EP0293545B1 - Method for the economical melting of glass and a glass melting furnace used therefor - Google Patents

Method for the economical melting of glass and a glass melting furnace used therefor Download PDF

Info

Publication number
EP0293545B1
EP0293545B1 EP88101382A EP88101382A EP0293545B1 EP 0293545 B1 EP0293545 B1 EP 0293545B1 EP 88101382 A EP88101382 A EP 88101382A EP 88101382 A EP88101382 A EP 88101382A EP 0293545 B1 EP0293545 B1 EP 0293545B1
Authority
EP
European Patent Office
Prior art keywords
melting
unit
glass
burners
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88101382A
Other languages
German (de)
French (fr)
Other versions
EP0293545A2 (en
EP0293545A3 (en
Inventor
Helmut Pieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beteiligungen Sorg GmbH and Co KG
Original Assignee
Beteiligungen Sorg GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beteiligungen Sorg GmbH and Co KG filed Critical Beteiligungen Sorg GmbH and Co KG
Priority to AT88101382T priority Critical patent/ATE77354T1/en
Publication of EP0293545A2 publication Critical patent/EP0293545A2/en
Publication of EP0293545A3 publication Critical patent/EP0293545A3/en
Application granted granted Critical
Publication of EP0293545B1 publication Critical patent/EP0293545B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • C03B5/031Cold top tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2257Refining by thin-layer fining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the glass melting furnace according to the invention in connection with the method for its operation, is able to solve the problems in a particularly advantageous manner Wise to solve for the first time.
  • the principle here is to apply the mixture to the glass bath and preheat it there by the exhaust gas and thereby cool the exhaust gas to such an extent that the remaining energy can be used almost completely to heat the combustion air.
  • the liquid remains in the glass and the setting of an optimal flow field in the batch preheating area of the tub is ensured by the addition of comparatively small amounts of electrical energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)
  • Glass Compositions (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Thermally Actuated Switches (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Laminated Bodies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Raw materials are fed into the charging end of a melting section which is heated by electrodes in the glass bath. The melted charge is then clarified under fossil fuel burners in a clarifying section, where the highest temperature of the furnace is maintained, and homogenized in a homogenizing section from which the clarified melt is drawn. Flue gas from the clarifying section sweeps the surface of the melting section countercurrently to the charge and is then used to heat combustion air. Burners in the clarifying section are operated under air starved conditions to reduce nitrogen oxides, while burners in the melting section are operated with excess air to achieve complete combustion.

Description

Die Erfindung betrifft ein energiesparendes Verfahren zum Schmelzen von Glas in einem Glasschmelzofen, in dein das Gemenge in einem Schmelzteil aufgeschmolzen, in einem an das Schmelzteil anschließenden Läuterteil geringer Badtiefe geläutert, danach in einem daran anschliessenden Homogenisierungsteil erhöhter Badtiefe homogenisiert und daraus abgezogen wird, wobei der Abzug der Brenngase und die Gemengeeingabe am Anfang des Schmelzteils erfolgt und unter der Gemengeeingabe Energie durch Elektroden zugeführt wird, mit im Läuterteil angeordneten Brennern zur Zuführung von Energie, mit Wärmeaustauschern zum Energieaustausch zwischen den Verbrennungsgasen und der den Brennern zugeführten Verbrennungsluft und einen Glasschmelzofen, mit einem Schmelzteil, einem an das Schmelzteil anschließenden Läuterteil geringer Badtiefe, einem daran anschließenden Homogenisierungsteil erhöhter Badtiefe, das mit einem Auslaß für das Glas versehen ist, mit einer am Anfang des Schmelzteils angeordneten Einrichtung zur Aufgabe des Gemenges und unter der Gemengeaufgabe angeordnete Elektroden zur Zuführung von Energie, mit im Läuterteil angeordneten Brennern zur Zuführung von fossiler Energie, mit Wärmeaustauschern zum Energieaustausch zwischen den Verbrennungsgasen und der den Brennern zugeführten Verbrennungsluft.The invention relates to an energy-saving process for melting glass in a glass melting furnace, in which the batch is melted in a melting part, refined in a refining part with a shallow bath depth adjoining the melting part, then homogenized in a subsequent homogenization part of increased bath depth and withdrawn therefrom, the The combustion gases are withdrawn and the batch input takes place at the beginning of the melting part and energy is supplied by electrodes under the batch input, with burners arranged in the refining part for supplying energy, with heat exchangers for energy exchange between the combustion gases and the combustion air supplied to the burners, and a glass melting furnace with one Melting part, a refining part adjoining the melting part with a small bath depth, an adjoining homogenization part of increased bath depth, which is provided with an outlet for the glass, with one other at the beginning of the melting part Ordered device for feeding the batch and arranged under the batch application electrodes for supplying energy, with burners arranged in the refining section for supplying fossil energy, with heat exchangers for exchanging energy between the combustion gases and the combustion air supplied to the burners.

Glasschmelzöfen haben allgemein, obwohl sie mit Rekuperatoren oder Regeneratoren arbeiten, den Nachteil, eines relativ geringen Wirkungsgrades. Dies liegt nicht an der mangelnden Isolation der Glaswannen, sondern daran, daß die Abgaswärme die zur Vorheizung der Verbrennungsluft benötigten Wärmeenergie erheblich übersteigt. Einer Erhöhung der Temperatur der Verbrennungsluft sind dabei Grenzen gesetzt, da dadurch der Wärmeaustausch sehr aufwendig wird, insbesondere aber nachteilig die Konzentration des giftigen NOx stark steigt.Glass melting furnaces, although they work with recuperators or regenerators, generally have the disadvantage of a relatively low efficiency. This is not due to the lack of insulation in the glass troughs, but rather because the exhaust gas heat considerably exceeds the thermal energy required to preheat the combustion air. There are limits to an increase in the temperature of the combustion air, since this makes the heat exchange very expensive is, but especially disadvantageously increases the concentration of toxic NO x .

Um den Wärmeüberschuß im Abgas sinnvoll zu nutzen, hat es bereits verschiedene Versuche gegeben, auch das Gemen ge vor dem Einbringen in die Glasschmelzwanne vorzuheizen. Diese Versuche waren aber erfolglos, da durch die Aufheizung bereits ein Vorschmelzen von einigen Gemengebestandteilen auftreten kann, wodurch die Wärmeaustauschflächen verkleben und zum anderen bei direktem Kontakt des Abgases mit dem Gemenge neben dem Vorschmelzen bestimmter Bestandteile auch noch ein Entmischen auftritt bzw. bestimmte Gemengebestandteile mitgenommen werden, wodurch der Staubgehalt im Abgas unzulässig erhöht wird bzw. sehr aufwendige Staubfilter erforderlich werden.Various attempts have already been made to use the excess heat in the exhaust gas sensibly, including the batch preheat before placing in the glass melting pan. However, these attempts were unsuccessful because the pre-melting of some batch components can already occur as a result of the heating, as a result of which the heat exchange surfaces stick together and, on the other hand, when the exhaust gas comes into direct contact with the batch, in addition to the pre-melting of certain components, segregation also occurs or certain batch components are taken along , whereby the dust content in the exhaust gas is increased inadmissibly or very complex dust filters are required.

Aus der EP-A1-0 230 492 ist bereits ein Glasschmelzofen mit einem verbesserten Wirkungsgrad bekannt, der dadurch erreicht wird, daß die Brennergase die auf der Schmelze schwimmende Gemengeschicht in einem großen Bereich überstreicht und dabei abgekühlt wird. Die verbleibende und bereits verringerte Wärmeenergie wird dann in Wärmetauschern an die Verbrennungsluft abgegeben.From EP-A1-0 230 492, a glass melting furnace with an improved efficiency is already known, which is achieved in that the burner gases sweep over a large area of the batch layer floating on the melt and are thereby cooled. The remaining and already reduced thermal energy is then released into the combustion air in heat exchangers.

Nachteilig ist bei diesem Ofen aber, daß Gemenge in den Läuterteil und in den Homogenisierungsteil gelangen kann und dadurch die Glasqualität nicht ausreichend ist.A disadvantage of this furnace, however, is that batches can get into the refining part and into the homogenization part and the glass quality is therefore insufficient.

Aus der US-A-3 198 618 geht ein weiterer Glasschmelzofen hervor, bei dem die Verbrennungsgase die auf der Schmelze schwimmende Gemengeschicht überstreichen. Auch hier ist nachteilig kein Läuterteil vorhanden, in welchem das Glas ausreichend geläutert wird, sondern durch den Einsatz von Bubblern wird eine vertikale Umlaufströmung gefördert, die verunreinigtes Glas oder mit Gemenge vermischtes Glas in die Arbeitswanne gelangen läßt.Another glass melting furnace is known from US Pat. No. 3,198,618, in which the combustion gases sweep over the batch layer floating on the melt. Here, too, there is disadvantageously no refining part in which the glass is adequately refined, but the use of bubblers promotes a vertical circulating flow which allows contaminated glass or glass mixed with a mixture to get into the work tub.

Es ist demgegenüber Aufgabe der Erfindung, ein Verfahren zum Schmelzen von Glas und einen Glasschmelzofen zu schaffen, denen die genannten Nachteile nicht mehr anhaften, wobei der verwendete Ofen gegenüber bekannten Öfen einen erheblich verbesserten Wirkungsgrad aufweisen soll, gleichwohl aber wirtschaftlich zu erstellen ist und bei dem insbesondere geringe NOx-Konzentrationen sowie ein geringerer Staubgehalt im Abgas vorliegt, ohne daß schwierig zu beherrschende eine hohe Temperatur aufweisende Bauteile im Ofen oder für den Wärmetausch notwendig werden.In contrast, it is an object of the invention to provide a method for melting glass and a glass melting furnace, which no longer have the disadvantages mentioned, the furnace used having a considerably improved efficiency compared to known furnaces should, however, be economical to produce and in which there are in particular low NO x concentrations and a lower dust content in the exhaust gas, without the need to control high-temperature components in the furnace or for heat exchange.

Die Oberofentemperatur und die Temperatur in den verwendeten Wärmetauschern (Rekuperatoren) sollen sogar geringer als bei den üblichen, bekannten Öfen sein.The upper furnace temperature and the temperature in the heat exchangers used (recuperators) are said to be even lower than in the conventional, known furnaces.

Über die genannten Vorteile hinaus soll der erfindungsgemäße Ofen wirtschaftlich herstellbar und betriebssicher zu fahren sein, wobei im Bedarfsfall ein weitgehender Austausch von fossiler und elektrischer Energie möglich sein soll.In addition to the advantages mentioned, the furnace according to the invention should be economically producible and reliable to operate, and if need be an extensive exchange of fossil and electrical energy should be possible.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die überwiegende Schmelzenergiezuführung durch Brenner fossilen Brennstoffs im Läuterteil erfolgt, die Rauchgase den Schmelzteil im Gegenstrom zu dem Gemenge überstreichen, nahe der Gemengeaufgabe abgezogen werden und das Schmelzteil an der Oberfläche durch eine aus dem Läuterteil kommende Strömung im Gegenstrom zu dem Gemenge durchströmt wird und daß Maßnahmen vorhanden sind, die die Flammstrahlung aus dem Läuterteil an dessen Grenze und über dem Schmelzteil absorbieren, wodurch der Raum über der Schmelze in Zonen unterschiedlicher Temperatur unterteilt wird, in denen die höchste Temperatur im Läuterteil vorliegt.This object is achieved according to the invention in a method of the type mentioned at the outset in that the predominant supply of melt energy is carried out by burners of fossil fuel in the refining part, the flue gases sweep over the melt part in countercurrent to the batch, are drawn off close to the batch task and the melt part on the surface by a flow coming from the refining part is flowed through in countercurrent to the batch and that measures are present which absorb the flame radiation from the refining part at its boundary and above the melting part, as a result of which the space above the melt is divided into zones of different temperatures in which the highest The temperature in the refining part is present.

Vorteilhaft wird das Verfahren dabei so durchgeführt, daß im Läuterteil (Zone I) mit der höchsten Temperatur die Brenner zur Verringerung der Stickoxydbildung mit Luftunterschuß und in dem von der Rauchgasströmung her gesehen nächsten Teil (Zone II) geringerer Temperatur die an der Einströmung angeordneten Brenner zur Vervollständigung der Verbrennung mit Luftüberschuß gefahren werden.The process is advantageously carried out in such a way that in the refining part (zone I) with the highest temperature the burners for reducing nitrogen oxide formation with a deficit of air and in the part (zone II) lower temperature as seen from the flue gas flow the burners arranged on the inflow are run with excess air to complete the combustion.

Bei einem Glasschmelzofen der eingangs genannten Art erfolgt die Lösung der erfindungsgemäßen Aufgabe derart, daß zur Ausbildung der heißen Strömung als Gegenstrom zur Gemengebewegung der Schmelzteil-Boden vom Läuterteil zur Gemengeeingabe hin abfällt und die Decke des Ofens zwischen dem Läuterteil (Zone I) und dein Schmelzteil (Zone II) mindestens einen sich bis kurz über die Badoberfläche erstreckenden Strahlungsschutzwall aufweist.In the case of a glass melting furnace of the type mentioned at the outset, the object of the invention is achieved in such a way that, in order to form the hot flow as a countercurrent to the batch movement, the bottom of the melting part falls from the refining part to the batch input and the roof of the furnace between the refining part (zone I) and your melting part (Zone II) has at least one radiation protection wall which extends up to just above the bath surface.

Vorteilhaft bewirken weiterhin unter der Gemengeaufgabe angeordnete Elektroden, daß sich neben ihnen zum Läuterteil hin eine absteigende Strömung bildet, die den Heißglasstrom im Schmelzteil nach unten umlenkt, wodurch die am Boden verlaufende Rückströmung zum Läutelteil hin verstärkt wird.Furthermore, electrodes arranged beneath the batch advantageously have the effect that a descending flow forms next to them towards the refining part, which deflects the hot glass flow downward in the melting part, as a result of which the backflow running at the bottom is amplified towards the refining part.

Die den Wirkungsgrad herabsetzende Wärmeübertragung durch Strahlung aus dem Brennerteil wird vorteilhaft durch die zwischen Läuter- und Schmelzteil und in dem Schmelzteil angebrachten Strahlungsschutzwälle verhindert.The heat transfer by radiation from the burner part, which reduces the efficiency, is advantageously prevented by the radiation protection walls provided between the refining and melting parts and in the melting part.

Der besondere Vorteil des erfindungsgemäßen Verfahrens und Glasschmelzofens besteht darin, daß die Abgase unter Vorwärmung des auf dem Glasbad aufliegenden Gemenges bis zum Austritt aus dein Wannenraum auf 800 - 1000°C abgekühlt werden und ohne größeren technischen Aufwand die Rekuperatoren dabei die Luft im Gegenstrom auf ca. 700°C aufheizen können.The particular advantage of the method and glass melting furnace according to the invention is that the exhaust gases are cooled to 800-1000 ° C while preheating the batch lying on the glass bath until they emerge from the tub space and the recuperators reduce the air in counterflow to approx Can heat up to 700 ° C.

Ersichtlicherweise vermag der erfindungsgemäße Glasschmelzofen in Verbindung mit dem Verfahren zu seinem Betrieb die anstehenden Probleme in besonders vorteilhafter Weise und erstmalig zu lösen. Das erfindungsgemäße Prinzip besteht dabei darin, das Gemenge auf das Glasbad aufzubringen und dort durch das Abgas vorzuwärmen und dabei das Abgas soweit abzukühlen, daß die verbliebene Energie fast vollständig zur Aufheizung der Verbrennungsluft verwendet werden kann. Das Flüssigbleiben des Glases und die Einstellung eines optimalen Strömungsfeldes in dem Gemenge-Vorwärmbereich der Wanne wird dabei durch die Zugabe von vergleichsweise geringen Mengen elektrischer Energie gewährleistet.Obviously, the glass melting furnace according to the invention, in connection with the method for its operation, is able to solve the problems in a particularly advantageous manner Wise to solve for the first time. The invention The principle here is to apply the mixture to the glass bath and preheat it there by the exhaust gas and thereby cool the exhaust gas to such an extent that the remaining energy can be used almost completely to heat the combustion air. The liquid remains in the glass and the setting of an optimal flow field in the batch preheating area of the tub is ensured by the addition of comparatively small amounts of electrical energy.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen 3 bis 5 und 7 bis 10 genannt.Further advantageous embodiments of the invention are mentioned in subclaims 3 to 5 and 7 to 10.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:

Figur 1
einen Längsschnitt durch eine Glaswanne gemäß der Erfindung,
Figur 2
einen Horizontalschnitt durch eine Wanne ähnlich Figur 1 und
Figur 3
einen Horizontalschnitt durch eine andere Ausführungsform einer erfindungsgemäßen Wanne.
Exemplary embodiments of the invention are explained in more detail below with reference to drawings. Show it:
Figure 1
2 shows a longitudinal section through a glass trough according to the invention,
Figure 2
a horizontal section through a tub similar to Figure 1 and
Figure 3
a horizontal section through another embodiment of a tub according to the invention.

Gemäß den Figuren besteht der erfindungsgemäße Glasschmelzofen aus einer länglichen, rechteckigen Wanne mit einem Läuterteil 2 und einem Schmelzteil 3, die ineinander übergehen. Als Läuterteil 2 wird derjenige flache Wannenteil bezeichnet, in welchem die Brenner 20 angeordnet sind, die zur Verfeuerung von Öl der Gas dienen.According to the figures, the glass melting furnace according to the invention consists of an elongated, rectangular trough with a refining part 2 and a melting part 3, which merge into one another. The refining part 2 is the flat trough part in which the burners 20 are arranged, which are used to burn oil or gas.

Die Wanne weist weiterhin brennerseitig eine Querwand 16, gemengeaufgabeseeitig eine Querwand 17 und Längswände 18 auf. Der Oberofen wird von einer Decke 1 gebildet. Der Schmelzteil-Boden ist mit 9 bezeichnet.The trough also has a transverse wall 16 on the burner side, a transverse wall 17 and longitudinal walls 18 on the batch side. The upper furnace is formed by a ceiling 1. The melting part base is designated by 9.

Im Schmelzteil (Zone II) 3 sind Bodenelektroden 6 angeordnet, die ein Einfrieren des Glasbades in diesem Bereich, insbesondere im direkten Bereich der Gemengeauflage verhindern. Das Einfrieren wird weiterhin dadurch verhindert, daß innerhalb des Schmelzteils 3 eine Oberflächenströmung eingestellt wird, die laufend hocherhitztes Glas aus dem von den Brennern 20 hocherhitzten Läuterteil 2 in den Bereich der Gemengeaufgabe befördert.Bottom electrodes 6 are arranged in the melting part (zone II) 3 and prevent the glass bath from freezing in this area, in particular in the direct area of the batch. The freezing is further prevented in that a surface flow is set within the melting part 3, which continuously conveys highly heated glass from the refining part 2, which has been heated by the burners 20, into the area of the batch feed.

Die Gemengeaufgabe erfolgt in herkömmlicher Weise auf der ganzen Breite der Querwand 17.The batch application takes place in a conventional manner over the entire width of the transverse wall 17.

Im einzelnen ist die Wanne entsprechend herkömmlicher Technik aufgebaut, wie sie auch in älteren Anmeldungen der Anmelderin beschrieben wird, so daß auf eine weitergehende Beschreibung verzichtet werden kann. Dies gilt insbesondere für die Gestaltung der Wandungen, des Gewölbes, des Bodens, der Brenner, der Elektroden sowie des Auslasses 19 am gemengeaufgabenfernen Ende des Homogenisierungsteils 2a und für die Gestaltung der Abgasaustrittsöffnungen 22 direkt neben der Gemengeaufgabe.In particular, the tub is constructed in accordance with conventional technology, as is also described in the applicant's older applications, so that a further description can be dispensed with. This applies in particular to the design of the walls, the vault, the floor, the burner, the electrodes and the outlet 19 at the end of the homogenization part 2a remote from the batch task and to the design of the exhaust gas outlet openings 22 directly next to the batch task.

Im Wanneninneren ist am aufgabenseitigen Ende des Läuterteils 2 ein Strahlungsschutzwall 5 angeordnet, der von der Decke bis dicht über die Badoberfläche 4 reicht und verhindert, daß Strahlung in den Schmelzteil 3 gelangt. Wie bekannt, wird bei hohen Kammertemperaturen der größte Teil der Energie durch Strahlung übertragen und es ist daher erfindungswesentlich, die durch die Brenner 20 zugeführte Energie im Läuterteil 2 zu konzentrieren.A radiation protection wall 5 is arranged in the interior of the tub at the end of the refining part 2 on the task side, which extends from the ceiling to just above the bath surface 4 and prevents radiation from reaching the melting part 3. As is known, the greatest part of the energy is transmitted by radiation at high chamber temperatures and it is therefore essential to the invention to concentrate the energy supplied by the burners 20 in the refining part 2.

Da weitere beträchtliche Strahlungsmengen von der Badoberfläche und insbesondere von dem Strahlungs-Schutzwall 5 zur Aufgabeseite hin wirksam sind, weist der Schmelzteil 3 noch einen weiteren Strahlungsschutzwall 7 in der Nähe der Gemengeaufgabe und zwischen den Schutzwällen 5 und 7 einen weiteren Schutzwall 8 auf. Durch diese Anordnung wird sicher verhindert, daß nennenswert Strahlungsenergie zur Gemengeaufheizung dient, sondern dieses soll praktisch ausschließlich durch das Abgas erfolgen, welches aus dem Läuterteil 2 durch das Schmelzteil 3 zu den Abgasaustrittsöffnungen 22 strömt.Since further considerable amounts of radiation from the bath surface and in particular from the radiation protection wall 5 to the feed side are effective, the melting part 3 has a further radiation protection wall 7 in the vicinity of the batch task and between the protective walls 5 and 7 a further protective wall 8. With this arrangement it is reliably prevented that radiant energy is used to heat the batch, but this should be done practically exclusively by the exhaust gas which flows from the refining part 2 through the melting part 3 to the exhaust gas outlet openings 22.

Fakulativ kann der Boden 9 am aufgabeseitigen Ende des Läuterteils 2 eine Schwelle 14 aufweisen. Wesentlich ist aber der zur Gemengeaufgabe hin gleichmäßig abfallende Boden, der ein Strömungsbild einstellt, in welchem Heißglas an der Badoberfläche zurück zur Gemengeauflage strömt und dort in Verbindung mit den Bodenelektroden 6 ein Einfrieren des Glases verhindert. Der Boden im Läuterteil 2 ist waagerecht angeordnet.The floor 9 can optionally have a threshold 14 at the end of the refining part 2 on the input side. What is essential, however, is the evenly sloping bottom toward the batch application, which sets a flow pattern in which hot glass flows back to the batch support on the bath surface and, in conjunction with the bottom electrodes 6, prevents the glass from freezing there. The bottom in the refining part 2 is arranged horizontally.

Das auf ca. 900° C abgekühlte Abgas wird nach Austritt aus der Wanne Rekuperatoren zugeführt, aus welchen es mit einer Temperatur von ca. 150 - 250° C austritt. Bei dieser Temperatur ist die dem Abgas innewohnende Energie weitgehend auf die Verbrennungsluft übergegangen.The exhaust gas, which has cooled to approx. 900 ° C, is fed into the recuperator after it leaves the tank, from which it emerges at a temperature of approx. 150 - 250 ° C. At this temperature, the energy inherent in the exhaust gas has largely been transferred to the combustion air.

In den Rekuperatoren wird durch das abkühlende Abgas die Verbrennungsluft von Normaltemperatur auf eine Temperatur von ca. 700° C vorgewärmt und dann über Rohrleitungen den Brennern 20 zugeführt. Die aufgrund der relativ geringen Lufttemperaturen erfolgende Verbrennung weist den Vorteil auf, daß die Flammtemperaturen relativ niedrig sind und daher höhere Konzentration von NOx nicht auftreten können. Das Abgas ist also nicht nur weit abgekühlt, sondern weist auch äußerst geringe Konzentrationen von NOx auf, so daß ein Betrieb des erfindungsgemässen Glasschmelzofens auch in Gebieten mit geringen Emissionswerten, z.B. in Städten, möglich ist, zumal der Einsatz eines Staubfilters aufgrund der geringen Abgastemperaturen leicht möglich ist.In the recuperators, the combustion air is preheated from the normal temperature to a temperature of approx. 700 ° C. by the cooling exhaust gas and then fed to the burners 20 via pipes. The combustion that takes place due to the relatively low air temperatures has the advantage that the flame temperatures are relatively low and therefore higher concentrations of NO x cannot occur. The exhaust gas is not only cooled to a great extent, but also has extremely low concentrations of NO x , so that the glass melting furnace according to the invention can also be operated in areas with low emission values, for example in cities, especially since the use of a dust filter due to the low exhaust gas temperatures is easily possible.

Vom Betrieb der Wanne her ist es wichtig, daß das Schmelzteil 3 in seinem aufgabeseitigem Ende ausschließlich zur Gemengevorwärmung dient und ein wesentliches Einschmelzen des Gemenges erst am brennerseitigen Ende des Schmelzteils 3 erfolgt, wobei dann im Läuterteil 2 ein Läutern des Glases stattfindet, bevor dieses durch einen Bodenauslaß 19 in bekannter Weise abgezogen wird.From the operation of the trough, it is important that the melting part 3 serves only for batch preheating in its end on the feed side and that the batch melts substantially only at the end of the melting part 3 on the burner side, the refining part 2 then refining the glass before it passes through a bottom outlet 19 is withdrawn in a known manner.

Im Läuterteil 2 sind eine Anzahl von "bubblern" angeordnet, die Luft durch den Boden einleiten können. Durch diese Luft wird - gegebenenfalls unter Mithilfe von Bodenelektroden - eine starke Umwälzung des Glases im Läuterteil 2 erreicht, so daß sich innerhalb des Läuterteils von oben nach unten nur ein sehr geringer Temperaturgradient einstellen kann. Dadurch wird sichergestellt, daß die Bodenoberfläche Temperaturen von etwa 1550 - 1560° C erreicht, wobei die Gewölbetemperatur des Gewölbes übere dem Läuterteil 2 Temperaturen von 1580° C nicht überschreitet. Die Temperaturen im Schmelzteil 3 sind demgegenüber erheblich geringer, sie betragen von der Gemengeaufgabe zum Läuterteil 2 hin 1100 bis 1300° C.A number of "bubblers" are arranged in the refining part 2, which can introduce air through the ground. This air causes a strong circulation of the glass in the refining part 2, if necessary with the aid of bottom electrodes, so that only a very small temperature gradient can occur within the refining part from top to bottom. This ensures that the surface of the floor reaches temperatures of about 1550 - 1560 ° C, the arch temperature of the vault above the refining part 2 not exceeding 1580 ° C. The temperatures in the melting part 3, on the other hand, are considerably lower, from 1100 to 1300 ° C. from the batch feed to the refining part 2.

Im Homogenisierungsteil 2a erfolgt die Homogenisierung des Glases unter Abkühlung, so daß sich eine optimale Temperaturschichtung einstellt, die umlaufende Strömungen und damit das Einbringen von Verunreinigungen in den Auslaß 19 verhindert.In the homogenization part 2a, the glass is homogenized with cooling, so that an optimal temperature stratification is established, which prevents circulating currents and thus the introduction of contaminants into the outlet 19.

Durch die Strahlungsschutzwälle 5, 7 und 8 wird eine Gasgeschwindigkeit über dem Gemenge von ca. 10 - 15 m/s eingestellt, die neben der Strahlungswärmeübertragung auch noch eine gewisse konvektive Wärmeübertragung erlaubt. Die Strahlungsschutzwälle sind dabei z.B. entsprechend scheidrechten Bögen wie bei großen Doghausbögen aufgebaut.The radiation protection walls 5, 7 and 8 set a gas velocity above the batch of approx. 10-15 m / s, which in addition to the radiation heat transfer also allows a certain convective heat transfer. The radiation protection walls are constructed, for example, according to right-angled arches as with large dog house arches.

Die zugeführte elektrische Energie kann weiterhin derartig im Verhältnis zu der durch die Brenner zugeführten Energie gewählt werden, daß der NOx-Massenstrom die zulässigen Werte nicht überschreitet. Bei höherem Anteil der elektrischen Energie sinkt dabei der NOx-Massenstrom und steigt bei Verringerung des Anteils an.The electrical energy supplied can furthermore be selected in relation to the energy supplied by the burners in such a way that the NO x mass flow does not exceed the permissible values. With a higher proportion of the electrical energy, the NO x mass flow decreases and increases with a reduction in the proportion.

Der erfindungsgemäße Glasschmelzofen kann wirtschaftlich hergestellt werden, da im Gemengeaufgabeteil aufgrund der geringeren Temperaturen kostengünstiges Feuerfestmaterial eingesetzt werden kann.The glass melting furnace according to the invention can be produced economically, since inexpensive refractory material can be used in the batch application part due to the lower temperatures.

Es liegt im Wesen der Erfindung, daß der gesamte Glasschmelzofen, die Leitungen für das Abgas und für die erwärmte Verbrennungsluft stark isoliert werden. Trotzdem ist es für den Fachmann überraschend, daß der spezifische Energieverbrauch auf den bisher unerreichten Wert von 3100 - 3400 kjoule/kg Glas verringert werden kann.It is in the essence of the invention that the entire glass melting furnace, the lines for the exhaust gas and for the heated combustion air are strongly insulated. Nevertheless, it is surprising for the person skilled in the art that the specific energy consumption can be reduced to the previously unattained value of 3100 - 3400 kjoules / kg glass.

In dem als Zone I bezeichneten Läuterteil werden die Brenner mit Luftunterschuß gefahren, so daß eine Stickoxydbildung (NOx-Bildung) praktisch nicht auftritt, da die Verbrennung unvollständig ist. Die Brenngase gelangen dann in die Zone II, nämlich den Schmelzteil und dort im strömungsmäßigen Beginn der Zone II, in welcher bereits eine um ca. 150° C geringere Temperatur als in der Zone I herrscht, werden die Brenner zur Erzielung einer vollständigen Verbrennung der zugeführten Kohlenwasserstoffe mit Luftüberschuß gefahren, so daß ein Wirkungsgradverlust vermieden wird. Aufgrund der hier herrschenden wesentlich geringeren Temperatur tritt ebenfalls praktisch keine NOx auf, so daß die Abgase beim Eintritt in die Atmosphäre praktisch NOx-frei sind. Der erfindungsgemäße Glasschmelzofen kann also auch vorteilhaft in dicht besiedelten Gebieten arbeiten.In the refining section designated as Zone I, the burners are operated with a deficit of air, so that nitrogen oxide formation (NO x formation) practically does not occur since the combustion is incomplete. The fuel gases then enter Zone II, namely the melting part, and there in the flow-related beginning of Zone II, in which the temperature is already around 150 ° C lower than in Zone I, the burners are used to achieve complete combustion of the feed Hydrocarbons run with excess air so that a loss of efficiency is avoided. Due to the much lower temperature prevailing here, practically no NO x occurs, so that the exhaust gases are practically NO x -free when entering the atmosphere. The glass melting furnace according to the invention can therefore also advantageously work in densely populated areas.

Weiter ist wesentlich, daß mit einem Gemisch aus einem hohen Anteil von Scherben und einem Rest des üblichen Gemenges gefahren wird, so daß es möglich ist, den Ofen mit billigen Grundstoffen zu betreiben. Durch die immer größer werdenden zurückgeführten Altglasmengen, welche zur Zeit noch nicht nach Farben getrennt werden können, gelangen Scherben mit unterschiedlichem Oxydationspotential in die Schmelzwanne. Bei der Reaktion von Gläsern mit unterschiedlichem Oxydationspotential miteinander entsteht ein starker Schaum auf der Badoberfläche, welche die Flammenstrahlung reflektiert und den Wärmeübergang ins Glasbad stark behindert.It is also essential that with a mixture of a high proportion of broken glass and a remainder of the usual batch is driven, so that it is possible to operate the furnace with cheap raw materials. Due to the increasing quantities of recycled waste glass, which cannot yet be separated according to color, fragments with different oxidation potential get into the melting tank. When glasses with different oxidation potentials react with each other, a strong foam forms on the surface of the bath, which reflects the flame radiation and greatly impedes the transfer of heat into the glass bath.

Dieser Schaum kann durch reduzierende Feuerführung stark vermindert werden, so daß die neue Wanne unter den ungünstigen Verhältnissen bei Einsatz großer Mengen Altglas günstiger arbeitet als konventionelle Wannen.This foam can be greatly reduced by reducing the fire, so that the new tub works better than conventional tubs under the unfavorable conditions when large quantities of waste glass are used.

Claims (10)

  1. Economical method of melting glass in a glass-melting furnace, in which the raw mixture is melted in a melting unit (3), is refined in a shallow refining unit (2) adjacent to the melting unit (3), and is subsequently homogenized in and, thereafter, drawn off an homogenizing unit (2a) of greater depth lying next to the refining unit (2), whereby the exhaust gas vent and the raw mixture input lie at the top-end of the melting unit (3) and, under the raw mixture input, energy is introduced via electrodes(6) and burners (20) for introducing energy are disposed in the refining unit (2), with heat exchangers (10, 11) for transferring energy between the exhaust gases and the combustion air to be fed to the burners (20),
    characterized in that
    the preponderent amount of the energy for melting originates from the introduction of heat energy by fossil fuel burners (20) in the refining unit (2), that the exhaust gases flow over the melting unit (3) in the opposite direction to that of the raw mixture current, escape close to the raw mixture input and the gas flow moving in the opposite direction to the raw mixture current flows over the entire surface (4) of the melting unit (3) and that provisions are made to absorb at its boundary and above the melting unit (3) the flame radiation from the refining unit (2), whereby the space above the hot glass melting is subdivided in zones with differing temperatures, among which the highest temerature is present in the refining unit (2).
  2. Method according to patent claim 1, characterized in that in the refining unit (2) (zone I) with the highest temperature, the burners (20) are operated with reduced quantities of air, in order to decrease the formation of nitric oxides and in the adjacent unit (zone II), as seen from the perspective of the exhaust gas flow, with its lover temperature, the burners (20) disposed at the inflow are operated with excess air to complete the combustion.
  3. Method according to claim 2, characterized in that the temperature in zone II is set at approximately 150°C lower than that in zone I.
  4. Method according one of the claims 1 to 3, characterized in that the raw mixture contains a large portion of recycled glass.
  5. Method according to claim 4, characterized in that, after their exit from the heat exchangers (10, 11), the exhaust gases flow through the old glass and are cooled to a temperature equivalent to the condensation point of their components.
  6. Glass-melting furnace for the implementation of the method according to claims 1 to 5 with a melting unit (3), a shallow refining unit (2) adjacent to the melting unit (3) and a homogenizing unit (2a) with a deeper vat, the whole connected to the refining unit (2) and furnished with an glass outlet (19), with a device for introducing the raw mixture situated at the top end of the melting unit (3) and, ordered below the raw mixture input, elec tordes (6) for introducing energy, with burners (20) in the refining unit (2) for introducing energy, with heat exchangers (10, 11) for energy exchange between the fuel exhaust gases and the combustion air to be fed into the burners, characterized in that, in order to develop a hot gas flow as a countercurrent to the movement of the raw mixture at the bottom of the melting unit (9) from the refining unit (2) towards the raw mixture input point and that the ceiling (1) of the furnace between the refining unit (2) (zone I) and the melting unit (3) (zone II) is furnished with at least one heat radiation shield extending to a point immediately above the operasting surface.
  7. Glass-melting furnace according to claim 6, characterized in that the evenly inclined bottom extends over the whole length of the melting unit (3) and the bottom of the refining unit (2) is horizontal.
  8. Glass-melting furnace according to either of the claims 6 or 7, characterized in that the melting unit (3) is furnished with at least one heat radiation shield (7).
  9. Glass-melting furnace according to one of the claims 6 to 8, characterized in that the heat exchangers are recuperators equipped with both a high temperature and a low temperature section (10 and 11).
  10. Glass-melting furnace according to claim 7, characterized in that the bottoms (9) of the refining unit (2) and the melting unit (3) are furnished with means of injecting air (bubblers).
EP88101382A 1987-05-30 1988-02-01 Method for the economical melting of glass and a glass melting furnace used therefor Expired - Lifetime EP0293545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88101382T ATE77354T1 (en) 1987-05-30 1988-02-01 ENERGY-SAVING PROCESS FOR MELTING GLASS AND GLASS MELTING FURNACE FOR CARRYING OUT THIS PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873718276 DE3718276A1 (en) 1987-05-30 1987-05-30 GLASS MELTING STOVE
DE3718276 1987-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP89100638.9 Division-Into 1989-01-14

Publications (3)

Publication Number Publication Date
EP0293545A2 EP0293545A2 (en) 1988-12-07
EP0293545A3 EP0293545A3 (en) 1990-11-07
EP0293545B1 true EP0293545B1 (en) 1992-06-17

Family

ID=6328775

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88101382A Expired - Lifetime EP0293545B1 (en) 1987-05-30 1988-02-01 Method for the economical melting of glass and a glass melting furnace used therefor
EP89100638A Expired - Lifetime EP0317551B1 (en) 1987-05-30 1988-02-01 Glass-melting furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89100638A Expired - Lifetime EP0317551B1 (en) 1987-05-30 1988-02-01 Glass-melting furnace

Country Status (28)

Country Link
US (1) US4882736A (en)
EP (2) EP0293545B1 (en)
JP (2) JPS63310734A (en)
KR (1) KR920003221B1 (en)
CN (1) CN1021039C (en)
AT (2) ATE77354T1 (en)
AU (1) AU603194B2 (en)
BG (1) BG49381A3 (en)
CA (1) CA1335535C (en)
CZ (1) CZ278070B6 (en)
DD (1) DD272290A5 (en)
DE (3) DE3718276A1 (en)
ES (2) ES2032876T3 (en)
FI (1) FI86985C (en)
HK (1) HK14093A (en)
HU (1) HU208412B (en)
IN (1) IN171025B (en)
LT (2) LT3654B (en)
LV (2) LV11168B (en)
MY (1) MY102814A (en)
PL (1) PL153827B1 (en)
PT (1) PT87600B (en)
RU (2) RU1836303C (en)
SG (1) SG101492G (en)
SK (1) SK277753B6 (en)
TR (1) TR25215A (en)
UA (1) UA11070A (en)
ZA (1) ZA882900B (en)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903016A1 (en) * 1989-02-02 1990-08-09 Sorg Gmbh & Co Kg Batch glass melting furnace
GB8822093D0 (en) * 1988-09-20 1988-10-19 Toledo Eng Co Inc Improvements relating to melting of glass
DE3836763A1 (en) * 1988-10-28 1990-05-03 Sorg Gmbh & Co Kg Process for reducing the nitrogen oxide content in the offgas from glass furnaces
US4906272A (en) * 1989-04-17 1990-03-06 Corning Incorporated Furnace for fining molten glass
US5370723A (en) * 1989-06-13 1994-12-06 Pilkington Plc Glass melting furnace with control of the glass flow in the riser
US5194081A (en) * 1989-06-13 1993-03-16 Pilkington Plc Glass melting process
GB8913539D0 (en) * 1989-06-13 1989-08-02 Pilkington Plc Glass melting
NL8902935A (en) * 1989-11-28 1991-06-17 Leonardus Mathijs Marie Nevels METHOD FOR PROCESSING ASH RESIDENCE AND GLAZING OVEN TO BE USED THEREIN
US5057133A (en) * 1990-07-02 1991-10-15 Air Products And Chemicals, Inc. Thermally efficient melting and fuel reforming for glass making
DE4225257B4 (en) * 1992-07-28 2006-03-16 Software & Technologie Glas Gmbh (Stg) Process and apparatus for nitrogen oxide reducing operation of industrial furnaces
DE4327237C1 (en) * 1993-08-13 1994-08-25 Sorg Gmbh & Co Kg Method of melting glass in a tank furnace and tank furnace for this
ES2124352T3 (en) * 1993-09-09 1999-02-01 Praxair Technology Inc METHOD FOR TREATING MATERIALS TO MANUFACTURE GLASS CONTAINING SALITRE.
FR2711077B1 (en) * 1993-10-11 1996-01-05 Delot Int Fours Waste vitrification process, and vitrification furnace.
FR2711981B1 (en) * 1993-11-02 1996-01-05 Saint Gobain Vitrage Glass melting device.
FR2720737A1 (en) * 1994-06-06 1995-12-08 Stein Heurtey Continuous glass melting furnace
CH688325A5 (en) * 1994-11-25 1997-07-31 Holderbank Financ Glarus Process for the treatment of solid residues from waste incineration plants and apparatus for Drchfuehrung the process.
DE4446576C1 (en) * 1994-12-25 1996-04-25 Sorg Gmbh & Co Kg Trough melting kiln
DE4446575C2 (en) * 1994-12-25 1996-11-28 Sorg Gmbh & Co Kg Method and device for separating bile in glass melting processes
DE19524215C2 (en) * 1995-07-03 2003-04-17 Alstom Melting furnace for the thermal treatment of special waste containing heavy metals and / or dioxins
US5807418A (en) 1996-05-21 1998-09-15 Praxair Technology, Inc. Energy recovery in oxygen-fired glass melting furnaces
DE19710351C1 (en) * 1997-03-13 1998-05-20 Sorg Gmbh & Co Kg Production of glasses with high melting point and volatile components
US6085551A (en) * 1997-03-14 2000-07-11 Beteiligungen Sorg Gmbh & Co. Kg Method and apparatus for manufacturing high melting point glasses with volatile components
FR2774085B3 (en) 1998-01-26 2000-02-25 Saint Gobain Vitrage PROCESS FOR MELTING AND REFINING VITRIFIABLE MATERIALS
DE19815326C2 (en) * 1998-04-06 2001-05-03 Sorg Gmbh & Co Kg Glass melting furnace with burners for fossil fuels and with internal radiation protection walls
DE19924521C2 (en) 1999-05-28 2003-04-30 Schott Glas Process for melting glass
GB2352024A (en) * 1999-07-15 2001-01-17 Glaverbel Glass making furnace
FR2832704B1 (en) * 2001-11-27 2004-02-20 Saint Gobain Isover DEVICE AND METHOD FOR MELTING VITRIFIABLE MATERIALS
US20050186526A1 (en) * 2002-11-01 2005-08-25 Bas Medical, Inc. Methods and systems for enabling and stabilizing tooth movement
CN100372789C (en) * 2006-04-13 2008-03-05 同济大学 Y-shape glass all electric melting furnace
DE102007008299B4 (en) * 2006-08-12 2012-06-14 Schott Ag Process for the preparation of glasses, whereby the chemical reduction of constituents is avoided
CN101541693A (en) * 2006-11-30 2009-09-23 旭硝子株式会社 Glass melting apparatus
US8113018B2 (en) * 2006-12-14 2012-02-14 Ocv Intellectual Capital, Llc Apparatuses for controlling the temperature of glass forming materials in forehearths
DE102007027044B3 (en) * 2007-06-12 2008-09-04 Beteiligungen Sorg Gmbh & Co. Kg Design for furnace melting soda-lime bottle glass, flat glass for rolling, technical glasses, borosilicate- or neutral glass, includes radiation wall and refinement threshold
RU2467960C2 (en) * 2007-07-02 2012-11-27 Асахи Гласс Ко., Лтд. Glass furnace and method of making glass articles
US8925353B2 (en) * 2007-11-08 2015-01-06 Corning Incorporated Process and system for fining glass
JP5454810B2 (en) * 2008-03-25 2014-03-26 エージーシー グラス ユーロップ Glass melting furnace
JP5265975B2 (en) * 2008-06-30 2013-08-14 株式会社オハラ Manufacturing method and manufacturing apparatus for glass molded body
US20100081103A1 (en) * 2008-09-26 2010-04-01 Hisashi Kobayashi Furnace with multiple heat recovery systems
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8707739B2 (en) * 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9776903B2 (en) * 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
CN102372415B (en) * 2011-08-11 2013-07-10 华尔润玻璃产业股份有限公司 Conveying device for glass mixture
CN102503078A (en) * 2011-11-01 2012-06-20 河南国控宇飞电子玻璃有限公司 Two-slot type glass tank
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
EP2903941A4 (en) 2012-10-03 2016-06-08 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
CN102875010A (en) * 2012-10-31 2013-01-16 中国建材国际工程集团有限公司 Float glass melting kiln for producing ultrathin glass
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
WO2014189504A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
SI2999923T1 (en) 2013-05-22 2018-11-30 Johns Manville Submerged combustion melter with improved burner and corresponding method
EP3003997B1 (en) 2013-05-30 2021-04-28 Johns Manville Submerged combustion burners with mixing improving means for glass melters, and use
EP3003996B1 (en) 2013-05-30 2020-07-08 Johns Manville Submerged combustion glass melting systems and methods of use
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
CN105217932B (en) * 2015-08-24 2017-08-25 王立臣 A kind of oblique flame combustion method of the polyoxy of Flat Glass Furnace and burner
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
CN106517736B (en) * 2015-09-15 2020-01-17 江苏华东耀皮玻璃有限公司 Melting furnace for melting glass with high volatile components
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
CN109896725A (en) * 2019-04-23 2019-06-18 蚌埠中光电科技有限公司 A kind of glass metal clarifier
GB201906745D0 (en) 2019-05-13 2019-06-26 Fives Stein Ltd Hybrid horizontal glass melting furnace with high flexibility in energy input
EP3760595A1 (en) * 2019-07-04 2021-01-06 International Partners in Glass Research (IPGR) e.V. Glass melting furnace
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
CN110922028B (en) * 2019-10-18 2020-10-23 中材科技股份有限公司 Kiln device for producing glass, basalt fibers or rock wool
WO2022024291A1 (en) 2020-07-30 2022-02-03 株式会社新川 Mounting device, and method for detecting parallelism in mounting device
CN112830661B (en) * 2021-01-15 2023-05-16 彩虹显示器件股份有限公司 Large-length-width ratio high-electrical load type mixed melting kiln and melting process
CN113480150A (en) * 2021-06-30 2021-10-08 陕西彩虹工业智能科技有限公司 Flexible glass preparation system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122469A (en) * 1936-09-10 1938-07-05 Pittsburgh Plate Glass Co Apparatus for making glass

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US212249A (en) * 1879-02-11 Improvement in wind-wheels
BE390095A (en) *
DE224309C (en)
FR609269A (en) * 1925-04-10 1926-08-11 Saint Gobain Process and devices for refining glass
DE476744C (en) * 1925-05-29 1929-05-23 Chauny & Cirey Method and device for purifying liquid glass in the purification room of a glass melting furnace
GB325238A (en) * 1928-11-12 1930-02-12 William Alfred Morton Improvements in glass melting apparatus
CH248744A (en) * 1944-05-05 1947-05-31 Electroverre Romont Sa Process for the melting of vitrifiable materials and their refining, during the manufacture of glass, and furnace for the implementation of this process.
US2513732A (en) * 1944-12-06 1950-07-04 Installation for the continuous
DE806883C (en) * 1946-01-16 1951-06-21 Saint Gobain Process and furnace for the continuous production of glass
US2616221A (en) * 1950-04-26 1952-11-04 Puerto Rico Glass Corp Glass melting furnace
US2680772A (en) * 1950-12-02 1954-06-08 Ferro Corp Method for producing porcelain enamel
US2640859A (en) * 1950-12-02 1953-06-02 Ferro Corp Apparatus for producing porcelain enamel
US3198618A (en) * 1955-03-09 1965-08-03 Harvey L Penberthy Throatless glass furnace
US3108149A (en) * 1959-11-18 1963-10-22 Libbey Owens Ford Glass Co Method and apparatus for glass melting
FR1300813A (en) * 1961-06-21 1962-08-10 Saint Gobain Further training in tank furnaces for the manufacture of glass or other similar material
LU48378A1 (en) * 1965-04-12 1966-10-12
US4001001A (en) * 1976-01-19 1977-01-04 Ppg Industries, Inc. Horizontal glassmaking furnace
GB1513653A (en) * 1976-04-12 1978-06-07 Bfg Glassgroup Manufacture of glass sheets
DE2703223B2 (en) * 1977-01-27 1981-02-05 Sorg - Gmbh & Co Kg, 8770 Lohr Glass melting furnace
US4410347A (en) * 1981-03-31 1983-10-18 Ppg Industries, Inc. Glass melting method using cullet as particulate collection medium
IT1138425B (en) 1981-06-16 1986-09-17 Stigler Otis S P A ELECTRO-FLUID DYNAMIC COMPLEX FOR THE OPERATION OF A CABIN OF AN ELEVATOR SYSTEM
US4549895A (en) 1981-09-03 1985-10-29 Hoya Corporation Method and apparatus for melting glass
EP0086858A1 (en) * 1982-02-24 1983-08-31 Sorg GmbH & Co. KG Process for melting glass with the additional aid of electrical energy, and furnace for carrying out the process
EP0086859A1 (en) * 1982-02-24 1983-08-31 Sorg GmbH & Co. KG Process for melting glass, and glass melting furnace for carrying out the process
DE3330183A1 (en) 1983-08-20 1985-03-07 Philips Patentverwaltung Gmbh, 2000 Hamburg Glass melting tank
GB8402297D0 (en) * 1984-01-28 1984-02-29 Asahi Glass Co Ltd Glass
GB8402298D0 (en) * 1984-01-28 1984-02-29 Asahi Glass Co Ltd Glass
GB8430312D0 (en) * 1984-11-30 1985-01-09 Pilkington Brothers Plc Glass melting tanks
EP0230492B1 (en) * 1986-01-23 1990-06-13 Beteiligungen Sorg GmbH & Co. KG Glass melting furnace of improved efficiency
SU1395590A1 (en) 1986-06-27 1988-05-15 Государственный научно-исследовательский институт стекла Glass-melting bath furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122469A (en) * 1936-09-10 1938-07-05 Pittsburgh Plate Glass Co Apparatus for making glass

Also Published As

Publication number Publication date
CZ180188A3 (en) 1993-04-14
IN171025B (en) 1992-07-04
LT3759B (en) 1996-03-25
PT87600B (en) 1991-05-22
FI882530A (en) 1988-12-01
ES2031286T3 (en) 1992-12-01
ATE75706T1 (en) 1992-05-15
UA11070A (en) 1996-12-25
FI882530A0 (en) 1988-05-30
HU208412B (en) 1993-10-28
LTIP1833A (en) 1995-08-25
SG101492G (en) 1992-12-24
CN88103288A (en) 1988-12-21
AU603194B2 (en) 1990-11-08
MY102814A (en) 1992-11-30
DE3870817D1 (en) 1992-06-11
ATE77354T1 (en) 1992-07-15
DE3872056D1 (en) 1992-07-23
SK180188A3 (en) 1994-12-07
LV11168A (en) 1996-04-20
PL153827B1 (en) 1991-06-28
DD272290A5 (en) 1989-10-04
LV11168B (en) 1996-06-20
EP0317551A3 (en) 1990-08-08
AU1339588A (en) 1988-12-01
LTIP1465A (en) 1995-05-25
ES2032876T3 (en) 1993-03-01
US4882736A (en) 1989-11-21
KR920003221B1 (en) 1992-04-24
LV11169A (en) 1996-04-20
JPH0476931B2 (en) 1992-12-07
JPS63310734A (en) 1988-12-19
DE3718276C2 (en) 1989-11-23
BG49381A3 (en) 1991-10-15
PL271802A1 (en) 1989-04-03
FI86985C (en) 1992-11-10
HUT51576A (en) 1990-05-28
SK277753B6 (en) 1994-12-07
CA1335535C (en) 1995-05-16
RU1836303C (en) 1993-08-23
EP0293545A2 (en) 1988-12-07
RU2013383C1 (en) 1994-05-30
CZ278070B6 (en) 1993-08-11
EP0317551B1 (en) 1992-05-06
TR25215A (en) 1992-11-26
DE3718276A1 (en) 1988-12-08
JPH0375492B2 (en) 1991-12-02
LT3654B (en) 1996-01-25
ZA882900B (en) 1988-10-27
HK14093A (en) 1993-02-26
EP0293545A3 (en) 1990-11-07
LV11169B (en) 1996-06-20
KR880013828A (en) 1988-12-22
PT87600A (en) 1988-06-01
EP0317551A2 (en) 1989-05-24
JPH03183624A (en) 1991-08-09
CN1021039C (en) 1993-06-02
FI86985B (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP0293545B1 (en) Method for the economical melting of glass and a glass melting furnace used therefor
EP0230492B1 (en) Glass melting furnace of improved efficiency
EP0237604B1 (en) Energy-saving method for melting glass
DE2461385A1 (en) METHOD FOR CONTINUOUSLY MELTING GLASS AND PURIFYING THE MOLTEN GLASS AND DEVICE FOR CARRYING OUT THE METHOD
DE1496043A1 (en) Method and device for the production of glass
DE69629103T2 (en) Method and device for melting glass
EP2160364B1 (en) Glass melting furnace and method for melting glass
DE2639977C3 (en) Process for melting glass in a burner-heated tank and glass melting furnace for carrying out the process
EP0864543B1 (en) Process and glass melting furnace for producing high-temperature melting glasses having vapourisalbe components
EP0086858A1 (en) Process for melting glass with the additional aid of electrical energy, and furnace for carrying out the process
DE3406613A1 (en) DEVICE FOR PRODUCING GLASS
DE2539355C3 (en) Glass melting furnace with a connected melting and refining part
EP0019007B1 (en) High performance melting furnace for melting corrosive mineral matter with sharp viscosity curves
DE2703223A1 (en) METHOD OF MELTING GLASS AND GLASS MELTING FURNACE FOR CARRYING OUT THE METHOD
DE3903016C2 (en)
EP0410338B1 (en) Melting vessel for the preparation of glass
EP0118580A1 (en) Electric smelt furnace for aggressive mineral products with an inclined viscosity curve
EP0086859A1 (en) Process for melting glass, and glass melting furnace for carrying out the process
DE4326565A1 (en) Process for melting and draining glass, and melt channel or furnace for carrying out the process
DE2518635C3 (en) Process for melting and refining glass in a regenerative melting furnace
DE69114549T2 (en) Method and device for melting raw materials.
DD216710A1 (en) GLASS MELTING PAN
DE1019443B (en) Method and device for lauting glass melts
DD141301A1 (en) METHOD AND DEVICE FOR MELTING AND LAYING GLASS
DE1496043C (en) Process for making glass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BETEILIGUNGEN SORG GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19900809

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 77354

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3872056

Country of ref document: DE

Date of ref document: 19920723

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032876

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88101382.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990122

Year of fee payment: 12

Ref country code: DE

Payment date: 19990122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990201

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990208

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990212

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990228

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000202

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

BERE Be: lapsed

Owner name: BETEILIGUNGEN SORG G.M.B.H. & CO. K.G.

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000201

EUG Se: european patent has lapsed

Ref document number: 88101382.5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201