significantly increased requirement for ECM resistance, i.e. the reduction of the possible threat from adversary interference, which can come from any direction in the area of the side lobes, not only in the side lobes close to the main club.
  • an essential element here is the new type of primary radiator system, which meets the requirement for largely symmetrical illumination of the reflector as well as broadband and good adaptation, as well as beam guidance and wave concentration along the main axis of the lamp. This enables a desired reduction in the reflector edge coverage and the overexposure to be achieved.
  • FIG. 4 shows the structure of a primary radiator system to be used in the directional radio antenna according to the invention in a side view.
  • the outer conductor 11 of a coaxial line 2 is provided with two diametrically opposed longitudinal slots 13 and 14, which may have a wavelength and a width of approximately 1/40 of the wavelength .
  • the two halves 15 and 16 of a dipole radiator are placed on the outer conductor 11.
  • the inner conductor 12 of the coaxial line 2 is short-circuited to the outer conductor 11 on one side by a metallic connecting pin 17. This shorting pin 17 is in the example shown at the location of the starting point of the two dipole halves 15 and 16.
  • the radiating part of the primary radiator system consisting of the combination of the two longitudinal slots 13 and 14 and the two dipole halves 15 and 16, is completely made of a suitable dielectric material existing body 18 embedded with a low loss factor.
  • This body 18, which is made of dielectric material, is a side view in a single illustration 5 has a substantially cylindrical shape with an outer diameter of approximately 0.3 times the wavelength and a length of approximately 1 wavelength. It is pushed onto the outer conductor 11 of the coaxial line 2 by means of a bore 21 running centrally over the entire length and has corresponding cutouts 22 for receiving the dipole halves 15 and 16. Its end face 23 facing away from the main reflector is screwed to the inside of an auxiliary reflector 19.
  • This auxiliary reflector 19 is thus located at the end of the coaxial line 2 and serves to deflect the portions of the radiation which are initially also directed forward from the primary radiator system to the main reflector 1.
  • the end face 24 of the body 18 made of dielectric material facing the main reflector 1 has a contour 25 optimized to improve the radiation.
  • a metallic ring 20 of small wall thickness is applied, the above also has a specially shaped edge contour 26.
  • This metallic ring 20 has no conductive connection to the metallic parts of the primary radiator system.
  • the radiation diagrams in the E and H planes are largely harmonized.
  • the metallic ring 20 acts in the predetermined frequency range as a passive additional radiator, which is also excited by the radiated field and in turn strongly influences the overall field distribution or the directivity.
  • a certain analogy can be seen in the director of a dipole arrangement. Due to the resonance behavior of such a passive element, the dimensioning and the tolerance requirement are correspondingly critical. What is important here is the diameter, which is the actually important electrical quantity, namely determines the circumference of the metallic ring 20. This range is approximately between 0.8 and 1.2 times the wavelength. Optimal mutual coordination and combination with respect to the dimensioning and relative position of the individual elements, which are essentially frequency-determined, enables the described broadband system to achieve very broadband behavior.
  • the metallic ring 20 need not be made of sheet metal as a separate element, but can e.g. in the form of a vapor-deposited metallic layer or a layer produced by a suitable conductive varnish in the screen printing process.
  • the impedance transformation between the characteristic impedance of the coaxial line 2 and the resulting complex resistance of the elements involved in the radiation process can be achieved by a suitably graduated diameter variation of the inner conductor 12 in the vicinity of the longitudinal slots 13, 14.
  • FIG. 4 shows a side view of a small, symmetrically constructed directional radio reflector antenna with a primary radiator system according to FIG. 6.
  • the primary radiator system 3 is arranged at the focal point of the main reflector 1.
  • the coaxial line 2 if it is designed to be sufficiently stable, serves to fasten the primary radiator system 3 or is guided in an additional support tube 5 to which the primary radiator system 3 is then fastened.
  • the coaxial line 2 is guided through a central opening 4 in the main reflector 1 and ends behind the main reflector 1 in a connector 7
  • a reflector antenna on a mast 9 serves as a holder 8, which has a screw fastening 10.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (13)

  1. Antenne directionnelle comportant un réflecteur principal (1) en forme de paraboloïde, pour l'éclairement duquel est disposé, au niveau de son foyer, un système d'émetteur primaire (3), qui est alimenté par l'intermédiaire d'une ligne coaxiale qui passe par une ouverture centrale (4) du réflecteur principal et comporte, à son extrémité, un réflecteur auxiliaire (19), et qui possède deux fentes longitudinales (13,14), qui sont diamétralement opposées et qui possèdent une longueur égale approximativement à la moitié de la longueur d'onde de fonctionnement, dans le conducteur extérieur (11) de la ligne coaxiale, sur lequel sont montées, perpendiculairement au plan de liaison des fentes, les deux moitiés d'un émetteur dipolaire (15,16), le conducteur extérieur (11) de la ligne coaxiale étant raccordé d'un côté au conducteur intérieur (12) par une broche métallique de liaison (17) située dans la zone d'ensemble dipolaire,
    caractérisée par le fait que la partie rayonnante du système d'émetteur primaire (3), qui est constituée par la combinaison des deux fentes (13,14) et des moitiés (15,16) du dipôle, est complètement enserrée dans un corps (18) réalisé en un matériau diélectrique présentant un facteur de pertes faible, possédant une forme fermée et ayant des dimensions périphériques de l'ordre d'une longueur d'onde de fonctionnement, avec une étendue longitudinale égale aussi approximativement à une longueur d'onde de fonctionnement, et qu'un anneau métallique (20) à paroi mince est disposé sur la périphérie extérieure du corps (18) réalisé en un matériau diélectrique, en direction du réflecteur principal (1) - lorsqu'on regarde suivant l'axe du dipôle, sans qu'il existe une liaison conductrice entre l'anneau d'une part et des parties métalliques du système d'émetteur primaire (3) d'autre part.
  2. Antenne directionnelle suivant la revendication 1, caractérisée par le fait que l'anneau métallique (20) possède une largeur comprise approximativement entre 0,1 et 0,15 fois la longueur d'onde de fonctionnement.
  3. Antenne directionnelle suivant la revendication 1, caractérisée par le fait qu'en plus de l'anneau métallique (12), un ou plusieurs anneaux métalliques, qui se succèdent dans la direction axiale, sont installés sur la périphérie extérieure du corps (18) réalisé en un matériau diélectrique.
  4. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que le corps (18) réalisé en un matériau diélectrique possède une forme sensiblement cylindrique.
  5. Antenne directionnelle suivant l'une des revendications 1 à 3, caractérisée par le fait que le corps (18) réalisé en un matériau diélectrique possède une forme sensiblement parallélépipédique.
  6. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que le corps (18) réalisé en un matériau diélectrique possède un perçage (21) qui s'étend de manière centrée sur toute sa longueur et est dimensionné de telle sorte que le corps formé d'un matériau diélectrique peut être déplacé par-dessus le conducteur extérieur (11) de la ligne coaxiale (2) et que le corps réalisé en un matériau diélectrique est pourvu d'évidements (22) servant à loger les deux moitiés (15,16) du dipôle.
  7. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que la surface frontale (23), tournée à l'opposé du réflecteur principal (1), du corps (18) réalisé en un matériau diélectrique, est fixée par vissage à la face intérieure du réflecteur auxiliaire (19).
  8. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que la surface frontale (24), tournée vers le réflecteur principal (1), du corps (18) réalisé en un matériau diélectrique, possède un contour (25) optimisé du point de vue de l'émission du rayonnement.
  9. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que l'anneau métallique (20) comporte, sur le corps (18) réalisé en un matériau diélectrique, un contour marginal de forme particulière (26) en sorte qu'on obtient un large équilibrage des diagrammes de rayonnement dans les plans E et H.
  10. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que les éléments individuels, qui sont fortement déterminants pour la fréquence, à savoir notamment les fentes (13,14), les moitiés (15,16) du dipôle, le corps (18) réalisé en un matériau diélectrique et l'anneau métallique (20) sont réglés réciproquement et combinés de façon optimale, pour ce qui concerne leur dimensionnement et leur position relative, de manière à obtenir un comportement du rayonnement primaire à très large bande.
  11. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que les fentes longitudinales (13,14) possèdent une largeur d'environ 1/40 de la longueur d'onde de fonctionnement.
  12. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que pour la transformation d'impédance entre l'impédance caractéristique de la ligne coaxiale (2) et la résistance complexe résultante du système d'émetteur primaire (3), il est prévu, à proximité des fentes (13,14), une variation, étagée de façon appropriée, du diamètre du conducteur intérieur (12) de la ligne coaxiale (2).
  13. Antenne directionnelle suivant l'une des revendications précédentes, caractérisée par le fait que le ou les anneaux métalliques (20), qui sont disposés sur le corps (18) réalisé en un matériau diélectrique sont constitués par une couche métallique déposée par évaporation ou par une couche de laque conductrice formée par exemple selon le procédé de sérigraphie.
EP19880112946 1987-08-12 1988-08-09 Antenne directionnelle pour systèmes relais Expired - Lifetime EP0304722B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19880112946 EP0304722B1 (fr) 1987-08-12 1988-08-09 Antenne directionnelle pour systèmes relais

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3726880 1987-08-12
DE3726880 1987-08-12
EP19880112946 EP0304722B1 (fr) 1987-08-12 1988-08-09 Antenne directionnelle pour systèmes relais

Publications (2)

Publication Number Publication Date
EP0304722A1 EP0304722A1 (fr) 1989-03-01
EP0304722B1 true EP0304722B1 (fr) 1992-10-28

Family

ID=25858559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880112946 Expired - Lifetime EP0304722B1 (fr) 1987-08-12 1988-08-09 Antenne directionnelle pour systèmes relais

Country Status (1)

Country Link
EP (1) EP0304722B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9007976D0 (en) * 1990-04-09 1990-06-06 Marconi Electronic Devices Antenna arrangement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462881A (en) * 1943-10-25 1949-03-01 John W Marchetti Antenna
US2474854A (en) * 1944-07-20 1949-07-05 John W Marchetti Antenna
DE1541598C3 (de) * 1966-09-30 1974-10-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen Richtantenne, bestehend aus einem Spiegel und einem Dipolerregersystem
CH466383A (de) * 1967-12-01 1968-12-15 Patelhold Patentverwertung Antenne für linear polarisierte Wellen
DE3049532A1 (de) * 1980-12-31 1982-07-29 Aeg-Telefunken Ag, 1000 Berlin Und 6000 Frankfurt Selbsttragender primaererreger fuer spiegelantennen
DE3231097A1 (de) * 1982-08-20 1984-02-23 Siemens AG, 1000 Berlin und 8000 München Antenne nach dem cassegrain-prinzip mit einer halterung fuer den subreflektor

Also Published As

Publication number Publication date
EP0304722A1 (fr) 1989-03-01

Similar Documents

Publication Publication Date Title
DE3624897C2 (fr)
DE60006132T2 (de) Aperturgekkoppelte schlitzstrahler-gruppenantenne
DE3688588T2 (de) Verkürzte Streifenleitungsantenne.
DE60113671T2 (de) Sende-Empfangssatellitenantenne mit hoher Leistung und niedrigem Kostenaufwand
EP0896749B1 (fr) Ensemble antenne hyperfrequence pour systeme radar de vehicule a moteur
DE2354550C2 (de) Doppelrundstrahlantenne
DE1166297B (de) Axial strahlende Wendelantenne
DE2316842B2 (de) Mehrfrequenzantenne für drei Frequenzbänder
DE60014594T2 (de) Doppelspiralige Schlitzantenne für Zirkulare Polarisation
DE3601649A1 (de) Ebene mikrowellenantenne
DE3217437A1 (de) Mikrowellen-richtantenne aus einer dielektrischen leitung
DE3027497A1 (de) Polarisationsweiche mit speisehorn
DE60019412T2 (de) Antenne mit vertikaler polarisation
DE3634772C2 (fr)
EP1454381A1 (fr) Antenne, sous forme de resonateur a cavite, dotee d'une fente large bande
EP0304722B1 (fr) Antenne directionnelle pour systèmes relais
EP0021252A1 (fr) Antenne radar du type pillbox avec antenne d'interrogation IFF intégrée
DE102004024800A1 (de) Mehrbandfähige Antenne
DE10050902A1 (de) Antennenanordnung für Mobiltelefone
DE19961237A1 (de) Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen
DE3922165C2 (de) Planare Breitbandantennenanordnung
DE2719205A1 (de) Antennensystem, insbesondere fuer iff-radaranlagen
DE2938187A1 (de) Cassegrain-erreger-system fuer eine parabolantenne
DE2828807C2 (de) Radar-Cassegrain-Antenne mit einem Primärstrahler, der mit zwei senkrecht zueinander polarisierten elektromagnetischen Wellen betrieben wird
DE1616252B2 (de) Breitband-Rundstrahlantenne für Mikrowellen, bestehend aus einem vertikalen Rundhohlleiter und wenigstens einem Kegelreflektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890328

17Q First examination report despatched

Effective date: 19910703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3875559

Country of ref document: DE

Date of ref document: 19921203

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930813

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930819

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940810

EAL Se: european patent in force in sweden

Ref document number: 88112946.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

EUG Se: european patent has lapsed

Ref document number: 88112946.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000802

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010809

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050809