EP0296653B1 - Mikrowellenofen mit einem Auftaufühler - Google Patents

Mikrowellenofen mit einem Auftaufühler Download PDF

Info

Publication number
EP0296653B1
EP0296653B1 EP88201087A EP88201087A EP0296653B1 EP 0296653 B1 EP0296653 B1 EP 0296653B1 EP 88201087 A EP88201087 A EP 88201087A EP 88201087 A EP88201087 A EP 88201087A EP 0296653 B1 EP0296653 B1 EP 0296653B1
Authority
EP
European Patent Office
Prior art keywords
sensor
temperature
microwave oven
microwave
oven according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88201087A
Other languages
English (en)
French (fr)
Other versions
EP0296653A1 (de
Inventor
Michel Société Civile S.P.I.D. Steers
Jean-Pierre Société Civile S.P.I.D. Hazan
Gilles Société Civile S.P.I.D. Delmas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whirlpool France SAS
Whirlpool Europe BV
Original Assignee
Whirlpool France SAS
Whirlpool Europe BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8707684A external-priority patent/FR2616211B1/fr
Priority claimed from FR8714441A external-priority patent/FR2621985B1/fr
Application filed by Whirlpool France SAS, Whirlpool Europe BV filed Critical Whirlpool France SAS
Publication of EP0296653A1 publication Critical patent/EP0296653A1/de
Application granted granted Critical
Publication of EP0296653B1 publication Critical patent/EP0296653B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits

Definitions

  • the invention relates to a microwave oven comprising a microwave source and a sensor placed in the oven near a product to be treated, the sensor comprising a substance which absorbs microwave energy, the absorption of microwave energy by the sensor and by the product causing their temperature rise, the temperature of the sensor being measured by a measuring member.
  • Microwave ovens are now widely used to defrost and reheat food previously placed in a freezer. This defrosting is generally carried out by an empirical method: the user determines an approximate weight of the food to be defrosted and deduces therefrom an also approximate time during which his microwave oven must operate. It follows a more or less complete thawing, even a beginning of cooking.
  • water essential constituent of most foods, absorbs microwaves very differently, 2 45 GHz depending on whether its temperature is lower or higher than 0 ° C. Below 0 ° C the ice is very substantially transparent to microwaves, on the other hand for a temperature above 0 ° C water absorbs microwaves very strongly.
  • Document FR 2 571 830 describes a microwave oven provided with a standard load placed in the oven next to the food to be treated.
  • the standard load absorbs microwave energy according to a distribution carried out as a function of the loads constituted by the standard load and the load of the food to be treated.
  • the solution to this technical problem consists in that, in order to follow a thawing process of said product by measuring the temperature rises of the sensor, the sensor is provided on the surface with means to reduce its thermal exchanges with the ambient medium, so that by operating during several successive thawing treatments, the sensor retains, for each treatment, at the end of thawing, a detection sensitivity of said temperature rises, sensitivity which is optimal and substantially constant.
  • US-A-3875361 describes a microwave oven comprising a sensor absorbing microwave energy and making it possible to follow the evolution of the temperature of the product to be heated.
  • a fan is provided to cool the sensor once the heating is finished and to bring its temperature back to the initial value.
  • the substance is isolated from the ambient medium by a thermal insulator transparent to microwaves in order to reduce the heat exchanges and to cause the temperature reached by the substance at the end of thawing to show substantially constant increases during several treatments. of successive thawing.
  • dT P.dt / mc
  • dT the temperature variation during the time difference dt for a mass m of a specific heat body c.
  • P is the microwave power available in the oven.
  • thermodynamic characteristics of a first load are known, its temperature variation will be dependent on the presence and the thermodynamic state of the other load.
  • the first load must have determined and stable thermodynamic parameters. It constitutes the sensor.
  • the substance of the defrosting sensor must have losses greater than the dielectric losses of the ice.
  • the substance can be a liquid such as water, oil or a solid solid or deposited on a support transparent to microwaves.
  • the support material can be chosen from the following materials: glass-ceramic, alumina, glass.
  • the temperature rise of the sensor will depend on the state of the product to be thawed. In particular if the product which by its nature contains a lot of water leaves the freezer at a temperature of around -20 ° C, it will only very slightly absorb microwaves. As a result, all the power available in the microwave will be used to raise the temperature of the sensor. As soon as the defrosting process of the product is started it will absorb more and more microwave power and consequently the temperature rise of the sensor will be slower. The slope of the temperature rise curve of the sensor as a function of time will therefore constantly decrease until all the ice present in the product to be thawed is completely transformed into water. Subsequently in accordance with the calorimetric law of temperature rise in a microwave oven as a function of time, the temperature rise of the product will be a substantially linear function of time if the thermodynamic characteristics of the product do not vary.
  • the temperature variation measuring device delivers an electrical signal, the variations as a function of time are determined by a calculation and control device.
  • the detection sensitivity is practically constant when several thawing operations are carried out successively.
  • These variations are processed by the calculation and control device which compares said variations as a function of time at successive instants and intervenes to control the operating cycle of the microwave source when two successive values of said variations are substantially equal.
  • the presence of the sensor eliminates the need for the oven energy change switch. It suffices to operate the oven at the start with a low repetition rate of wave emission and then to measure the slope of the temperature rise curve of the sensor as a function of time. If this slope is decreasing the product present in the oven is frozen. If this slope is low the oven can automatically increase its microwave emission cycle because the product present in the oven is already thawed and is therefore only to be reheated.
  • FIG. 1b the variation curves showing the agreement of the experimental temperature measurements carried out on a mass m1 + m2 and those deduced from the calculation of equation 1.
  • FIG. 2a the curves of the temperature and of the variations in temperature as a function of time of a water sensor placed next to a product to be thawed formed from a mass of ice during the thawing of the mass of ice.
  • Figure 2b the same temperature curves and temperature variations for the same sensor placed next to the product already defrosted, during heating above the melting temperature of the ice.
  • Figure 3a, Figure 3b two schematic representations of two sensors according to the invention.
  • Figure 4a, Figure 4b two representations of the temperature rises of an isolated sensor and a non-isolated sensor during several successive thawing operations.
  • Figure 5a, Figure 5b two schematic representations of a microwave oven using different sensors.
  • Figure 6 an electrical diagram for the implementation of the control of the operation of the microwave source from the measurements made by the sensors.
  • Figure 1a shows the temperature variations 10 of a sensor formed by a mass m1 of 100 grams of water and the variations in temperature 11 of a product formed by a mass m2 of water both placed in a microwave oven, for temperatures above ambient temperature and this for a determined period, as a function of the mass m2.
  • the mass m2 increases the temperature rise of the two masses decreases.
  • the mass m1 of the sensor undergoes a rise in temperature greater than that undergone by the higher mass m2.
  • FIG. 1b represents the variations in temperature 12 of a mass of m1 + m2 grams of water.
  • the curve 13 is formed of the points obtained by calculating from equation 1 the elevation that a mass of m1 + m2 grams of water would undergo. We see that the two curves overlap. This makes it possible to demonstrate that the microwave energy dissipated in thermal form is distributed in the two loads to raise their temperature in a manner inversely proportional to their mass and their specific heat. The temperature rise of the sensor will therefore make it possible to follow the temperature rise of the product located nearby and in particular to follow the thawing steps.
  • FIG. 2a indicates the variations in temperature 21 as a function of time of a sensor formed of water during the thawing of a mass of 200 grams of ice.
  • the slope of curve 21 is represented by curve 22. It can be seen that at the time of departure this slope has a high value which decreases first slowly then finally quickly enough to stabilize. This stabilization will be taken to decide on the end of thawing and used by the calculation and control device.
  • the second derivative 25 presented here in the form of line segments, begins by increasing and then decreasing, in absolute value, during the thawing step. When this is finished, the second derivative has a low value. When this value becomes less than a value predetermined, the calculation and control device can intervene to position the oven for a new operation: cooking, slow reheating, off, etc.
  • Figure 2b shows a curve similar to that of Figure 2a.
  • the first and second derivatives are determined with a finer calculation step.
  • Curve 1 represents the temperature variation of the sensor.
  • Curve 2 represents the first derivative of curve 1.
  • Curve 3 represents the second derivative of curve 1. The zeros of the scales for curves 2 and 3 are indicated on the right.
  • FIGS. 3a and 3b represent two nonlimiting examples of embodiment of defrosting sensors 30.
  • FIG. 3a represents a substance 31 which can absorb microwaves, the substance being in contact with a member 32 for measuring its temperature.
  • a member 32 for measuring its temperature.
  • This can be formed by a thermocouple, a thermistor or any other temperature measuring element. It is connected to the outside by the connections 33.
  • the substance 31 can be liquid or solid. It is placed in a housing 34 or a container which thermally isolates it from the surrounding medium.
  • the liquid substance can be water, oil or any other liquid having sufficient dielectric losses to ensure usable heating of the sensor.
  • the solid substance can be a ferrite, a solid partly containing metal ions or any other solid having sufficient losses to ensure usable heating of the sensor.
  • the substance 31 is fixed to a substrate 35 which absorbs little or no microwave.
  • the substrate 35 and the substance 31 are thermally insulated by the insulator 34.
  • the latter can also constitute the housing.
  • substance 31 is deposited by screen printing. It can consist of an ink, for example a resistive ink intended for the production of circuits in thick layers.
  • the substrate is for example a glass-ceramic plate.
  • the thermal insulator 34 is chosen from the following substances: polystyrene, polyimide, epoxy, silicone, formaldehyde, polyisopropene, epoxy resin, or any thermally insulating plastic material which is transparent to microwaves.
  • the member for measuring temperature variations can be constituted by a shielded probe of a type known in the field of microwave ovens, the connections 33 of which are shown in FIG. 3b.
  • Resistive inks have almost a coefficient of variation with temperature sufficient to be used as a measuring device.
  • the sensor shown in Figure 3b is then very compact.
  • the connections 33 must be shielded in the part subjected to microwave energy. Inside the case 34 they can be formed using an ink with higher resistance than for substance 31.
  • the ink deposited makes it possible to produce an electrical resistance which varies with the temperature and thus constitutes at the same time the measuring member determining the temperature variations and the microwave absorbing medium.
  • FIG. 4a represents the temperature variations for an isolated sensor 61 and for a non-isolated sensor 62 during several successive thawing operations.
  • the first defrosting operation is carried out between times 0 and t3 and the second between times t4 and t5.
  • the first operation comprises several stages which are represented in FIG. 4a by line segments in order to facilitate their identification in FIG. 4a.
  • the curve represented by the segments 63, 64, 65, 66 corresponds to a thermally insulated sensor.
  • the corresponding curve is represented by the segments 63a, 64a, 65a, 66a corresponding to the same steps.
  • segment 66a indicates that the temperature of the sensor decreases when the defrosting step proper is completed.
  • the maximum temperatures reached appear at points A1 and B1 respectively.
  • the maximum temperatures reached appear in A en and B2 respectively for the isolated sensor and the non-isolated sensor.
  • the temperature corresponding to point B2 is lower than that corresponding to point A2.
  • a first substantially rectilinear curve A represents the variations corresponding to the type A points of FIG. 4a.
  • the second curve B represents the variations for the type B points.
  • the curve B corresponds to a poorly isolated sensor.
  • This curve B has a curvature which indicates that the detection sensitivity will decrease when several successive thawing operations n are carried out.
  • Curve A corresponds to an isolated sensor and the asymptotic mechanism does not appear for a not too high number of thawing operations.
  • the sensitivity of detection of temperature variations, during thawing of the product is thus increased when the sensor is isolated for a reasonable number of successive thawing operations. This detection sensitivity thus remains substantially constant after several successive thawing operations.
  • FIG. 5a represents a microwave oven 40 provided with a defrosting sensor 30 according to the invention. It is placed next to the product to be defrosted 41.
  • a microwave source 42 emits microwaves which are picked up by the product 41 and the sensor 30.
  • the temperature measurement carried out on the sensor 30 is transmitted to a calculation device and control 43 which acts on the microwave source to modify its operation.
  • FIG. 5b represents another microwave oven in which the defrosting sensor 30 is separated from the temperature measurement member 32.
  • This latter consists of an infrared light radiation detector of the pyroelectric type. It thus remotely determines the temperature of the sensor 30.
  • the measurement is itself transmitted to the calculation and control device 43 which acts on the microwave source 42.
  • Figure 6 shows an electrical diagram for the implementation of the control of the operation of the microwave source from the measurements made by the sensor.
  • the electrical signals from the sensor 30 penetrate into the calculation and control device 43.
  • it is formed by an A / D converter 51 connected to a microprocessor 52 which has a memory 53 and an operating clock 54.
  • the microprocessor 52 will carry out the determinations of slope variations of the electrical signal received and store the values in the memory 53.
  • the value at the instant t is compared with that determined at the instant t-1, and when the two successive values are substantially equal, the microprocessor intervenes on the supply 55 of the magnetron 56 which constitutes the microwave source.
  • An alarm 57 can warn of the progress of operations.
  • the microwave oven is again ready for other defrosting operations with the same sensitivity for detecting temperature variations.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Claims (12)

  1. Mikrowellenherd (40) mit einer Mikrowellenquelle (56) und einem Auftaumelder (30), der im Herd in der Nähe eines zu behandelnden Produkts (41) angeordnet ist und eine Substanz (31) enthält, die Mikrowellenenergie absorbiert, wobei die Absorption der Mikrowellenenergie durch den Auftaumelder (30) und durch das Produkt (41) deren Temperaturzunahme bewirkt und wobei die Temperatur des Auftaumelders mittels eines Meßorgans (32) gemessen wird, dadurch gekennzeichnet, daß hinsichtlich des Verlaufs eines Produktauftauvorgangs durch Messungen der Temperaturzunahmen des Auftaumelders (30) dieser Auftaumelder an seiner Oberfläche mit Mitteln (32) versehen ist, die seine thermischen Änderungen gegenüber der Umgebung derart verringern, daß beim Arbeiten im Verlauf von mehereren aufeinanderfolgenden Auftauvorgängen der Auftaumelder (30) am Ende jedes Auftauvorgangs eine optimale und im wesentlichen konstante Empfindlichkeit der Temperaturzunahmedetektion behält.
  2. Mikrowellenherd nach Anspruch 1, dadurch gekennzeichnet, daß zur Verringerung der thermischen Änderungen die Substanz (31) von der Umgebung mittels eines thermischen Isoliermittels (34) isoliert ist, das für Mikrowellen derart durchlässig ist, daß die durch die Substanz (31) erreichte Temperatur am Auftauende Zunahmen erfährt, die im wesentlichen konstant im Verlauf von mehreren aufeinanderfolgenden Auftauvorgängen sind.
  3. Mikrowellenherd nach Anspruch 2, dadurch gekennzeichnet, daß das thermische Isoliermittel (34) aus folgenden Substanzen gewählt ist: Polystyrol, Polyimid, Epoxid, Silikon, Formaldehyd, Polyisopren, Epoxidharz oder allen Kunststoffen, die thermisch isolieren und für Mikrowellen durchlässig sind.
  4. Mikrowellenherd nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Substanz (31) fest ist.
  5. Mikrowellenherd nach Anspruch 4, dadurch gekennzeichnet, daß die absorbierende Substanz auf einem für Mikrowellen durchlässigen Träger angeordnet ist.
  6. Mikrowellenherd nach Anspruch 5, dadurch gekennzeichnet, daß das Trägermaterial aus den folgenden Stoffen gewählt ist: Glaskeramik, Aluminium, Glas.
  7. Mikrowellenherd nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Substanz eine beim Filmdruck aufgetragene Tinte ist.
  8. Mikrowellenherd nach Anspruch 7, dadurch gekennzeichnet, daß die Tinte eine Widerstandstinte ist.
  9. Mikrowellenherd nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die aufgetragene Tinte die Bildung eines elektrischen Widerstands erlaubt, der sich mit der Temperatur ändert und der auch zugleich das die Temperaturänderungen feststellende Meßorgan (32) und die die Mikrowellen absorbierende Umgebung (31) bildet.
  10. Mikrowellenherd nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Substanz eine Flüssigkeit ist.
  11. Mikrowellenherd nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Meßorgan (32) für die Temperaturänderungen des Auftaumelders ein elektrisches Signal abgibt, dessen zeitabhängige Änderungen von einer Rechen- und Steuereinrichtung (43) verarbeitet werden.
  12. Mikrowellenherd nach Anspruch 11, dadurch gekennzeichnet, daß die Rechen- und Steuereinrichtung (43) die zeitabhängigen Änderungen mit den aufeinanderfolgenden Augenblickswerten vergleicht und sich zur Steuerung des Arbeitszyklus der Mikrowellenquelle (56) einschaltet, wenn zwei aufeinanderfolgende Werte der Änderungen im wesentlichen gleich sind.
EP88201087A 1987-06-02 1988-05-31 Mikrowellenofen mit einem Auftaufühler Expired - Lifetime EP0296653B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8707684A FR2616211B1 (fr) 1987-06-02 1987-06-02 Four a micro-ondes muni d'un capteur de decongelation et capteur de decongelation
FR8707684 1987-06-02
FR8714441 1987-10-20
FR8714441A FR2621985B1 (fr) 1987-10-20 1987-10-20 Four a micro-ondes muni d'un capteur de decongelation et capteur de decongelation

Publications (2)

Publication Number Publication Date
EP0296653A1 EP0296653A1 (de) 1988-12-28
EP0296653B1 true EP0296653B1 (de) 1995-09-13

Family

ID=26226014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88201087A Expired - Lifetime EP0296653B1 (de) 1987-06-02 1988-05-31 Mikrowellenofen mit einem Auftaufühler

Country Status (4)

Country Link
US (1) US4871891A (de)
EP (1) EP0296653B1 (de)
JP (1) JPS6450384A (de)
DE (1) DE3854452T2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1227211B (it) * 1988-09-23 1991-03-27 Eurodomestici Ind Riunite Procedimento e dispositivo per il trattamento di un alimento congelato in un forno a microonde
IT1227210B (it) * 1988-09-23 1991-03-27 Eurodomestici Ind Riunite Metodo e dispositivo per rilevare lo scongelamento di un alimento in un forno a microonde
IT1237959B (it) * 1990-02-01 1993-06-19 Eurodomestici Ind Riunite Metodo e dispositivo per il rilevamento del peso di alimenti posti in un forno a microonde e per controllarne il trattamento
IT1238453B (it) * 1990-02-01 1993-08-18 Eurodomestici Ind Riunite Metodo e dispositivo per il rilevamento del peso di un alimento posto in un forno a microonde al fine di comandare la potenza di funzionamento del magnetron e controllare il trattamento dell'alimento stesso
US5237141A (en) * 1990-07-17 1993-08-17 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus and electromagnetic wave detector for use in high frequency heating apparatus
US5407641A (en) * 1990-10-25 1995-04-18 Helmut Katschnig Microwave apparatus, and container for use in a microwave apparatus
JP2638311B2 (ja) * 1991-01-10 1997-08-06 動力炉・核燃料開発事業団 マイクロ波高電界中における加熱温度測定装置
US5378875A (en) * 1991-12-25 1995-01-03 Mitsubishi Materials Corporation Microwave oven with power detecting device
FR2693268B1 (fr) * 1992-07-02 1994-09-30 Microondes Syst Sa Procédé et dispositif de contrôle du chauffage par micro-ondes d'un produit à une température et pendant un temps déterminés, support de marquage et récipient pour produit destiné à un tel contrôle.
KR0128675B1 (ko) * 1993-06-29 1998-04-09 김광호 전자렌지의 구동제어방법 및 장치
EP0673182B1 (de) * 1994-03-18 2000-03-29 Lg Electronics Inc. Verfahren zur automatischen Steuerung eines Mikrowellenofens
US5616268A (en) * 1994-07-07 1997-04-01 Microwave Medical Systems Microwave blood thawing with feedback control
SE523776C2 (sv) * 2003-07-07 2004-05-18 Real Food Sweden Ab Anordning för att åstadkomma temperaturstyrd uppvärmning av övervägande fasta livsmedel i en mikrovågsugn

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1123063B (de) * 1960-02-20 1962-02-01 Mikrowellen Ges M B H Deutsche Verfahren zur Mikrowellenerwaermung von Substanzen in geschlossenen, elektrisch nichtleitenden Behaeltern und Einrichtung zur Durchfuehrung dieses Verfahrens
SE311055B (de) * 1966-10-19 1969-05-27 P Hedvall
CA903518A (en) * 1969-08-29 1972-06-27 L. Lachambre Jean Ballistic joule meter
US3663783A (en) * 1970-12-07 1972-05-16 Us Army Safety load and temperature control system for microwave ovens
US3768059A (en) * 1972-05-15 1973-10-23 Barber Colman Co Ambient compensated solar sensor
US3875361A (en) * 1972-06-16 1975-04-01 Hitachi Ltd Microwave heating apparatus having automatic heating period control
US4038105A (en) * 1975-10-08 1977-07-26 Libbey-Owens-Ford Company Radiation shields for aspirating pyrometers
US4037479A (en) * 1975-12-01 1977-07-26 Chemetron Corporation Method and apparatus for sensor assembly inspection
US4210795A (en) * 1978-11-30 1980-07-01 Litton Systems, Inc. System and method for regulating power output in a microwave oven
US4341937A (en) * 1980-11-28 1982-07-27 General Electric Company Microwave oven cooking progress indicator
US4419889A (en) * 1981-03-27 1983-12-13 Mitsubishi Denki Kabushiki Kaisha Moisture sensitive device
FR2562662B1 (fr) * 1984-04-04 1987-08-28 Valeo Sonde thermique pour mesurer la temperature d'un produit chauffe dans un four micro-ondes
FR2571830B1 (fr) * 1984-10-12 1988-09-16 Esswein Sa Four a micro-ondes et procede et dispositif de determination de la charge en aliments d'un tel four

Also Published As

Publication number Publication date
US4871891A (en) 1989-10-03
DE3854452T2 (de) 1996-04-04
JPS6450384A (en) 1989-02-27
DE3854452D1 (de) 1995-10-19
EP0296653A1 (de) 1988-12-28

Similar Documents

Publication Publication Date Title
EP0294872B1 (de) Mikrowellenofen, welcher das Ende des Auftauens eines Produktes ermittelt
EP0296653B1 (de) Mikrowellenofen mit einem Auftaufühler
EP2132091B1 (de) Verfahren und vorrichtung zur erkennung von raureif und/oder raureifbedingungen bei einem fliegenden flugzeug
CA2862688C (fr) Procede de cuisson d'aliments et appareil mettant en oeuvre ce procede
FR2795935A1 (fr) Controle de grillage du pain dans un grille-pain par courbe de reponse d'un element photosensible
EP1980831A1 (de) Radiometrisches Thermometer
FR2538108A1 (fr) Thermometre medical electronique et procede de mesure de la temperature du corps
EP0313141A1 (de) Mikrowellenofen, versehen mit einem Auftaufühler
EP0777993B1 (de) Grillgerät
KR0133476B1 (ko) 마이크로 웨이브 오븐
EP0534809A2 (de) Verfahren und Vorrichtung zum Nachweis von Wasserdampf in einem Luftvolumen und Dampferzeuger und Dampfofen welche diese benützen
WO2007093744A2 (fr) Procede et dispositif de caracterisation, par pyrometrie active, d'un materiau en couche mince dispose sur un substrat
FR2486243A1 (fr) Procede et appareil pour detecter la presence d'une substance sur la surface d'un liquide
FR2685772A1 (fr) Dispositif detecteur d'energie micro-onde.
FR2621106A1 (fr) Systeme de commande automatique de cuisson pour un four a micro-ondes
FR2621716A1 (fr) Procede de commande de cuisson automatique pour un four a micro-ondes
He et al. A smart reheating and defrosting microwave oven based on infrared temperature sensor and humidity sensor
FR2621985A1 (fr) Four a micro-ondes muni d'un capteur de decongelation et capteur de decongelation
WO2008023132A2 (fr) Procede et dispositif pour commander un appareil electrique menager de chauffage de liquide
WO2005046407A1 (fr) Procede et four de cuisson a la vapeur ayant une alimentation en eau perfectionnee
WO2006070142A1 (fr) Procede de controle de la qualite de produits lors de leur traitement thermique, par radiometrie micro-ondes
FR2571830A1 (fr) Four a micro-ondes et procede et dispositif de determination de la charge en aliments d'un tel four
EP3019923A1 (de) Verfahren zur anpassung einer elektrischen heizung im falle des öffnens eines fensters
FR2758385A1 (fr) Four bi-energie fonctionnant au gaz ou au fioul et a l'electricite et procede de chauffage de l'enceinte d'un tel four
Aleksandrov et al. Photothermal infrared radiometry in experimental studies of the pyroelectric properties of bulk materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19890614

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

17Q First examination report despatched

Effective date: 19911118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WHIRLPOOL EUROPE B.V.

Owner name: WHIRLPOOL FRANCE S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3854452

Country of ref document: DE

Date of ref document: 19951019

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980511

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980608

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

EUG Se: european patent has lapsed

Ref document number: 88201087.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050531