EP0295445B1 - Liquid cooling circuit for machines especially for internal combustion engines - Google Patents

Liquid cooling circuit for machines especially for internal combustion engines Download PDF

Info

Publication number
EP0295445B1
EP0295445B1 EP88107940A EP88107940A EP0295445B1 EP 0295445 B1 EP0295445 B1 EP 0295445B1 EP 88107940 A EP88107940 A EP 88107940A EP 88107940 A EP88107940 A EP 88107940A EP 0295445 B1 EP0295445 B1 EP 0295445B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
coolant
cooling circuit
air separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107940A
Other languages
German (de)
French (fr)
Other versions
EP0295445A2 (en
EP0295445A3 (en
Inventor
Erwin Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0295445A2 publication Critical patent/EP0295445A2/en
Publication of EP0295445A3 publication Critical patent/EP0295445A3/en
Application granted granted Critical
Publication of EP0295445B1 publication Critical patent/EP0295445B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0238Closure caps with overpressure valves or vent valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0285Venting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0252Venting before opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0261Safety; Locking against opening activated by temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0266Safety; Locking against opening activated by pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a liquid cooling circuit in engines and machines, in particular internal combustion engines, according to the type of claim 1. Furthermore, the invention relates to cooling circuits of similar types of claims 4 and 6.
  • the air separation container is via a return suction line as a filling line with the suction side of the Coolant pump connected.
  • the coolant flows from the bottom area of the air separation tank via the return line to the low-lying coolant pump and from there into the cooling jacket of the machine. Since the direct connection between the coolant pump and the return water tank of the cooler is closed by the cooler valve with the thermostat arranged in the cooler return line when the machine, which is always largely cold, is filled, the coolant can initially only flow into the cooling jacket and fill it.
  • This filling process is also in the case of thermostat arrangements at the cooling jacket outlet due to the narrow internal cross section of the Vent line from the cooler flow to the filler neck is delayed, through which the air to be displaced can only escape from the cooling jacket and from the cooler.
  • the resulting low filling speed not only increases the amount of work required, but also the volume of residual air remaining in the cooling jacket and other line sections with little or no gradient.
  • the coolant only enters the cooler after the cooling jacket has been completely filled, via the flow line, which usually has hardly any gradient, which further reduces the filling speed and also favors residual air volumes in the cooler. An additional lengthy venting process with the machine running and the cover removed is therefore necessary.
  • Residual air still remaining in the cooling circuit can only be discharged to the atmosphere via the expansion tank acting as an air lock even after its failure from the solution at high temperature and its upstream at the pressure relief valves if the pressure relief valve opening values are exceeded.
  • the advantages of an air-free cooling circuit such as steeper pressure build-up when the coolant temperature rises and the reduced risk of corrosion for the cooling circuit components and the coolant itself, due to its extensive degassing, are therefore hardly or mostly delayed after numerous machine hot / cold cycles .
  • the operating temperature Due to the thermal expansion of the coolant that occurred before the closing of the closure cap without pressure build-up, the operating temperature then increases as the temperature rises further the boiling limit or the pump cavitation limit is quickly reached and machine overheating is unavoidable when operating immediately afterwards under high load.
  • the object of the invention is to overcome the disadvantages described above in the area of the operating boundary conditions - filling, venting, degassing, pump cavitation, overheating, shutdown reheating, for the course of the coolant temperature unnecessarily excessive course of the coolant pressure at low start or ambient temperatures and when fuel gases penetrate into the Cooling circuit in the medium operating temperature range - to be overcome by liquid-cooled machines and at the same time to reduce construction costs, costs, weight, variety of components, and possibilities for incorrect operation. Furthermore, overdimensioning of cooling circuit components and, above all, the cooling capacity, which have so far been necessary to compensate for the described interference, are to be avoided.
  • the temperature-controlled vent valve improves both venting and degassing as well as the system pressure build-up via temperature and speed, and the cooling circuit pressure which is excessive due to fuel gas leakages is reduced again during cooling phases.
  • the line connection from the air separation tank to the expansion tank, which is opened by the thermo valve at low operating temperature, also enables a very simple venting process after filling, with a constant change in engine speed when the cover is closed, which means that coolant and residual air flow to the expansion tank and coolant flow into the air separation tank becomes. This results from the increase in the pump suction pressure when the speed drops and its drop when the speed increases.
  • the progressive ventilation can be tracked or assessed by the start of the lighting of a switched on indicator light at ever higher speed.
  • the closing temperature of the ventilation valve which is dependent on the pressure build-up dependent on the cooling circuit elasticity, especially hose length and elasticity, the temperature and the pump speed, avoids unnecessarily high cooling circuit overpressure values with relatively low coolant temperature values and on the other hand, ensures a sufficient distance between the pump suction pressure curve and the pump cavitation limit.
  • the features of claim 2 enable a particularly compact spatial allocation of the air separation container to the cooler flow and to the filler neck, whereby a very small space requirement is achieved.
  • the assignment of a coolant level sensor to the air separation container according to claim 3 results in a safe level monitoring of the overpressure cooling circuit and a warning display even if the coolant content is still safe to operate, because the temperature-related change in volume of the coolant triggers a display when the cooling circuit is cold when the coolant that warms up during operation again exceeds the display level and guarantees operational safety.
  • the fill level warning display forms a monitoring display when the cooling circuit is vented after it has been refilled or refilled.
  • the features of claim 4 contain the basic arrangement of the air separation container with filler neck and filler cap at the high point of the cooler flow in the course of the venting bypass line, whereby a large part of the advantages regardless of the arrangement and design of the overpressure, underpressure and venting valves according to claim 1 is achieved, namely advantageous filling and venting and rapid warm-up.
  • the valves can be selected in any known or previously proposed configuration and arrangement or connection, namely on the air separation tank, on the expansion tank or on both in series connection, with the latter two arrangements requiring an expansion tank with an air expansion volume.
  • Claim 5 provides for the additional control of a pressure relief valve from the pressure in the cooler flow for the immediate limitation of the pressure value acting on the cooler, since the valves are effective in the cooler return in all arrangements according to claim 4.
  • the features of claim 6 provide a temperature-controlled vent valve, which is located in the connecting line from the air separation tank to the expansion tank regardless of its arrangement. Apart from a small additional construction effort and weight, this design enables all other functional advantages of the features according to claim 1, in particular in connection with an additional filling lid arranged in a known manner at the high point of the cooler flow.
  • the design of the vent valve according to claim 7 has a particularly low construction cost and provides the simplest maintenance and repair options by checking and / or replacing the sealing cover as a unit. Individual components that have been tried and tested in automotive engineering are used. The assignment of the components of the valve also favors its function, since the snap spring is only acted upon by the coolant temperature after the air has been completely pushed out, so that the venting is promoted by the coolant itself when the closing / switching temperature is reached. A float instead of a closing spring is therefore only necessary in particularly difficult ventilation conditions.
  • the closed vent valve also increases with increasing coolant pressure increasingly favored in its sealing function, because the thermal snap spring is pressed more and more against the sealing ring.
  • This valve design can also be used advantageously in cooling circuits of a type which differs from that according to claims 1 and 6, but has at least one atmospheric expansion tank.
  • the features of claim 8 also favor the filling and the operating ventilation by discharging the residual air to the air separation tank, which remains when filling in the return water tank of cross-flow coolers or which collects there during operation. A passage of cold coolant is prevented in normal warm-up operation and thus an influence on the warm-up time is avoided.
  • the ventilation valve by opening the ventilation valve after warming up at a coolant temperature above the ambient temperature of, for example, 60 ° C in the return water tank, fuel gas leaks and residual air volume parts which are preferably collected therein are immediately discharged into the air separation container.
  • the features of claim 9 contain a functional and structurally particularly advantageous embodiment of the vent / degassing valve according to claim 8 in accordance with the vent valve according to claim 7, apart from the exclusive float arrangement and the reverse temperature control with opening instead Closing above the switching temperature of the valve.
  • a conventional closing spring and a separate ball or Schwengel vent valve can also be used, as is common in coolant thermostatic valves.
  • the features of claim 10 enable a constant flow pressure control of the pressure relief valve in the closure cover without the pressure increase in the flow area increasing with the pump delivery rate without having to adapt this separately to the necessary highest pressure opening value of the respective application.
  • the overpressure valve for the forward and return areas can be designed with the same overpressure opening value, which additionally favors the construction effort and avoids or at least reduces the variety of valve and closure covers for different engine and vehicle models.
  • the claim 12 includes a manually operable venting device which without - with the venting rotary position of the closure cover - or with very little construction effort - with a vent screw -
  • cooling circuit ventilation is possible in particularly difficult conditions.
  • the venting process is limited to operating the machine at a rapidly changing speed, possibly with short switch-off pauses, in order to allow any air bubbles to accumulate at the pump inlet to the pump pressure side.
  • claim 13 make it possible in a simple manner and secured against pressure overloading of the expansion tank to ensure the projected operating pressure of the cooling circuit even when the cooling circuit is closed at such a high coolant temperature during maintenance and / or repair work that the required pressure build-up is no longer possible due to thermal expansion of the coolant. This is particularly true in connection with the manually operated venting device according to claim 12 and difficult venting conditions in the case of cooling circuits which are inadequately designed in this regard.
  • An additional one Construction costs for the proposed construction details can be completely avoided according to the training options according to claims 14 and 15 compared to known cooling circuits, since only existing known components are to be dimensioned accordingly, namely the pressure resistance of the expansion tank, the attachment of the associated filler cap and the dimensions of the connector for the associated overflow hose.
  • An internal combustion engine 1 contains a cooling jacket 2 (arrow), into which the coolant is conveyed under pressure by a coolant pump 3.
  • a cooler flow 5 is connected with a free passage to a cross-flow cooler 6 and opens into its flow water tank 7.
  • a short circuit 8 branches off from the cooler flow 5 to a mixing thermostat 9.
  • a return line 11 also leads from the return water tank 10 out of the cooler 6 into the thermostat 9.
  • a pump suction line 12 connects the thermostat 9 to the suction side 13 of the pump 3.
  • a bypass vent line 14 is connected, which is unthrottled in a flow pressure control chamber 15 and via a throttle point 16 opens into the bottom area of an air separation container 17. This mouth is turned away from the bottom area to secure the air separation from the mouth of the bypass vent line 14, which leads to the suction side 13 of the pump 3.
  • An electrical level sensor 18 is arranged on the underside of the air separation container 17, which controls a warning instrument in a commercially available design in the event of an air and / or gas accumulation in the air separation container 17 which endangers the function.
  • the air separator tank 17 concentrically surrounds the area of the high point 5 'of the cooler flow 5 and the area of the bypass vent line 14 connected to it increasing (Fig. 2).
  • This area of the bypass vent line 14 is at the same time designed as a filler neck 19 and partially arranged within a closure cover 20.
  • the filler neck 19, the control chamber 15 and the throttle point 16 in the closure cover 20 and the line part in the bottom region of the air separation container 17 are flowed through in succession.
  • the usual overpressure and underpressure valves 21 and 22 are arranged in the closure cover 20, but are substantially modified and functionally developed according to the invention.
  • the pressure relief valve 21 is on the one hand directly controlled via a line connection 21 'to the high point of the air separation container 17 from the overpressure in the latter and on the other hand indirectly by means of a control membrane 15' from the supply overpressure in the control chamber 15 and in both cases opens the line connection 21 'from the high point of the Air separation container 17 to the atmosphere.
  • the vacuum valve 22 is installed in the usual way in the valve housing of the pressure relief valve 21 and at the same time is designed as a temperature and alternatively additionally float-controlled vent valve (FIG. 2). Except when there is negative pressure in the air separation container 17, the vacuum valve 22 closes by the interaction of a bimetallic snap plate spring 23 with an O-ring seal on the one hand and alternatively with a spring 24 or a float 24 'on the other hand only if both the switching temperature of the bimetal -Feather 23 exceeded and the air separation container 17 is vented, because the bimetallic spring 23 is always switched to the closed position only when it is acted upon by coolant at a sufficiently high temperature. Bleeding is additionally promoted.
  • a float also opens the vent valve when the air system is renewed, regardless of its switching status, as long as there is no pressure difference and leads to even more residual venting.
  • An overpressure in the air separation container keeps the bimetallic spring 23 in the closed position even when air and / or fuel gas accumulates in the air separation container 17, thereby preventing a dangerous drop in the coolant pressure during operation of the machine 1.
  • the air separation container 17 and thus the entire cooling circuit are completely vented. Furthermore, due to its switching temperature (50 ° C. in FIG.
  • the bimetallic spring 23 closes the cooling circuit only at a temperature of the coolant displaced from the air separating container 17 by the vacuum valve 21, at which the build-up at idle speed and the machine being switched off effective static system pressure SD by further thermal expansion of the coolant in cooperation with the elasticity of the entire cooling circuit, in particular of the coolant hose lines, in relation to the pump cavitation limit KG and the coolant boiling limit SG, there is a sufficient profile of the lowest possible pump suction pressure PD at maximum speed (FIG. 4).
  • both a dangerously low pump suction pressure PD and an unnecessarily high cooler supply pressure VD are thus excluded.
  • a line connection 25 to the atmosphere is led to the overpressure and underpressure valves 21 and 22 via a temperature-controlled additional overpressure valve 26 to the bottom area of an atmospheric expansion, storage and air-blocking container 27.
  • This further pressure relief valve 26 contains - like the vacuum valve 22 - a bimetallic snap disc spring 28 which interacts with an O-ring seal and is pressed against the seal by a cone spring 29 which determines the pressure value.
  • the housing of this pressure relief valve 26 is arranged in thermal connection with the flow line 5 and / or the housing of the air separation container 17 in such a way that the temperature of the coolant there acts on the bimetal spring 28.
  • Their switching temperature is set approximately according to the upper limit of the control temperature range of the thermostat 9, usually approximately 90-100 ° C.
  • the sum of the overpressure values of the overpressure valves 21 and 26 thus only comes into effect (FIG. 4) if the thermostat control range is exceeded, that is only if high ambient temperature and high engine load occur at the same time. Even due to fuel gas leaks at high engine loads, the cooling circuit is not unnecessarily loaded with excessive system pressure SD, flow pressure VD and pump suction pressure PD, but the fuel gas leaks are continuously increased by the only effective first pressure relief valve 21 excreted via the expansion tank 27 to the atmosphere.
  • the expansion tank 27 contains a part of its volume a coolant supply 30 and the rest of an expansion volume 31.
  • the filler cap 32 of the expansion tank 27 is equipped with a conventional locking bead attachment, which, however, is coordinated according to the invention such that an overpressure valve function is achieved by detaching the cover 32 at a certain excess pressure in the expansion tank 27.
  • the cover 32 is provided with a hose connector 33, which both carries an overflow hose 34 and after its removal for the connection of a tire inflation device or an air pump suitable is.
  • the functional reliability of the cooling circuit can be guaranteed in a simple, cost-effective manner even after it has been closed while the machine is already at operating temperature, in particular after a lengthy venting process or after a pressure-releasing process that requires repair and subsequent high-load operation at a high ambient temperature.
  • a further vent line 37 is connected to the bypass vent line 14 via a vent valve 35 and a throttle point 36.
  • the vent valve 35 in turn consists of a bimetallic snap disc spring 38 which interacts with an O-ring seal and which is brought into and out of operation by a float 39 when coolant or air or fuel gas is at the high point 10 ' is present.
  • the bimetal disc spring 38 has a switching temperature of about 60 ° C, so that at normal operating temperature of the cooling circuit there is a constant venting and degassing bypass flow to the air separation container 17.
  • the vent valve 35 is always closed after the outflow of air or fuel gas, so that the warm-up of the machine is not prolonged by a cooling effect of this vent stream.
  • a vehicle interior heater with a left and right heater heat exchanger 42 and 43 and a left and right heater control valve 44 and 45, respectively, is connected to the cooling circuit via a heater supply and return line 40 and 41, respectively and an additional electric heater pump 46 connected in a conventional manner.
  • the heating flow line 40 branches off from the cooler flow 5 and the heating return line 41 opens into the elevated thermostat 9.
  • a changeover valve 47 is arranged, which by means of a not shown electrical control circuit when the machine 1 is turned off at a high operating temperature, the heating flow line 40 is reversed into a cylinder head return line 48.
  • the coolant flow through the hot cylinder head that can be achieved when the machine 1 is switched off immediately flushes away coolant vapor bubbles that occur at hot spots and achieves their immediate subsequent condensation in the further coolant flow, as a result of which local vapor bubble accumulations with corresponding pressure build-up in the entire cooling circuit and consequent ejection of coolant, in extreme cases even up to overflow of the expansion tank 27 is avoided.
  • FIGS. 5 to 10 show different assignment options for the cooling circuit components according to the invention using the same basic principle.
  • FIGS. 1 to 3 the arrangements of the air separation tank 17 at the high point 5 'of the cooler flow 5, the atmospheric expansion tank 27 in a separate design and the vent valve 35 on the return water tank 10 are shown in accordance with FIGS. 1 to 3.
  • the cooler flow 5 at its high point 5 ' is only equipped with a filler neck 19 and a valveless cap 20'.
  • the air separator tank 17 is attached or molded to the return water tank 10 and combined with the expansion tank 27.
  • Whose filling cover 32 has a molded cover 32 'for the closure cover 20 of the expansion tank 27, which largely precludes incorrect operation when refilling the expansion tank 27 and thus a loss of overpressure when the coolant is warm.
  • the air separation tank 17 and the atmospheric expansion tank 27 are combined in accordance with FIG. 6, but are arranged separately from the cooler 6.
  • an additional filling line 19 ' is branched off from the cooler flow 5, which is completed by the cap 20 immediately.
  • a filler neck 19 is arranged next to the air separation container 17, while in Fig. 10 the filling line 19 'within the air separation container 17 connects to the closure cap 20.
  • the cooler inlet 5 on the one hand and the air separation container 17 and the filler neck 19 on the other hand are not arranged coaxially and concentrically with one another but mutually intersecting and arranged side by side.
  • the filler neck 19 can also be arranged centrally within an annularly branched section of the cooler inlet 5, the insert 49 closing a connection opening between the filler neck 19 and the radiator inlet 5, which is then also circular.
  • the filler neck 19 opens in both cases down into the coaxial air separator tank 17 and to the side in the cooler flow 5, so that each a large connection opening 17 'and 5' are available with the cap 20 removed for rapid filling.
  • the closure cover 20 closes in addition to the filling opening of the filler neck 19 and the connection openings 17 'and 5' against each other.
  • a hollow cylindrical insert 49 closes tightly on the underside of the closure cover 20 and is supported with its lower end face by an O-ring 50 at the upper edge of the air separation container 17. The interior of the insert 49 continues the air separation container 17 upwards towards the underside of the closure cover 20.
  • the inner structure of the closure cover 20 corresponds to that of FIG.
  • a float chamber 57 of an electrical coolant level sensor 18 is connected at the bottom to the air separation container 17 and at the top to the valves 21 and 22 in the closure cover 20.
  • Another vent line 37 which starts from the return water tank 10 of the cross-flow cooler 6 (FIGS. 1 and 3), can be connected to the float chamber 57 in a simple manner, since its connections are also suitable as an effective venting and degassing volume.
  • a one-piece design with the filler neck 19, the air separating container 17 and the cooler flow section (5) can also be advantageously carried out.
  • each a fine screen 58 is arranged, which are acted upon exclusively by the coolant flowing in and out through the valves 21 and 22 and are therefore not subject to unnecessary contamination from the circulating coolant.
  • the filler cap 32 (FIG. 1) of the expansion tank 27 can be equipped with corresponding overpressure and underpressure valves which replace the valves 21 and 22 in the closure cover 20 of the filler neck 19 or are in line with these, so that there is an overpressure reservoir with air cushion.
  • the mode of operation of the air separation container 17 with improved filling and venting and shortened warm-up of the machine cooling circuit is also used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Temperature-Responsive Valves (AREA)

Description

Die Erfindung betrifft einen Flüssigkeits-Kühlkreis in Kraft- und Arbeitsmaschinen, insbesondere Brennkraftmaschinen, gemäß der Bauart des Patentanspruches 1. Ferner betrifft die Erfindung Kühlkreise ähnlicher Bauarten der Patentansprüche 4 und 6.The invention relates to a liquid cooling circuit in engines and machines, in particular internal combustion engines, according to the type of claim 1. Furthermore, the invention relates to cooling circuits of similar types of claims 4 and 6.

Bei einer bekannten Vorrichtung dieser Bauart gemäß DE-OS 32 26 508, entsprechend EP-A-0 100 917, JP-A-5923029 und US-PS 4 510 893, ist der Luftabscheidebehälter über eine Rücksaugleitung als Befüll-Leitung mit der Saugseite der Kühlmittelpumpe verbunden. Beim Befüllen fließt dadurch das Kühlmittel vom Bodenbereich des Luftabscheidebehälters über die Rücksaugleitung zur tiefliegenden Kühlmittelpumpe und von dieser von unten in den Kühlmantel der Maschine. Da die unmittelbare Verbindung zwischen Kühlmittelpumpe und Rücklauf-Wasserkasten des Kühlers durch das Kühlerventil bei in der Kühler-Rücklaufleitung angeordnetem Thermostat beim Befüllen der dabei stets weitgehend kalten Maschine geschlossen ist, kann das Kühlmittel zunächst nur in den Kühlmantel fließen und diesen füllen. Dieser Füllvorgang wird auch bei Thermostat-Anordnungen am Kühlmantel-Austritt jedoch durch den engen Innenquerschnitt der Entlüftungsleitung vom Kühler-Vorlauf zum Füllstutzen verzögert, durch den die zu verdrängende Luft aus dem Kühlmantel und aus dem Kühler ausschließlich entweichen kann. Die dadurch gegebene geringe Befüll-Geschwindigkeit erhöht nicht nur den notwendigen Arbeitszeitaufwand, sondern auch die im Kühlmantel und anderen Leitungsabschnitten mit geringer oder fehlender Steigung verbleibenden Restluft-Volumenteile. In den Kühler gelangt das Kühlmittel schließlich erst, nachdem der Kühlmantel vollständig gefüllt ist, über die üblicherweise kaum ein Gefälle aufweisende Vorlaufleitung, wodurch die Befüllgeschwindigkeit weiter verringert wird und verbleibende Restluft-Volumenteile auch im Kühler begünstigt werden. Ein zusätzlicher langwieriger Entlüftungsvorgang bei laufender Maschine und abgenommenem Verschlußdeckel ist dadurch notwendig. Dabei weiterhin im Kühlkreis verbleibende, insbesondere im Kühlmittel gelöste Restluft kann auch nach ihrem Ausfall aus der Lösung bei hoher Temperatur und ihrem Vorlagern an den Überdruckventilen nur dann über den als Luftsperre wirkenden Ausgleichsbehälter zur Atmosphäre ausgeschieden werden, wenn die Überdruckventil-Öffnungswerte überschritten werden. Die Vorteile eines luftfreien Kühlkreises, wie steilerer Druckaufbau bei steigender Kühlmittel-Temperatur und verringerte Korrosionsgefahr für die Kühlkreisbauteile und das Kühlmittel selbst, aufgrund seiner weitestgehenden Entgasung, kommen somit kaum bzw. zumeist erheblich zeitverzögert nach zahlreichen Warm-/Kalt-Zyklen der Maschine zur Wirkung. Zudem steht nach einem langwierigen Entlüftungsvorgang bis zu hoher Betriebstemperatur für einen anschließenden Betrieb der Maschine kein ausreichender Druckaufbau des Kühlmittels aus dessen Wärmedehnung mehr zur Verfügung. Aufgrund der dabei vor dem Schließen des Verschlußdeckels ohne Druckaufbau erfolgten Wärmedehnung des Kühlmittels wird dann beim weiteren Anstieg der Betriebstemperatur die Siedegrenze bzw. die Pumpenkavitationsgrenze rasch erreicht und eine Maschinen-Überhitzung ist bei unmittelbar anschließendem Betrieb mit hoher Last unvermeidbar.In a known device of this type according to DE-OS 32 26 508, corresponding to EP-A-0 100 917, JP-A-5923029 and US-PS 4 510 893, the air separation container is via a return suction line as a filling line with the suction side of the Coolant pump connected. When filling, the coolant flows from the bottom area of the air separation tank via the return line to the low-lying coolant pump and from there into the cooling jacket of the machine. Since the direct connection between the coolant pump and the return water tank of the cooler is closed by the cooler valve with the thermostat arranged in the cooler return line when the machine, which is always largely cold, is filled, the coolant can initially only flow into the cooling jacket and fill it. This filling process is also in the case of thermostat arrangements at the cooling jacket outlet due to the narrow internal cross section of the Vent line from the cooler flow to the filler neck is delayed, through which the air to be displaced can only escape from the cooling jacket and from the cooler. The resulting low filling speed not only increases the amount of work required, but also the volume of residual air remaining in the cooling jacket and other line sections with little or no gradient. Finally, the coolant only enters the cooler after the cooling jacket has been completely filled, via the flow line, which usually has hardly any gradient, which further reduces the filling speed and also favors residual air volumes in the cooler. An additional lengthy venting process with the machine running and the cover removed is therefore necessary. Residual air still remaining in the cooling circuit, especially dissolved in the coolant, can only be discharged to the atmosphere via the expansion tank acting as an air lock even after its failure from the solution at high temperature and its upstream at the pressure relief valves if the pressure relief valve opening values are exceeded. The advantages of an air-free cooling circuit, such as steeper pressure build-up when the coolant temperature rises and the reduced risk of corrosion for the cooling circuit components and the coolant itself, due to its extensive degassing, are therefore hardly or mostly delayed after numerous machine hot / cold cycles . In addition, after a lengthy venting process up to a high operating temperature, there is no longer sufficient pressure build-up of the coolant from its thermal expansion for subsequent operation of the machine. Due to the thermal expansion of the coolant that occurred before the closing of the closure cap without pressure build-up, the operating temperature then increases as the temperature rises further the boiling limit or the pump cavitation limit is quickly reached and machine overheating is unavoidable when operating immediately afterwards under high load.

Im gegensätzlichen Sinne tritt im Kühlkreis von Brennkraftmaschinen, bei denen bei hoher Last Brenngas-Leckagen in den Kühlkreis eindringen und allgemein bei niedrigen Start-Temperaturen, insbesondere Minusgraden, ein im Bezug zu relativ niedriger Kühlmittel-Temperatur überhöhter Überdruck im Bereich der Öffnungswerte der Überdruckventile auf, der auch beim Abkühlen der Maschine in Betriebspausen nicht ausreichend abgebaut wird. Zusätzlich wirken die im Kühlkreis verbleibenden Brenngas-Volumenteile ständig zerstörend auf die KühlmittelZusätze sowie korrosiv auf das Innere der Kühlkreis-Bauteile ein.In the opposite sense, in the cooling circuit of internal combustion engines in which fuel gas leaks penetrate the cooling circuit under high load and generally at low starting temperatures, in particular minus degrees, an excess pressure occurs in the area of the opening values of the pressure relief valves in relation to the relatively low coolant temperature , which is not sufficiently degraded even when the machine cools down during breaks in operation. In addition, the fuel gas volume parts remaining in the cooling circuit have a permanent destructive effect on the coolant additives and a corrosive effect on the interior of the cooling circuit components.

Schließlich stellt sich beim raschen Abstellen der Maschine aus hoher Last vielfach eine starke örtliche Überhitzung des Kühlmittels an Heißstellen im Kühlmantel mit entsprechenden Hochdruck-Dampfblasen ein, die zu stark überhöhtem Druck im gesamten Kühlkreis mit Kühlmittelauswurf durch das Überdruckventil und sogar bis zum Überlaufen des Ausgleichsbehälters führen kann sowie isolierende Ablagerungen von Bestandteilen des Kühlmittels, insbesondere Wasserstein, gerade an den Heißstellen bewirkt.Finally, when the machine is quickly shut down from a high load, there is often strong local overheating of the coolant at hot spots in the cooling jacket with corresponding high-pressure steam bubbles, which lead to excessively high pressure in the entire cooling circuit with coolant ejection through the pressure relief valve and even until the expansion tank overflows can as well as insulating deposits of components of the coolant, in particular water stone, causes just at the hot spots.

Aufgabe der Erfindung ist es, die vorstehend beschriebenen Nachteile im Bereich der Betriebs-Randbedingungen - Befüllen, Entlüften, Entgasen, Pumpen-Kavitation, Überhitzen, Abstell-Nachheizen, zum Verlauf der Kühlmittel-Temperatur unnötig überhöhter Verlauf des Kühlmittel-Druckes bei niedrigen Start- bzw. Umgebungstemperaturen und bei Eindringen von Brenngasen in den Kühlkreis im Bereich mittlerer Betriebstemperatur - von flüssigkeitsgekühlten Maschinen zu überwinden sowie zugleich Bauaufwand, Kosten, Gewicht, Bauteil-Vielfalt, Fehlbedienungs-Möglichkeiten zu verringern. Ferner sollen Überdimensionierungen von Kühlkreis-Bauteilen und vor allem der Kühlleistung vermieden werden, die zum Ausgleich der beschriebenen Störeinflüsse bisher erforderlich sind.The object of the invention is to overcome the disadvantages described above in the area of the operating boundary conditions - filling, venting, degassing, pump cavitation, overheating, shutdown reheating, for the course of the coolant temperature unnecessarily excessive course of the coolant pressure at low start or ambient temperatures and when fuel gases penetrate into the Cooling circuit in the medium operating temperature range - to be overcome by liquid-cooled machines and at the same time to reduce construction costs, costs, weight, variety of components, and possibilities for incorrect operation. Furthermore, overdimensioning of cooling circuit components and, above all, the cooling capacity, which have so far been necessary to compensate for the described interference, are to be avoided.

Dies erreicht die Erfindung in überraschend vorteilhafter Weise durch die Anwendung der Kennzeichen-Merkmale des Patentanspruches 1.The invention achieves this in a surprisingly advantageous manner by using the characterizing features of patent claim 1.

Dadurch wird das Befüllen des Kühlmantels und des Kühlers beschleunigt und der Restluft-Einschluß verringert, weil das Kühlmittel von der Einfüllöffnung gleichwertig und rasch in den Kühlmantel und in den Kühler fließen und die Luft im Gegenstrom direkt ausströmen kann, so daß durch die hohe Kühlmittel-Fließgeschwindigkeit die Restluftblasen weitestgehend mitgenommen werden und in den verschiedenen kühlmittelführenden Leitungen und Hohlräumen des Kühlkreises nur geringe Restluft-Volumenteile verbleiben. Beim anschließenden ersten Betrieb der Maschine werden die verbliebenen Restluftanteile aus dem Vorlauf-Hochpunkt über die aus diesem ausmündende Entlüftungsleitung rasch in den Luftabscheidebehälter gespült. Dabei wird bei einer motornahen Anordnung dieser Ausmündung durch den zum Kühler abfallenden Kühler-Vorlauf eine tiefliegende Kühler-Anordnung für stark abfallende PKW-Fronten begünstigt und eine zusätzliche Verringerung des in den Warmlauf einbezogenen Kühlmittel-Volumens und dadurch eine verkürzte Warmlaufzeit erreicht. Dies trifft in erhöhtem Maße gegenüber einem Anschluß der Entlüftungsleitung am Hochpunkt des Kühler-Vorlaufwasserkastens zu, der dabei zumindest teilweise, bei Querstromkühlern sogar zusammen mit einem Teil des Kühlerfeldes, in den Warmlauf einbezogen ist.This accelerates the filling of the cooling jacket and the cooler and reduces the inclusion of residual air, because the coolant flows from the filling opening equally and quickly into the cooling jacket and into the cooler and the air can flow out in counterflow, so that the high coolant Flow velocity, the residual air bubbles are largely carried along and only a small volume of residual air remains in the various coolant-carrying lines and cavities of the cooling circuit. When the machine is subsequently operated for the first time, the remaining portions of residual air from the high point of the flow are quickly flushed into the air separation container via the vent line emanating from it. In this case, if this mouth is arranged close to the engine, the low-lying cooler arrangement for heavily falling car fronts is favored by the radiator lead falling towards the radiator and an additional reduction in the coolant volume involved in the warm-up and thus a shorter warm-up time is achieved. This applies to an increased extent compared to a connection of the vent line at the high point of the cooler flow water tank, which is at least partially in the case of cross-flow coolers even together with part of the cooler field, which includes warm-up.

Durch das temperatur-gesteuerte Entlüftungs-Ventil wird zugleich sowohl die Entlüftung und Entgasung als auch der Systemdruck-Aufbau über Temperatur und Drehzahl verbessert sowie der aufgrund von Brenngas-Leckagen überhöhte Kühlkreisdruck bei Abkühlphasen wieder abgebaut. Die dabei durch das Thermoventil bei niedriger Betriebstemperatur geöffnete Leitungsverbindung vom Luftabscheidebehälter zum Ausgleichsbehälter ermöglicht ferner einen sehr einfachen Entlüftungsvorgang nach dem Befüllen, wobei bei geschlossenem Verschlußdeckel durch stark wechselnde Motordrehzahl ein fortwährendes Kühlmittel- und Restluft-Ausströmen zum Ausgleichsbehälter und Kühlmittel-Einströmen in den Luftabscheidebehälter erreicht wird. Dies ergibt sich aus dem Anstieg des Pumpen-Saugdruckes bei Drehzahlrückgang und dessen Abfall bei Drehzahlanstieg. In Verbindung mit einem Füllstands-Niveaugeber im Luftabscheidebehälter - gemäß Anspruch 3 - kann die fortschreitende Entlüftung durch den Aufleuchtbeginn einer zugeschalteten Anzeigeleuchte bei immer höherer Drehzahl verfolgt bzw. beurteilt werden. Die auf den von der Kühlkreis-Elastizität, vor allem aus Schlauch-Länge und -Elastizität, von der Temperatur und von der Pumpendrehzahl abhängigen Druckaufbau abgestimmte Schließ-Temperatur des Entlüftungs-Ventiles vermeidet einerseits unnötig hohe Kühlkreis-Überdruckwerte bei relativ geringen Kühlmittel-Temperaturwerten und sichert andererseits einen dennoch ausreichenden Abstand des Pumpensaugdruck-Verlaufes zum Verlauf der Pumpenkavitationsgrenze. Hohe Pumpenförderleistung durch hohe Motordrehzahl im Schaltpunkt des Thermoventiles führt durch den dabei in Bezug auf den durchschnittlichen Kühlkreis-Überdruck stark abgesenkten, jedoch aufgrund des geöffneten Entlüftungs-Ventiles konstant atmosphärischen Pumpensaugdruck zu einem entsprechend höheren Ausgangsdruck für den Druckaufbau aus der Wärmedehnung des Kühlmittels beim weiteren Temperaturanstieg. Dadurch wird bei Betrieb mit relativ hohen Drehzahlen die Sicherheit gegen Pumpenkavitation zusätzlich erhöht.
Durch die Anordnung aller Steuerelemente im Verschlußdeckel wird einerseits ein kompakter, kosten- und gewichts-günstiger Aufbau und andererseits eine günstige Wartungs- und Reparaturmöglichkeit erreicht.
The temperature-controlled vent valve improves both venting and degassing as well as the system pressure build-up via temperature and speed, and the cooling circuit pressure which is excessive due to fuel gas leakages is reduced again during cooling phases. The line connection from the air separation tank to the expansion tank, which is opened by the thermo valve at low operating temperature, also enables a very simple venting process after filling, with a constant change in engine speed when the cover is closed, which means that coolant and residual air flow to the expansion tank and coolant flow into the air separation tank becomes. This results from the increase in the pump suction pressure when the speed drops and its drop when the speed increases. In connection with a level transmitter in the air separation container - according to claim 3 - the progressive ventilation can be tracked or assessed by the start of the lighting of a switched on indicator light at ever higher speed. The closing temperature of the ventilation valve, which is dependent on the pressure build-up dependent on the cooling circuit elasticity, especially hose length and elasticity, the temperature and the pump speed, avoids unnecessarily high cooling circuit overpressure values with relatively low coolant temperature values and on the other hand, ensures a sufficient distance between the pump suction pressure curve and the pump cavitation limit. High pump delivery rate due to the high motor speed at the switching point of the thermal valve leads to the fact that the vent valve, which is greatly reduced in relation to the average cooling circuit overpressure, leads to this constant atmospheric pump suction pressure at a correspondingly higher outlet pressure for the pressure build-up from the thermal expansion of the coolant as the temperature rises further. This increases safety against pump cavitation when operating at relatively high speeds.
The arrangement of all the control elements in the sealing cover on the one hand achieves a compact, cost-effective and weight-saving construction and, on the other hand, an inexpensive maintenance and repair option.

Die Merkmale des Anspruches 2 ermöglichen eine besonders gedrängte räumliche Zuordnung des Luftabscheidebehälters zum Kühler-Vorlauf und zum Füllstutzen, wodurch ein sehr geringer Bauraumbedarf erreicht wird.The features of claim 2 enable a particularly compact spatial allocation of the air separation container to the cooler flow and to the filler neck, whereby a very small space requirement is achieved.

Die Zuordnung eines Kühlmittel-Niveaugebers zum Luftabscheidebehälter gemäß Anspruch 3 ergibt eine sichere Füllstands-Überwachung des Überdruck-Kühlkreises und eine Warnanzeige bereits bei noch betriebssicher ausreichendem Kühlmittel-Inhalt, weil die temperaturbedingte Volumenänderung des Kühlmittels eine Anzeige bei kaltem Kühlkreis schon dann auslöst, wenn das sich im Betrieb erwärmende Kühlmittel das Anzeige-Niveau wieder überschreitet und die Betriebs-Sicherheit gewährleistet. Zusätzlich bildet die Füllstands-Warnanzeige hierbei eine Überwachungsanzeige beim Entlüften des Kühlkreises nach einem Neu- oder Wieder-Befüllen. Das dabei mögliche Abpumpen der Restluft über den Ausgleichsbehälter zur Atmosphäre mittels der einfachen Maßnahme eines Betriebes der Maschine mit starkem Drehzahlwechsel bei offener Leitungsverbindung zwischen Luftabscheidebehälter und Ausgleichsbehälter ergibt nämlich mit fallendem Restluft-Volumen einen stetig zu höherer Drehzahl hin sich verschiebenden Aufleuchtbeginn einer üblichen Niveau-Warnleuchte.The assignment of a coolant level sensor to the air separation container according to claim 3 results in a safe level monitoring of the overpressure cooling circuit and a warning display even if the coolant content is still safe to operate, because the temperature-related change in volume of the coolant triggers a display when the cooling circuit is cold when the coolant that warms up during operation again exceeds the display level and guarantees operational safety. In addition, the fill level warning display forms a monitoring display when the cooling circuit is vented after it has been refilled or refilled. The possible pumping of the residual air through the expansion tank to the atmosphere by means of the simple measure of operating the machine with a strong change in speed with an open line connection between the air separation tank and the expansion tank results in a falling start of a normal level warning light, with the residual air volume falling, which shifts steadily to a higher speed .

Die Merkmale des Anspruches 4 enthalten die grundsätzliche Anordnung des Luftabscheidebehälters mit Füllstutzen und Befülldeckel am Hochpunkt des Kühler-Vorlaufes im Verlauf der Entlüftungs-Nebenstromleitung, wodurch ein Großteil der Vorteile unabhängig von Anordnung und Ausbildung der Überdruck-, Unterdruck- und Entlüftungs-Ventile nach Anspruch 1 erreicht wird, nämlich vorteilhaftes Befüllen und Entlüften sowie rascher Warmlauf. Die Ventile können dabei in jeder bekannten oder vorstehend vorgeschlagenen Ausbildung und Anordnung bzw. Verschaltung ausgewählt werden, nämlich am Luftabscheidebehälter, am Ausgleichsbehälter oder an beiden in Reihenschaltung, wobei bei den beiden letztgenannten Anordnungen ein Ausgleichsbehälter mit Luftausdehnungs-Volumen erforderlich ist.The features of claim 4 contain the basic arrangement of the air separation container with filler neck and filler cap at the high point of the cooler flow in the course of the venting bypass line, whereby a large part of the advantages regardless of the arrangement and design of the overpressure, underpressure and venting valves according to claim 1 is achieved, namely advantageous filling and venting and rapid warm-up. The valves can be selected in any known or previously proposed configuration and arrangement or connection, namely on the air separation tank, on the expansion tank or on both in series connection, with the latter two arrangements requiring an expansion tank with an air expansion volume.

Anspruch 5 sieht die zusätzliche Ansteuerung eines Überdruckventiles vom Druck im Kühler-Vorlauf für die unmittelbare Begrenzung des den Kühler beaufschlagenden Druckwertes vor, da die Ventile bei allen Anordnungen nach Anspruch 4 im Kühler-Rücklauf wirksam sind.Claim 5 provides for the additional control of a pressure relief valve from the pressure in the cooler flow for the immediate limitation of the pressure value acting on the cooler, since the valves are effective in the cooler return in all arrangements according to claim 4.

Die Merkmale des Anspruches 6 sehen ein temperaturgesteuertes Entlüftungs-Ventil vor, das in der Verbindungsleitung vom Luftabscheidebehälter zum Ausgleichsbehälter unabhängig von dessen Anordnung liegt. Abgesehen von einem geringen zusätzlichen Bauaufwand und Gewicht ermöglicht diese Ausbildung alle übrigen Funktions-Vorteile der Merkmale nach Anspruch 1, insbesondere in Verbindung mit einem am Hochpunkt des Kühler-Vorlaufes in bekannter Weise angeordneten zusätzlichen Befülldeckel.The features of claim 6 provide a temperature-controlled vent valve, which is located in the connecting line from the air separation tank to the expansion tank regardless of its arrangement. Apart from a small additional construction effort and weight, this design enables all other functional advantages of the features according to claim 1, in particular in connection with an additional filling lid arranged in a known manner at the high point of the cooler flow.

Die Ausbildung des Entlüftungs-Ventiles nach Anspruch 7 weist einen besonders geringen Bauaufwand auf und ergibt einfachste Wartungs- und Reparatur-Möglichkeiten durch Prüfen und/oder Austauschen des Verschlußdeckels als Einheit. In der Kraftfahrzeugtechnik vielfach bewährte Einzelbauteile werden dabei angewendet. Die Zuordnung der Bauteile des Ventiles begünstigt auch dessen Funktion, da die Schnappfeder erst nach völligem Luftausschub von der Kühlmittel-Temperatur beaufschlagt wird, so daß die Entlüftung über das Erreichen der Schließ-Schalt-Temperatur durch das Kühlmittel selbst hinaus begünstigt wird. Ein Schwimmer statt einer Schließfeder ist somit nur bei besonders schwierigen Entlüftungs-Gegebenheiten erforderlich. Das geschlossene Entlüftungs-Ventil wird mit steigendem Kühlmitteldruck auch zunehmend in seiner Dichtfunktion begünstigt, weil die Thermo-Schnappfeder dabei mehr und mehr gegen den Dichtring gedrückt wird.The design of the vent valve according to claim 7 has a particularly low construction cost and provides the simplest maintenance and repair options by checking and / or replacing the sealing cover as a unit. Individual components that have been tried and tested in automotive engineering are used. The assignment of the components of the valve also favors its function, since the snap spring is only acted upon by the coolant temperature after the air has been completely pushed out, so that the venting is promoted by the coolant itself when the closing / switching temperature is reached. A float instead of a closing spring is therefore only necessary in particularly difficult ventilation conditions. The closed vent valve also increases with increasing coolant pressure increasingly favored in its sealing function, because the thermal snap spring is pressed more and more against the sealing ring.

Diese Ventil-Ausbildung ist auch bei Kühlkreisen einer Bauart vorteilhaft anwendbar, die von derjenigen nach den Ansprüchen 1 und 6 abweicht, jedoch zumindest einen atmosphärischen Ausgleichsbehälter aufweist.This valve design can also be used advantageously in cooling circuits of a type which differs from that according to claims 1 and 6, but has at least one atmospheric expansion tank.

Die Merkmale des Anspruchs 8 begünstigen einerseits zusätzlich die Befüll- und die Betriebs-Entlüftung durch Ableiten der Restluft zum Luftabscheidebehälter, die beim Befüllen im Rücklauf-Wasserkasten von Querstromkühlern verbleibt bzw. die sich im Betrieb bevorzugt dort sammelt. Ein Durchlauf kalten Kühlmittels wird im normalen Warmlauf-Betrieb jedoch verhindert und so ein Einfluß auf die Warmlaufzeit vermieden. Andererseits werden durch das Öffnen des Entlüftungs-Ventiles nach dem Warmlauf bei einer über der Umgebungstemperatur liegenden Kühlmitteltemperatur von beispielsweise 60°C im Rücklauf-Wasserkasten sich darin bevorzugt sammelnde Brenngas-Leckagen sowie Restluft-Volumenteile sofort in den Luftabscheidebehälter abgeleitet. Aus diesem strömen sie bei offenem Überdruckventil über den Ausgleichsbehälter zur Atmosphäre ab, zumal der Überdruck im Kühlkreis durch eindringende Brenngas-Leckagen die Öffnungswerte des Überdruckventiles beschleunigt erreicht. Gegebenenfalls dennoch verbleibende Leckagen-Volumenteile werden beim Abkühlen des Kühlkreises unter die Öffnungstemperatur des Entlüftungs-Ventiles nach den Ansprüchen 1 und 6 über den Ausgleichsbehälter abgeleitet und dabei zugleich der Kühlkreis ständig auf Atmosphärendruck gehalten solange die Schließ-Temperatur dieses temperatur-gesteuerten Entlüftungs-Ventiles unterschritten bleibt. Unterdruck im Kühlkreis und dadurch bedingtes Eindringen von Luft - z. B. über die Dichtung der Kühlmittelpumpe ist dabei zusätzlich ausgeschlossen.The features of claim 8 also favor the filling and the operating ventilation by discharging the residual air to the air separation tank, which remains when filling in the return water tank of cross-flow coolers or which collects there during operation. A passage of cold coolant is prevented in normal warm-up operation and thus an influence on the warm-up time is avoided. On the other hand, by opening the ventilation valve after warming up at a coolant temperature above the ambient temperature of, for example, 60 ° C in the return water tank, fuel gas leaks and residual air volume parts which are preferably collected therein are immediately discharged into the air separation container. From this, they flow to the atmosphere via the expansion tank when the pressure relief valve is open, especially since the excess pressure in the cooling circuit accelerates to the opening values of the pressure relief valve due to penetrating fuel gas leaks. Any remaining leakage volume parts are discharged via the expansion tank when the cooling circuit cools below the opening temperature of the ventilation valve according to claims 1 and 6, and at the same time the cooling circuit is constantly kept at atmospheric pressure as long as the closing temperature of this temperature-controlled ventilation valve falls below remains. Negative pressure in the cooling circuit and consequent penetration of air - e.g. B. about the Seal of the coolant pump is also excluded.

Die Merkmale des Anspruches 9 enthalten eine funktionelle und baulich besonders vorteilhafte Ausbildung des Entlüftungs-/Entgasungs-Ventiles nach Anspruch 8 in Übereinstimmung mit dem Entlüftungs-Ventil nach Anspruch 7, abgesehen von der ausschließlichen Schwimmer-Anordnung und der umgekehrten Temperatur-Steuerung mit Öffnen statt Schließen über der Schalt-Temperatur des Ventiles. Anstelle des Schwimmers ist auch eine übliche Schließfeder und ein gesondertes Kugel- oder Schwengel-Entlüftungsventil anwendbar, wie dies in Kühlmittel-Thermostat-Ventilen üblich ist.The features of claim 9 contain a functional and structurally particularly advantageous embodiment of the vent / degassing valve according to claim 8 in accordance with the vent valve according to claim 7, apart from the exclusive float arrangement and the reverse temperature control with opening instead Closing above the switching temperature of the valve. Instead of the float, a conventional closing spring and a separate ball or Schwengel vent valve can also be used, as is common in coolant thermostatic valves.

Die Merkmale des Anspruches 10 ermöglichen über dem mit der Pumpenförderleistung steigenden Überdruck im Vorlaufbereich eine gleichbleibende Vorlauf-Druckansteuerung des Überdruck-Ventiles im Verschlußdeckel ohne diese dem notwendigen höchsten Überdruck-Öffnungswert des jeweiligen Anwendungsfalles gesondert anzupassen. Zugleich kann das Überdruck-Ventil für den Vor- und Rücklaufbereich mit dem gleichen Überdruck-Öffnungswert ausgeführt werden, was den Bauaufwand zusätzlich begünstigt und die Ventil- bzw. Verschlußdeckel-Vielfalt für unterschiedliche Motoren- bzw. Fahrzeugbaumuster vermeidet oder zumindest verringert.The features of claim 10 enable a constant flow pressure control of the pressure relief valve in the closure cover without the pressure increase in the flow area increasing with the pump delivery rate without having to adapt this separately to the necessary highest pressure opening value of the respective application. At the same time, the overpressure valve for the forward and return areas can be designed with the same overpressure opening value, which additionally favors the construction effort and avoids or at least reduces the variety of valve and closure covers for different engine and vehicle models.

Die nach Anspruch 11 vorgesehene Reihenzuschaltung eines weiteren Überdruckventiles hält den Kühlmitteldruck im Normal-Betrieb auch bei Brenngas-Leckagen-Einleitung in das Kühlmittel auf relativ geringem Niveau. Nur bei zugleich hoher Betriebslast und Umgebungstemperatur wird durch das temperaturabhängig zusätzlich zugeschaltete Überdruckventil auf den dann notwendigen höheren Kühlmitteldruck umgeschaltet. Unnötige hohe Überdruck-Belastungen des Kühlkreises aufgrund von Brenngas-Leckagen werden dadurch vermieden und zugleich ein weitgehendes laufendes Ableiten dieser Brenngas-Volumenteile aus dem Kühlkreis erreicht, wodurch zusätzlich deren schädliche Einwirkung auf die Kühlmittel-Zusätze verringert wird.The series connection of a further pressure relief valve provided according to claim 11 keeps the coolant pressure in normal operation even when fuel gas leakage is introduced into the coolant at a relatively low level. Only when the operating load and ambient temperature are high is the temperature-dependent additional pressure valve switched to the higher coolant pressure that is then required. Unnecessary high overpressure loads of the cooling circuit due to fuel gas leaks are thereby avoided and at the same time a largely continuous discharge of these fuel gas volume parts from the cooling circuit is achieved, which additionally reduces their harmful effect on the coolant additives.

Der Anspruch 12 beinhaltet alternativ und/oder ergänzend zu der Ventilsteuerung der Leitungsverbindung vom Luftabscheidebehälter zum Ausgleichsbehälter nach den Ansprüchen 1 und 6 eine manuell betätigbare Entlüftungsvorrichtung, die ohne - bei Entlüftungs-Drehstellung des Verschlußdeckels - bzw. mit sehr geringem Bauaufwand - bei einer Entlüftungsschraube - über die Schalttemperatur eines Thermoventiles hinaus eine Kühlkreis-Entlüftung bei besonders schwierigen Bedingungen ermöglicht. Auch dabei begrenzt sich das Entlüftungs-Verfahren selbst auf einen Betrieb der Maschine mit stark wechselnder Drehzahl, ggf. mit kurzen Abschaltpausen, um eventuellen Luftblasen-Ansammlungen am Pumpeneintritt den Abzug zur Pumpen-Druckseite zu ermöglichen.As an alternative and / or in addition to the valve control of the line connection from the air separation tank to the expansion tank according to claims 1 and 6, the claim 12 includes a manually operable venting device which without - with the venting rotary position of the closure cover - or with very little construction effort - with a vent screw - In addition to the switching temperature of a thermal valve, cooling circuit ventilation is possible in particularly difficult conditions. Here, too, the venting process is limited to operating the machine at a rapidly changing speed, possibly with short switch-off pauses, in order to allow any air bubbles to accumulate at the pump inlet to the pump pressure side.

Die Merkmale des Anspruches 13 ermöglichen es in einfacher und gegen Drucküberlastung des Ausgleichsbehälters gesicherter Weise, den projektierten Betriebs-Überdruck des Kühlkreises auch dann zu gewährleisten, wenn bei Wartungs- und/oder Reparatur-Arbeiten der Kühlkreis bei einer derart hohen Kühlmittel-Temperatur verschlossen wird, daß der erforderliche Druckaufbau durch Wärmedehnung des Kühlmittels nicht mehr möglich ist. Dies trifft insbesondere in Verbindung mit der manuell bedienbaren Entlüftungsvorrichtung nach Anspruch 12 und schwierigen Entlüftungs-Bedingungen bei diesbezüglich ungünstig ausgebildeten Kühlkreisen zu. Ein zusätzlicher Bauaufwand für die vorgesehenen Konstruktions-Einzelheiten läßt sich nach den Ausbildungs-Möglichkeiten gemäß den Ansprüchen 14 und 15 gegenüber bekannten Kühlkreisen vollständig vermeiden, da lediglich vorhandene bekannte Bauteile entsprechend zu bemessen sind, nämlich die Druckfestigkeit des Ausgleichsbehälters, die Befestigung des zugehörigen Befülldeckels und die Abmessungen des Anschlußstutzens für den zugehörigen Überlaufschlauch.The features of claim 13 make it possible in a simple manner and secured against pressure overloading of the expansion tank to ensure the projected operating pressure of the cooling circuit even when the cooling circuit is closed at such a high coolant temperature during maintenance and / or repair work that the required pressure build-up is no longer possible due to thermal expansion of the coolant. This is particularly true in connection with the manually operated venting device according to claim 12 and difficult venting conditions in the case of cooling circuits which are inadequately designed in this regard. An additional one Construction costs for the proposed construction details can be completely avoided according to the training options according to claims 14 and 15 compared to known cooling circuits, since only existing known components are to be dimensioned accordingly, namely the pressure resistance of the expansion tank, the attachment of the associated filler cap and the dimensions of the connector for the associated overflow hose.

Durch die Merkmale des Anspruches 16 wird eine Fehlbedienung bei der Wartung des Kühlkreises weitestgehend dadurch ausgeschlossen, daß ein unbeabsichtigtes Ablassen des Kühlkreisüberdruckes durch versehentliches Öffnen des zugehörigen Verschlußdeckels anstelle des Befülldeckels für den atmosphärischen Ausgleichsbehälter ausgeschlossen ist. Der Verschlußdeckel ist hierbei erst dann zugänglich, wenn der für das Nachfüllen abzunehmende Befülldeckel geöffnet ist. Ein Abnehmen des Verschlußdeckels ist sodann für das Wartungspersonal insbesondere in Verbindung mit entsprechender üblicher Warn-Beschriftung des Verschlußdeckels mit an Sicherheit grenzender Wahrscheinlichkeit nicht mehr zu erwarten. Der Bauaufwand dieser Maßnahme umfaßt lediglich eine geringe Vergrößerung des Befülldeckels, der eine für das Motorraum-Styling günstige Form- und Farbgebung aufweisen kann.Due to the features of claim 16, incorrect operation during the maintenance of the cooling circuit is largely ruled out in that an unintentional release of the cooling circuit overpressure is prevented by inadvertent opening of the associated sealing cap instead of the filling cap for the atmospheric expansion tank. The cap is only accessible when the fill cap to be removed for refilling is open. A removal of the closure cover is then no longer to be expected for the maintenance personnel, in particular in conjunction with corresponding customary warning lettering on the closure cover, with a probability bordering on certainty. The construction effort of this measure only includes a slight enlargement of the filler cap, which can have a shape and color which is favorable for the engine compartment styling.

Durch die Merkmale des Anspruches 17 wird insbesondere bei Fahrzeugen mit bereits vorhandener Heizkreis-Zusatzpumpe mit dem geringen zusätzlichen Bauaufwand eines Umschaltventiles und dessen Steuerteilen der Aufbau eines den Überdruck-Öffnungswert des Überdruckventiles erreichenden Überdruckes beim Nachheizen des Kühlmittels nach dem Abstellen der Maschine aus hoher Betriebslast weitestgehend vermieden, der durch an Heißstellen des Kühlmantels örtlich überhöhtes Aufheizen des ruhenden Kühlmittels entstehen kann. An den Heißstellen dabei sich bildende Dampfblasen werden durch die von der Heizkreis-Zusatzpumpe erzeugte Kühlmittelströmung fortwährend weggespült und im übrigen Kühlmittel rasch wieder kondensiert. Auf diese Weise wird eine sonst auftretende Volumenzunahme des Kühlmittels im Kühlkreis minimiert, die einen der örtlichen Kühlmittel-Temperatur und dem zugehörigen Siededruck entsprechenden Überdruck im gesamten Kühlkreis bewirkt. Ein übermäßiges Austreiben von Kühlmittel durch das Überdruckventil in den Ausgleichsbehälter und nach dessen Überlaufen sogar ins Freie wird somit ausgeschlossen.The features of claim 17, especially in vehicles with an existing heating circuit auxiliary pump with the little additional construction of a changeover valve and its control parts, the build-up of an overpressure reaching the overpressure opening value of the overpressure valve when reheating the coolant after switching off the machine from a high operating load avoided by hot spots of the Cooling jacket locally excessive heating of the resting coolant can occur. Vapor bubbles that form at the hot spots are continuously flushed away by the coolant flow generated by the heating circuit auxiliary pump, and the remaining coolant is quickly condensed again. In this way, an otherwise occurring increase in volume of the coolant in the cooling circuit is minimized, which brings about an overpressure corresponding to the local coolant temperature and the associated boiling pressure in the entire cooling circuit. Excessive expulsion of coolant through the pressure relief valve into the expansion tank and even after it has overflowed is thus excluded.

Aus zahlreichen Druckschriften zählen zwar kennzeichnende Einzel-Merkmale der Patentansprüche 1 bis 17 bereits zum Stand der Technik. Eine gezielte Kombination derselben entsprechend den gattungsgemäßen mit den Kennzeichen-Merkmalen der Patentansprüche ist aus diesen Druckschriften jedoch weder angeregt noch ohne erfinderische Tätigkeit ableitbar. Insbesondere wird auf die Wartungsanleitung 1984 zum PKW-Baumuster Nissan ZX-300 -Modellreihe Z 31 - Blätter LC-8/-13 und /18, die DE-PS 25 09 995 und 28 17 976, die DE-GM 1 931 736, die GB-PS 1 415 698, die EP-PS 0 101 339, sowie die US-PS 2,195,266, 3,047,235, 3,284,004, 4,167,159 und 4,489,883 hingewiesen.Characteristic individual features of claims 1 to 17 already belong to the prior art from numerous publications. However, a targeted combination of these in accordance with the generic type with the characterizing features of the claims is neither suggested nor derivable without inventive step. In particular, reference is made to the maintenance instructions for the car model Nissan ZX-300 model series Z 31 - sheets LC-8 / -13 and / 18, DE-PS 25 09 995 and 28 17 976, DE-GM 1 931 736, the GB-PS 1 415 698, the EP-PS 0 101 339, and the US-PS 2,195,266, 3,047,235, 3,284,004, 4,167,159 and 4,489,883 pointed out.

In der Zeichnung sind bevorzugte Ausgestaltungen der Erfindung dargestellt. Es zeigen:

Fig. 1
einen Kühlkreis für Brennkraftmaschinen einschließlich Heizkreis für eine Fahrzeuginnenraum-Heizung als Blockschaltbild,
Fig. 2
den gemäß Fig. 1 angeordneten und ausgebildeten Füllstutzen mit Verschlußdeckel und Luftabscheidebehälter im Schnitt,
Fig. 3
den Hochpunkt des Rücklauf-Wasserkastens eines Querstromkühlers mit Entlüftungsventil gemäß Fig. 1,
Fig. 4
ein Diagramm des temperaturabhängigen Druckverlaufes im Kühlkreis nach Fig. 1,
Fig. 5 - 10
eine Übersicht mehrerer erfindungsgemäßer Kühlkreis-Alternativen in schematischer Darstellung und
Fig. 11
einen Füllstutzen gemäß Fig. 1 in baulich vereinfachter und fertigungsgünstigerer Ausbildung im Schnitt.
Preferred embodiments of the invention are shown in the drawing. Show it:
Fig. 1
a cooling circuit for internal combustion engines including a heating circuit for a vehicle interior heater as a block diagram,
Fig. 2
1 arranged and designed filler neck with sealing cap and air separation container in section,
Fig. 3
the high point of the return water tank of a cross-flow cooler with a vent valve according to FIG. 1,
Fig. 4
2 shows a diagram of the temperature-dependent pressure curve in the cooling circuit according to FIG. 1,
5 - 10
an overview of several cooling circuit alternatives according to the invention in a schematic representation and
Fig. 11
a filler neck according to FIG. 1 in a structurally simplified and less expensive design in section.

Eine Brennkraftmaschine 1 enthält einen Kühlmantel 2 (Pfeil), in den das Kühlmittel durch eine Kühlmittelpumpe 3 unter Druck gefördert wird. Am Austritt 4 des Kühlmantels 2 ist ein Kühler-Vorlauf 5 mit freiem Durchgang zu einem Querstromkühler 6 angeschlossen und mündet in dessen Vorlauf-Wasserkasten 7. Vom Kühler-Vorlauf 5 zweigt ein Kurzschluß 8 zu einem Mischthermostat 9 ab. Vom Rücklauf-Wasserkasten 10 führt eine Rücklaufleitung 11 aus dem Kühler 6 gleichfalls in das Thermostat 9. Eine Pumpen-Saugleitung 12 verbindet das Thermostat 9 mit der Saugseite 13 der Pumpe 3.An internal combustion engine 1 contains a cooling jacket 2 (arrow), into which the coolant is conveyed under pressure by a coolant pump 3. At the outlet 4 of the cooling jacket 2, a cooler flow 5 is connected with a free passage to a cross-flow cooler 6 and opens into its flow water tank 7. A short circuit 8 branches off from the cooler flow 5 to a mixing thermostat 9. A return line 11 also leads from the return water tank 10 out of the cooler 6 into the thermostat 9. A pump suction line 12 connects the thermostat 9 to the suction side 13 of the pump 3.

An einem möglichst motornahen Hochpunkt 5′ des Kühler-Vorlaufes 5 ist eine Nebenstrom-Entlüftungsleitung 14 angeschlossen, die ungedrosselt in eine Vorlaufdruck-Steuerkammer 15 und über eine Drosselstelle 16 in den Bodenbereich eines Luftabscheidebehalters 17 mündet. Diese Einmündung ist zur Sicherung der Luftabscheidung von der Ausmündestelle der Nebenstrom-Entlüftungsleitung 14 aus dem Bodenbereich abgewendet, die zur Saugseite 13 der Pumpe 3 weiterführt. An der Unterseite des Luftabscheidebehälters 17 ist ein elektrischer Niveaugeber 18 angeordnet, der in handelsüblicher Ausbildung bei einer funktions-gefährdenden Luft- und/oder Gas-Ansammlung im Luftabscheidebehälter 17 ein Warninstrument ansteuert.At a high point as close as possible to the engine 5 'of the cooler flow 5, a bypass vent line 14 is connected, which is unthrottled in a flow pressure control chamber 15 and via a throttle point 16 opens into the bottom area of an air separation container 17. This mouth is turned away from the bottom area to secure the air separation from the mouth of the bypass vent line 14, which leads to the suction side 13 of the pump 3. An electrical level sensor 18 is arranged on the underside of the air separation container 17, which controls a warning instrument in a commercially available design in the event of an air and / or gas accumulation in the air separation container 17 which endangers the function.

Der Luftabscheidebehälter 17 umschließt den Bereich des Hochpunktes 5′ des Kühler-Vorlaufes 5 und den daran steigend angeschlossenen Bereich der Nebenstrom-Entlüftungsleitung 14 konzentrisch (Fig. 2). Dieser Bereich der Nebenstrom-Entlüftungsleitung 14 ist zugleich als Füllstutzen 19 ausgebildet und zu einem Teil innerhalb eines Verschlußdeckels 20 angeordnet. In Richtung des Entlüftungs-Nebenstroms sind dabei nacheinander der Füllstutzen 19, die Steuerkammer 15 und die Drosselstelle 16 im Verschlußdeckel 20 sowie der Leitungsteil im Bodenbereich des Luftabscheidebehälters 17 durchströmt. Im Verschlußdeckel 20 sind die üblichen Über-und Unterdruckventile 21 und 22 angeordnet, jedoch erfindungsgemäß wesentlich abgewandelt und funktionell weitergebildet.The air separator tank 17 concentrically surrounds the area of the high point 5 'of the cooler flow 5 and the area of the bypass vent line 14 connected to it increasing (Fig. 2). This area of the bypass vent line 14 is at the same time designed as a filler neck 19 and partially arranged within a closure cover 20. In the direction of the ventilation bypass flow, the filler neck 19, the control chamber 15 and the throttle point 16 in the closure cover 20 and the line part in the bottom region of the air separation container 17 are flowed through in succession. The usual overpressure and underpressure valves 21 and 22 are arranged in the closure cover 20, but are substantially modified and functionally developed according to the invention.

Das Überdruckventil 21 ist einerseits über eine Leitungsverbindung 21′ zum Hochpunkt des Luftabscheidebehälters 17 vom Überdruck in diesem unmittelbar und andererseits mittels einer Steuermembrane 15′ vom Vorlauf-Überdruck in der Steuerkammer 15 mittelbar angesteuert und öffnet in beiden Fällen die Leitungsverbindung 21′ aus dem Hochpunkt des Luftabscheidebehälters 17 zur Atmosphäre hin.The pressure relief valve 21 is on the one hand directly controlled via a line connection 21 'to the high point of the air separation container 17 from the overpressure in the latter and on the other hand indirectly by means of a control membrane 15' from the supply overpressure in the control chamber 15 and in both cases opens the line connection 21 'from the high point of the Air separation container 17 to the atmosphere.

Das Unterdruckventil 22 ist in üblicher Weise im Ventilgehäuse des Überdruckventiles 21 eingebaut und zugleich als Temperatur- und alternativ zusätzlich schwimmer-gesteuertes Entlüftungs-Ventil ausgebildet (Fig. 2). Außer bei herrschendem Unterdruck im Luftabscheidebehälter 17 schließt das Unterdruckventil 22 durch das Zusammenwirken einer Bimetall-Schnapp-Tellerfeder 23 mit einer O-Ring-Dichtung einerseits und alternativ mit einer Feder 24 oder einem Schwimmer 24′ andererseits nur dann, wenn sowohl die Schalttemperatur der Bimetall-Feder 23 überschritten als auch der Luftabscheidebehälter 17 entlüftet ist, denn die Bimetall-Feder 23 wird stets erst beim Beaufschlagen durch Kühlmittel mit ausreichend hoher Temperatur in Schließlage geschaltet. Das Entlüften wird dadurch zusätzlich begünstigt. Ein Schwimmer öffnet zusätzlich das Entlüftungs-Ventil bei erneuter Luft-Anlage unabhängig von dessen Schaltzustand, solange keine Druckdifferenz anliegt und führt zu noch weiterer Rest-Entlüftung. Ein Überdruck im Luftabscheidebehälter hält die Bimetall-Feder 23 aber auch bei Ansammeln von Luft und/oder Brenngas im Luftabscheidebehälter 17 in Schließstellung, wodurch während des Betriebes der Maschine 1 ein gefährlicher Abfall des Kühlmittel-Druckes ausgeschlossen bleibt. Bei jedem Abkühlen und nächstfolgendem Kaltstart mit Warmlauf erfolgt jedoch andererseits ein vollständiges Entlüften des Luftabscheidebehälters 17 und damit des gesamten Kühlkreises. Die Bimetall-Feder 23 schließt darüberhinaus aufgrund ihrer Schalttemperatur (50°C in Fig. 4) den Kühlkreis erst bei einer Temperatur des aus dem Luftabscheidebehälter 17 durch das Unterdruckventil 21 verdrängten Kühlmittels, bei der der Aufbau des bei Leerlauf-Drehzahl und Abstellen der Maschine wirksamen statischen Systemdruckes SD durch weitere Wärmedehnung des Kühlmittels im Zusammenwirken mit der Elastizität des gesamten Kühlkreises, insbesondere der Kühlmittel-Schlauchleitungen, einen im Bezug zur Pumpen-Kavitationsgrenze KG und zur Kühlmittel-Siedegrenze SG ausreichenden Verlauf des bei Höchstdrehzahl niedrigstmöglichen Pumpensaugdruckes PD ergibt (Fig. 4). Im Zusammenwirken mit der aus der DE-OS 32 26 508 bekannten Bemessungsregel für das Überdruckventil 21 werden somit sowohl ein gefährlich niedriger Pumpensaugdruck PD als auch ein unnötig hoher Kühler-Vorlaufdruck VD ausgeschlossen.The vacuum valve 22 is installed in the usual way in the valve housing of the pressure relief valve 21 and at the same time is designed as a temperature and alternatively additionally float-controlled vent valve (FIG. 2). Except when there is negative pressure in the air separation container 17, the vacuum valve 22 closes by the interaction of a bimetallic snap plate spring 23 with an O-ring seal on the one hand and alternatively with a spring 24 or a float 24 'on the other hand only if both the switching temperature of the bimetal -Feather 23 exceeded and the air separation container 17 is vented, because the bimetallic spring 23 is always switched to the closed position only when it is acted upon by coolant at a sufficiently high temperature. Bleeding is additionally promoted. A float also opens the vent valve when the air system is renewed, regardless of its switching status, as long as there is no pressure difference and leads to even more residual venting. An overpressure in the air separation container keeps the bimetallic spring 23 in the closed position even when air and / or fuel gas accumulates in the air separation container 17, thereby preventing a dangerous drop in the coolant pressure during operation of the machine 1. On the other hand, with each cooling and the next cold start with warm-up, the air separation container 17 and thus the entire cooling circuit are completely vented. Furthermore, due to its switching temperature (50 ° C. in FIG. 4), the bimetallic spring 23 closes the cooling circuit only at a temperature of the coolant displaced from the air separating container 17 by the vacuum valve 21, at which the build-up at idle speed and the machine being switched off effective static system pressure SD by further thermal expansion of the coolant in cooperation with the elasticity of the entire cooling circuit, in particular of the coolant hose lines, in relation to the pump cavitation limit KG and the coolant boiling limit SG, there is a sufficient profile of the lowest possible pump suction pressure PD at maximum speed (FIG. 4). In cooperation with the dimensioning rule for the pressure relief valve 21 known from DE-OS 32 26 508, both a dangerously low pump suction pressure PD and an unnecessarily high cooler supply pressure VD are thus excluded.

An die Über- und Unterdruckventile 21 und 22 ist eine Leitungsverbindung 25 zur Atmosphäre über ein temperatur-gesteuertes weiteres Überdruckventil 26 zum Bodenbereich eines atmosphärischen Ausgleichs-, Vorrats- und Luftsperrbehälters 27 geführt. Dieses weitere Überdruckventil 26 enthält - wie das Unterdruckventil 22 - eine Bimetall-Schnapp-Tellerfeder 28, die mit einer O-Ring-Dichtung zusammenwirkt und von einer den Überdruckwert bestimmenden Kegelfeder 29 gegen die Dichtung angedrückt wird. Das Gehäuse dieses Überdruckventiles 26 ist derart in thermischer Verbindung mit der Vorlaufleitung 5 und/oder dem Gehäuse des Luftabscheidebehälters 17 angeordnet, daß die dortige Temperatur des Kühlmittels die Bimetall-Feder 28 beaufschlagt. Deren Schalttemperatur ist etwa der Obergrenze des Regeltemperatur-Bereiches des Thermostats 9 entsprechend festgelegt, üblicherweise etwa 90 - 100°C. Die Summe der Überdruckwerte der Überdruckventile 21 und 26 kommt somit nur dann (Fig. 4) zur Wirkung, wenn der Thermostat-Regelbereich überschritten wird, also nur dann, wenn zugleich hohe Umgebungstemperatur und hohe Motorlast auftreten. Auch durch Brenngas-Leckagen bei hoher Motorlast wird der Kühlkreis daher nicht unnötig mit überhöhtem Systemdruck SD, Vorlaufdruck VD und Pumpen-Saugdruck PD belastet, sondern die Brenngas-Leckagen werden fortlaufend durch das allein wirksame erste Überdruckventil 21 über den Ausgleichsbehälter 27 zur Atmosphäre ausgeschieden.A line connection 25 to the atmosphere is led to the overpressure and underpressure valves 21 and 22 via a temperature-controlled additional overpressure valve 26 to the bottom area of an atmospheric expansion, storage and air-blocking container 27. This further pressure relief valve 26 contains - like the vacuum valve 22 - a bimetallic snap disc spring 28 which interacts with an O-ring seal and is pressed against the seal by a cone spring 29 which determines the pressure value. The housing of this pressure relief valve 26 is arranged in thermal connection with the flow line 5 and / or the housing of the air separation container 17 in such a way that the temperature of the coolant there acts on the bimetal spring 28. Their switching temperature is set approximately according to the upper limit of the control temperature range of the thermostat 9, usually approximately 90-100 ° C. The sum of the overpressure values of the overpressure valves 21 and 26 thus only comes into effect (FIG. 4) if the thermostat control range is exceeded, that is only if high ambient temperature and high engine load occur at the same time. Even due to fuel gas leaks at high engine loads, the cooling circuit is not unnecessarily loaded with excessive system pressure SD, flow pressure VD and pump suction pressure PD, but the fuel gas leaks are continuously increased by the only effective first pressure relief valve 21 excreted via the expansion tank 27 to the atmosphere.

Der Ausgleichsbehälter 27 enthält zu einem Teil seines Volumens einen Kühlmittelvorrat 30 und zum übrigen Teil ein Ausdehnungsvolumen 31. Der Befülldeckel 32 des Ausgleichsbehälters 27 ist mit einer üblichen Rastwulst-Befestigung ausgestattet, die jedoch erfindungsgemäß derart abgestimmt ist, daß zugleich eine Überdruck-Ventil-Funktion durch Ablösen des Deckels 32 bei einem bestimmten Überdruck im Ausgleichsbehälter 27 erreicht wird. Zum Einbringen des Überdruckes von z. B. 1 bar in den Ausgleichsbehälter 27 und über das Unterdruckventil 22 auch in den gesamten Kühlkreis ist der Deckel 32 mit einem Schlauchstutzen 33 versehen, der sowohl einen Überlaufschlauch 34 trägt als auch nach dessen Abziehen für den Anschluß eines Reifenfüll-Gerätes bzw. einer Luftpumpe geeignet ist. Damit kann auf einfache kostengünstige Weise die Funktionssicherheit des Kühlkreises auch nach einem Verschließen desselben bei bereits bestehender Betriebstemperatur der Maschine gewährleistet werden, insbesondere nach einem langwierigen Entlüftungs-Vorgang oder nach einem reparaturbedingten Druck-Ablassen mit anschließendem Hochlast-Betrieb bei hoher Umgebungstemperatur.The expansion tank 27 contains a part of its volume a coolant supply 30 and the rest of an expansion volume 31. The filler cap 32 of the expansion tank 27 is equipped with a conventional locking bead attachment, which, however, is coordinated according to the invention such that an overpressure valve function is achieved by detaching the cover 32 at a certain excess pressure in the expansion tank 27. To introduce the overpressure from z. B. 1 bar in the expansion tank 27 and the vacuum valve 22 also in the entire cooling circuit, the cover 32 is provided with a hose connector 33, which both carries an overflow hose 34 and after its removal for the connection of a tire inflation device or an air pump suitable is. In this way, the functional reliability of the cooling circuit can be guaranteed in a simple, cost-effective manner even after it has been closed while the machine is already at operating temperature, in particular after a lengthy venting process or after a pressure-releasing process that requires repair and subsequent high-load operation at a high ambient temperature.

Am Hochpunkt 10′ des Rücklauf-Wasserkastens 10 des Querstromkühlers 6, der eine besonders wirksame Luft-und Leckgas-Sammelstelle bildet, ist über ein Entlüftungsventil 35 und eine Drosselstelle 36 eine weitere Entlüftungsleitung 37 zur Nebenstrom-Entlüftungsleitung 14 angeschlossen. Das Entlüftungsventil 35 besteht dabei wiederum aus einer Bimetall-Schnapp-Tellerfeder 38, die mit einer O-Ring-Dichtung zusammenwirkt und die von einem Schwimmer 39 in und außer Funktion gebracht wird, wenn Kühlmittel bzw. Luft oder Brenngas im Hochpunkt 10′ anliegt. Die Bimetall-Tellerfeder 38 weist eine Schalttemperatur von etwa 60°C auf, so daß bei normaler Betriebstemperatur des Kühlkreises ein ständiger Entlüftungs- und Entgasungs-Nebenstrom zum Luftabscheidebehälter 17 besteht. Während des Maschinen-Warmlaufes ist dagegen das Entlüftungsventil 35 nach dem Abströmen von Luft oder Brenngas stets geschlossen, so daß der Warmlauf der Maschine nicht durch eine Kühlwirkung dieses Entlüftungsstromes verlängert wird.At the high point 10 'of the return water tank 10 of the cross-flow cooler 6, which forms a particularly effective air and leakage gas collection point, a further vent line 37 is connected to the bypass vent line 14 via a vent valve 35 and a throttle point 36. The vent valve 35 in turn consists of a bimetallic snap disc spring 38 which interacts with an O-ring seal and which is brought into and out of operation by a float 39 when coolant or air or fuel gas is at the high point 10 ' is present. The bimetal disc spring 38 has a switching temperature of about 60 ° C, so that at normal operating temperature of the cooling circuit there is a constant venting and degassing bypass flow to the air separation container 17. In contrast, during machine warm-up, the vent valve 35 is always closed after the outflow of air or fuel gas, so that the warm-up of the machine is not prolonged by a cooling effect of this vent stream.

Über je eine Heizungs-Vor- und -Rücklaufleitung 40 bzw. 41 ist an den Kühlkreis eine Fahrzeug-Innenraum-Heizung mit je einem linken und rechten Heizungs-Wärmetauscher 42 bzw. 43 und je einem linken und rechten Heizungs-Regelventil 44 bzw. 45 sowie einer elektrischen Heizungs-Zusatzpumpe 46 in üblicher Weise angeschlossen. Die Heizungs-Vorlaufleitung 40 zweigt dabei vom Kühler-Vorlauf 5 ab und die Heizungs-Rücklaufleitung 41 mündet in das hochliegend angeordnete Thermostat 9. Zwischen der Heizungs-Zusatzpumpe 46 und den Regelventilen 44 und 45 ist ein Umschaltventil 47 angeordnet, das mittels einer nicht dargestellten elektrischen Steuerschaltung bei einem Abstellen der Maschine 1 mit hoher Betriebstemperatur die Heizungs-Vorlaufleitung 40 in eine Zylinderkopf-Rücklaufleitung 48 umsteuert. Die dadurch bei abgestellter Maschine 1 erreichbare Kühlmittel-Durchströmung des heißen Zylinderkopfes spült an Heißstellen entstehende Kühlmittel-Dampfblasen sofort weg und erreicht deren sofort anschließende Kondensation im weiteren Kühlmittelstrom, wodurch örtliche Dampfblasen-Ansammlungen mit entsprechendem Druckaufbau im gesamten Kühlkreis sowie dadurch bedingtem Auswurf von Kühlmittel, im Extremfall sogar bis zum Überlaufen des Ausgleichsbehälters 27, vermieden wird.A vehicle interior heater with a left and right heater heat exchanger 42 and 43 and a left and right heater control valve 44 and 45, respectively, is connected to the cooling circuit via a heater supply and return line 40 and 41, respectively and an additional electric heater pump 46 connected in a conventional manner. The heating flow line 40 branches off from the cooler flow 5 and the heating return line 41 opens into the elevated thermostat 9. Between the additional heating pump 46 and the control valves 44 and 45, a changeover valve 47 is arranged, which by means of a not shown electrical control circuit when the machine 1 is turned off at a high operating temperature, the heating flow line 40 is reversed into a cylinder head return line 48. The coolant flow through the hot cylinder head that can be achieved when the machine 1 is switched off immediately flushes away coolant vapor bubbles that occur at hot spots and achieves their immediate subsequent condensation in the further coolant flow, as a result of which local vapor bubble accumulations with corresponding pressure build-up in the entire cooling circuit and consequent ejection of coolant, in extreme cases even up to overflow of the expansion tank 27 is avoided.

Die Figuren 5 bis 10 zeigen bei gleichem Grundprinzip unterschiedliche Zuordnungsmöglichkeiten der erfindungsgemäßen Kühlkreis-Bauelemente.FIGS. 5 to 10 show different assignment options for the cooling circuit components according to the invention using the same basic principle.

In Fig. 5 sind die Anordnungen des Luftabscheidebehälters 17 am Hochpunkt 5′ des Kühler-Vorlaufes 5, des atmosphärischen Ausgleichsbehälters 27 in getrennter Ausbildung und des Entlüftungs-Ventiles 35 am Rücklauf-Wasserkasten 10 übereinstimmend mit den Fig. 1 bis 3 dargestellt.In Fig. 5, the arrangements of the air separation tank 17 at the high point 5 'of the cooler flow 5, the atmospheric expansion tank 27 in a separate design and the vent valve 35 on the return water tank 10 are shown in accordance with FIGS. 1 to 3.

In Fig. 6 ist dagegen der Kühler-Vorlauf 5 an ihrem Hochpunkt 5′ lediglich mit einem Füllstutzen 19 und einem ventillosen Verschlußdeckel 20′ ausgerüstet. Der Luftabscheidebehälter 17 ist am Rücklauf-Wasserkasten 10 angebaut bzw. angeformt und mit dem Ausgleichsbehälter 27 zusammengefaßt. Dessen Befülldeckel 32 weist eine angeformte Abdeckung 32′ für den Verschlußdeckel 20 des Ausgleichsbehälters 27 auf, der eine Fehlbedienung beim Nachfüllen in den Ausgleichsbehälter 27 und damit einen Überdruckverlust bei betriebswarmem Kühlmittel weitestgehend ausschließt.In Fig. 6, on the other hand, the cooler flow 5 at its high point 5 'is only equipped with a filler neck 19 and a valveless cap 20'. The air separator tank 17 is attached or molded to the return water tank 10 and combined with the expansion tank 27. Whose filling cover 32 has a molded cover 32 'for the closure cover 20 of the expansion tank 27, which largely precludes incorrect operation when refilling the expansion tank 27 and thus a loss of overpressure when the coolant is warm.

In den Fig. 7 bis 10 sind der Luftabscheidebehälter 17 und der atmosphärische Ausgleichsbehälter 27 in Übereinstimmung mit Fig. 6 zusammengefaßt, jedoch unabhängig von Kühler 6 gesondert angeordnet. Dabei ist die Nebenstrom-Entlüftungsleitung 14 in Fig. 7 am Hochpunkt 5′ des Kühler-Vorlaufes 5, in Fig. 8 am Hochpunkt des Vorlauf-Wasserkastens 7 und in den Fig. 9 und 10 unmittelbar an einem Hochpunkt des Kühlmantels 2 der Maschine 1 angeschlossen.7 to 10, the air separation tank 17 and the atmospheric expansion tank 27 are combined in accordance with FIG. 6, but are arranged separately from the cooler 6. The bypass vent line 14 in Fig. 7 at the high point 5 'of the cooler flow 5, in Fig. 8 at the high point of the flow water tank 7 and in Figs. 9 and 10 directly at a high point of the cooling jacket 2 of the machine 1st connected.

In den Fig. 9 und 10 ist ferner eine zusätzliche Befüll-Leitung 19′ vom Kühler-Vorlauf 5 abgezweigt, die vom Verschlußdeckel 20 unmittelbar abgeschlossen ist. Dabei ist in Fig. 9 ein Füllstutzen 19 neben dem Luftabscheidebehälter 17 angeordnet, während in Fig. 10 die Befüll-Leitung 19′ innerhalb des Luftabscheidebehälters 17 an den Verschlußdeckel 20 anschließt.9 and 10, an additional filling line 19 'is branched off from the cooler flow 5, which is completed by the cap 20 immediately. In Fig. 9, a filler neck 19 is arranged next to the air separation container 17, while in Fig. 10 the filling line 19 'within the air separation container 17 connects to the closure cap 20.

Die hydraulische Verschaltung der Funktionselemente ist in allen Ausführungen übereinstimmend mit den Fig. 1 bis 3.The hydraulic connection of the functional elements is identical in all versions with FIGS. 1 to 3.

In Fig. 11 sind im Gegensatz zu Fig. 2 der Kühler-Vorlauf 5 einerseits sowie der Luftabscheidebehälter 17 und der Füllstutzen 19 andererseits nicht gleichachsig und konzentrisch zueinander sondern sich gegenseitig anschneidend seitlich nebeneinander angeordnet. - Dabei kann der Füllstutzen 19 auch zentrisch innerhalb eines ringförmig verzweigten Teilbereiches des Kühler-Vorlaufes 5 angeordnet sein, wobei der Einsatz 49 eine dann ebenfalls ringförmig umlaufende Verbindungsöffnung zwischen Füllstutzen 19 und Kühler-Vorlauf 5 verschließt. - Der Füllstutzen 19 mündet dadurch in beiden Fällen nach unten in den gleichachsigen Luftabscheidebehälter 17 und zur Seite hin in den Kühler-Vorlauf 5, so daß zum raschen Befüllen je eine große Verbindungsöffnung 17′ und 5˝ bei abgenommenen Verschlußdeckel 20 zur Verfügung stehen. Der Verschlußdeckel 20 verschließt neben der Einfüll-Öffnung des Füllstutzens 19 auch die Verbindungsöffnungen 17′ und 5˝ gegeneinander. Hierzu schließt an die Unterseite des Verschlußdeckels 20 ein hohlzylindrischer Einsatz 49 dicht an und stützt sich mit seiner unteren Stirnseite über einen O-Dichtring 50 am oberen Rand des Luftabscheidebehälters 17 ab. Das Innere des Einsatzes 49 setzt den Luftabscheidebehälter 17 nach oben zur Unterseite des Verschlußdeckels 20 hin fort. Der Innenaufbau des Verschlußdeckels 20 stimmt zwar mit demjenigen nach Fig. 2 überein, jedoch ist dessen Vorlaufdruck-Steuerkammer 15 in umgekehrter Richtung von außen aus dem Hochpunkt 5′ des Kühler-Vorlaufes 5 radial-einwärts und axial-abwärts durch die entsprechende Drosselstelle 16 und einen daran anschließenden Teil der Nebenstrom-Entlüftungsleitung 14 durchströmt, der im Einsatz 49 als koaxiales Rohr 51 einstückig ausgebildet ist. Die Unterseite des Verschlußdeckels 20 ist über radial verteilte Öffnungen 52 mit seinen innenliegenden Überdruck- und Unterdruck-Ventilen 21 und 22 (Fig. 2) verbunden, so daß stets Luft- und Gas-Ansammlungen zuerst durch die Ventilöffnungen aus dem Hochpunkt des Luftabscheidebehälters 17 abströmen können. Dem Luftabscheidebehälter 17 ist an der Unterseite ein Schlauchanschlußstutzen 53 für einen Schlauch 54 mit relativ großem Querschnitt angeformt, die beide das Volumen des Luftabscheidebehälters 17 und damit auch seine Funktion zusätzlich erweitern und verbessern.In FIG. 11, in contrast to FIG. 2, the cooler inlet 5 on the one hand and the air separation container 17 and the filler neck 19 on the other hand are not arranged coaxially and concentrically with one another but mutually intersecting and arranged side by side. - The filler neck 19 can also be arranged centrally within an annularly branched section of the cooler inlet 5, the insert 49 closing a connection opening between the filler neck 19 and the radiator inlet 5, which is then also circular. - The filler neck 19 opens in both cases down into the coaxial air separator tank 17 and to the side in the cooler flow 5, so that each a large connection opening 17 'and 5' are available with the cap 20 removed for rapid filling. The closure cover 20 closes in addition to the filling opening of the filler neck 19 and the connection openings 17 'and 5' against each other. For this purpose, a hollow cylindrical insert 49 closes tightly on the underside of the closure cover 20 and is supported with its lower end face by an O-ring 50 at the upper edge of the air separation container 17. The interior of the insert 49 continues the air separation container 17 upwards towards the underside of the closure cover 20. The inner structure of the closure cover 20 corresponds to that of FIG. 2, but its flow pressure control chamber 15 is in reverse Direction from the outside from the high point 5 'of the cooler flow 5 radially inward and axially downward through the corresponding throttle point 16 and an adjoining part of the bypass vent line 14 flows through, which is integrally formed in the insert 49 as a coaxial tube 51. The underside of the closure cover 20 is connected via radially distributed openings 52 to its internal pressure and vacuum valves 21 and 22 (FIG. 2), so that air and gas accumulations always flow out first through the valve openings from the high point of the air separation container 17 can. A hose connection piece 53 for a hose 54 with a relatively large cross-section is formed on the underside of the air separation container 17, both of which additionally expand and improve the volume of the air separation container 17 and thus also its function.

Über seitliche Anschlüsse 55 und 56 ist unten an den Luftabscheidebehälter 17 und oben an die Ventile 21 und 22 im Verschlußdeckel 20 eine Schwimmerkammer 57 eines elektrischen Kühlmittel-Niveaugebers 18 angeschlossen. Eine weitere Entlüftungsleitung 37, die vom Rücklauf-Wasserkasten 10 des Querstromkühlers 6 ausgeht (Fig. 1 und 3) kann in einfacher Weise an die Schwimmerkammer 57 angeschlossen sein, da sich diese aufgrund seiner Anschlüsse ebenfalls als wirksames Entlüftungs- und Entgasungs-Volumen eignet. Neben der dargestellten Steck-Anschlüsse 55 und 56 ist auch eine einstückige Ausbildung mit dem Füllstutzen 19, dem Luftabscheidebehälter 17 und dem Kühler-Vorlauf-Teilstück (5) vorteilhaft ausführbar.Via side connections 55 and 56, a float chamber 57 of an electrical coolant level sensor 18 is connected at the bottom to the air separation container 17 and at the top to the valves 21 and 22 in the closure cover 20. Another vent line 37, which starts from the return water tank 10 of the cross-flow cooler 6 (FIGS. 1 and 3), can be connected to the float chamber 57 in a simple manner, since its connections are also suitable as an effective venting and degassing volume. In addition to the plug connections 55 and 56 shown, a one-piece design with the filler neck 19, the air separating container 17 and the cooler flow section (5) can also be advantageously carried out.

Zum Schutz gegen Funktions-Störungen der Ventile 21 und 22 im Verschlußdeckel 20 sind an der Unterseite des Einsatzes 50 und im oberen Bereich der Schwimmerkammer 57 je ein Feinsieb 58 angeordnet, die ausschließlich von dem durch die Ventile 21 und 22 ein- und aus-strömenden Kühlmittel beaufschlagt sind und somit keiner unnötigen Schmutzbelastung aus umlaufendem Kühlmittel unterliegen.To protect against malfunctions of the valves 21 and 22 in the closure cover 20 are on the underside of the insert 50 and in the upper region of the float chamber 57 each a fine screen 58 is arranged, which are acted upon exclusively by the coolant flowing in and out through the valves 21 and 22 and are therefore not subject to unnecessary contamination from the circulating coolant.

Abweichend von der hydraulischen Schaltung gemäß dem Blockschaltbild nach Fig. 1 kann auch der Befülldeckel 32 (Fig. 1) des Ausgleichsbehälters 27 mit entsprechenden Überdruck- und Unterdruck-Ventilen ausgestattet werden, die die Ventile 21 und 22 im Verschlußdeckel 20 des Füllstutzens 19 ersetzen oder zu diesen in Reihe liegen, so daß sich ein Überdruck-Ausgleichsbehälter mit Luftpolster ergibt. Die Wirkungsweise des Luftabscheidebehälters 17 mit verbessertem Befüllen und Entlüften sowie verkürztem Warmlauf des Maschinen-Kühlkreises wird dabei gleichfalls genutzt.1, the filler cap 32 (FIG. 1) of the expansion tank 27 can be equipped with corresponding overpressure and underpressure valves which replace the valves 21 and 22 in the closure cover 20 of the filler neck 19 or are in line with these, so that there is an overpressure reservoir with air cushion. The mode of operation of the air separation container 17 with improved filling and venting and shortened warm-up of the machine cooling circuit is also used.

Claims (17)

  1. A liquid cooling circuit in engines and machines, more particularly internal combustion engines, comprising an air separator (17) which is disposed in a branch vent passage (14) from a high point (5') in the radiator inflow (5- comprising the engine cooling jacket (2) and the radiator inlet tank (7)) to the radiator return flow (11 - comprising the radiator outlet tank (10) and the suction side (13) of a coolant pump (3) at the inlet of the engine cooling jacket), the air separator being provided at its high point with a filling nozzle (19) comprising an inlet opening and a closure cover (20), the high point of which is connected by conduits via an excess-pressure valve (21) and a negative-pressure valve (22) in the closure cover (20) to the bottom region of an atmospheric compensating tank (27), at least one excess-pressure valve (21) limiting the pressure in the air separator (17) and, by means of a control line, in the radiator inflow (5), characterised in that the air separator (17) is disposed at the high point (5') of the radiator inflow (5), the filling nozzle (19) has openings connecting to the high points of the radiator inflow (5) and of the air separator (17), the closure cover (20) closes the filling opening of the nozzle (19) and also the connecting openings from one another, a throttled flow connection (throttle 16) forming part of the branch vent passage (14) leads from the high point (5') of the radiator inflow (5) to the near-bottom region of the air separator (17), the closure cover (20) has a direct connecting passage serving as a control line, between the connecting opening of the filling nozzle (19) and the radiator inflow (5) on the one hand and the excess-pressure valve (21) limiting the pressure in the radiator inflow (5) and the servomotor (control diaphragm 15') thereof on the other hand, and a temperature-controlled vent valve (thermal catch spring 23) is disposed in the flow connection from the high point of the air separator (17) to the compensating tank (27) and has a closed-switch temperature which is below the thermostatically-controlled normal operating temperature of the coolant and above which the pressure curve of the coolant, depending on thermal expansion, elasticity and pump operation, at the suction side (13) of the coolant pump (3) is such as to ensure cavitation-free operation.
  2. A cooling circuit according to claim 1, characterised in that the filling nozzle (19) opens directly into a high point (5') of the radiator inflow (5), the air separator (17) concentrically surrounds the filling nozzle (19) and, via their connecting opening, its high point is connected to the valves (21, 22) in the closure cover (20), and the radiator inflow (5) extends through the air separator (17) in the region of the mouth of the filling nozzle (19).
  3. A cooling circuit according to claim 1, characterised in that the air separator (17) has a coolant level pick-up (18).
  4. A liquid cooling circuit in engines and machines, more particularly internal combustion engines, comprising a filling nozzle (19) and a filling cover (20) in the filling opening thereof at a high point (5') in the radiator inflow (5), a compensating tank (27) with a filling cover (32) and expansion and storage spaces (30, 31), an excess-pressure valve (21) and a negative-pressure valve (22) in one of the filling covers (20, 32) and a connecting passage (25) from the high point of the filling nozzle (19) to the bottom region of the compensating container (27), characterised in that an air separator (17) is disposed on the filling nozzle (19) of the radiator inflow (5) and is disposed in a vent branch passage (14) from a high point (5') of the radiator inflow (5) to the radiator return flow (11), the cross-section being constricted (16) between the radiator inflow (5) and the air separator (17), and the high point of the separator being connected to the connecting passage from the filling nozzle (19) to the bottom region of the compensating tank (27).
  5. A cooling circuit according to claim 4, characterised in that an excess-pressure valve (21) in the closure cover (20) is controlled, via a control line, by the pressure in the radiator inflow (5).
  6. A liquid cooling circuit in engines and machines, more particularly internal combustion engines, comprising an air separator (17) disposed in a branch vent passage (14) from a high point (5') in the radiator inflow (5) to the radiator return flow (11), the high point of the air separator having a filling nozzle (19) with a filling opening and a closure cover (20), the high point of which is connected by conduits via an excess-pressure valve (21) and a negative-pressure valve (22) in the closure cover (20) to the bottom region of an atmospheric compensating tank (27), the vent passage (14) having a constriction (16) before the place where it opens into the air separator (17), characterised in that a temperature-controlled vent valve (23) is disposed in the flow connection (25) from the high point of the air separator (17) to the compensating container (27) and has a closed-switch temperature which is below the thermostatically-controlled normal operating temperature of the coolant and above which the pressure curve of the coolant, determined by thermal expansion, elasticity and pump operation, at the suction side (13) of the coolant pump (3) is such as to guarantee cavitation-free operation thereof.
  7. A liquid cooling circuit in engines and machines, more particularly internal combustion engines, comprising an atmospheric compensating tank (27) disposed downstream of excess-pressure, negative-pressure and vent valves (21, 22) to atmosphere, characterised in that the temperature-controlled vent valve (23) is also constructed as a negative-pressure valve (22) in the closure cover (20) and its valve body constitutes a thermal catch spring which co-operates with a sealing ring constituting a valve seat and opening and is urged towards the sealing ring by a spring (24) and/or a float (24'), the spring (24) or float (24'), the valve body (23) and the sealing ring being coaxially disposed in the aforementioned sequence, vertically above one another, in the body of the excess-pressure valve (21), with a valve opening disposed parallel to the valve opening thereof.
  8. A cooling circuit according to claim 1, 4 or 6, characterised in that an additional vent passage (37) opens into the air separator (17) and extends from the high point (10') of the radiator outlet tank (10) and,at the connection there, has at least one venting or degassing valve (25) controlled by air or gas on one side and by temperature on the other side and opening when air and/or gas arrives or when the run-up temperature of the cooling circuit is above a preset value.
  9. A cooling circuit according to claim 8, characterised in that the venting or degassing valve (35) has a closure means in the form of a float (39), a valve body in the form of a thermal catch spring (38) and a valve seat and opening in the form of an O-ring, which are disposed in the aforementioned sequence coaxially and vertically above one another in a valve chamber.
  10. A cooling circuit according to claim 1 or 5, characterised in that the connection of the control line (14) to the radiator inflow (5) comprises an ejector-like structure such that the excess pressure in the radiator inflow (5), which increases with the speed of the engine or the delivery of the coolant pump, is purposively changed and introduced into the control line (14).
  11. A cooling circuit according to claim 1 or 6, characterised in that an additional excess-pressure valve (26) which closes in dependence on temperature is connected in series with the excess-pressure valve or valves (21) in the flow connection (25) between the air separator (17) and the compensating tank (27), the switching temperature of the additional valve being above the thermostatically controlled normal operating temperature of the coolant, and the excess-pressure valves (21, 26) have opening values adjusted to one another such that,at the switching temperature of the additional excess-pressure valve (26) and simultaneously at the maximum engine speed or pump delivery rate, the excess pressure at the pump outlet (13) is sufficiently far from the pump cavitation limit, and at the maximum planned operating temperature the aforementioned condition is achieved by the additional opening value of the excess-pressure valves (21, 26) and this value is above the boiling pressure corresponding to the maximum locally-occurring planned coolant temperature after switching off the engine (1) after a heavy load.
  12. A cooling circuit according to claim 1 or 6, characterised in that the flow connection (25) between the air separator (17) and the compensating tank (27) comprises a manually operated vent device which, in its vent position, opens by means of a vent screw or a rotary vent position of the closure cover (20) of one of the excess-pressure, negative-pressure, venting and/or thermal valves (21, 22 and 23) or a vent opening parallel thereto.
  13. A cooling circuit according to claim 1, 6 or 12, characterised in that the compensating tank (27) has a connection (33) above its filling-level range for temporarily conveying compressed gas on to the surface of the coolant so as to convey coolant through the flow connection (25) to the air separator (17) and through the negative-pressure, venting and/or thermal valves (22, 23) and the vent opening into the cooling circuit and build up a corresponding pressure therein.
  14. A cooling circuit according to claim 13, characterised in that the compensating tank (17) is made pressure-resistant up to approximately the average cooling-circuit operating pressure and has an excess-pressure safety valve.
  15. A cooling circuit according to claim 14, characterised in that the filling cover (32) of the compensating tank (27) is constructed in the form of an excess-pressure safety valve and is secured to the compensating tank (27) so as to be released when the pressure is excessive, a connecting nozzle (33) with a removable overflow pipe (34) serving as a connection for supplying gas under pressure.
  16. A cooling circuit according to claim 1, 4 or 6, characterised in that the air separator (17), the compensating tank (27) and their filling covers (20, 32) are respectively disposed directly adjacent one another, and the filling cover (32) of the compensating container (27), when in the closed position, overlaps the filling cover (20) of the air separator (17).
  17. A liquid cooling circuit according to any of claims 1, 4 and 6, characterised in that a heating branch circuit (40, 41) which branches from a high outlet from the cooling jacket contains an additional electric pump (46) and a heating device (42, 43), the additional pump (46) is switchable on when the machine (1) is switched off when hot, provided the coolant and/or component is at a minimum temperature at that time, a simultaneously-actuated changeover valve (47) conveys the coolant from the cooling jacket (2) not into the heating device (42, 43) but into the cooling jacket (2) through an inlet opposite the outlet, and the flow of coolant through the cooling jacket (2), more particularly through the cooling jacket of the cylinder head of internal combustion engines, is dimensioned so as to ensure that the intensity at hot spots is sufficient to detach and condense steam bubbles.
EP88107940A 1987-05-18 1988-05-18 Liquid cooling circuit for machines especially for internal combustion engines Expired - Lifetime EP0295445B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873716555 DE3716555A1 (en) 1987-05-18 1987-05-18 FILLING, VENTILATION AND PRESSURE CONTROL DEVICE FOR THE LIQUID COOLING CIRCUIT OF ENGINE AND WORKING MACHINES, IN PARTICULAR COMBUSTION ENGINES
DE3716555 1987-05-18

Publications (3)

Publication Number Publication Date
EP0295445A2 EP0295445A2 (en) 1988-12-21
EP0295445A3 EP0295445A3 (en) 1989-05-03
EP0295445B1 true EP0295445B1 (en) 1991-12-27

Family

ID=6327768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107940A Expired - Lifetime EP0295445B1 (en) 1987-05-18 1988-05-18 Liquid cooling circuit for machines especially for internal combustion engines

Country Status (6)

Country Link
US (1) US4913107A (en)
EP (1) EP0295445B1 (en)
JP (1) JPH01503320A (en)
DE (2) DE3716555A1 (en)
ES (1) ES2028939T3 (en)
WO (1) WO1988009429A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640315B1 (en) * 1988-12-14 1991-02-08 Peugeot INTERNAL COMBUSTION COOLING DEVICE
DE4001208A1 (en) * 1990-01-17 1991-07-18 Bayerische Motoren Werke Ag EVAPORATION COOLING SYSTEM FOR A LIQUID-COOLED INTERNAL COMBUSTION ENGINE
US5241926A (en) * 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
US5410991A (en) * 1994-05-05 1995-05-02 Standard-Thomson Corporation Coolant fill housing with integral thermostat
DE19607638C1 (en) * 1996-02-29 1997-06-19 Porsche Ag Internal combustion engine coolant circuit
DE19611095A1 (en) * 1996-03-21 1997-09-25 Bayerische Motoren Werke Ag Cooling system for a liquid-cooled internal combustion engine
US6447491B1 (en) 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
DE19948160B4 (en) * 1999-10-07 2010-07-15 Wilhelm Kuhn Cooling device for a liquid-cooled internal combustion engine of a motor vehicle
FR2804722B1 (en) * 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804720B1 (en) 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2804719B1 (en) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2806444B1 (en) 2000-03-17 2002-06-07 Peugeot Citroen Automobiles Sa COOLING DEVICE OF A MOTOR VEHICLE ENGINE
FR2816004B1 (en) * 2000-10-27 2003-06-20 Mark Iv Systemes Moteurs Sa COOLING ASSEMBLY FOR MOTOR VEHICLES
US6532910B2 (en) * 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US7152555B2 (en) * 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
US6997284B1 (en) 2001-06-26 2006-02-14 Spicer Technology, Inc. Lubricant cooling system for a motor vehicle axle
DE102005007781B4 (en) * 2005-02-19 2013-01-31 Man Truck & Bus Ag Method and arrangement for rapid construction of the system pressure in the coolant circuit of internal combustion engines
SE529541C2 (en) * 2005-12-05 2007-09-11 Volvo Lastvagnar Ab Cooling
DE102007058575B4 (en) * 2007-12-05 2013-08-01 Man Truck & Bus Ag Motor vehicle with compressed air based cooling system
DE102008033024B4 (en) 2008-07-14 2010-06-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for venting a coolant circuit of an internal combustion engine and coolant circuit for an internal combustion engine
FR2938298B1 (en) * 2008-11-13 2010-11-12 Peugeot Citroen Automobiles Sa ENGINE COOLING CIRCUIT
DE102009048997A1 (en) * 2009-10-09 2011-04-14 Behr Industry Gmbh & Co. Kg Cooling system, in particular for an internal combustion engine
DE102012213262A1 (en) 2012-07-27 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Screwable sensor arrangement for thermostat housing, has sealing element for sealing thermostat housing and aeration unit for aeration of vehicle cooling system
DE102012218392A1 (en) * 2012-10-09 2014-04-10 Reutter Gmbh Directional valve for surge tank of cooling system of combustion engine for e.g. passenger car, has pressure spring that is acted on valve element such that valve blocking operation is performed based on screwing of lid of surge tank
DE202013003370U1 (en) * 2013-04-04 2013-04-29 Reutter Gmbh Cover with a pressure- or temperature-controlled directional valve for a reservoir and cooling system of an internal combustion engine
DE102014201170A1 (en) 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Method and device for venting a thermal management system of an internal combustion engine
CN103867282A (en) * 2014-03-10 2014-06-18 中国北方发动机研究所(天津) Active pressure boosting steam pressure system
DE102015105921B4 (en) * 2015-04-17 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle and method for operating the same
FR3043719B1 (en) * 2015-11-13 2019-07-05 Novares France COOLING CIRCUIT FOR A MOTOR VEHICLE
CN105298622B (en) * 2015-11-19 2017-12-01 中国北车集团大连机车车辆有限公司 The automatic exhaust system of cooling water system for diesel engine
JP2019089524A (en) * 2017-11-17 2019-06-13 アイシン精機株式会社 Vehicular heat exchange device
DE102022128616B3 (en) 2022-10-28 2024-01-04 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Phase change cooling circuit with pressure control device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195266A (en) * 1939-02-24 1940-03-26 Gen Motors Corp Pressure cap
FR919259A (en) * 1945-02-17 1947-03-04 Saurer Adolph Cooling system for motor vehicles
US2480986A (en) * 1947-05-29 1949-09-06 Gen Motors Corp Thermostatic radiator valve
US2878794A (en) * 1957-07-29 1959-03-24 Ralph O Stromberg Automobile cooling system
US3047235A (en) * 1959-04-15 1962-07-31 Gen Motors Corp Thermosensitive radiator caps
US3139073A (en) * 1960-04-29 1964-06-30 Ford Motor Co Cooling system
US3284004A (en) * 1964-11-18 1966-11-08 Ford Motor Co Temperature and pressure responsive filler cap
ZA727381B (en) * 1971-10-29 1973-06-27 W Avrea Monolithic radiator cap for sealed pressurized cooling system
JPS5417900B2 (en) * 1974-03-14 1979-07-03
DE2419266C3 (en) * 1974-04-22 1978-04-27 Daimler-Benz Ag, 7000 Stuttgart Compensation vessel for volume compensation and air separation of a liquid heat transfer medium flowing through, in particular, the machine cooling chambers of a liquid-cooled internal combustion engine in a circuit
DE2631121A1 (en) * 1976-07-10 1978-01-12 Daimler Benz Ag Liq. cooled IC engine coolant cycle - has additional pump for matching circulation to heat release
US4167159A (en) * 1977-04-29 1979-09-11 Deere & Company Pressurized liquid cooling system for an internal combustion engine
DE2821872B2 (en) * 1978-05-19 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Overpressure cooling system for a liquid-cooled internal combustion engine, in particular in a motor vehicle
DE3045357C2 (en) * 1980-12-02 1986-01-09 Daimler-Benz Ag, 7000 Stuttgart Cooling system for an internal combustion engine
US4358051A (en) * 1981-02-09 1982-11-09 Ford Motor Company Thermostat assembly for an engine cooling system
DE3143749A1 (en) * 1981-11-04 1983-05-11 Magirus-Deutz Ag, 7900 Ulm Device for safeguarding the water pressure in the cooling water circuit of an internal combustion engine
FR2529951A1 (en) * 1982-07-08 1984-01-13 Renault Vehicules Ind DEVICE FOR PRESSURIZING THE COOLING CIRCUIT OF A THERMAL ENGINE
DE3226508C2 (en) * 1982-07-15 1985-12-12 Bayerische Motoren Werke AG, 8000 München Cooling circuit for internal combustion engines
DE3226509A1 (en) * 1982-07-15 1984-01-26 Bayerische Motoren Werke AG, 8000 München COOLING CIRCUIT FOR INTERNAL COMBUSTION ENGINES
JPS5953281A (en) * 1982-09-20 1984-03-27 本田技研工業株式会社 Motorcycle
US4489883A (en) * 1984-01-19 1984-12-25 General Motors Corporation Temperature regulated dual pressure device
US4532894A (en) * 1984-03-30 1985-08-06 Daimler-Benz Aktiengesellschaft Heating arrangement for electrically driven vehicles
DE3424580C1 (en) * 1984-07-04 1985-11-07 Audi AG, 8070 Ingolstadt Cooling system for a liquid-cooled internal combustion engine
DE3430115C1 (en) * 1984-08-16 1986-01-30 Bayerische Motoren Werke AG, 8000 München The volume compensation, the ventilation and storage of serving containers for the liquid cooling system of internal combustion engines
US4591691A (en) * 1984-10-29 1986-05-27 Badali Edward A Auxiliary electric heating system for internal combustion engine powered vehicles

Also Published As

Publication number Publication date
DE3716555A1 (en) 1988-12-08
DE3716555C2 (en) 1989-05-11
EP0295445A2 (en) 1988-12-21
DE3867142D1 (en) 1992-02-06
US4913107A (en) 1990-04-03
WO1988009429A1 (en) 1988-12-01
ES2028939T3 (en) 1992-07-16
JPH01503320A (en) 1989-11-09
EP0295445A3 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0295445B1 (en) Liquid cooling circuit for machines especially for internal combustion engines
EP0157167B1 (en) Cooling system for internal-combustion engines
EP1766207B1 (en) Oil/coolant module with coolant treatment system
DE3436702C2 (en)
DE60019490T2 (en) Fuel conveyor and treatment device
DE3928477C2 (en) Liquid cooling arrangement for an internal combustion engine with a turbocharger
EP1295025B1 (en) Hydraulic circuit
EP1832730B1 (en) Turbo charger with convection cooling system
DE3226509A1 (en) COOLING CIRCUIT FOR INTERNAL COMBUSTION ENGINES
DE102015119250B4 (en) ANTI-BURST COVER COUPLING A PRESSURIZABLE COOLANT TANK AND PRESSURIZABLE COOLANT TANK ASSEMBLY HAVING THE SAME
DE102006014400B4 (en) Expansion tank for a cooling system and cooling arrangement
DE3424470C2 (en) Internal combustion engine
DE102011116202B3 (en) Coolant circuit for an internal combustion engine
DE3700494C2 (en)
DE3045357C2 (en) Cooling system for an internal combustion engine
DE2852725A1 (en) COMPENSATING TANK FOR COOLANT
DE3517715C2 (en) Coolant tank for the coolant circuit of an internal combustion engine
DE4228185A1 (en) Pressure control for IC engine coolant circuit - has float monitored coolant level in expansion tank and with two-level pressure control
DE3534543C2 (en)
DE2821872A1 (en) Pressurised cooling system for liq. cooled IC engines - has reservoir mounted above system with make=up pipe through base, sealed by float valve
EP1130234B1 (en) Cooling device for a liquid of an internal combustion engine
EP0905357B1 (en) Cooling circuit of an internal combustion engine, especially for vehicle
DE102022128616B3 (en) Phase change cooling circuit with pressure control device
DE1576703A1 (en) Water-cooled internal combustion engine
DE4315729C2 (en) Cross flow cooler with integrated expansion tank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890519

17Q First examination report despatched

Effective date: 19900328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3867142

Country of ref document: DE

Date of ref document: 19920206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2028939

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930505

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930513

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930520

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930526

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940519

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940518

EUG Se: european patent has lapsed

Ref document number: 88107940.4

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

EUG Se: european patent has lapsed

Ref document number: 88107940.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030624

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518