EP1832730B1 - Turbo charger with convection cooling system - Google Patents
Turbo charger with convection cooling system Download PDFInfo
- Publication number
- EP1832730B1 EP1832730B1 EP07004656A EP07004656A EP1832730B1 EP 1832730 B1 EP1832730 B1 EP 1832730B1 EP 07004656 A EP07004656 A EP 07004656A EP 07004656 A EP07004656 A EP 07004656A EP 1832730 B1 EP1832730 B1 EP 1832730B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbocharger
- cooling medium
- radiator
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/12—Arrangements for cooling other engine or machine parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/12—Turbo charger
Definitions
- the invention relates to an internal combustion engine with a turbocharger, with a cooling water circuit and with a surge tank for the cooling water circuit.
- the US 4 107 927 shows an internal combustion engine with a turbocharger, which is included in the cooling water circuit of the internal combustion engine. Design requirements are opposed to a realization of this concept in modern internal combustion engines.
- the JP 2 045 617 shows a device in which after switching off the ignition of an internal combustion engine, this is operated for a certain time at idle until the turbocharger has been sufficiently cooled. This requires sensors and electronics.
- the JP 5 9224 414 shows an internal combustion engine having an additional separate cooling circuit including radiator for the cooling of turbocharger and cylinder head.
- the engine block of the internal combustion engine is cooled in a primary cooling circuit.
- the DE 2 825 945 shows an internal combustion engine in which the turbocharger is supplied with the motor running with a pressure generated by the water pump with coolant. After switching off the engine, the cooling water circuit stops, which can lead to overheating of the turbocharger.
- One of the problems underlying the invention is to ensure sufficient cooling of the turbocharger immediately after stopping the engine. If this is not ensured, then damage may result, as described in more detail in the prior art.
- the invention is therefore based on the task of providing an internal combustion engine in which the turbocharger is always sufficiently cooled.
- the invention provides a turbocharger whose turbocharger flow diverges between the water pump output port and the radiator flow from the cooling water circuit. This will ensure that the turbocharger is supplied with pressurized cooling water. This ensures good cooling of the turbocharger during normal operation of the internal combustion engine.
- the turbocharger return flows into a region of the cooling water circuit between the radiator return and the water pump inlet port in the cooling water circuit.
- the turbocharger is subjected to negative pressure, which is generated by the water pump. This results in an improved flow through the turbocharger with cooling water.
- the turbocharger return is via a vent line with the surge tank in combination.
- the water level of the partially filled with air surge tank is geodetically higher than the turbocharger return. This embodiment ensures that a flow is started which cools the turbocharger, even if the water pump does not deliver any cooling liquid. This is attributed to a convection effect. Furthermore, the steam generated in the turbocharger water space is discharged to the expansion tank.
- the turbocharger water space would fill with steam and the cooling would be interrupted.
- the design according to the invention ensures that the turbocharger is reliably cooled in the event of afterheating when the engine is switched off.
- the cooling effect is similar to the operation of a coffee machine, in which a water vapor-water mixture is conducted due to heating up.
- the acting at the lower level back pressure, which allows the Hoch connectedn is formed according to the invention by the pending at the turbocharger feed water volume.
- the invention can also be implemented in that the turbocharger supply via a degassing line with the expansion tank communicates. Then the water level of the expansion tank must be higher than the turbocharger flow. The resulting in the shutdown of the internal combustion engine in the turbocharger in the water chamber gas in the form of water vapor is then discharged through the degassing into the expansion tank, while the water content is returned to that portion of the cooling water circuit, which communicates with the turbocharger flow.
- turbocharger feed with a hose to the radiator return, wherein the turbocharger return is connected with a hose to the expansion tank. It is also possible to connect the turbocharger feed with a hose to the cooling water circuit in the internal combustion engine, wherein the turbocharger return is connected with a hose to the expansion tank.
- turbocharger feed with a hose to the water circuit in the internal combustion engine
- turbocharger return is connected with a hose to the thermostat housing or to the suction side of the water pump.
- This embodiment can also be configured with an electric auxiliary pump in the flow tube of the turbocharger.
- the water flow rate through the turbocharger is too low because of too low a differential pressure between the radiator outlet and the surge tank.
- the cooling of the turbocharger is weak because hoses have to be laid unfavorably due to design requirements and the degassing situation.
- the expansion tank with in the cooling circuit of the Turboladers is included, there must be made expensive additional measures to avoid foaming. Such additional measures in turn lead to an increase in the flow resistance in the expansion tank, which deteriorates the cooling of the turbocharger with the engine stopped. If the turbocharger forcibly acted upon by the water pump of the cooling circuit, then there is indeed a high water flow rate and good cooling with the engine running. However, when the engine is stopped, the cooling is so bad that turbocharger damage often occurs. A dedicated additional pump is costly and prone to failure and should therefore be avoided.
- the invention goes with a clever combination of measures another way, resulting in a reliable cooling of the turbocharger both during operation of the internal combustion engine and after stopping the engine. Unacceptable temperatures are avoided, as well as unwanted ⁇ lverkokung in the bearings of the turbocharger and thus increased wear. With the invention, the requirements for the boundary conditions for the operation of a turbocharger can be easily met, so that any damage to the turbocharger can be attributed to causes that are related to the production of the turbocharger.
- the invention dispenses with additional moving parts such as a postheat pump, furthermore, overpressures are avoided in the cooling system, which can lead to a water vapor outlet and possibly to adewas-serlag.
- the turbocharger supply line is connected to a coolant channel extending in the region of an engine block of the internal combustion engine or even to a coolant channel extending in the engine block itself is. This results in regular reliable flow through the turbocharger with coolant, which is pumped at high pressure through such channels to ensure good cooling of the engine block.
- turbocharger flow can also be connected to a mounted on the engine block thermostat housing, be. This ensures a simple construction and final assembly.
- the turbocharger return can open into a further connected to the coolant circuit Walkerradiator return. In certain embodiments, this ensures good turbocharger after engine stop when the turbocharger is supplied with cooling water from the heating system via its turbocharger return.
- the turbocharger return can also lead to a connected to the coolant circuit water pump return or in a further connected to the coolant circuit oil cooler supply. Depending on the installation space, this may be necessary to obtain small dimensions of the cooling system.
- the degassing as possible in the region of the highest point of the connecting line between the turbocharger return and to let the coolant circuit branch off the connecting line. This ensures that air bubbles easily separate from the coolant without, for example, the convection flow is obstructed by the air bubbles.
- the degassing line branches off from this connecting line in the region of the highest point of the connecting line between the turbocharger return line and the coolant circuit or between the turbocharger supply line and the coolant circuit.
- the invention can also be applied to internal combustion engines in which the flow of the turbocharger with throttles is limited, especially when the turbocharger is connected near the output port of the water pump. Then it may be necessary to provide the line to the turbocharger flow, the line from the turbocharger return and the degassing, each with a throttle for adjusting the flow resistance for the cooling liquid to ensure the flow through the other components of the cooling system with coolant.
- the invention is also realized in a motor vehicle with such an internal combustion engine.
- FIG. 1 shows a schematic representation of the cooling of a turbocharger 1 of an internal combustion engine not shown in detail in this view with a cooling circuit, also not shown.
- the turbocharger 1 has a turbocharger feed 2 and a turbocharger return 3.
- a feed line 4 is connected between a water pump outlet port and a radiator flow to the coolant circuit of the internal combustion engine.
- an output line 5 is connected, which leads to a tee 6.
- One of the other two terminals of the T-piece 6 is connected to a return line 7, which opens in a region of the coolant circuit between the radiator return and the water pump Eingartgsan gleich the internal combustion engine.
- the remaining connection of the T-piece 6 is connected to a degassing 8, which leads to a surge tank 9, above a water level 10 in the expansion tank 9.
- a compensation line 11 is connected, which leads to the coolant circuit of the engine ,
- the water level 10 is above the turbocharger. 1
- the turbocharger 1 is supplied with pressurized water, via the supply line 4 and via the return line 7.
- the internal combustion engine turned off, then formed due to the high temperatures of the turbocharger 1 gas bubbles inside the turbocharger 1.
- Fig. 1 illustrated by drawn gas bubbles in the output line 5 and the turbocharger 1.
- the coolant located in the interior of the turbocharger 1, in the feed line 4 and in the outlet line 5 is conveyed upwards, up to the area of the T-piece 6, which is advantageously at a relatively high point from the outlet line 5 and return line 7 is arranged.
- the gas bubbles separate from the coolant, because they escape through the degassing 8 into the expansion tank 9.
- the gas bubbles separate from the coolant, because they escape through the degassing 8 into the expansion tank 9.
- the water vapor contained in the gas bubbles and the auskondensiere coolant is returned to the cooling circuit.
- mitbe recommendationstes coolant is returned to the surge tank 9 and thus in the cooling circuit of the engine.
- FIG. 2 shows a schematic representation of the cooling system of an internal combustion engine 15, where the in FIG. 1 described turbocharger is provided.
- the internal combustion engine 15 is designed here as a V-type engine with a first row of cylinders 16 and with a second row of cylinders 17.
- a water pump 18 having a water pump input port 20, a first water pump output port 21 for the first cylinder bank 16, and a second water pump output port 22 for the second cylinder bank 17.
- the coolant flow in the internal combustion engine 1, which is generated by the water pump 18 is illustrated with directional arrows.
- the coolant outlets of the first row of cylinders 16 and of the second row of cylinders 17 are brought together in a ridge line 23. From there, the cooling water flow enters a radiator inlet line 24 from and into a radiator flow 25 of a radiator 26 a.
- a radiator return 27 is provided, which is connected via a radiator return line 28 with a thermostat 29. From the thermostat 29 performs a water pump line 30 to the water pump 18 back.
- a short-circuit line 31 connects the thermostat 29 to the land line 23.
- the coolant circuit of the internal combustion engine 15 is predetermined.
- the thermostat 29 closes the connection between the radiator return line 28 and thermostat 29. At the same time, the connection between the short-circuit line 31 and the thermostat 29 is opened. Coolant then circulates from the water pump 18 into the first row of cylinders 16, into the second row of cylinders 17 and into the line 23. From there, the coolant is fed into the short line 31, to the thermostat 29 and from there via the water pump line 30 back to the water pump 18 ,
- the thermostat 29 closes the connection between the shorting line 31 and the thermostat 29, at the same time the connection between the radiator return line 28 and the thermostat 29 is opened.
- the coolant then flows from the riser 23 into the radiator feed line 24 and into the radiator run 25. It is cooled in the radiator 26 and takes its way via the radiator return 27 and the radiator return line 28 to the thermostat 29 There it is conveyed back to the water pump 18 via the water pump line 30.
- a plurality of auxiliary units are connected, such as an oil cooler 32, a Schuungsradiator 33, the surge tank 9 and the turbocharger 1.
- the oil cooler 32 is supplied via an oil cooler inlet line 34 with coolant from the radiator feed line 24.
- the coolant heated in the oil cooler 32 is returned to the radiator return line 28 via an oil cooler drain line 35.
- the Bankungsradiator 33 is supplied with coolant, which is taken at a location of the web lead 23. From there it is fed via a Bankungsradiator supply line 36 to the Bankungsradiator 33. The coolant cooled in the heating radiator 33 is returned to the thermostat 29 via a heating radiator return line 37. From the Bankungsradiator-return line 37 branches a compensation line 38 to the bottom of the surge tank 9 from. Furthermore, the return line 7 is connected from the T-piece 6 to the Bankungsradiator-return line 37.
- a vent line 39 extends between the bridge line 23 and the surge tank 9, wherein the expansion tank 9 facing the end of the vent line 39 forks into a above the water level 10 opening gas line 40 and into a below the water level 10 opening coolant line 41.
- the flow line 4 to the turbocharger 1 is connected to a coolant outlet 42 second row of cylinders 17 to the coolant circuit.
- a properly sized flow restrictor 43 of the flow resistance of the flow line 4 is set so that the turbocharger 1 is supplied with sufficient coolant during normal operation of the engine 15.
- a degassing throttle 44 in the degassing 8 whose flow resistance is set.
- the degassing throttle 44 has the task of counteracting the excessive inflow of coolant from the turbocharger return 3 to the expansion tank 9.
- the vent throttle 44 causes, above all, water vapor to escape into the expansion tank 9 and not so much coolant.
- the design can FIG. 2 be essentially taken over.
- the return line 7 is not connected to the Bankungsradiator-return line 37, but the thermostat 29, to the water pump line 30 or equal to the water pump 18.
- the supply line 4 can also be connected to the web line 23 or to the radiator feed line 24 ,
- the flow restrictor 43 and the degassing throttle 44 can also be designed as variably adjustable throttles.
- the return line 7 can be connected to the radiator return line 28.
- FIG. 3 shows a schematic representation of another internal combustion engine 45, which is designed as a four-cylinder with a single cylinder row 46. Parts with the same function are in FIG. 3 denoted by the same reference numerals as in FIG. 1 and in FIG. 2 , but they are provided with an apostrophe.
- the thermostat 29 ' When starting the engine 45 in a cold state, the thermostat 29 'is closed.
- the coolant therefore circulates from the water pump 18 'into the cylinder bank 46, thence into the heater radiator supply line 36', through the heater radiator 33 ', back into the heater radiator return line 37', thence into the oil cooler 32 'and back into the Water pump inlet port 20 '.
- coolant flows from the thermostat 29 '"to the T-piece 6' and from there via the feed line 4 'to the turbocharger 1'.
- the coolant in the turbocharger 1 ' is sucked into the radiator return line 28 via the outlet line 5' the action of the water pump 18 'communicating with the radiator return line 28' via the oil cooler 32 '.
- the thermostat 29 opens, the path is released via the radiator supply line 24 'to the radiator 26'. At the flow through the turbocharger 1 'nothing changes.
- the escaping gas bubbles / coolant mixture is replaced by the output line 5 'nachströmendes coolant.
- the flow direction of the turbocharger 1 'in the normal operating state of the internal combustion engine 45 is reversed to the flow of coolant with the internal combustion engine stopped when gas bubbles form inside the turbocharger 1'.
- the opening for the turbocharger feed 2 ' can be arranged at a geodetically greater altitude than that for the turbocharger return 3'.
- the water level 10 ' is then at a higher altitude than the turbocharger return 3'.
- this version offers a turbochargers, which are only a limited thermal load.
- this embodiment has advantages in terms of compactness in the arrangement of the components provided for the coolant circuit. A particularly space-saving design is hereby made possible.
- the output line 5 'at the turbocharger return 3' is not connected to the radiator return line 28 ', but to the Schuungsradiator return line 37'. At the flow through the turbocharger 1 'thereby nothing changes.
- the coolant in the turbocharger 1 ' is drawn via the output line 5' in the Schuradradator return line 37 ', due to the action of the water pump 18', which communicates via the oil cooler 32 'with the Schuradradiator return line 37'.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
Die Erfindung betrifft einen Verbrennungsmotor mit einem Turbolader, mit einem Kühlwasserkreislauf und mit einem Ausgleichsbehälter für den Kühlwasserkreislauf.The invention relates to an internal combustion engine with a turbocharger, with a cooling water circuit and with a surge tank for the cooling water circuit.
Aus der Druckschrift
Ein Verbrennungsmotor ist in der
Die
Die
Die
Die
Eine der Erfindung zugrunde liegenden Problematik liegt darin, unmittelbar nach dem Abstellen des Verbrennungsmotors eine ausreichende Kühlung des Turboladers sicherzustellen. Wird dies nicht sichergestellt, dann können sich Beschädigungen ergeben, wie im Stand der Technik näher beschrieben ist.One of the problems underlying the invention is to ensure sufficient cooling of the turbocharger immediately after stopping the engine. If this is not ensured, then damage may result, as described in more detail in the prior art.
Die Erfindung geht somit von der Aufgabe aus, einen Verbrennungsmotor bereitzustellen, bei dem der Turbolader stets ausreichend gekühlt wird.The invention is therefore based on the task of providing an internal combustion engine in which the turbocharger is always sufficiently cooled.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Patentansprüchen.This object is solved by the subject matter of the independent patent claims. Advantageous developments emerge from the dependent claims.
Die Erfindung stellt einen Turbolader bereit, dessen Turbolader-Vorlauf zwischen dem Wasserpumpen-Ausgangsanschluss und dem Radiator-Vorlauf vom Kühlwasserkreislauf abzweigt. Dadurch wird sichergestellt, dass der Turbolader mit unter Druck stehendem Kühlwasser versorgt wird. Dadurch ist eine gute Kühlung des Turboladers im normalen Betrieb des Verbrennungsmotors gewährleistet.The invention provides a turbocharger whose turbocharger flow diverges between the water pump output port and the radiator flow from the cooling water circuit. This will ensure that the turbocharger is supplied with pressurized cooling water. This ensures good cooling of the turbocharger during normal operation of the internal combustion engine.
Der Turbolader-Rücklauf mündet dabei in einem Bereich des Kühlwasserkreislaufs zwischen dem Radiator-Rücklauf und dem Wasserpumpen-Eingangsanschluss in den Kühlwasserkreislauf. Dadurch wird der Turbolader mit Unterdruck beaufschlagt, der von der Wasserpumpe erzeugt wird. Dadurch ergibt sich eine verbesserte Durchströmung des Turboladers mit Kühlwasser.The turbocharger return flows into a region of the cooling water circuit between the radiator return and the water pump inlet port in the cooling water circuit. As a result, the turbocharger is subjected to negative pressure, which is generated by the water pump. This results in an improved flow through the turbocharger with cooling water.
Zur Verbesserung der Kühlung des Turboladers bei abgestelltem Motor, wenn die Wasserpumpe kein Kühlwasser fördert, steht der Turbolader-Rücklauf über eine Entgasungsleitung mit dem Ausgleichsbehälter in Verbindung. Dabei liegt der Wasserstand des teilweise mit Luft gefüllten Ausgleichsbehälters geodätisch höher als der Turbolader-Rücklauf. Durch diese Ausgestaltung ist gewährleistet, dass eine Strömung in Gang kommt, die den Turbolader kühlt, auch wenn die Wasserpumpe keine Kühlflüssigkeit fördert. Dies auf einen Konvektionseffekt zurückgeführt. Des Weiteren wird der im Turbolader-Wasserraum erzeugte Dampf zum Ausgleichsbehälter abgeführt.To improve the cooling of the turbocharger with the engine stopped, when the water pump does not deliver cooling water, the turbocharger return is via a vent line with the surge tank in combination. The water level of the partially filled with air surge tank is geodetically higher than the turbocharger return. This embodiment ensures that a flow is started which cools the turbocharger, even if the water pump does not deliver any cooling liquid. This is attributed to a convection effect. Furthermore, the steam generated in the turbocharger water space is discharged to the expansion tank.
Ohne diesen Entgasungsschlauch würde sich der Turbolader-Wasser-raum mit Dampf füllen und die Kühlung würde unterbrochen werden. Durch die erfindungsgemäße Gestaltung wird sichergestellt, dass der Turbolader bei einer Nachhitze bei abgestelltem Motor sicher gekühlt wird. Die Kühlungswirkung ähnelt dabei der Funktionsweise einer Kaffeemaschine, bei der ein Wasserdampf-Wasser-Gemisch aufgrund einer Erwärmung nach oben geführt wird. Der am unteren Niveau wirkende Gegendruck, der das Hochfördern ermöglicht, wird gemäß der Erfindung durch das am Turbolader-Vorlauf anstehende Wasservolumen gebildet.Without this vent hose, the turbocharger water space would fill with steam and the cooling would be interrupted. The design according to the invention ensures that the turbocharger is reliably cooled in the event of afterheating when the engine is switched off. The cooling effect is similar to the operation of a coffee machine, in which a water vapor-water mixture is conducted due to heating up. The acting at the lower level back pressure, which allows the Hochfördern is formed according to the invention by the pending at the turbocharger feed water volume.
Die Erfindung lässt sich auch dadurch umsetzen, dass der Turbolader-Vorlauf über eine Entgasungsleitung mit dem Ausgleichsbehälter in Verbindung steht. Dann muss der Wasserstand des Ausgleichsbehälters höher liegen, als der Turbolader-Vorlauf. Das sich beim Abstellen des Verbrennungsmotors im Turbolader im Wasserraum entstehende Gas in Form von Wasserdampf wird dann über die Entgasungsleitung in den Ausgleichsbehälter entlassen, während der Wasseranteil in denjenigen Bereich des Kühlwasserkreislaufs zurückgeführt wird, der mit dem Turbolader-Vorlauf in Verbindung steht.The invention can also be implemented in that the turbocharger supply via a degassing line with the expansion tank communicates. Then the water level of the expansion tank must be higher than the turbocharger flow. The resulting in the shutdown of the internal combustion engine in the turbocharger in the water chamber gas in the form of water vapor is then discharged through the degassing into the expansion tank, while the water content is returned to that portion of the cooling water circuit, which communicates with the turbocharger flow.
Abweichend davon wäre es auch möglich, den Turbolader-Vorlauf mit einem Schlauch an den Radiator-Rücklauf anzuschließen, wobei der Turbolader-Rücklauf mit einem Schlauch an den Ausgleichsbehälter angeschlossen wird. Ebenso ist es möglich, den Turbolader-Vorlauf mit einem Schlauch an den Kühlwasserkreislauf im Verbrennungsmotor anzuschließen, wobei der Turbolader-Rücklauf mit einem Schlauch an den Ausgleichsbehälter angeschlossen ist.By contrast, it would also be possible to connect the turbocharger feed with a hose to the radiator return, wherein the turbocharger return is connected with a hose to the expansion tank. It is also possible to connect the turbocharger feed with a hose to the cooling water circuit in the internal combustion engine, wherein the turbocharger return is connected with a hose to the expansion tank.
Weiterhin ist es möglich, den Turbolader-Vorlauf mit einem Schlauch an den Wasserkreislauf im Verbrennungsmotor anzuschließen, während der Turbolader-Rücklauf mit einem Schlauch an das Thermostatgehäuse bzw. an die Saugseite der Wasserpumpe angeschlossen wird. Diese Ausführungsform kann auch mit einer elektrischen Zusatzpumpe im Vorlauf-Schlauch des Turboladers ausgestaltet werden.Furthermore, it is possible to connect the turbocharger feed with a hose to the water circuit in the internal combustion engine, while the turbocharger return is connected with a hose to the thermostat housing or to the suction side of the water pump. This embodiment can also be configured with an electric auxiliary pump in the flow tube of the turbocharger.
Diese von der Erfindung abweichenden Ausgestaltungen haben sich nicht bewährt. Bei manchen dieser Ausgestaltungen ist der Wasser-durchsatz über den Turbolader wegen eines zu geringen Differenzdrucks zwischen dem Kühlerausgang und dem Ausgleichsbehälter zu gering. Bei stehendem Motor ist die Kühlung des Turboladers schwach, weil Schläuche bedingt durch Anforderungen konstruktiver Art und der Entgasungssituation ungünstig verlegt werden müssen. Wenn der Ausgleichsbehälter mit in den Kühlungskreislauf des Turboladers einbezogen wird, müssen dort aufwändige Zusatzmaßnahmen getroffen werden, um eine Verschäumung zu vermeiden. Solche Zusatzmaßnahmen führen wiederum zur Erhöhung des Strömungswiderstands im Ausgleichsbehälter, was die Kühlung des Turboladers bei stehendem Motor verschlechtert. Wenn der Turbolader zwangsweise von der Wasserpumpe des Kühlungskreislaufs mit beaufschlagt wird, dann ergibt sich zwar ein hoher Wasserdurchsatz und eine gute Kühlung bei laufendem Motor. Jedoch ist die Kühlung bei stehendem Motor so schlecht, dass sich häufig Turbolader-Schäden einstellen. Eine dafür vorgesehene Zusatzpumpe ist kostenaufwändig und störungsanfällig und sollte daher vermieden werden.These deviating from the invention embodiments have not proven. In some of these embodiments, the water flow rate through the turbocharger is too low because of too low a differential pressure between the radiator outlet and the surge tank. When the engine is stopped, the cooling of the turbocharger is weak because hoses have to be laid unfavorably due to design requirements and the degassing situation. When the expansion tank with in the cooling circuit of the Turboladers is included, there must be made expensive additional measures to avoid foaming. Such additional measures in turn lead to an increase in the flow resistance in the expansion tank, which deteriorates the cooling of the turbocharger with the engine stopped. If the turbocharger forcibly acted upon by the water pump of the cooling circuit, then there is indeed a high water flow rate and good cooling with the engine running. However, when the engine is stopped, the cooling is so bad that turbocharger damage often occurs. A dedicated additional pump is costly and prone to failure and should therefore be avoided.
Die Erfindung geht mit einer geschickten Kombination von Maßnahmen einen anderen Weg, was in einer zuverlässigen Kühlung des Turboladers sowohl im Betrieb des Verbrennungsmotors als auch nach dem Abstellen des Verbrennungsmotors resultiert. Unzulässige Temperaturen werden vermieden, ebenso eine unerwünschte Ölverkokung in den Lagern des Turboladers und damit ein erhöhter Verschleiß. Mit der Erfindung können die Anforderungen an die Randbedingungen für den Betrieb eines Turboladers auf einfache Weise erfüllt werden, so dass etwaige Schäden am Turbolader auf Ursachen zurückgeführt werden können, die mit der Fertigung des Turboladers zusammenhängen. Die Erfindung verzichtet auf zusätzliche bewegte Teile wie beispielsweise einer Nachhitzepumpe, weiterhin werden Überdrücke im Kühlsystem vermieden, die zu einem Wasserdampfaustritt und gegebenenfalls zu einem Kühlwas-serverlust führen können.The invention goes with a clever combination of measures another way, resulting in a reliable cooling of the turbocharger both during operation of the internal combustion engine and after stopping the engine. Unacceptable temperatures are avoided, as well as unwanted Ölverkokung in the bearings of the turbocharger and thus increased wear. With the invention, the requirements for the boundary conditions for the operation of a turbocharger can be easily met, so that any damage to the turbocharger can be attributed to causes that are related to the production of the turbocharger. The invention dispenses with additional moving parts such as a postheat pump, furthermore, overpressures are avoided in the cooling system, which can lead to a water vapor outlet and possibly to a Kühlwas-serverlust.
In einer Weiterbildung der Erfindung ist der Turbolader-Vorlauf an einen im Bereich eines Motorblocks des Verbrennungsmotors verlaufenden Kühlmittelkanal oder gar an einen an einen im Motorblock selbst verlaufenden Kühlmittelkanal angeschlossen ist. Dadurch ergibt sich regelmäßig eine zuverlässige Durchströmung des Turboladers mit Kühlmittel, das mit hohem Druck durch solche Kanäle gepumpt wird, um eine gute Kühlung des Motorblocks sicherzustellen.In one development of the invention, the turbocharger supply line is connected to a coolant channel extending in the region of an engine block of the internal combustion engine or even to a coolant channel extending in the engine block itself is. This results in regular reliable flow through the turbocharger with coolant, which is pumped at high pressure through such channels to ensure good cooling of the engine block.
Abweichend davon kann der Turbolader-Vorlauf auch an ein am Motorblock angebautes Thermostatgehäuse angeschlossen ist, sein. Dies stellt eine einfache Konstruktion und Endmontage sicher.Deviating from this, the turbocharger flow can also be connected to a mounted on the engine block thermostat housing, be. This ensures a simple construction and final assembly.
Besonders bei engem Bauraum kann der Turbolader-Rücklauf in einen weiterhin an den Kühlmittelkreislauf angeschlossenen Heizradiator-Rücklauf münden. Bei bestimmten Ausführungsformen wird dadurch eine gute Beaufschlagung des Turboladers nach dem Abstellen des Motors gewährleistet, wenn der Turbolader über seinen Turbolader-Rücklauf mit Kühlwasser aus dem Heizsystem versorgt wird.Especially in tight spaces, the turbocharger return can open into a further connected to the coolant circuit Heizradiator return. In certain embodiments, this ensures good turbocharger after engine stop when the turbocharger is supplied with cooling water from the heating system via its turbocharger return.
Es hat sich bewährt, den Turbolader-Rücklauf dabei zwischen einem Punkt, an dem der Heizradiator-Rücklauf in einen Heizradiator mündet, und einem Punkt vorzusehen, in dem der Heizradiator-Rücklauf in einem Thermostat mündet, an den Heizradiator-Rücklauf (37) angeschlossen ist, und zwar besonders für den Fall, dass der Thermostat im Wasserpumpenzulauf angeordnet ist.It has been proven to provide the turbocharger return line between a point at which the Heizradiator return flows into a Heizradiator, and a point at which the Heizradiator return flows in a thermostat connected to the Heizradiator return (37) is, especially in the event that the thermostat is located in the water pump inlet.
Der Turbolader-Rücklauf kann aber auch in einen weiterhin an den Kühlmittelkreislauf angeschlossenen Wasserpumpen-Rücklauf oder in einen weiterhin an den Kühlmittelkreislauf angeschlossenen Ölkühler-Vorlauf münden. Je nach Bauraum kann dies erforderlich sein, um geringe Abmessungen des Kühlsystems zu erhalten.The turbocharger return can also lead to a connected to the coolant circuit water pump return or in a further connected to the coolant circuit oil cooler supply. Depending on the installation space, this may be necessary to obtain small dimensions of the cooling system.
Es soll angestrebt werden, die Entgasungsleitung möglichst im Bereich des höchsten Punkts der Verbindungsleitung zwischen Turbolader-Rücklauf und Kühlmittelkreislauf von der Verbindungsleitung abzweigen zu lassen. Dadurch wird sichergestellt, dass sich Luftblasen leicht von der Kühlflüssigkeit trennen ohne dass z.B. die Konvektionsströmung durch die Luftblasen behindert wird. Je nach Ausgestaltung des Kühlsystems kann es dabei notwenig sein, dass die Entgasungsleitung im Bereich des höchsten Punkts der Verbindungsleitung zwischen Turbolader-Rücklauf und Kühlmittelkreislauf bzw. zwischen Turbolader-Vorlauf und Kühlmittelkreislauf von dieser Verbindungsleitung abzweigt.It should be sought, the degassing as possible in the region of the highest point of the connecting line between the turbocharger return and to let the coolant circuit branch off the connecting line. This ensures that air bubbles easily separate from the coolant without, for example, the convection flow is obstructed by the air bubbles. Depending on the configuration of the cooling system, it may be necessary that the degassing line branches off from this connecting line in the region of the highest point of the connecting line between the turbocharger return line and the coolant circuit or between the turbocharger supply line and the coolant circuit.
Die Erfindung kann auch bei Verbrennungsmotoren angewendet werden, bei denen die Durchströmung des Turboladers mit Drosseln begrenzt wird, besonders, wenn der Turbolader nahe des Ausgangsanschlusses der Wasserpumpe angeschlossen ist. Dann kann es nötig sein, die Leitung zum Turbolader-Vorlauf, die Leitung vom Turbolader-Rücklauf und die Entgasungsleitung mit je einer Drossel zur Einstellung des Strömungswiderstands für die Kühlflüssigkeit zu versehen, um die Durchströmung der anderen Komponenten des Kühlsystems mit Kühlflüssigkeit sicherzustellen.The invention can also be applied to internal combustion engines in which the flow of the turbocharger with throttles is limited, especially when the turbocharger is connected near the output port of the water pump. Then it may be necessary to provide the line to the turbocharger flow, the line from the turbocharger return and the degassing, each with a throttle for adjusting the flow resistance for the cooling liquid to ensure the flow through the other components of the cooling system with coolant.
Die Erfindung ist auch in einem Kraftfahrzeug mit einem solchen Verbrennungsmotor verwirklicht.The invention is also realized in a motor vehicle with such an internal combustion engine.
Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung veranschaulicht.
Figur 1- zeigt eine schematische Darstellung eines gemäß der Erfindung gekühlten Turboladers,
Figur 2- zeigt eine schematische Darstellung eines Kühlmittelkreislaufs eines Verbrennungsmotors, an dem die Erfindung verwirklicht ist,
Figur 3- zeigt eine schematische Darstellung eines Kühlmittelkreislaufs eines weiteren Verbrennungsmotors, an dem die Erfindung verwirklicht ist.
- FIG. 1
- shows a schematic representation of a cooled according to the invention the turbocharger,
- FIG. 2
- shows a schematic representation of a coolant circuit of an internal combustion engine, on which the invention is realized,
- FIG. 3
- shows a schematic representation of a coolant circuit of another internal combustion engine, on which the invention is realized.
Der Turbolader 1 verfügt über einen Turbolader-Vorlauf 2 und über einen Turbolader-Rücklauf 3. Dabei ist eine Vorlaufleitung 4 zwischen einem Wasserpumpen-Ausgangsanschluss und einem Radiator-Vorlauf an den Kühlmittelkreislauf des Verbrennungsmotors angeschlossen. An den Turbolader-Rücklauf 3 ist eine Ausgangsleitung 5 angeschlossen, die zu einem T-Stück 6 führt. Einer der beiden anderen Anschlüsse des T-Stücks 6 ist mit einer Rücklaufleitung 7 verbunden, die in einem Bereich des Kühlmittelkreislaufs zwischen dem Radiator-Rücklauf und dem Wasserpumpen-Eingartgsanschluss am Verbrennungsmotor mündet. Der verbleibende Anschluss des T-Stücks 6 ist mit einer Entgasungsleitung 8 verbunden, die zu einem Ausgleichsbehälter 9 führt, und zwar oberhalb eines Wasserspiegels 10 im Ausgleichsbehälter 9. An der Unterseite des Ausgleichsbehälters 9 ist eine Ausgleichsleitung 11 angeschlossen, die zum Kühlmittelkreislauf des Verbrennungsmotors führt.The
Wie man in dieser Ansicht besonders gut sieht, liegt der Wasserspiegel 10 oberhalb des Turboladers 1.As you can see particularly well in this view, the
Im normalen Betrieb des Verbrennungsmotors wird der Turbolader 1 mit Druckwasser versorgt, und zwar über die Vorlaufleitung 4 und über die Rücklaufleitung 7. Wird der Verbrennungsmotor abgestellt, dann bilden sich aufgrund der hohen Temperaturen des Turboladers 1 Gasblasen im Inneren des Turboladers 1. Dies ist in
Der Kühlmittelstrom im Verbrennungsmotor 1, der durch die Wasserpumpe 18 erzeugt wird, ist mit Richtungspfeilen veranschaulicht.The coolant flow in the
Die Kühlmittelausgänge der ersten Zylinderreihe 16 und der zweiten Zylinderreihe 17 werden in einer Stegleitung 23 zusammengeführt. Von dort tritt der Kühlwasserstrom in eine Radiator-Zulaufleitung 24 aus und in einen Radiator-Vorlauf 25 eines Radiators 26 ein. Im Radiator 26 ist ein Radiator-Rücklauf 27 vorgesehen, der über eine Radiator-Rücklaufleitung 28 mit einem Thermostaten 29 verbunden ist. Vom Thermostat 29 führt eine Wasserpumpenleitung 30 zur Wasserpumpe 18 zurück. Eine Kurzschlussleitung 31 verbindet den Thermostaten 29 mit der Stegleitung 23.The coolant outlets of the first row of
Durch diese Anordnung.ist der Kühlmittelkreislauf des Verbrennungsmotors 15 vorgegeben.By this arrangement, the coolant circuit of the
Beim Start des Verbrennungsmotors 15 in kaltem Zustand verschließt der Thermostat 29 die Verbindung zwischen Radiator-Rücklaufleitung 28 und Thermostaten 29. Gleichzeitig wird die Verbindung zwischen der Kurzschlussleitung 31 und dem Thermostaten 29 geöffnet. Kühlmittel zirkuliert daraufhin von der Wasserpumpe 18 in die erste Zylinderreihe 16, in die zweite Zylinderreihe 17 und in die Stegleitung 23. Von dort wird das Kühlmittel in die Kurzschlussleitung 31, zum Thermostaten 29 und -von dort über die Wasserpumpenleitung 30 zurück zur Wasserpumpe 18 geführt.When starting the
Wenn sich das Kühlmittel erwärmt, dann verschließt der Thermostat 29 die Verbindung zwischen der Kurzschlussleitung 31 und dem Thermostat 29, gleichzeitig wird die Verbindung zwischen der Radiator-Rücklaufleitung 28 und dem Thermostat 29 geöffnet. Das Kühlmittel strömt daraufhin von der.Stegleitung 23 in die Radiator-Zuführleitung 24 und in den Radiator-Vorlauf 25. Es wird im Radiator 26 abgekühlt und nimmt seinen Weg über den Radiator-Rtlcklauf 27 und die Radiator-Rücklaufleitung 28 zum Thermostat 29. Von dort wird es über die Wasserpumpenleitung 30 zurück zur Wasserpumpe 18 gefördert.When the coolant heats up, the
An den oben stehend beschriebenen Kühlkreislauf sind mehrere Zusatzeinheiten angeschlossen, wie ein Ölkühler 32, ein Heizungsradiator 33, der Ausgleichsbehälter 9 und der Turbolader 1. Dabei wird der Ölkühler 32 über eine Olkühler-Zulaufleitung 34 mit Kühlmittel aus der Radiator-Zuführleitung 24 versorgt. Das im Ölkühler 32 erwärmte Kühlmittel wird über eine Ölkühler-Ablaufleitung 35 in die Radiator-Rücklaufleitung 28 zurückgeführt.To the cooling circuit described above, a plurality of auxiliary units are connected, such as an
Der Heizungsradiator 33 wird mit Kühlmittel versorgt, das an einer Stelle der Stegleitung 23 entnommen ist. Von dort wird es über eine Heizungsradiator-Zuführleitung 36 zum Heizungsradiator 33 geführt. Das im Heizungsradiator 33 abgekühlte Kühlmittel wird über eine Heizungsradiator-Rückführleitung 37 zum Thermostat 29 zurückgeführt. Von der Heizungsradiator-Rückführleitung 37 zweigt eine Ausgleichsleitung 38 zur Unterseite des Ausgleichsbehälters 9 ab. Weiterhin ist die Rücklaufleitung 7 vom T-Stück 6 an die Heizungsradiator-Rückführleitung 37 angeschlossen.The
Eine Entlüftungsleitung 39 erstreckt sich zwischen der Stegleitung 23 und dem Ausgleichsbehälter 9, wobei das dem Ausgleichsbehälter 9 zugewandte Ende der Entlüftungsleitung 39 in eine oberhalb des Wasserspiegels 10 mündende Gasleitung 40 und in eine unterhalb des Wasserspiegels 10 mündende Kühlmittelleitung 41 gabelt.A
Die Vorlaufleitung 4 zum Turbolader 1 ist an einem Kühlmittelaustritt 42 zweiten Zylinderreihe 17 an den Kühlmittelkreislauf angeschlossen. Mit einer richtig zu dimensionierenden Vorlaufdrossel 43 wird der Strömungswiderstand der Vorlaufleitung 4 so eingestellt, dass der Turbolader 1 beim normalen Betrieb des Verbrennungsmotors 15 ausreichend mit Kühlmittel versorgt wird. Mit einer Entgasungsdrossel 44 in der Entgasungsleitung 8 ist deren Strömungswiderstand eingestellt. Dabei hat die Entgasungsdrossel 44 im Betrieb des Verbrennungsmotors 15 die Aufgabe, das übermäßige Zuströmen von Kühlmittel vom Turbolader-Rücklauf 3 zum Ausgleichsbehälter 9 entgegenzuwirken. Bei stehendem Verbrennungsmotor 15, wenn sich Gasblasen im Turbolader 1 bilden, bewirkt die Entgasungsdrossel 44, dass vor allen Dingen Wasserdampf in den Ausgleichsbehälter 9 entweicht und nicht so sehr Kühlmittel.The
In einem hier nicht gezeigten Ausführungsbeispiel kann die Gestaltung aus
In einem weiteren hier nicht gezeigten Beispiel, bei dem ein Thermostat nicht am Motoreingang angeschlossen ist, wie in
Mit den vorstehenden Varianten ist gewährleistet, dass der Turbolader 1 stets mit Kühlmittel durchströmt wird, wobei es nicht von Bedeutung ist, welche Leitungen der Thermostat 29 gerade öffnet oder sperrt.With the above variants it is ensured that the
In einem weiteren hier nicht gezeigten Ausführungsbeispiel liegen in der in
Beim Starten des Verbrennungsmotors 45 in kaltem Zustand ist der Thermostat 29' geschlossen. Das Kühlmittel zirkuliert daher von der Wasserpumpe 18' in die Zylinderreihe 46, von dort in die Heizungsradiator-Zuführleitung 36', durch den Heizungsradiator 33', zurück in die Heizungsradiator-Rückführleitung 37', von dort in den Ölkühler 32' und zurück in den Wasserpumpen-Eingangsanschluss 20'. Dabei strömt Kühlmittel vom Thermostat 29' "zum T-Stück 6' und von dort über die Vorlaufleitung 4' zum Turbolader 1' . Das Kühlmittel im Turbolader 1' wird über die Ausgangsleitung 5' in die Radiator-Rücklaufleitung 28 gesaugt, und zwar aufgrund der Wirkung der Wasserpumpe 18', die über den Ölkühler 32' mit der Radiator-Rücklaufleitung 28' in Verbindung steht.When starting the
Öffnet sich bei einer Erwärmung des Kühlmittels der Thermostat 29, dann wird der Weg über die Radiator-Zuführleitung 24' zum Radiator 26' freigegeben. An der Durchströmung des Turboladers 1' ändert sich daran nichts.If, when the coolant is heated, the
Beim Abstellen des Verbrennungsmotors 45 wird die Durchströmung des Turboladers 1' vom Turbolader-Vorlauf 2' zum Turbolader-Rücklauf 3' beendet. Im Inneren des Turboladers 1' bilden sich Gasblasen, die über den Turbolader-Vorlauf 2' zum T-Stück 6' und von dort über die Entgasungsleitung 8' zur Oberseite des Ausgleichsbehälters 9' entweichen.When switching off the
Das entweichende Gasblasen/Kühlmittel-Gemisch wird durch die Ausgangsleitung 5' nachströmendes Kühlmittel ersetzt.The escaping gas bubbles / coolant mixture is replaced by the output line 5 'nachströmendes coolant.
Bei dieser Gestaltung ist die Durchströmungsrichtung des Turboladers 1' im normalen Betriebszustand des Verbrennungsmotors 45 umgekehrt zu der Durchströmung mit Kühlmittel bei abgestelltem Verbrennungsmotor, wenn sich Gasblasen im Inneren des Turboladers 1' bilden. Hierzu kann die Öffnung für den Turbolader-Vorlauf 2' auf einer geodätisch größeren Höhe angeordnet als diejenige für den Turbolader-Rücklauf 3'. Der Wasserspiegel 10' liegt dann auf einer größeren Höhe als der Turbolader-Rücklauf 3'. Dadurch sind eine Versorgung und ein Nachschub von Kühlmittel zum Turbolader 1' gewährleistet, wenn sich darin befindliches Kühlmittel aufgrund einer Gasblasenbildung in den Ausgleichsbehälter 9' entleert.In this configuration, the flow direction of the turbocharger 1 'in the normal operating state of the
Anders als in dem Ausführungsbeispiel gemäß
In einer weiteren, hier nicht gezeigten, jedoch besonders Platz sparenden Ausführungsform ist die Ausgangsleitung 5' am Turbolader-Rücklauf 3' nicht an die Radiator-Rücklaufleitung 28' angeschlossen, sondern an die Heizungsradiator-Rücklaufleitung 37'. An der Durchströmung des Turboladers 1' ändert sich dadurch nichts. Das Kühlmittel im Turbolader 1' wird über die Ausgangsleitung 5' in die Heizungsradiator-Rücklaufleitung 37' gesaugt, und zwar aufgrund der Wirkung der Wasserpumpe 18', die über den Ölkühler 32' mit der Heizungsradiator-Rücklaufleitung 37' in Verbindung steht.In another, not shown here, but particularly space-saving embodiment, the output line 5 'at the turbocharger return 3' is not connected to the radiator return line 28 ', but to the Heizungsradiator return line 37'. At the flow through the turbocharger 1 'thereby nothing changes. The coolant in the turbocharger 1 'is drawn via the output line 5' in the Heizradradator return line 37 ', due to the action of the water pump 18', which communicates via the oil cooler 32 'with the Heizradradiator return line 37'.
- 11
- Turboladerturbocharger
- 22
- Turbolader-VorlaufTurbocharger Forward
- 33
- Turbolader-RücklaufTurbocharger return
- 44
- Vorlaufleitungsupply line
- 55
- Ausgangsleitungoutput line
- 66
- T-StückTee
- 77
- RücklaufleitungReturn line
- 88th
- Entgasungsleitungdegassing
- 99
- Ausgleichsbehältersurge tank
- 1010
- Wasserspiegelwater level
- 1111
- Ausgleichsleitungcompensation line
- 1515
- Verbrennungsmotorinternal combustion engine
- 1616
- Erste Zylinderreihe, ZylinderblockFirst cylinder row, cylinder block
- 1717
- Zweite Zylinderreihe, ZylinderblockSecond cylinder bank, cylinder block
- 1818
- Wasserpumpewater pump
- 2020
- Wasserpumpen-EingangsanschlussWater pump input port
- 2121
- Erster Wasserpumpen-AusgangsanschlussFirst water pump outlet
- 2222
- Zweiter Wasserpumpen-AusgangsanschlussSecond water pump outlet
- 2323
- Stegleitungquill
- 2424
- Radiator-ZuführleitungRadiator supply line
- 2525
- Radiator-VorlaufRadiator Lead
- 2626
- Radiatorradiator
- 2727
- Radiator-RücklaufRadiator return
- 2828
- Radiator-RücklaufleitungRadiator return pipe
- 2929
- Thermostatthermostat
- 3030
- WasserpumpenleitungWater pump line
- 3131
- KurzschlussleitungShort-circuit line
- 3232
- Ölkühleroil cooler
- 3333
- HeizungsradiatorHeating radiator
- 3434
- Ölkühler-ZulaufleitungOil cooler inlet pipe
- 3535
- Ölkühler-AblaufleitungOil cooler drain line
- 3636
- Heizungsradiator-zuführleitungHeating radiator supply line
- 3737
- Heizungsradiator-RückführleitungHeating radiator return pipe
- 3838
- Ausgleichsleitungcompensation line
- 3939
- Entlüftungsleitungvent line
- 4040
- Gasleitunggas pipe
- 4141
- KühlmittelleitungCoolant line
- 4242
- KühlmittelaustrittCoolant outlet
- 4343
- Vorlaufdrosselsupply flow restrictor
- 4444
- EntgasungsdrosselEntgasungsdrossel
- 4545
- Verbrennungsmotorinternal combustion engine
- 4646
- Zylinderreihecylinder bank
Claims (10)
- An internal combustion engine (15; 45), comprising a turbocharger (1; 1'), a cooling medium circuit and a compensation tank (9; 9') for the cooling medium circuit, wherein the cooling medium circuit has the following features:- a water pump (18; 18') with a water-pump input connection (20, 20') and with an output connection (22, 23; 22') for circulating the cooling medium, with the water-pump output connection (22, 23; 22') having a higher pressure level in operation of the water pump (18; 18') than the water-pump input connection (20, 20');- a radiator (26, 26') for cooling the cooling medium, with the radiator (26, 26') being included in the cooling medium circuit via a radiator flow pipe (25, 25') for the supply of hotter cooling medium and via a radiator return pipe (27; 27') for discharging cooling medium cooled in the radiator (26, 26'),with the turbocharger (1; 1') being connected to the cooling medium circuit via a turbocharger flow pipe (2; 2') for supplying cooler cooling medium and via a turbocharger return pipe (3; 3') for discharging cooling medium heated in the turbocharger (1; 1'), with the turbocharger flow pipe (2; 2') branching off from the cooling medium circuit between the water-pump output connection (21, 22; 21') and the radiator flow pipe (25, 25'), and with the turbocharger return pipe (3; 3') opening into the cooling medium circuit in a region of the cooling medium circuit between the radiator return pipe (27; 27') and the water-pump input connection (20, 20'), and with the turbocharger return pipe (3; 3') or the turbocharger flow pipe (2; 2') being in connection with the compensation tank (9; 9') via a degassing line (8; 8'), with the degassing line (8) branching off from the connecting line in the region of the highest point of the connecting line between the turbocharger return pipe (3) or the turbocharger flow pipe (2') and the cooling medium circuit, and with the water level (10; 10') of the compensation tank (9; 9') being located higher than the turbocharger return pipe (3; 3') or the turbocharger flow pipe (2; 2').
- An internal combustion engine according to claim 1, characterized in that the turbocharger flow pipe (2; 2') is connected to a cooling medium line extending in the region of an engine block (16, 17; 16') of the internal combustion engine (15; 45).
- An internal combustion engine according to claim 2, characterized in that the turbocharger flow pipe (2') is connected to a thermostat housing (29') attached to the engine block (16').
- An internal combustion engine according to claim 2, characterized in that the turbocharger flow pipe (2) is connected to a cooling medium duct extending in the engine block (17).
- An internal combustion engine according to one of the preceding claims, characterized in that the turbocharger return pipe (3; 3') opens into a heating-radiator return pipe (37; 37') further connected to the cooling medium circuit.
- An internal combustion engine according to claim 5, characterized in that the turbocharger return pipe (3) is connected to the heating-radiator return pipe (37) between a point where the heating-radiator return pipe (37) opens into a heating radiator (33) and a point in which the heating-radiator return pipe (37) opens into a thermostat (29).
- An internal combustion engine according to one of the preceding claims, characterized in that the turbocharger return pipe opens into a water-pump return pipe which is further connected to the cooling medium circuit.
- An internal combustion engine according to one of the preceding claims, characterized in that the turbocharger return pipe (3') opens into a oil-cooler feed pipe (28') which is further connected to the cooling medium circuit.
- An internal combustion engine according to one of the preceding claims, characterized in that the line to the turbocharger flow pipe, the line from the turbocharger return pipe and/or the degassing line are each provided with a throttle (43, 44; 43', 44') for setting the flow resistance for the cooling fluid.
- A motor vehicle with an internal combustion engine according to one of the preceding claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006010470A DE102006010470A1 (en) | 2006-03-07 | 2006-03-07 | Turbocharger with convection cooling |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1832730A2 EP1832730A2 (en) | 2007-09-12 |
EP1832730A3 EP1832730A3 (en) | 2009-09-23 |
EP1832730B1 true EP1832730B1 (en) | 2011-05-18 |
Family
ID=38180307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07004656A Not-in-force EP1832730B1 (en) | 2006-03-07 | 2007-03-07 | Turbo charger with convection cooling system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1832730B1 (en) |
AT (1) | ATE510115T1 (en) |
DE (1) | DE102006010470A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101013961B1 (en) * | 2007-12-14 | 2011-02-14 | 기아자동차주식회사 | Circulation Circuit of Cooling Water For Engine |
DE102008021263A1 (en) * | 2008-04-29 | 2009-11-12 | GM Global Technology Operations, Inc., Detroit | Liquid cooling system for internal combustion engine i.e. petrol engine, of vehicle, has return pipe arranged more higher than supply pipe, and compensation tank arranged geodetically higher than return pipe |
JP5494294B2 (en) * | 2010-06-30 | 2014-05-14 | マツダ株式会社 | Cooling device for turbocharger of vehicle engine |
JP6135256B2 (en) | 2012-05-23 | 2017-05-31 | 株式会社デンソー | Thermal management system for vehicles |
DE102012210320B3 (en) * | 2012-06-19 | 2013-09-26 | Ford Global Technologies, Llc | Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position |
DE102012217229A1 (en) * | 2012-09-25 | 2014-06-12 | Bayerische Motoren Werke Aktiengesellschaft | Coolant circuit for internal combustion engine mounted in vehicle, has connecting line which connects branch between coolant cooler and shut-off element to secondary coolant radiator |
SE541131C2 (en) * | 2013-10-10 | 2019-04-16 | Scania Cv Ab | Vent circuit for a cooling system at an internal combustion engine |
DE102014218587B4 (en) * | 2014-09-16 | 2022-09-29 | Ford Global Technologies, Llc | Supercharged internal combustion engine with a liquid-coolable turbine and method for controlling the cooling of this turbine |
DE102014218916B4 (en) * | 2014-09-19 | 2020-06-04 | Ford Global Technologies, Llc | Supercharged internal combustion engine with a liquid-cooled turbine and method for controlling the cooling of this turbine |
RU2680278C2 (en) * | 2014-10-02 | 2019-02-19 | Мту Фридрихсхафен Гмбх | Cooling system and internal combustion engine therewith |
DE102014016861B3 (en) * | 2014-11-14 | 2016-01-28 | Audi Ag | Internal combustion engine with an exhaust gas turbocharger |
DE102015111407B4 (en) * | 2015-07-14 | 2024-08-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cooling system for a vehicle |
US11199125B2 (en) | 2018-04-17 | 2021-12-14 | Scania Cv Ab | Cooling system comprising at least two cooling circuits connected to a common expansion tank |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4107927A (en) | 1976-11-29 | 1978-08-22 | Caterpillar Tractor Co. | Ebullient cooled turbocharger bearing housing |
JPS59224414A (en) | 1983-06-01 | 1984-12-17 | Toyota Motor Corp | Cooling device for internal-combustion engine with turbo charger |
DE3407521C1 (en) | 1984-03-01 | 1985-03-14 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart | Liquid cooling system for a supercharged internal combustion engine |
JPS60219419A (en) * | 1984-04-13 | 1985-11-02 | Toyota Motor Corp | Cooler for internal-combusion engine with turbo charger |
CH675147A5 (en) * | 1987-08-03 | 1990-08-31 | Bbc Brown Boveri & Cie | |
JPH0245617A (en) | 1988-08-06 | 1990-02-15 | Komutetsuku:Kk | Cooling control device for automobile turbo charger and method thereof |
JPH063143B2 (en) * | 1988-08-30 | 1994-01-12 | 富士重工業株式会社 | Cooling device for internal combustion engine with turbocharger |
DE3904801A1 (en) * | 1989-02-17 | 1990-08-23 | Opel Adam Ag | LIQUID COOLING SYSTEM FOR A CHARGED INTERNAL COMBUSTION ENGINE |
-
2006
- 2006-03-07 DE DE102006010470A patent/DE102006010470A1/en not_active Withdrawn
-
2007
- 2007-03-07 EP EP07004656A patent/EP1832730B1/en not_active Not-in-force
- 2007-03-07 AT AT07004656T patent/ATE510115T1/en active
Also Published As
Publication number | Publication date |
---|---|
ATE510115T1 (en) | 2011-06-15 |
EP1832730A2 (en) | 2007-09-12 |
EP1832730A3 (en) | 2009-09-23 |
DE102006010470A1 (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1832730B1 (en) | Turbo charger with convection cooling system | |
DE19740057C1 (en) | Fuel feed circuit for motor vehicle engine | |
DE102008035955B4 (en) | cooling strategy | |
DE102017205241B4 (en) | Exhaust block liner, cylinder block assembly comprising the same, and thermal management system of an engine comprising the same | |
DE102006044680A1 (en) | Internal combustion engine for use in motor vehicle, has auxiliary pump for simultaneously discharging coolant through turbocharger and through cylinder block, where auxiliary pump is attached at cooling circuit | |
EP1306548B1 (en) | Fuel injection apparatus in which the displacement control is improved | |
DE60208356T2 (en) | SYSTEM FUEL SUPPLY | |
DE102010004399B4 (en) | Fuel supply systems | |
EP2789839A2 (en) | System and method for water injection for an internal combustion engine | |
DE102011007605A1 (en) | An oil supply system for an engine | |
DE19818421A1 (en) | Fuel injection system for IC engines | |
DE10061546A1 (en) | Cooling system for an internal combustion engine of a motor vehicle cooled with liquid coolant | |
DE102019206201B3 (en) | Split cooling system for an internal combustion engine with several cooling circuits | |
DE102018118804A1 (en) | Cooling device for a motor | |
EP1640572A2 (en) | Lubrication method for prime mover | |
DE102019133796A1 (en) | A HEAT EXCHANGER FOR A WATER INJECTION SYSTEM, A SYSTEM, A CONTROL SYSTEM, A METHOD AND A VEHICLE | |
DE102015007393A1 (en) | Exhaust gas recirculation system for an internal combustion engine | |
EP1124055B1 (en) | Fuel supply system for a combustion engine | |
EP2562378A1 (en) | Strategy to operate a split coolant circuit | |
DE102017209484A1 (en) | Cooling device, motor vehicle and method for operating a cooling device | |
DE102008060224B4 (en) | Oil exhaust cooling module for an internal combustion engine | |
DE10241461A1 (en) | Valve controlling volumetric flowrate in vehicle heating- and cooling system, includes flow deflector which both causes and experiences force controlling its position | |
DE4420043C1 (en) | Diesel engine fuel injection system | |
EP3470714A1 (en) | Valve for adjusting a cooling fluid flow for cooling pistons | |
EP1923548A2 (en) | Combustion engine with turbo charger cooling system active after ignition switch-off |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20100323 |
|
17Q | First examination report despatched |
Effective date: 20100427 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007007212 Country of ref document: DE Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC Free format text: GM GLOBAL TECHNOLOGY OPERATIONS, INC.#300 RENAISSANCE CENTER#DETROIT, MI 48265-3000 (US) -TRANSFER TO- GM GLOBAL TECHNOLOGY OPERATIONS LLC#300 RENAISSANCE CENTER#DETROIT, MI 48265-3000 (US) |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110819 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110918 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110829 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007007212 Country of ref document: DE Effective date: 20120221 |
|
BERE | Be: lapsed |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC. Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007007212 Country of ref document: DE Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, US Effective date: 20121019 Ref country code: DE Ref legal event code: R081 Ref document number: 502007007212 Country of ref document: DE Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MICH., US Effective date: 20121019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 510115 Country of ref document: AT Kind code of ref document: T Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120307 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070307 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170213 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170301 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180220 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007007212 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 |