EP0299817B1 - Microlatex inverse utile comme adjuvant de flottation et de drainage et pour l'absorption et la retention de fluides aqueux - Google Patents

Microlatex inverse utile comme adjuvant de flottation et de drainage et pour l'absorption et la retention de fluides aqueux Download PDF

Info

Publication number
EP0299817B1
EP0299817B1 EP88401511A EP88401511A EP0299817B1 EP 0299817 B1 EP0299817 B1 EP 0299817B1 EP 88401511 A EP88401511 A EP 88401511A EP 88401511 A EP88401511 A EP 88401511A EP 0299817 B1 EP0299817 B1 EP 0299817B1
Authority
EP
European Patent Office
Prior art keywords
vinyl monomer
water
soluble vinyl
process according
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401511A
Other languages
German (de)
English (en)
Other versions
EP0299817A1 (fr
Inventor
Françoise Candau
Pascale Buchert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Priority to AT88401511T priority Critical patent/ATE94885T1/de
Publication of EP0299817A1 publication Critical patent/EP0299817A1/fr
Application granted granted Critical
Publication of EP0299817B1 publication Critical patent/EP0299817B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions

Definitions

  • the present invention relates to a process for preparing microlatex dispersed in a continuous oil phase, by polymerization (or copolymerization) in a water-in-oil microemulsion of at least one water-soluble vinyl monomer and the use of these microlatexes inverse to the absorption and retention of aqueous fluids.
  • the water-soluble monomer or the mixture of monomers
  • the proportions of the constituents correspond to the monophasic domains, also called microemulsions, of the surfactant / oil / aqueous monomer solution phase diagram.
  • the monomer is trapped inside the micelles swollen with water or else in the aqueous domains of a microemulsion of bicontinuous structure.
  • These systems are optically transparent, thermodynamically stable and therefore lend themselves in particular to photochemical reactions.
  • Such a process known in particular from the teaching of patent FR-A-2,524,895, has been applied in particular to acrylamide, acrylic acid and N-vinylpyrrolidone.
  • the water-soluble monomer is polymerized into a microemulsion by the photochemical or thermal route.
  • the method consists in initiating the photochemical polymerization, for example by ultraviolet irradiation, or thermally using a hydrophobic initiator, for example azobisisobutyronitrile, or hydrophilic, for example potassium persulfate.
  • the polymerization takes place very quickly, for example in a few minutes by photochemical route, quantitatively and leads to the formation of microlatex whose particle radius is of the order of 15 nm.
  • the surfactant used preferably belongs to the class of anionics (such as sodium di-2-ethyl hexylsulfosuccinate) or of that of cationics (such as hexadecyl benzene-dimethyl ammonium bromide). It is also known from patent FR-A-2,565,592 to use, for the copolymerization of at least two acrylic monomers (for example (meth) acrylic acid and its alkaline salts), nonionic surfactants, the HLB (lipophilic hydrophilic balance) is 8 to 11.
  • a first problem which the present invention has set out to solve therefore consists in determining the conditions under which this type of process could be usefully applied to the (co) polymerization of cationic water-soluble vinyl monomers, if appropriate in admixture with at least one non-ionic or anionic water-soluble vinyl monomer.
  • a second problem which the present invention aims to solve consists in determining the preparation conditions under which the microlatex obtained are stable (thermodynamically) and optically transparent.
  • Yet another problem which the present invention has set out to solve consists in determining the conditions under which the inverse microlatex thus obtained could be used for the absorption and retention of aqueous fluids, as well as additives (buoyancy and flotation aids). drainage) in the manufacture of pulp.
  • the concentration of the cationic water-soluble vinyl monomer in the aqueous solution (A) is generally between 5 and 80% by weight, preferably between 10 and 60% by weight.
  • the hydrocarbon liquid present in the oily phase (B) is preferably chosen from aliphatic, linear, branched or cyclic hydrocarbons having from 6 to 14 carbon atoms, or also from aromatic hydrocarbons having from 6 to 15 carbon atoms .
  • nonionic surfactants which can be used according to the present invention are in particular polyoxyethylene sorbitol hexaoleate, sorbitan sesquioleate, ethoxylated sorbitan trioleate, sorbitan trioleate and polyoxyethylene sorbitol mono-oleate as well as copolymers comprising at least two polymeric components derived from liposoluble complex monocarboxylic acids and another polymeric component residue of a water soluble compound containing polyoxyalkylene units, the said copolymers being such as those described in European patent application published under No. 0,258,120 or their mixtures.
  • salts are in particular the chlorides of methacryloyloxyethyltrimethylammonium and of acryloyloxyethyltrimethylammonium.
  • anionic water-soluble vinyl monomers which can be used according to the present invention, mention may in particular be made of acrylic acid, methacrylic acid, 2-acrylamido 2-methylpropanesulfonic acid and especially their alkaline salts.
  • non-ionic water-soluble vinyl monomers which can be used according to the present invention, mention may in particular be made of acrylamide, methacrylamide and N-vinylpyrrolidone.
  • the cationic water-soluble vinyl monomer can be mixed in all proportions with at least one water-soluble vinyl monomer, either anionic or nonionic as defined above. However in such mixtures it is preferable that the proportion of the cationic water-soluble vinyl monomer is at least equal to 5% by weight.
  • methacryloyloxyethyltrimethylammonium chloride is copolymerized with acrylamide, the oily phase consisting of cyclohexane
  • a nonionic surfactant or mixture having an HLB of between 7.5 and 13 approximately, the said HLB preferably being correlated to the weight fraction x of the chloride in the mixture by the relation:
  • the determination of the HLB of the surfactant to be used for other monomers is within the reach of those skilled in the art.
  • the polymerization is carried out quickly and quantitatively and leads to the formation of stable and transparent microlatex containing a high content of water-soluble (co) polymer.
  • the polymerization time is for example from 5 to 260 minutes by photochemical route at ambient temperature, from 5 to 360 minutes by thermal route (the duration naturally being an inverse function of temperature).
  • the temperature usable during a thermal polymerization is generally between 20 and 90 ° C. approximately.
  • microlatex according to the invention can be used in a particularly effective manner as flotation and drainage aids in the manufacture of paper pulp, this application constituting the third object of the present invention.
  • the inverse microlatex obtained is modified to give them absorption and water retention properties.
  • This modification consists in incorporating into the reverse microemulsion prepared in step (a) at least one crosslinking agent in sufficient quantity relative to the sum of the monomers to be polymerized during step (b).
  • sufficient quantity is meant a proportion preferably at least equal to 0.2% by weight and preferably at most equal to 5% by weight relative to the monomer (s).
  • the crosslinked reverse microlatex thus obtained can be used for the absorption and retention of aqueous fluids, in particular in articles for hygiene and health, this constituting yet another object of the present invention.
  • the compounds of the second type mentioned above having at least one polymerizable double bond and at least one functional group reactive with at least one of the monomers are ethylenically unsaturated compounds containing at least one group reactive with the carboxyl, carboxylic anhydride, hydroxyl, amine groups. or amide. Examples of these compounds are N-methylol (meth) acrylamide and glycidyl (meth) acrylate.
  • 116 g of cyclohexane and 24 g of a mixture (having an HLB of 12.9) of polyoxyethylenated sorbitan monooleate (TWEEN 80) and sorbitan sesquioleate (ARLACEL 83) are mixed with stirring.
  • 30 g of methacryloyloxyethyltrimethylammonium chloride are dissolved in 30 g of distilled water, then this solution is added to the mixture of cyclohexane and surfactants.
  • the microemulsion thus obtained, into which 0.3% by weight of azobisisobutyronitrile relative to the monomer is introduced, is degassed for 30 minutes at 20 ° C. under a nitrogen atmosphere in order to eliminate the oxygen capable of acting in as an inhibitor.
  • microemulsion is then irradiated under ultraviolet light in a 500 ml reactor thermostatically controlled at 20 ° C. After one hour of polymerization, a clear microlatex is obtained, having a limiting viscosity (at zero shear gradient) of 6 ⁇ 10 -3 Pa.s, having a volume fraction of the dispersed phase. equal to 37%, having a molecular weight of the polymer equal to 4.8 ⁇ 10 6 and a polydispersity index (as defined above) equal to 1.1.
  • microlatex After 45 minutes of polymerization, a microlatex is obtained which is in the form of a clear gel.
  • the polymer is gradually added with pure water until saturation.
  • the weight of water absorbed is then measured to reach saturation. This is here equal to 15 times the weight of polymer.
  • a transparent microlatex is obtained, having a limiting viscosity (at zero shear gradient) of 0.15 Pa.s, having a volume fraction of the dispersed phase equal to 54%, having a molecular weight of the polymer (weight average) at 12.4.10 6 and a polydispersity index equal to 1.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La synthèse de polymères et copolymères hydrosolubles (p.ex.polyacrylamide et copolymère acide acrylique-acrylamide) fait actuellement l'objet de nombreux travaux tant en recherche fondamentale que finalisée. Le mode de préparation utilisé est généralement la polymérisation en émulsion inverse. Le produit final se présente alors sous forme d'une suspension colloïdale polymère dispersée dans une huile, appelée latex inverse. Ce procédé permet une dissolution rapide du polymère dans l'eau, sans formation de gels ou d'agrégats comme c'est le cas lorsque le produit est conditionné sous forme de poudre. Il présente en outre de grandes facilités de stockage et manipulation. Cependant un inconvénient majeur des latex inverses est leur manque de stabilité qui se traduit par une importante décantation au cours du temps ainsi que par une large distribution de taille des particules.
  • La présente invention concerne un procédé de préparation de microlatex dispersés dans une phase d'huile continue, par polymérisation (ou copolymérisation) dans une microémulsion du type eau dans l'huile d'au moins un monomère vinylique hydrosoluble et l'utilisation de ces microlatex inverses à l'absorption et la rétention de fluides aqueux. Dans ce procédé, le monomère hydrosoluble (ou le mélange de monomères) est dissout dans l'eau et dispersé dans un mélange de tensio-actif et d'huile de telle sorte que les proportions des constituants correspondent aux domaines monophasiques, appelés encore microémulsions, du diagramme de phase tensio-actif/huile/solution aqueuse de monomère. Le monomère est piégé à l'intérieur des micelles gonflées d'eau ou bien dans les domaines aqueux d'une microémulsion de structure bicontinue. Ces systèmes sont optiquement transparents, thermodynamiquement stables et se prêtent par conséquent en particulier à des réactions photochimiques. Un tel procédé, connu notamment par l'enseignement du brevet FR-A-2.524.895, a été appliqué en particulier à l'acrylamide, l'acide acrylique et la N-vinylpyrrolidone. Dans ce cas le monomère hydrosoluble est polymérisé en microémulsion par voie photochimique ou thermique. La méthode consiste à amorcer la polymérisation photochimiquement par exemple par irradiation utraviolette, ou thermiquement à l'aide d'un initiateur hydrophobe, par exemple l'azobisisobutyronitrile, ou hydrophile, par exemple le persulfate de potassium.
  • La polymérisation s'effectue très rapidement, par exemple en quelques minutes par voie photochimique, quantitativement et conduit à la formation de microlatex dont le rayon de particules est de l'ordre de 15 nm. Le tensio-actif utilisé fait de préférence partie de la classe des anioniques (tels que le di-2-éthyl hexylsulfosuccinate de sodium) ou de celle des cationiques (tels que l'hexadécyl benzène-diméthyl bromure d'ammonium). Il est également connu par le brevet FR-A-2.565.592 d'utiliser, pour la copolymérisation d'au moins deux monomères acryliques (par exemple acide (méth) acrylique et ses sels alcalins), des tensio-actifs non ioniques dont le HLB (équilibre hydrophile lipophile) est de 8 à 11.
  • Il est important de noter que les deux documents précités s'intéressent exclusivement à la (co)-polymérisation de monomères non ioniques (acrylamide, N-vinylpyrrolidone) ou anioniques (acide (méth)-acrylique et ses sels alcalins) et qu'ils ne comportent aucune indication pouvant laisser supposer que les procédés de préparation de microlatex inverses en phase huileuse continue par polymérisation en microémulsion du type eau dans l'huile auraient pu être applicables dans le cas de monomères cationiques. Un premier problème que la présente invention s'est proposé de résoudre consiste donc à déterminer les conditions dans lesquelles ce type de procédé pourrait être appliqué utilement à la (co)polymérisation de monomères vinyliques hydrosolubles cationiques, le cas échéant en mélange avec au moins un monomère vinylique hydrosoluble non-ionique ou anionique. Un second problème que la présente invention vise à résoudre consiste à déterminer les conditions de préparation dans lesquelles les microlatex obtenus sont stables (thermodynamiquement) et optiquement transparents. Encore un autre problème que la présente invention s'est proposé de résoudre consiste à déterminer les conditions dans lesquelles les microlatex inverses ainsi obtenus pourraient être utilisés pour l'absorption et la rétention de fluides aqueux, ainsi que comme additifs (adjuvants de flottation et de drainage) dans la fabrication de la pâte à papier.
  • Un premier objet de la présente invention consiste en un microlatex inverse d'au moins un monomère vinylique hydrosoluble cationique, le cas échéant copolymérisé avec au moins un monomère vinylique hydrosoluble anionique ou non-ionique, ledit microlatex ayant été obtenu en présence d'au moins un agent tensio-actif tel que défini cî-après. Un tel microlatex, obtenu par le procédé décrit ultérieurement en plus amples détails, possède les propriétés et caractéristiques favorables suivantes :
    • - être stable (thermodynamiquement),
    • - être optiquement transparent,
    • - présenter un poids moléculaire du polymère (moyenne en poids) compris entre 2.106 et 15.106 environ, ce poids moléculaire étant déterminé par diffusion de la lumière,
    • - présenter un indice de polydispersité, défini comme le rapport du diamètre moyen en poids des particules de polymère à leur diamètre moyen en nombre, compris entre 1,05 et 1,2 environ,
    • - présenter un comportement rhéologique newtonien jusqu'à des fractions volumiques de phase dispersée (polymère gonflé d'eau) atteignant 55 % environ,
    • - présenter une viscosité limite à gradient de cisaillement nul( déterminée à 25 ° C) comprise entre 3 x 10-3 et 0.5 Pa.s environ, selon la fraction volumique de la phase dispersée.
  • Un second objet de la présente invention consiste en un procédé de préparation d'un microlatex inverse tel que défini précédemment, comprenant une première étape (a) de préparation d'une microémulsion inverse (du type eau-dans-huile) et une seconde étape (b) dans laquelle on soumet la microémulsion inverse obtenue dans l'étape (a) à des conditions de polymérisation, caractérisé en ce que l'étape (a) consiste à mélanger les constituants suivants :
    • (A) une solution aqueuse d'au moins un monomère vinylique hydrosoluble cationique, le cas échéant en mélange avec au moins un monomère vinylique hydrosoluble anionique ou non-ionique,
    • (B) une phase huileuse comprenant au moins un liquide hydrocarboné, et
    • (C) au moins un tensio-actif non ionique, en une proportion suffisante pour obtenir une microémulsion inverse, et ayant un HLB compris :
      • - soit entre 11 et 15 environ lorsque le monomère vinylique hydrosoluble cationique est seul ou en mélange avec un monomère vinylique hydrosoluble anionique,
      • - soit entre 7,5 et 13 environ lorsque le monomère vinylique hydrosoluble cationique est en mélange avec un monomère vinylique hydrosoluble non-ionique.
  • La concentration du monomère vinylique hydrosoluble cationique dans la solution aqueuse (A) est généralement comprise entre 5 et 80% en poids, de préférence entre 10 et 60% en poids.
  • Le liquide hydrocarboné présent dans la phase huileuse (B) est de préférence choisi parmi les hydrocarbures aliphatiques, linéaires, ramifiés, ou cycliques, ayant de 6 à 14 atomes de carbone, ou encore parmi les hydrocarbures aromatiques ayant de 6 à 15 atomes de carbone.
  • Pour obtenir 100 parties en poids de la microémulsion inverse selon l'invention on mélange de préférence :
    • - de 25 à 65 parties en poids de la solution aqueuse (A),
    • - de 25 à 60 parties en poids de la phase huileuse (B), et
    • - de 10 à 27 parties en poids du tensio-actif non-ionique (C).
  • Des exemples de tensio-actifs non ioniques utilisables selon la présente invention sont notamment l'hexaoléate de sorbitol polyoxyéthylèné, le sesquioléate de sorbitan, le trioléate de sorbitan éthoxylé, le trioléate de sorbitan et le mono-oléate de sorbitol polyoxyéthylèné ainsi que les copolymères comprenant au moins deux composants polymériques dérivés d'acides monocarboxyliques complexes liposolubles et un autre composant polymérique résidu d'un composé hydrosoluble contenant des motifs polyoxyalkylène, lesdits copolymères étant tels que ceux décrits dans la demande de brevet européen publiée sous le n ° 0.258.120 ou leurs mélanges.
  • Des monomères vinyliques hydrosoluble cationiques entrant dans le cadre de la présente invention sont notamment des sels d'ammonium quaternaire insaturés répondant à la formule générale :
    Figure imgb0001
    dans laquelle :
    • - A est un atome d'oxygène ou un groupe NH,
    • - R1 est un atome d'hydrogène ou un radical méthyle,
    • - R2 est un radical alkyle, linéaire ou ramifié, ayant de 2 à 4 atomes de carbone,
    • - R3, R4 et Rs, identiques ou différents, sont des radicaux alkyles, linéaires ou ramifiés, ou aryles, et
    • - X est choisi parmi les atoms d'halogène et les groupes -C2Hs-SO4 et -CH3-SO4.
  • Des exemples de tels sels sont en particulier les chlorures de méthacryloyloxyéthyltriméthylammonium et d'acryloyloxyéthyltriméthylammonium.
  • Comme monomères vinyliques hydrosolubles anioniques utilisables selon la présente invention, on peut citer notamment l'acide acrylique, l'acide méthacrylique, l'acide 2-acrylamido 2-méthylpropanesulfonique et surtout leurs sels alcalins. Comme monomères vinyliques hydrosolubles non ioniques utilisables selon la présente invention, on peut citer notamment l'acrylamide, la méthacrylamide et la N-vinylpyrrolidone.
  • Dans le cadre de la présente invention, le monomère vinylique hydrosoluble cationique peut être mélangé en toutes proportions avec au moins un monomère vinylique hydrosoluble soit anionique soit non ionique tel que défini précédemment. Toutefois dans de tels mélanges il est préfèrable que la proportion du monomère vinylique hydrosoluble cationique soit au moins égale à 5% en poids.
  • La proportion du tensio-actif non ionique dans la microémulsion inverse et le choix du HLB de ce tensio-actif sont deux éléments déterminatns pour l'efficacité du procédé selon l'invention. D'une part,sauf exception liée à la nature particulière des monomères vinyliques hydrosolubles utilisés ou à la nature particulière de la phase huileuse, une microémulsion inverse stable (thermodynamiquement) ne pourra généralement pas être obtenue lorsque la proportion du tensio-actif dans le mélange des constituants (A), (B) et (C) est inférieure à 10% en poids. D'autre part le choix du HLB du tensio-actif dépend des quatre facteurs suivants :
    • - polymérisation du monomère vinylique hydrosoluble cationique seul ou bien en mélange avec un comonomère,
    • - si le monomère cationique est en mélange avec un comonomère, nature (anionique ou non-ionique) et proportion de ce dernier,
    • - nature du monomère cationique, et
    • - nature de la phase huileuse (B).
  • Il est par ailleurs connu que dans ce type de procédé la quantité de tensio-actif requise dépend du HLB de celui-ci et passe généralement par une valeur minimale lorsque le HLB augmente. Etant donné que, pour des raisons d'ordre économique, on cherche le plus souvent à minimiser l'emploi de tensio-actif, cette valeur minimale constituera également un optimum industriel. Il est donc très important de déterminer dans chaque cas, en fonction des facteurs énumérés ci-dessus, le HLB du tensio-actif à utiliser. Pour illustrer cet aspect de l'invention, les exemples suivants peuvent être donnés : ainsi lorsque le chlorure de méthacryloyloxyéthyltriméthylammonium est polymérisé seul, la phase huileuse étant constituée de cyclohexane, il est préférable d'utiliser un tensio-actif (ou un mélange) non ionique ayant un HLB compris entre 12,8 et 13,2 environ. Lorsque le chlorure de méthacryloyloxyéthyltriméthylammonium est copolymérisé avec l'acrylamide, la phase huileuse étant constituée de cyclohexane, il est préférable d'utiliser un tensio-actif (ou un mélange) non ionique ayant un HLB compris entre 7,5 et 13 environ, ledit HLB étant de préférence corrélé à la fraction pondérale x du chlorure dans le mélange par la relation :
    Figure imgb0002
  • Compte tenu de l'enseignement technique qui précède, la détermination du HLB du tensio-actif à utiliser pour d'autres monomères est à la portée de l'homme de l'art.
  • Lors de la préparation de la microémulsion inverse, il est important que la température du mélange soit soigneusement contrôlée, en raison de la sensibilité à la température des microémulsions inverses en présence de tensio-actifs non ioniques. Cette influence de la température est d'autant plus sensible que la concentration en tensio-actif est plus proche de la teneur minimale requise pour obtenir une microémulsion inverse. En vue de réduire la teneur en tensio-actif nécessaire et afin de s'affranchir au maximum de l'influence de la température sur la stabilité des microémulsions inverses, ces dernières seront dans la mesure du possible préparées à une température aussi voisine que possible de celle qui aura été choisie pour la polymérisation.
  • Au cours de la seconde étape (b) du procédé selon l'invention, la microémulsion inverse préparée au cours de l'étape (a) est soumise à des conditions de polymérisation :
    • - photochimique, par exemple par irradiation ultraviolette, et/ou
    • - thermique, par mise en présence d'un initiateur radicalaire hydrophobe (tel que l'azobisisobutyronitri- le) introduit avec la phase huileuse (B) ou hydrophile (tel que le persulfate de potassium ou d'ammonium) introduit avec la solution aqueuse (A), ou bien en présence d'un système Redox dans lequel le persulfate est utilisé en combinaison avec au moins un réducteur choisi parmi les polyhydrophénols, le sulfite et le bisulfite de sodium, le diméthylaminopropionitrile, les diazomercap- tans et les ferricyanures.
  • La polymérisation s'effectue rapidement et quantitativement et conduit à la formation de microlatex stables et transparents contenant une teneur élevée en (co)polymère hydrosoluble. La durée de polymérisation est par exemple de 5 à 260 minutes par voie photochimique à température ambiante, de 5 à 360 minutes par voie thermique (la durée étant naturellement une fonction inverse de la température). La température utilisable au cours d'une polymérisation par voie thermique est généralement comprise entre 20 et 90 ° C environ.
  • Les microlatex selon l'invention sont utisables de manière particulièrement efficace en tant qu'adjuvants de flottation et de drainage dans la fabrication de la pâte à papier, cette application constituant le troisième objet de la présente invention.
  • D'autre part il est possible, par une variante du procédé selon l'invention, de modifier les microlatex inverses obtenus pour leur conférer des propriétés d'absorption et de rétention d'eau. Cette modification consiste à incorporer à la microémulsion inverse préparée dans l'étape (a) au moins un agent réticulant en quantité suffisante par rapport à la somme des monomères à polymériser au cours de l'étape (b). Par quantité suffisante on entend une proportion de préférence au moins égale à 0,2 % en poids et de préférence au plus égale à 5 % en poids par rapport au(x) monomère(s). Les microlatex inverses réticulés ainsi obtenus sont utilisables pour l'absorption et la rétention de fluides aqueux, notamment dans des articles pour l'hygiène et la santé, ceci constituant encore un autre objet de la présente invention.
  • Comme agents réticulants utilisables dans cette variante du procédé selon l'invention on peut citer :
    • 1) des composés ayant au moins deux doubles liaisons polymérisables et,
    • 2) des composés ayant au moins une double liaison polymérisable et au moins un groupe fonctionnel réactif avec au moins l'un des monomères.
  • Des exemples des composés répertoriés en premièrement ci-dessus, ayant au moins deux doubles liaisons polymérisables, sont :
    • a) les composés di- ou polyvinyliques, tels que notamment le divinylbenzène, le divinyltoluène, le divinylxylène, l'éther divinylique, la divinylcétone et le trivinylbenzène,
    • b) les di- ou polyesters d'acides mono- ou polycarboxyliques non saturés avec des polyols, tels que les esters des acides di- ou tri(méth)acryliques avec des polyols (tels que l'éthylène glycol, le triméthylol- propane, le glycérol, les polyoxyéthylèneglycols, les polyoxypropylèneglycols, etc.), les polyesters non saturés (que l'on peut obtenir par réaction de l'un quelconque des polyols précités avec un acide insaturé tel que l'acide maléique), les esters d'acide di- ou tri-(méth)acrylique (que l'on peut obtenir par réaction d'un polyépoxide avec l'acide (méth)acrylique),
    • c) les bis (méth)acrylamides tels que la N,N'-méthylène-bis-acrylamide,
    • (d) les esters carbamyliques que l'on peut obtenir en faisant réagir des polyisocyanates (tels que le toluène diisocyanate, l'hexaméthylène diisocyanate, le 4,4'-diphénylméthanediisocyanate et les prépoly- mères contenant un groupe NCO obtenus en faisant réagir un tel diisocyanate avec des composés contenant des atomes d'hydrogène actifs) avec des monomères contenant des groupes hydroxyles. De tels esters sont notamment ceux des acides di(méth)acryliques que l'on peut obtenir en faisant réagir les diisocyanates précités avec le (méth)acrylate d'hydroxyéthyle,
    • e) les éthers di- ou poly(méth)allyliques de polyols (tels que les alkylène-glycols, le glycérol, les polyalkylèneglycols, les polyoxyalkylènepolyols, les hydrates de carbones), tels que l'éther diallylique du polyéthylène glycol, l'amidon allylé et la cellulose allylée,
    • f) les esters di- ou polyallyliques d'acides polycarboxyliques tels que le phtalate de diallyle, l'adipate de diallyle et
    • g) les esters d'acides mono- ou polycarboxyliques non saturés avec des éthers mono(méth)allyliques de polyols, tels que l'ester de l'acide (méth)acrylique avec l'éther monoallylique du polyéthylène glycol.
  • Les composés du type deuxièmement précités ayant au moins une double liaison polymérisable et au moins un groupe fonctionnel réactif avec au moins l'un des monomères sont les composés éthyléniquement insaturés contenant au moins un groupe réactif avec les groupes carboxyle, anhydride carboxylique, hydroxyle, amine ou amide. Des exemples de ces composés sont la N-méthylol(méth)acrylamide et le (méth)acrylate de glycidyle.
  • Les exemples ci-après sont donnés à titre illustratif et non limitatif de la présente invention.
  • EXEMPLE 1
  • 116 g de cyclohexane et 24 g d'un mélange (ayant un HLB de 12,9) de monooléate de sorbitan polyoxyéthyléné (TWEEN 80) et de sesquioléate de sorbitan (ARLACEL 83) sont mélangés sous agitation. Par ailleurs on dissout 30 g de chlorure de méthacryloyloxyéthyltriméthylammonium dans 30 g d'eau distillée, puis on ajoute cette solution au mélange de cyclohexane et tensio-actifs. La microémulsion ainsi obtenue, dans laquelle on introduit 0,3 % en poids d'azobisisobutyronitrile par rapport au monomère, est dégazée pendant 30 minutes à 20 ° C sous atmosphère d'azote en vue d'éliminer l'oxygène susceptible d'agir en tant qu'inhibiteur.
  • La microémulsion est alors irradiée sous ultra-violet au sein d'un réacteur de 500 ml thermostaté à 20°C. Après une heure de polymérisation on obtient un microlatex clair, ayant une viscosité limite (à gradient de cisaillement nul) de 6 x 10-3 Pa.s, présentant une fraction volumique de la phase dispersée égale à 37 %, présentant un poids moléculaire du polymère égal à 4,8.106 et un indice de polydispersité (tel que défini précédemment) égal à 1,1.
  • EXEMPLE 2
  • On reproduit le processus opératoire de l'exemple 1 en modifiant seulement les quantités des ingrédients comme suit :
    • - cyclohexane : 59,3 g
    • - tensio-actifs : 31,9 g
    • - eau distillée : 49,4 g
    • - chlorure de méthacryloyloxyéthyltriméthylammonium : 59,4 g.
  • Après 45 minutes de polymérisation on obtient un microlatex se présentant sous la forme d'un gel clair.
  • EXEMPLE 3
  • 65,4 g d'une coupe isoparaffinique C13-C14 commercialisée par ESSO CHIMIE sous l'appellation ISOPAR M et 56,1 g d'un mélange (ayant un HLB de 8,7) des tensio-actifs TWEEN 80 et ARLACEL 83 sont mélangés sous agitation. Par ailleurs on dissout 9,8 g de chlorure de méthacryloyloxyéthyltriméthylammo- niumet 29,1 g d'acrylamide dans 39,5 g d'eau distillée, puis on ajoute cette solution au mélange de la phase huileuse et des tensio-actifs. Après avoir introduit 0,12 g d'azobisisobutyronitrile dans la microémulsion obtenue, celle-ci est irradiée sous ultraviolet à 20 ° C pendant 2 heures au sein d'un réacteur de 500 ml thermostaté, tout en maintenant un courant d'azote. On obtient un microlatex se présentant sous la forme d'un fluide clair.
  • Exemple 4
  • On reproduit le processus opératoire de l'exemple 1 en modifiant seulement les quantités des ingrédients comme suit :
    • - cyclohexane : 94 g
    • - tensio-actifs : 26 g
    • - eau distillée : 40 g
    • - chlorure de méthacryloyloxyéthyltriméthylammonium: 40 g

    et en ajoutant à la microémulsion 0,08 g de méthylène bisacrylamide (agent réticulant). Le microlatex ainsi obtenu est alors traité de façon connue en soi pour récupérer le polymère cationique réticulé. Celui-ci est ensuite séché dans une étuve ventilée à 60° C pendant 24 heures puis sous vide partiel (0,13 bar) à 30° C. Après broyage sous forme de poudre, il est soumis au test suivant : Test de capacité d'absorption et de rétention d'eau
  • Le polymère est additionné progressivement d'eau pure jusqu'à saturation. On mesure alors le poids d'eau absorbée pour parvenir à saturation. Celui-ci est ici égal à 15 fois le poids de polymère.
  • Exemple 5
  • On reproduit le processus opératoire de l'exemple 1 en modifiant les quantités des ingrédients comme suit :
    • - cyclohexane : 75 g
    • - tension-actifs : 25 g
    • - eau distillée : 50 g
    • - chlorure de méthacryloyloxyéthyltriméthylammonium : 50 g.
  • Après polymérisation on obtient un microlatex transparent, ayant une viscosité limite (à gradient de cisaillement nul) de 0.15 Pa.s, présentant une fraction volumique de la phase dispersée égale à 54 %, présentant un poids moléculaire du polymère (moyenne en poids) égal à 12,4.106 et un indice de polydispersité égal à 1,1.
  • Exemple 6
  • On reproduit le processus opératoire de l'exemple 1 en modifiant les quantités des ingrédients comme suit:
    • - coupe isoparaffinique ISOPAR M : 87 g
    • - tensio-actifs : 26 g
    • - eau distillée : 43,5 g
    • - chlorure d'acryloyloxyéthyltriméthylammonium : 43,5 g.
  • Après polymérisation on obtient un microlatex optiquement transparent et thermodynamiquement stable.

Claims (14)

1. Microlatex inverse, thermodynamiquement stable et optiquement transparent, d'au moins un monomère vinylique hydrosoluble cationique, le cas échéant copolymérisé avec au moins un monomère vinylique hydrosoluble anionique ou non-ionique, ledit microlatex ayant été obtenu en présence d'au moins un tensio-actif non-ionique ayant un HLB compris :
- soit entre 11 et 15 lorsque le monomère vinylique hydrosoluble cationique est seul ou en mélange avec un monomère vinylique hydrosoluble anionique ;
- soit entre 7,5 et 13 lorsque le monomère vinylique hydrosoluble cationique est en mélange avec un monomère vinylique hydrosoluble non-ionique.
2. Microlatex selon la revendication 1, caractérisé par le fait qu'il présente un poids moléculaire du polymère compris entre 2 x 106 et 15 x 106.
3. Microlatex selon l'une des revendications 1 et 2, caractérisé par le fait qu'il présente un indice de polydispersité du polymère compris entre 1,05 et 1,2.
4. Microlatex selon l'une des revendications 1 à 3, caractérisé par le fait que le monomère vinylique hydrosoluble cationique est un sel d'ammonium quaternaire de formule générale :
Figure imgb0003
dans laquelle :
- A est un atome d'oxygène ou un groupe NH,
- R1 est un atome d'hydrogène ou un radical méthyle,
- R2 est un radical alkyle, linéaire ou ramifié, ayant de 2 à 4 atomes de carbone,
- R3, R4 et Rs, identiques ou différents, sont des radicaux alkylés, linéaires ou ramifiés, ou aryles, et
- X est choisi parmi les atomes halogène et les groupes -C2Hs-SO4 et -CHa-SO4.
5. Microlatex selon l'une des revendications 1 à 4, caractérisé par le fait que le monomère vinylique hydrosoluble anionique est choisi parmi l'acide acrylique, l'acide méthacrylique, l'acide 2-acrylamido 2-méthylpropanesulfonique et leurs sels alcalins.
6. Microlatex selon l'une des revendications 1 à 5, caractérisé par le fait que le monomère vinylique hydrosoluble non-ionique est choisi parmi l'acrylamide, le méthacrylamide et la N-vinylpyrrolidone.
7. Microlatex selon l'une des revendications 1 à 6, caractérisé par le fait que la phase huileuse comprend au moins un liquide hydrocarboné choisi parmi les hydrocarbures aliphatiques, linéaires, ramifiés ou cycliques, ayant de 6 à 14 atomes de carbone.
8. Microlatex selon l'une des revendications 1 à 7, caractérisé par le fait que le polymère ou copolymère est réticulé.
9. Procédé de préparation d'un microlatex tel que défini à l'une des revendications 1 à 8, comprenant :
- une première étape (a) de préparation d'une microémulsion inverse (du type eau-dans-huile) ; et
- une seconde étape (b) dans laquelle on soumet la microémulsion inverse obtenue dans l'étape (a) à des conditions de polymérisation,

caractérisé en ce que l'étape (a) consiste à mélanger les constituants suivants :
(A) une solution aqueuse d'au moins un monomère vinylique hydrosoluble cationique, le cas échéant en mélange avec au moins un monomère vinylique hydrosoluble anionique ou non-ionique,
(B) une phase huileuse comprenant au moins un liquide hydrocarboné, et
(C) au moins un tensio-actif non-ionique, en une proportion suffisante pour obtenir une microémulsion inverse, et ayant un HLB compris :
- soit entre 11 et 15 lorsque le monomère vinylique hydrosoluble cationique est seul ou en mélange avec un monomère vinylique hydrosoluble anionique,
- soit entre 7,5 et 13 lorsque le monomère vinylique hydrosoluble cationique est en mélange avec un monomère vinylique hydrosoluble non-ionique,

avec incorporation éventuelle à la microémulsion inverse préparée dans l'étape (a) d'au moins un agent réticulant en quantité suffisante par rapport à la somme des monomères à polymériser au cours de l'étape (b).
10. Procédé selon la revendication 9, caractérisé par le fait que la concentration du monomère vinylique hydrosoluble cationique dans la solution aqueuse (A) est comprise entre 5 et 80% en poids.
11. Procédé selon l'une des revendications 9 et 10, caractérisé par le fait que, pour 100 parties en poids de la microémulsion inverse, on mélange :
- de 25 à 65 parties en poids de la solution aqueuse (A),
- de 25 à 60 parties en poids de la phase huileuse (B), et
- de 10 à 27 parties en poids du tensio-actif non-ionique (C).
12. Procédé selon l'une des revendications 9 à 11, caractérisé par le fait que la proportion de l'agent réticulant par rapport au(x) monomère(s) à polymériser au cours de l'étape (b) est comprise entre 0,2 et 5% en poids.
13. Utilisation d'un microlatex inverse tel que défini à l'une des revendications 1 à 7, en tant d'adjuvant de flottation et de drainage dans la fabrication de la pâte à papier.
14. Utilisation d'un microlatex inverse tel que défini à la revendication 8 pour l'absorption et la rétention de fluides aqueux.
EP88401511A 1987-06-25 1988-06-17 Microlatex inverse utile comme adjuvant de flottation et de drainage et pour l'absorption et la retention de fluides aqueux Expired - Lifetime EP0299817B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88401511T ATE94885T1 (de) 1987-06-25 1988-06-17 Umgekehrter latex, verwendbar als zusatzmittel fuer die flotation und entwaesserung und fuer die absorption und retention von waessrigen fluessigkeiten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708925 1987-06-25
FR8708925A FR2617172B1 (fr) 1987-06-25 1987-06-25 Preparation de microlatex inverses utilisables comme adjuvants de flottation et de drainage ainsi que pour l'absorption et la retention de fluides aqueux

Publications (2)

Publication Number Publication Date
EP0299817A1 EP0299817A1 (fr) 1989-01-18
EP0299817B1 true EP0299817B1 (fr) 1993-09-22

Family

ID=9352480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401511A Expired - Lifetime EP0299817B1 (fr) 1987-06-25 1988-06-17 Microlatex inverse utile comme adjuvant de flottation et de drainage et pour l'absorption et la retention de fluides aqueux

Country Status (10)

Country Link
US (1) US5171782A (fr)
EP (1) EP0299817B1 (fr)
JP (1) JPH02503928A (fr)
AT (1) ATE94885T1 (fr)
BR (1) BR8807576A (fr)
CA (1) CA1309545C (fr)
DE (1) DE3884302T2 (fr)
ES (1) ES2058318T3 (fr)
FR (1) FR2617172B1 (fr)
WO (1) WO1988010274A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968435A (en) * 1988-12-19 1990-11-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
US5340865A (en) * 1988-12-19 1994-08-23 Cytec Technology Corp. Cross-linked cationic polyermic microparticles
USRE37037E1 (en) 1988-12-19 2001-01-30 Cytec Technology Corp. Emulsified mannich acrylamide polymers
US5723548A (en) * 1988-12-19 1998-03-03 Cytec Technology Corp. Emulsified mannich acrylamide polymers
US5037881A (en) * 1989-10-30 1991-08-06 American Cyanamid Company Emulsified mannich acrylamide polymers
DE68926157T3 (de) * 1988-12-19 2000-12-21 Cytec Tech Corp Verfahren zum Flocken einer Dispersion von suspendierten Feststoffen
EP0484617B2 (fr) * 1990-06-11 2001-12-12 Ciba Specialty Chemicals Water Treatments Limited Microperles de polymères anioniques et amphotères réticulés
US6608137B1 (en) 1991-05-23 2003-08-19 Cytec Technology Corp. Microdispersions of hydroxamated polymers
ES2090410T3 (es) * 1991-08-30 1996-10-16 Cytec Tech Corp Procedimiento para manufacturar homopolimero microemulsionado de acrilamida.
US6306348B1 (en) * 1993-11-01 2001-10-23 Nanogen, Inc. Inorganic permeation layer for micro-electric device
US5380444A (en) * 1994-02-23 1995-01-10 Cytec Technology Corp. Ampholytic polymers and polymeric microemulsions
US5650465A (en) * 1994-02-23 1997-07-22 Cytec Technology Corp. Ampholytic polymers and polymeric microemulsions
US6555119B1 (en) * 1999-04-14 2003-04-29 The Procter & Gamble Company Transparent micro emulsion
EP1221050A2 (fr) * 1999-09-30 2002-07-10 Nanogen, Inc. Sites de fixation biomoleculaire dans des reseaux micro-electroniques
US6303082B1 (en) * 1999-12-15 2001-10-16 Nanogen, Inc. Permeation layer attachment chemistry and method
FR2802936B1 (fr) * 1999-12-28 2006-03-31 Seppic Sa Nouveaux polymeres, le procede pour leur preparation et les microlatex inverses les contenant
US6960298B2 (en) * 2001-12-10 2005-11-01 Nanogen, Inc. Mesoporous permeation layers for use on active electronic matrix devices
AU2002225049A1 (en) * 2001-12-31 2003-09-02 Acideka, S.A. Method of producing reverse microemulsions from cationic copolymers
TWI287571B (en) 2002-05-14 2007-10-01 Shiseido Co Ltd Thickener, cosmetic preparation containing the same, and process for producing the same
US20070100461A1 (en) * 2005-04-12 2007-05-03 The University Of Vermont And State Agriculture College Knee prosthesis
US7687103B2 (en) * 2006-08-31 2010-03-30 Gamida For Life B.V. Compositions and methods for preserving permeation layers for use on active electronic matrix devices
US9428630B2 (en) 2009-06-19 2016-08-30 Exacto, Inc. Water-in-oil polyacrylamide-based microemulsions and related methods
US9307758B2 (en) 2009-06-19 2016-04-12 Exacto, Inc. Polyacrylamide based agricultural compositions
US9309378B2 (en) 2009-06-19 2016-04-12 Exacto, Inc. Emulsion compositions comprising polyacrylamide copolymer and ethylene oxide—propylene oxide copolymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437986A (en) * 1977-09-01 1979-03-20 Seiko Epson Corp Metal foil for polishing use
JPS5920365B2 (ja) * 1978-01-30 1984-05-12 三洋化成工業株式会社 流動性の良好なエマルジヨン型凝集剤
FR2524985A1 (fr) * 1982-04-07 1983-10-14 Trt Telecom Radio Electr Dispositif et procedes de positionnement de fibres optiques
FR2524895A1 (fr) * 1982-04-09 1983-10-14 Inst Francais Du Petrole Procede de preparation de microlatex en phase huileuse continue par polymerisation en micro-emulsion du type eau dans l'huile d'un monomere hydrosoluble, microlatex obtenus et leur utilisation en recuperation assistee du petrole
FR2565592B1 (fr) * 1984-06-07 1987-07-10 Inst Francais Du Petrole Procede de preparation de microlatex inverses et les microlatex inverses obtenus
NO165879C (no) * 1984-06-07 1991-04-24 Inst Francais Du Petrole Fremgangsmaate for fremstilling av en invers, stabil mikrolateks.
FR2567525B1 (fr) * 1984-07-13 1987-03-20 Inst Francais Du Petrole Procede de preparation de microlatex inverses et les microlatex inverses obtenus

Also Published As

Publication number Publication date
FR2617172A1 (fr) 1988-12-30
CA1309545C (fr) 1992-10-27
ES2058318T3 (es) 1994-11-01
DE3884302D1 (de) 1993-10-28
ATE94885T1 (de) 1993-10-15
FR2617172B1 (fr) 1993-07-02
US5171782A (en) 1992-12-15
WO1988010274A1 (fr) 1988-12-29
JPH02503928A (ja) 1990-11-15
EP0299817A1 (fr) 1989-01-18
BR8807576A (pt) 1990-04-10
DE3884302T2 (de) 1994-04-28

Similar Documents

Publication Publication Date Title
EP0299817B1 (fr) Microlatex inverse utile comme adjuvant de flottation et de drainage et pour l'absorption et la retention de fluides aqueux
Candau et al. Polymerization in microemulsions
US4715962A (en) Ampholytic diallyldimethyl ammonium chloride (DADMAC) copolymers and terpolymers for water clarification
EP0598091B2 (fr) Nanoparticules de polymeres fonctionnalisees, leur procede de preparation et leur utilisation
JP2945362B2 (ja) 水中への溶解または膨潤速度が速い親水性ポリマーの製造方法
FR2482112A1 (fr) Nouveaux copolymeres hydrophiles a base de n-(tris (hydroxymethyl) methyl) acrylamide, procedes pour leur preparation, gels aqueux desdits copolymeres et leur utilisation comme echangeurs d'ions
DE4406624A1 (de) Vernetzte wasserlösliche Polymerdispersionen
EP0376813B1 (fr) Procédé d'épuration des eaux au moyen d'un floculant polymère
WO1986004340A1 (fr) Nouvelles dispersions stables, eau dans huile, de polymeres cationiques hydrosolubles a base d'acrylate de dimethylaminoethyle salifie ou quaternise, leur procede de fabrication et leur application comme floculants
EP2239277B1 (fr) Procédé de production de microparticules de polymères
JP2000500387A (ja) 高性能のポリマー凝集剤
US5185393A (en) Water-in-oil emulsion of cationic polymer
JP3886098B2 (ja) 汚泥脱水剤及び汚泥脱水方法
CA2354831A1 (fr) Nouveaux (co)polymeres hydrosolubles a groupes amino quaternaires, leur fabrication et leur utilisation
Ali et al. Effects of ionizable groups on the adsorption of surfactants onto latex particle surfaces
Stevenson et al. The equilibrium water content of some thermoplastic hydroxyalkyl methacrylate polymers
EP1232190B1 (fr) Emulsion de polymeres eau-dans-huile et son procede de fabrication
JPH0753827A (ja) 油中水型重合体エマルジョンおよびその用途
EP1055451A1 (fr) Utilisation d'alkylpolyglycosides comme inverseur d'émulsions de polymeres, procédé d'inversion d'émulsions, latex inverse auto inversible et leurs utilisations industrielles.
JPH05194613A (ja) アクリルアミドのミクロ乳化したホモポリマーの製法
EP1462462B1 (fr) Procede de production de microemulsions eau dans l'huile de polymeres non ioniques ou de copolymeres ioniques
JP2004290823A (ja) 汚泥の脱水処理方法
Kaur et al. Viscometric, conductometric, and ultrasonic studies of gelatin‐g‐polyacrylamide composite
JPH0770217A (ja) 高い固体分の、および/または小さい水相小滴の重合体微細乳濁液の製造
JP4676632B2 (ja) 油中水型エマルジョンの溶解性調節方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890503

17Q First examination report despatched

Effective date: 19891102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOCHEM

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF ATOCHEM S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 94885

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3884302

Country of ref document: DE

Date of ref document: 19931028

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931012

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010092

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2058318

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 88401511.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950606

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950609

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950613

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950615

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950628

Year of fee payment: 8

Ref country code: ES

Payment date: 19950628

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19950630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950701

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950809

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960617

Ref country code: GB

Effective date: 19960617

Ref country code: AT

Effective date: 19960617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960618

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19960618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960630

Ref country code: CH

Effective date: 19960630

Ref country code: BE

Effective date: 19960630

BERE Be: lapsed

Owner name: S.A. ELF ATOCHEM

Effective date: 19960630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970101

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3010092

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301

EUG Se: european patent has lapsed

Ref document number: 88401511.6

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050617